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1.

Introduction

Primordial Black Holes (PBHSs)

PBHs have attracted much attention because they could

> (@ive a significant contribution to dark matter ( >1015 g )

> Account for G\W events recently detected by LIGO-Virgo

PBHs can be formed by gravitational collapse of over-density
region with Hubble radius in the early universe
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collapse

Large density fluctuations 6 with O(0.1) are required for PBH
formation but 6 ~ O(10-°) on CMB scale

need to break scale invariance of spectrum of
density fluctuations



e |t is difficult to realize large density fluctuations in a single-
field inflation

e Sophisticated models are proposed
> Multi-stage inflation

2 Axion-like curvaton model

e PBH formation by Affleck-Dine mechanism

> High-baryon bubbles are formed
=P [IGO PBHs

> Evades constrains from pulsar High baryon density
timing and CMB mu-distortion bubbles
which are severe for PBH
formation from inflation
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2. Conventional PBH formation from inflation

e After inflation, when density fluctuations reenter the horizon,
region with Hubble radius collapses to form a PBH if its over-
density is higher than &¢ (=0.4)
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e PBH mass (~ Horizon mass)

2
Y k Y T

Mpgy ~ 3.6M (—) ~ 4.5M (—)

nen “\o. (106Mpc1) ©\0.2 <O.1GeV>

L 4

\ MPBH e ”yMH (horizon mass)
[ v=0.2 Carr (1975)]



2. Conventional PBH formation from inflation

e PBH abundance is estimated by Press-Schechter formalism
assuming density fluctuations follow Gaussian statistics

e PBH mass fraction B=pprsx(M)/p
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o?(k) : variance of the comoving density perturbation coarse-grained on k™

+ PC(k) ~ 0(10_2)

for PBH formation

e Present PBH fraction to DM
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3.1 Constraint from CMB spectral distortion

e Photon diffusion erases small-scale curvature perturbations
= Silk damping

e Diffusion injects energy of perturbations into background
=P CMB spectral distortion (mu distortion)

e CMB observation (COBE/FIRAS)
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3.2 Constraint from pulsar timing

® Large curvature perturbations required for PBH induce tensor
perturbations (gravitational waves) through 2nd order effect

Saito Yokoyama (2009) Bugaev Kulimai (2010) O(CE CE_ k‘?)

W+ 2HBL + kPhy = S(k,t)

h, : tensor perturbation
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e Pulsar timing array experiments g constraint, 2 SKA

already give a stringent constraint
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3.3. LIGO-Virgo gravitational wave events

e GW events by LIGO
= BH-BH binaries with ~ 30 M
® Oirigin of BHs
=P PBHs are one of candidates
® Required fraction of PBHs Qpph /Qp ~ 103 — 102

Masses in the Stellar Graveyard

in Solar Masses




3.3 Gaussian fluctuations

® |n order to account LIGO events PBH mass spectrum has a
sharp peak around Mpgy ~ O(10) Mg

® PBH with mass > O(100) M, cannot be produced

¢ Highly non-gaussian model evades those constraints
Rare high density regions

> small density fluctuation outside
the regions



4.1 PBH formation in Affleck-Dine mechanism
e Affleck-Dine mechanism

~

2 Flat directions in scalar potential of MSSM > (¢, ¢, H)
® One of flat directions = AD field ¢
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Va : A-term

A = Xapmszso (mgse @ gravitino mass)

® During inflation ¢ has a large value if ch <0
e After inflation, whenm, ~ H ¢ starts to oscillate
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4.1 PBH formation in Affleck-Dine baryogenesis
e AD field is kicked in phase direction due to A-term
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e AD mechanism can generate baryon number efficiently
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4.2 High-baryon bubble formation

® Two unconventional assumptions:

7 Hubble mass is positive during inflation and becomes
negative after inflation

7 Thermal mass overcomes Hubble mass after inflation

e Potential for AD field

Vo <( (mi + crH?)|9|* + Var + Va (during inflation)
: | (mg —cemH?)|9]? + Var + Va + V3 (after inflation)
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4.2 High-baryon bubble formation

e During inflation

» P(t, ¢)
2 cH > 0 (positive Hubble mass)

2 Flat potential ch << 1

e Quantum fluctuations of AD field

2 (@Gaussian distribution
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4.2 High-baryon bubble formation

during inflation

e During inflation

» P(t, ¢)
2 cH > 0 (positive Hubble mass)

2 Flat potential ch << 1

e Quantum fluctuations of AD field

2 (@Gaussian distribution
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e After inflation
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4.2 High-baryon bubble formation

® Regions with |¢| < ¢.go to A-vacuum

? no baryon generation | |
e Regions with |¢| > ¢. go to B-vacuum 2
2 baryon generation takes place \‘/m\‘//¢
(same way as the standard AD ) B B
2 Efficient AD baryogenesis /HBB\A

=9 [Formation of high-baryon bubble

® Fraction of volume which will go to B-vacuum
faM)= [ d6P(N.6) N oxna
P> pc
e Formation rate of HBB with scale k(N)=k* exp(N-N*)
d
Bp(N) = —fB(N)



4.3 Q-ball formation
® In AD mechanism, AD field oscillation generally form Q-balls
2 non-topological soliton solution in a scalar theory with U(1)

® Q-ball properties depend on SUSY breaking scheme

e Qravity-mediated SUSY breaking scenario
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> K< 0 Q-balls are formed
but they are unstable

V:mi\gb? ll—i—Kln(

2> No effect on HBB bubble formation

e Gauge-mediated SUSY breaking scenario
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> Q-balls are formed and they are stable

V ~ My <1n

2> Baryons are confined inside Q-balls



4.4 PBH formation in gravity-mediated SUSY breaking

For simplicity we assume np =1 inside HBBs

After QCD phase transition baryon number is carried by

non-relativistic nucleons

Density contrast between inside and outside of HBBs
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PBH formation
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PBH mass fraction at formation

BpeH(MpeH) = Be(MpeH)0(Mpen — M.)

PBH mass distribution
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4.4 PBH formation in gravity-mediated SUSY breaking

® Predicted mass spectrum can account for
Mpph|g| QPBH/QC ~ 1073 — 1072

Mppu|Mo)
e HBBs with M < Mc contribute to baryon asym. of the universe

e Dbaryons are highly inhomogeneous, which spoils success of
standard BBN - anBB < ngbs

e This can be satisfied by modifying the model



4.5 PBH formation in gauge-mediated SUSY breaking

e Q-balls are formed and they behave like matter

® Density contrast between inside and outside of HBBs
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4.4 PBH formation in gauge-mediated SUSY breaking
e Predicted mass spectrum can account for LIGO events
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e (QQ-balls in HBBs with M < Mc contribute to DM

e This scenario can explain both LIGO events and DM
simultaneously

e Possible to form supermassive PBH  Mpgy > 100M
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5. Conclusion

e Affleck-Dine mechanism produces HBBs which form
PBHs with > O(10) solar mass

e The model can account LIGO events evading the
constraints from CMB spectral distortion and pulsar
timing

e High baryon bubbles also produce Q-ball DM

e Supermassive BH can be produced in this mechanism

22



