

Gravitational waves from phase transitions in the early Universe

Mark Hindmarsh

Helsinki Institute of Physics & Dept of Physics, University of Helsinki

and Department of Physics & Astronomy, University of Sussex

IDS workshop Jyväskylä 3. kesäkuuta 2019

Gravitational wave astronomy

Gravitational waves ... Mark Hindmarsh

2

Gravitational wave cosmology

- Gravitational waves are hard to observe
- Once made, not absorbed by intervening matter
- Complete history of the universe visible in GWs

Space-based gravitational wave detectors

- Approved:
 - LISA (ESA L3 2034)
- LISA sensitivity
 - Peak: 10⁻³ 10⁻² Hz
 - Arm length $I \approx 10^9$ m
 - $-\Delta l \approx 10^{-12} \text{ m}$
 - Characteristic strain $h \approx 10^{-21}$
- Proposed:
 - DECIGO (Japan, ?)
 - Taiji, Tianqin (China, ?)
 - Big Bang Observer (USA, ?)

Gravitational waves from the early universe

- Events at time t generate waves with minimum frequency f ≈ 1/t (Hubble rate)
- Redshifted to a frequency now: $f_0 = [a(t)/a(t_0)]f$
- Minimum frequencies (redshifted Hubble rates):

Event	Time/s	Temp/GeV	f ₀ /Hz
QCD phase transition	10-3	0.1	10 ⁻⁸
EW phase transition	10-11	100	10 ⁻⁵
?	10 ⁻²⁵	10 ⁹	100 LIGO
End of inflation	≥ 10 ⁻³⁶	≤ 10 ¹⁶	≤ 10 ⁸

• Inflation and topological defects: waves on all scales

Caprini, Figueroa (2018), Christensen (2019)

Gravitational waves ... Mark Hindmarsh

NASA

Phase transitions in the early Universe

- At very high temperatures and pressures, the state of matter in the Universe changes
 - Tc ~ 100 MeV QCD (cross-over)
 - Tc ~ 100 GeV Higgs/electroweak
 - Tc >> 100 GeV ???
- Departures from equilibrium and homogeneity (shear stress)
 - First order phase transition: relativistic condensation or `fizz' Steinhardt (1982)
 - Formation of topological defects
 Kibble (1976)

Electroweak transition

- SM is not weakly coupled at high T
- Non-perturbative techniques:
 - Dimensional reduction to 3D effective field theory + 3D lattice Kajantie, Laine, Rummukainen, Shaposhnikov (1995,6)
 - SU(2)-Higgs on 4D lattice
 Czikor, Fodor, Heitger (1998)
- SM transition at m_h ≈ 125 GeV is a cross-over - a supercritical fluid

 Search for 1st order transition is a search for physics beyond SM

Temperature

First order phase transitions

- 1st order transition proceeds by nucleation of bubbles of Higgs phase
- Expanding bubbles generate pressure waves in hot fluid
- Shear stresses detectable gravitational waves?

Kinetic energy density

Steinhardt (1982); Gyulassy et al (1984); Witten (1984); Enqvist et al (1992); Gravitational waves ... Mark Hindmarsh

GWs from first order phase transitions

- Parametrise transition:
 - T_n = nucleation temperature
 - $\alpha = (\text{scalar potential})/(\text{thermal energy})$
 - $R_* =$ mean bubble centre separation
 - v_w = bubble wall speed
 - g_{eff} = effective d.o.f.
- Notes on calculating parameters:
 - Bubble nucleation rate/volume = p(T)
 - Transition rate parameter $b = d \ln(p)/dt$
 - v_w non-equilibrium
 - Calculate T_n , α , R_* from $V_T(f)$, b and v_w
- Aim: GW power spectrum

 $\frac{d\Omega_{\rm gw}}{H_{\rm Her}}(T_{\rm n}, R_*H_{\rm n}, \alpha, v_{\rm w}, g_{\rm eff}^{\pm})$ Gravitational waves ... Mark Hindmarsh

GWs from phase transitions

- Gravitational waves generated by shear stress fluctuations
- Shear stress ~ kinetic energy
- Kinetic energy from scalar potential energy $T_{ij}^{TT} \stackrel{\circ}{\sim} (\rho + p) U_i U_j \sim \rho K$
 - $K(\alpha, v_w)$ = fluid kinetic energy fraction
- Timescales τ_{v} and τ_{c}
 - τ_{v} duration of stresses from fluid velocity
 - τ_c coherence time of stress fluctuations

$$\Omega_{\rm gw,0} \sim \Omega_{\rm rad,0} (H_n \tau_v) (H_* \tau_c) K^2$$

• KE fraction estimate from single bubble kamionkowsky et al 1994, Espinosa et al 2010

0.4

0.8

0.6

 v_w

0.2

 $\dot{h}_{ij} \sim G \int dt' \cos[k(t-t')] T_{ij}^{TT}(k,t')$

 $\Omega_{\rm GW} \sim \frac{1}{G\rho} \left\langle \left| \dot{h}_{ij}(t) \right|^2 \right\rangle$

Gravitational waves ... Mark Hindmarsh

Simulations of thermal phase transitions

- Preparatory: 1M hrs CSC, Finland
- 2015/6: 17M CPU-hours
 Tier-0 (Hazel Hen, Stuttgart)
- 4200³ lattice on 24k cores
- GW density fraction power spectrum $\frac{d\Omega_{\rm gw}}{d\ln k} = \frac{1}{12H^2} \frac{k^3}{2\pi^2} \langle |\dot{h}_{ij}^{\rm tt}(\mathbf{k})|^2 \rangle$

Fluid kinetic energy in slice (1200³)

Hindmarsh, Huber, Rummukainen, Weir 2017 Gravitational waves ... Mark Hindmarsh Weir 2017

GW power spectra: deflagration

- Transition strength: $\alpha = 0.0046, 0.05$
- Wall speed: $v_w = 0.44$
- Mean bubble separation: $R_* = 1900/T_c$

- Domed peak at *kR*^{*} ~ 10
- Approx k⁻⁴ spectrum at high k

Hindmarsh, Huber, Rummukainen, Weir (2017)

GW power spectra: detonation

- Transition strength: $\alpha = 0.0046, 0.05$
- Wall speed: $v_w = 0.92$
- Mean bubble separation: $R_* = 1900/T_c$

- Domed peak at *kR*^{*} ~ 10
- Approx k⁻³ spectrum at high k

Hindmarsh, Huber, Rummukainen, Weir (2017)

GW power spectra: near c_s

- Transition strength: $\alpha = 0.0046$
- Wall speed: $v_w = 0.56$
- Mean bubble separation: $R_* = 1900/T_c$

- Peak at *kR** ~ 40
- Rising plateau at kR_{*} ~ 10 (approx k spectrum)
- Peak length scale from sound shell thickness

Hindmarsh, Huber, Rummukainen, Weir (2017)

Lifetime of sound waves

Sound damped by viscosity

$$\left(\frac{4}{3}\eta_{\rm s}+\zeta\right)\nabla^2 V^i_{\parallel}$$

- Shear viscosity $\eta_{\rm s} \sim T^3/e^4 \ln(1/e)$
- Lifetime of scale R: $\tau_{\eta}(R) \sim e^4 \ln(1/e) R^2 T$.
- Longer than Hubble time for scales

$$R \gg \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{m_{\rm Pl}e^4}\right) \sim 10^{-11} \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{100 \text{ GeV}}\right),$$

- Effective lifetime is Hubble time, unless ...
- ... non-linearities develop, at
- Pure acoustic waves only if

 $au_{\rm nl} \sim R_*/U_{\rm f}$

 $\bar{U}_{\mathrm{f}} < R_{\star}H_{\star}$

Acoustic GW power spectrum

Hindmarsh, Huber, Rummukainen, Weir (2017)

• Density fraction of GWs by acoustic production:

$$\Omega_{\mathrm{gw},0}(f) = 0.68F_{\mathrm{gw},0}\tilde{\Omega}_{\mathrm{gw}}(H_*R_*)K^2C\left(\frac{f}{f_{p,0}}\right)$$

- Fluid kinetic energy density fraction $K(\alpha, v_w)$ (estimate from single-bubble fluid kinetic energy) Espinosa et al (2010)
- Dimensionless constant (from simulations) $\widetilde{\Omega}_{gw} \sim 0.01$ Phenomenological fit $C(s) = s^3 \left(\frac{7}{4+3s^2}\right)^{\frac{7}{2}}$
- Peak frequency

$$f_{\rm p,0} \simeq 26 \left(\frac{1}{H_* R_*}\right) \left(\frac{T_{\rm n}}{10^2 \,\text{GeV}}\right) \left(\frac{g_{\rm eff}}{100}\right)^{\frac{1}{6}} \ \mu\text{Hz},$$

– Matter-era dilution:

$$F_{\rm gw,0} = (3.57 \pm 0.05) \times 10^{-5} \left(\frac{100}{g_{\rm eff}}\right)^{\frac{1}{3}}.$$

- NB α from $\Delta(e-3p)/4$, not latent heat $\Delta(e+p)$
 - Latent heat 4x larger at T_c

LISA CWG party line 2016

- Three contributions to total power:
 - Scalar field f
 - Acoustic ac
 - Turbulent tu

 $\Omega_{\rm gw} = \Omega^{\phi}_{\rm gw} + \Omega^{\rm ac}_{\rm gw} + \Omega^{\rm tu}_{\rm gw}$

- Scalar field: bubble wall collisions
 - relevant only for runaway walls
 - "envelope approximation"
 - Kosowsky, Turner 1992
 - Huber, Konstandin 2008
- Acoustic production:
 - M.H. et al 2013, 2015, 2017
- Turbulent production:
 - Caprini, Durrer, Servant 2009

Developments 1: scalar field

 Numerical simulations show differences from envelope approximation

Cutting, MH, Weir 2018

$$\frac{d\Omega_{gw}^{fit}}{d\ln k} = \Omega_p^{fit} \frac{(3+b)^c \tilde{k}^b k^3}{(b\tilde{k}^{(3+b)/c} + 3k^{(3+b)/c})^c}$$

$$\Omega_{\rm p}^{\rm fit} = (3.22 \pm 0.04) \times 10^{-3} (H_{\rm n}R_{*})^{2} \Omega_{\phi}^{2},$$

 $\tilde{k}R_{*} = 3.20 \pm 0.04,$

 $b = 1.51 \pm 0.04$, $c = 2.18 \pm 0.15$

Developments 2: sound shell model

 Gaussian velocity field from weighted addition of sound shells v_q(t_i)

MH 2017, MH, Hijazi (in prep 2019)

- Two length scales:
 - Bubble spacing R_{*}
 - Shell width $R_* |v_w c_s|$
- Double broken power law
 P_{gw} ~ k⁹, k¹, k⁻³
- Amplitude 10% 20% agreement w/ simulations
- Systematically too large for deflagrations

Developments 3: non-linearities

 Fluid equations: non-linearities important after

 $au_{nl} \sim L_f/ar{U}_f$

- Energy transport to small scales, where dissipated.
- Longitudinal v
 - Wave turbulence
 - Shocks Pen, Turok 2015
- Transverse v
 - Vorticity production
 - Turbulence Caprini, Durrer, Servant 2008 Gogoberidze, Kahniashvili, Kosowsky 2007

Non-linearities: dealing with uncertainty

• Non-linearities important after

 $\tau_{nl} \sim L_f/\bar{U}_f$

Acoustic issues

- CWG 2016: Non-linear dissipation ignored
- source lifetime assumed to be H_n^{-1}
- Conservative fix: multiply PS by $min(1, H_n \tau_{nl})$

Turbulence issues

- CWG 2016: $K_{tu} = 0.05K$
- but we don't really know K_{tu}/K
- Disagreement on turbulence PS between CDS and GKK
- GW production from (longitudinal * transverse)
- Conservative fix: take K_{tu} = 0

'Strong' phase transitions

- Recent simulations of strong transitions with $\alpha = 0.5$
- Relativistic velocity flows with maximum velocity V > 0.6
- During collision of bubble walls rotational velocity V_{\perp} can be generated.
- Deflagrations visibly produce more V_{\perp} than detonations.
- Suppression of kinetic energy and GW signal, especially deflagrations

Cutting, Hindmarsh, Weir (in prep.)

See D. Cutting's talk at 14.40

V fluid (slice) White = bubble wall $v_w=0.44$ Lattice 960³

23

Gravitational waves ... Mark Hindmarsh

Estimated LISA prospects

 $\mathbf{2}$

- Estimate signal-to-noise ratio r $\rho^{2} = T_{\text{obs}} \int df \left(\frac{\Omega_{\text{gw}}(f)}{\Omega_{\text{obs}}(f)} \right)$
 - Observation time 4 years
 - Neglect foregrounds
 - White Dwarf binaries (annual variation)
 - LIGO BHB precursors (negligible)

- E.g. (favourable cases): - $\beta/H_n = 100$, $T_n = 100$ GeV
- NB $\alpha > 0.1$ highly uncertain Cutting, Hindmarsh, Weir (in prep.)
 - But important region for LISA
 Ellis, Lewicki, No (2018)

Phase transitions: future challenges

- Full characterization of GW spectrum from phase transitions
 - Cutting, MH, Weir (in prep) - Strong transitions
 - Magnetic fields? Pol et al (2019), Zhang et al (2019)
- Phase transition parameters from underlying particle physics models
 - E.g. transition strength in DR & nonperturbative 3D Moore, Rummukainen (2000) Laine, Nardini, Rummukainen (2012) Gould et al (2019) Kainulainen et al (2019)
- Connection to collider (LHC ...) data
 - E.g. λ_{hhh} Noble, Perelstein 2007; Patel, Ramsey-Musolf 2013 - $A^0 \rightarrow H^0 Z$ Dorsch, Huber, Mimasu, No (2016) Andersen et al (2017)
- Distinguishing phase transitions from astrophysical GW foregrounds

Adams, Cornish (2013), Hashino et al (2018)

Gravitational waves ... Mark Hindmarsh

Ω_{GW} (1e-13)

Summary

- GWs probe of physics of early universe at very high energy
- LISA will probe physics of Higgs phase transition from 2034
- Measure/constrain phase transition parameters
 - T_n = nucleation temperature
 - α = (scalar potential)/(thermal energy)
 - *R*^{*} = mean bubble centre separation
 - v_w = bubble wall speed
 - g_{eff} = effective d.o.f.
- Need 1: accurate calculations of GW power spectrum from parameters
- Need 2: accurate calculations of parameters from underlying particle physics models
- Need 3: reliable methods to extract parameters from real data
- Lots of work to do
 - only 16 years to go!

Numerical simulation of phase transitions

• Ingredients:

Ignatius et al (1994), Kurki-Suonio, Laine (1996)

- liggs field $-\ddot{\phi} + \nabla^2 \phi \frac{\partial V}{\partial \phi} = \eta W (\dot{\phi} + V^i \partial_i \phi)$ η coupling to fluid (models energy transfer, friction) Higgs field

 - V_i velocity, W γ-factor
- Relativistic fluid equation

$$\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi) = \eta W^2 (\dot{\phi} + V^i \partial_i \phi)^2.$$

$$\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = -\eta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$$

- E/W energy density, P pressure, Z_i momentum density,
- Discretisation

Wilson & Matthews (2003)

Different approach: Giblin, Mertens (2013)

Metric perturbation

 $\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi G T_{ij}$ $\dot{h}_{ij}^{\mathrm{tt}}(\mathbf{k}) = \Lambda_{ijkl}^{\mathrm{tt}}(\mathbf{k}) \dot{u}_{ij}(\mathbf{k})$

Garcia-Bellido, Figueroa, Sastre (2008)

LISA Pathfinder

- Technology tester for LISA
- Test masses in free-fall at L1
- Control and measure motion
- Launched 3/12/15
- Masses released 3/2/16
- Mission end 30/6/17
- Quantified acceleration noise
 how good is the free fall

LISA Pathfinder acceleration noise

Sound shell model vs. simulations P_{gw}

- Solid: self-similar sound shell
- Dash: evolving sound shell at peak collision time
- Simultaneous nucleation

MH et al in prep 2019

Gravitational waves ... Mark Hindmarsh

Sound shell model vs. simulations P_{gw}

- Solid: self-similar sound shell
- Dash: evolving sound shell at peak collision time
- Simultaneous nucleation

MH et al in prep 2019

Gravitational waves ... Mark Hindmarsh