Workshop: Inflation and the dark sector — Current challenges and future perspectives June 3-7 (2019) @Jyväskylä

Primordial Black Hole Formation in Affleck-Dine Mechanism

Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo)

Based on Hasegawa MK arXiv:1711.00990 PRD98 043514 (2018)

arXiv:1807.00463 JCAP 01 027 (2019)

1. Introduction

- Primordial Black Holes (PBHs) Zeldovich-Novikov (1967) Hawking (1971)
- PBHs have attracted much attention because they could
 - ▶ Give a significant contribution to dark matter (>10¹⁵ g)
 - Account for GW events recently detected by LIGO-Virgo
- PBHs can be formed by gravitational collapse of over-density region with Hubble radius in the early universe

• Large density fluctuations δ with O(0.1) are required for PBH formation but $\delta \sim O(10^{-5})$ on CMB scale

need to break scale invariance of spectrum of density fluctuations

- It is difficult to realize large density fluctuations in a singlefield inflation
- Sophisticated models are proposed
 - Garcia-Belliido Linde Wands (1996) Multi-stage inflation

MK, Sugiyama, Yanagida (1998) MK Kusenko Tada Yanagida (2016)

Axion-like curvaton model

MK, Kitajima, Yanagida (2012) Ando, Inomata, MK, Mukaida, Yanagida (2017)

PBH formation by Affleck-Dine mechanism

Dolgov, Silk (1993) Dogov MK Kevlishvili (2009) Hsegawa, MK (2018)

High-baryon bubbles are formed

Evades constrains from pulsar timing and CMB mu-distortion which are severe for PBH formation from inflation

Contents

- 1. Introduction
- 2. Conventional PBH formation from inflation
- 3. Constraints from PTA and CMB
- 4. PBH formation from Affleck-Dine mechanism
- 5. Conclusion

2. Conventional PBH formation from inflation

• After inflation, when density fluctuations reenter the horizon, region with Hubble radius collapses to form a PBH if its overdensity is higher than δ_c (≈ 0.4)

PBH mass (~ Horizon mass)

$$M_{
m PBH} \simeq 3.6 M_{\odot} \left(rac{\gamma}{0.2}
ight) \left(rac{k}{10^6 {
m Mpc}^{-1}}
ight)^{-2} \simeq 4.5 M_{\odot} \left(rac{\gamma}{0.2}
ight) \left(rac{T}{0.1 {
m GeV}}
ight)^{-2}$$
 $M_{
m PBH} = \gamma M_H \; ({
m horizon \; mass})$ [$\gamma = 0.2 \; {
m Carr \; (1975)}$]

2. Conventional PBH formation from inflation

- PBH abundance is estimated by Press-Schechter formalism assuming density fluctuations follow Gaussian statistics
- PBH mass fraction $\beta = \rho_{PBH}(M)/\rho$

$$\beta(M) = \int_{\delta_c} d\delta \frac{1}{\sqrt{2\pi\sigma^2(k)}} \exp\left(-\frac{\delta^2}{2\sigma^2(k)}\right) \qquad \mathcal{P}_{\zeta}(k)$$

$$\sigma^2(k) = \int d\log k' \, W^2(k'/k) \frac{16}{81} (k'/k)^4 \mathcal{P}_{\zeta}(k')$$

 $\sigma^2(k)$: variance of the comoving density perturbation coarse-grained on k^{-1}

Present PBH fraction to DM

$$f_{\rm PBH}(M) = \frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm DM}} \simeq 1.3 \times 10^8 \, \beta(M) \, \left(\frac{M_{\rm PBH}}{M_{\odot}}\right)^{-1/2} \quad \text{[fraction per log M]}$$

3.1 Constraint from CMB spectral distortion

Photon diffusion erases small-scale curvature perturbations

- Diffusion injects energy of perturbations into background
 - CMB spectral distortion (mu distortion)
- CMB observation (COBE/FIRAS)

$$|\mu| < 9 \times 10^{-5}$$

Stringent constraint on curvature perturbations

PBH with mass

$$400M_{\odot} \lesssim M_{\mathrm{PBH}} \lesssim 10^{13} M_{\odot}$$

 $f(p) = \frac{1}{\exp(n/T + \mu) - 1}$

is excluded

3.2 Constraint from pulsar timing

 Large curvature perturbations required for PBH induce tensor perturbations (gravitational waves) through 2nd order effect

Saito Yokoyama (2009) Bugaev Kulimai (2010)

$$O(\zeta_{\vec{k}}\,\zeta_{\vec{k}-\vec{k'}})$$

$$h_{\vec{k}}^{"} + 2\mathcal{H}h_{\vec{k}}^{'} + k^2h_{\vec{k}} = \mathcal{S}(\vec{k}, t)$$

 h_k : tensor perturbation

$$\Omega_{\text{GW}}h^2 \sim 10^{-8} (\mathcal{P}_{\zeta}/10^{-2})^2$$

$$f_{\rm GW} \sim 2 \times 10^{-9} {\rm Hz} \left(\frac{\gamma}{0.2}\right)^{1/2} \left(\frac{M_{\rm PBH}}{M_{\odot}}\right)^{-1/2} {\rm Te}_{\rm C} \approx 10^{-10} {\rm Te}_{\rm C} = 10^{$$

Pulsar timing array experiments 10-13
 already give a stringent constraint

PBH with mass

$$0.1 M_{\odot} \lesssim M_{\mathrm{PBH}} \lesssim 10 M_{\odot}$$

is excluded

3.3. LIGO-Virgo gravitational wave events

- GW events by LIGO Abbott et al (2016, 2017)
 - \rightarrow BH-BH binaries with ~ 30 M_{\odot}
- Origin of BHs
 - → PBHs are one of candidates
- Required fraction of PBHs

Sasaki Suyama Tanaka Yokoyama (2016)

$$\Omega_{\rm PBH}/\Omega_c \sim 10^{-3} - 10^{-2}$$

3.3 Gaussian fluctuations

- In order to account LIGO events PBH mass spectrum has a sharp peak around $M_{\rm PBH} \sim O(10) M_{\odot}$
- PBH with mass > $O(100)M_{\odot}$ cannot be produced

- Highly non-gaussian model evades those constraints
 - Rare high density regions
 - small density fluctuation outside the regions

4.1 PBH formation in Affleck-Dine mechanism

- Affleck-Dine mechanism
 - Flat directions in scalar potential of MSSM $\ni (\tilde{q}, \ \tilde{\ell}, \ H)$
- One of flat directions = AD field φ

- During inflation φ has a large value if c_H <0
- After inflation, when $m_{\phi} \simeq H$ φ starts to oscillate

4.1 PBH formation in Affleck-Dine baryogenesis

AD field is kicked in phase direction due to A-term

AD mechanism can generate baryon number efficiently

$$\eta_b = rac{n_b}{s} \sim rac{T_R m_{3/2}}{H_{
m osc}^2} \left(rac{\phi_{
m osc}}{M_p}
ight)^2$$

large baryon asymmetry
 η_b ~1 is realized

- Two unconventional assumptions:
 - Hubble mass is positive during inflation and becomes negative after inflation
 - Thermal mass overcomes Hubble mass after inflation
- Potential for AD field

$$V = \begin{cases} (m_{\phi}^2 + c_I H^2) |\phi|^2 + V_{\rm NR} + V_{\rm A} & \text{(during inflation)} \\ (m_{\phi}^2 - c_M H^2) |\phi|^2 + V_{\rm NR} + V_{\rm A} + V_{\rm T} & \text{(after inflation)} \end{cases}$$

$$V_T = \begin{cases} c_1 T^2 |\phi|^2 & |\phi| \lesssim T \\ c_2 T^4 \ln(|\phi|^2/T^2) & |\phi| \gtrsim T \end{cases}$$

- During inflation
 - CH > 0 (positive Hubble mass)
 - ▶ Flat potential c_H << 1</p>
- Quantum fluctuations of AD field
 - Gaussian distribution

$$P(t,\phi) = \frac{1}{2\pi\sigma(t)^2} \exp\left[-\frac{|\phi|^2}{2\sigma(t)^2}\right]$$
$$\sigma^2 = \left(\frac{H_I}{2\pi}\right)^2 \left(\frac{2}{3c_H}\right) \left[1 - e^{-(2c_H/3)H_I t}\right]$$

- During inflation
 - c_H > 0 (positive Hubble mass)
 - ▶ Flat potential c_H << 1</p>
- Quantum fluctuations of AD field
 - Gaussian distribution

$$P(t,\phi) = \frac{1}{2\pi\sigma(t)^2} \exp\left[-\frac{|\phi|^2}{2\sigma(t)^2}\right]$$

$$\sigma^2 = \left(\frac{H_I}{2\pi}\right)^2 \left(\frac{2}{3c_H}\right) \left[1 - e^{-(2c_H/3)H_I t}\right] \quad \text{after inflation}$$

- c_H < 0 (negative Hubble mass)</p>
- Thermal effect due to inflaton decay $T \simeq (T_R^2 H M_p)^{1/4}$

V(T=0)

• Regions with $|\phi| < \varphi_c$ go to A-vacuum

$$\varphi_c = \Delta^{1/2} H_I \qquad \Delta = \frac{T_R^2 M_p}{H^3}$$

- no baryon generation
- Regions with $|\phi| > \varphi_c$ go to B-vacuum
 - baryon generation takes place (same way as the standard AD)
 - Efficient AD baryogenesis
 - Formation of high-baryon bubble
- Fraction of volume which will go to B-vacuum

$$f_B(N) = \int_{\varphi > \varphi_c} d\phi \, P(N, \phi) \qquad N \propto \ln a$$

• Formation rate of HBB with scale $k(N)=k^* \exp(N-N^*)$

$$\beta_B(N) = \frac{d}{dN} f_B(N)$$

4.3 Q-ball formation

- In AD mechanism, AD field oscillation generally form Q-balls
 - non-topological soliton solution in a scalar theory with U(1)
- Q-ball properties depend on SUSY breaking scheme
- Gravity-mediated SUSY breaking scenario

$$V \simeq m_\phi^2 |\phi|^2 \left[1 + K \ln \left(rac{|\phi|^2}{M_*^2}
ight)
ight] \qquad m_\phi \sim \mathcal{O}(1) {\sf TeV}$$

- K < 0 Q-balls are formed but they are unstable
- No effect on HBB bubble formation
- Gauge-mediated SUSY breaking scenario

$$V \simeq M_F^4 \left(\ln rac{|\phi|^2}{M_{
m mess}^2}
ight)^2 + m_{3/2}^2 |\phi|^2 \left[1 + K \ln \left(rac{|\phi|^2}{M_*^2}
ight)
ight] \quad m_{3/2} < 1 {
m GeV}$$

- Q-balls are formed and they are stable
- Baryons are confined inside Q-balls

Hiramatsu MK Takahashi (2010)

4.4 PBH formation in gravity-mediated SUSY breaking

- For simplicity we assume $\eta_b = 1$ inside HBBs
- After QCD phase transition baryon number is carried by non-relativistic nucleons
- Density contrast between inside and outside of HBBs

$$\delta = \frac{\rho^{\rm in} - \rho^{\rm out}}{\rho^{\rm out}} \simeq 0.3 \eta_b^{\rm in} \left(\frac{T}{200 {\rm MeV}}\right)^{-1}$$

$$\Rightarrow \quad \delta \gtrsim \delta_c \quad {\rm for} \quad T \lesssim 200 {\rm MeV}$$

PBH formation

PBH mass has a lower cutoff $M_c \simeq 18 M_{\odot}$

$$M_c \simeq 18 M_{\odot}$$

PBH mass fraction at formation

$$\beta_{\text{PBH}}(M_{\text{PBH}}) = \beta_B(M_{\text{PBH}})\theta(M_{\text{PBH}} - M_c)$$

PBH mass distribution

$$\Omega_{\rm PBH}(M_{\rm PBH})/\Omega_c \simeq \left(rac{eta_{\rm PBH}}{1.6 imes 10^{-9}}
ight) \left(rac{M_{\rm PBH}}{M_{\odot}}
ight)^{1/2}$$

4.4 PBH formation in gravity-mediated SUSY breaking

Predicted mass spectrum can account for LIGO events

- HBBs with M < Mc contribute to baryon asym. of the universe
- baryons are highly inhomogeneous, which spoils success of standard BBN $\eta_b^{\rm HBB} \ll \eta_b^{\rm obs}$
- This can be satisfied by modifying the model

4.5 PBH formation in gauge-mediated SUSY breaking

- Q-balls are formed and they behave like matter
- Density contrast between inside and outside of HBBs

$$Y_Q^{\rm in} = \rho_Q/s \simeq m_{3/2} \eta_b^{\rm in}$$

$$\Rightarrow$$
 $\delta \gtrsim \delta_c$ for $T \lesssim 5 \, Y_Q^{
m in}$

PBH formation

PBH mass has a lower cutoff

$$M_c \simeq 18 M_{\odot} \left(rac{Y_Q^{\sf in}}{40 {\sf MeV}}
ight)^{-2}$$

PBH mass distribution

$$\Omega_{\rm PBH}(M_{\rm PBH})/\Omega_c \simeq \left(rac{eta_{
m PBH}}{1.6 imes 10^{-9}}
ight) \left(rac{M_{
m PBH}}{M_{\odot}}
ight)^{1/2}$$

4.4 PBH formation in gauge-mediated SUSY breaking

Predicted mass spectrum can account for LIGO events

- Q-balls in HBBs with M < Mc contribute to DM
- This scenario can explain both LIGO events and DM simultaneously
- Possible to form supermassive PBH $M_{\rm PBH}\gg 100 M_{\odot}$

5. Conclusion

- Affleck-Dine mechanism produces HBBs which form PBHs with > O(10) solar mass
- The model can account LIGO events evading the constraints from CMB spectral distortion and pulsar timing
- High baryon bubbles also produce Q-ball DM
- Supermassive BH can be produced in this mechanism