Pseudo-Goldstone dark matter

Matti Heikinheimo
University of Helsinki and HIP
Based on Phys.Rev. D99 (2019) no.7, 075028 [arXiv:1812.05996]
T. Alanne, M.H., V. Keus, N. Koivunen, K. Tuominen

Inflation and the dark sector workshop, Jyväskylä, 7.6.2019

Contents

Pseudo-Goldstone DM

A Model Example

Constraints

Pseudo-Goldstone DM

- There is plenty of evidence for DM.
- But the allowed parameter space for WIMPs is getting smaller, due to ever tighter limits from direct detection.
- There are many options in the market for producing DM in a way that does not imply a detectable direct detection signal (FIMPs, ultralight DM/ALPs, spectator DM...)

Pseudo-Goldstone DM

- However, the thermal freeze-out scenario is very simple and predictive, as it relates the DM abundance via the annihilation cross section to the indirect detection signal.
- Is there a way to suppress the direct detection signal within the thermal freeze-out scenario?
- If there is a mediator particle with $m \approx 2 m_{D}$, the s-channel annihilation cross section is enhanced with respect to the non-resonant t-channel direct detection cross section.
- This can be arranged (e.g. Higgs-portal DM with $m_{D} \approx 62.5 \mathrm{GeV}$), but requires some finetuning.
thermal freeze-out (early Univ.)
indirect detection (now)

Pseudo-Goldstone DM

- Pseudo-Goldstone DM offers a general framework where the direct detection cross section is naturally suppressed, with no finetuning.
- In the non-linear representation, the Goldstone bosons have derivative interactions, implying a vanishing cross section in the limit of zero momentum transfer (i.e. non-relativistic DM-nucleus elastic scattering).
- In the linear representation the vanishing of the cross section is due to a cancellation between two diagrams.

$$
\frac{\mathrm{d} \sigma_{\mathrm{SI}}}{\mathrm{~d} \cos \theta} \sim \frac{\lambda_{H S}^{2} f_{N}^{2} m_{N}^{2}}{\left(m_{h^{0}}^{2}-t\right)^{2}\left(m_{H^{0}}^{2}-t\right)^{2}} t^{2}
$$

Explicit symmetry breaking

- The DM particle must be massive, thus it can not be an exact Goldstone boson.
- The global symmetry protecting the zero mass of the GB must be explicitly broken.
- But the vanishing of the direct detection cross section was due to the same global symmetry!
- Some care required in accounting for the effects of symmetry breaking from possible tree-level operators and loop corrections.

Contents

Pseudo-Goldstone DM

A Model Example

Constraints

$\mathrm{O}(N) / \mathrm{O}(N-1)$ Global symmetry

- Consider a global symmetry $\mathrm{O}(N)$, spontaneously broken to $\mathrm{O}(N-1)$ by a vev of a SM-singlet scalar field

$$
\Sigma=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{N-1}, \sigma\right)
$$

where σ is the field direction along which the vev of Σ develops.

- Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}= \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+\frac{1}{2} \partial \eta_{a} \partial \eta_{a}-V(\Sigma, H) \\
& V(\Sigma, H)= \mu_{H}^{2} H^{\dagger} H+\frac{1}{2} \mu_{\Sigma}^{2} \Sigma^{\dagger} \Sigma+\lambda_{H}\left(H^{\dagger} H\right)^{2} \\
&+\frac{\lambda_{H \Sigma}}{2}\left(H^{\dagger} H\right) \Sigma^{\dagger} \Sigma+\frac{\lambda_{\Sigma}}{4}\left(\Sigma^{\dagger} \Sigma\right)^{2}+V_{\mathrm{sb}} \\
& V_{\mathrm{sb}}=-\frac{1}{2} \mu_{X}^{2}\left(\sigma^{2}-\eta_{a} \eta_{a}\right)-\frac{\lambda_{X}}{2}\left(H^{\dagger} H\right)\left(\sigma^{2}-\eta_{a} \eta_{\mathrm{a}}\right)
\end{aligned}
$$

Mass eigenstates

- The η-multiplet is stable (and degenerate in mass) $\rightarrow \mathrm{DM}$ candidate.
- The CP-even component of H mixes with σ. The scalar potential is minimized for

$$
\begin{gathered}
\mu_{H}^{2}=-\frac{1}{2}\left(2 \lambda_{H} v^{2}+\left(\lambda_{H \Sigma}-\lambda_{X}\right) w^{2}\right), \\
\mu_{\Sigma}^{2}=-\frac{1}{2}\left(2 \lambda_{\Sigma} w^{2}+\left(\lambda_{H \Sigma}-\lambda_{X}\right) v^{2}-2 \mu_{X}^{2}\right), \\
\binom{h^{0}}{H^{0}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\phi}{\sigma}, \\
\tan (2 \alpha)=-\frac{\left(\lambda_{H \Sigma}-\lambda_{X}\right) v w}{\lambda_{H} v^{2}-\lambda_{\Sigma} w^{2}} .
\end{gathered}
$$

- Identify the lightest eigenstate with the SM Higgs, $m_{h^{0}}=125 \mathrm{GeV}$.
- Free parameters: $\lambda_{H \Sigma}, m_{H^{0}}, m_{\eta}, \alpha$, and λ_{X}

Contents

Pseudo-Goldstone DM

A Model Example

Constraints

Direct detection

The following constraints are for the simplest case of $\mathrm{O}(2) \sim \mathrm{U}(1)$ global symmetry.

- Direct detection cross section at tree-level

$$
\begin{gathered}
\frac{\mathrm{d} \sigma_{\mathrm{SI}}}{\mathrm{~d} \cos \theta}=\frac{\lambda_{\text {eff }}^{2} f_{N}^{2} m_{N}^{2} \mu_{R}^{2}}{8 \pi m_{\eta}^{2}}, \\
\lambda_{\text {eff }}=\frac{\lambda_{H S} t}{\left(m_{h^{0}}^{2}-t\right)\left(m_{H^{0}}^{2}-t\right)}-\frac{2 \lambda_{X}\left[s_{\alpha}^{2}\left(m_{h^{0}}^{2}-t / 2\right)+c_{\alpha}^{2}\left(m_{H^{0}}^{2}-t / 2\right)\right]}{\left(m_{h^{0}}^{2}-t\right)\left(m_{H^{0}}^{2}-t\right)} .
\end{gathered}
$$

- The only non-zero contribution in the limit $t \rightarrow 0$ is from the explicit symmetry breaking coupling λ_{x}.
- Setting $\lambda_{X}=0$, the direct detection limits do not constrain the parameter space of the model at all.

Direct detection

$s_{\alpha}=0.3$; Solid lines: $m_{H^{0}}=500 \mathrm{GeV}$, dashed lines: $m_{H^{0}}=750 \mathrm{GeV}$.

Direct detection

At one-loop level the explicit breaking of the global symmetry by the mass term m_{η} manifests in a non-vanishing term in the $t \rightarrow 0$ limit, estimated in [C. Gross, O. Lebedev and T. Toma, arXiv:1708.02253] as:

$$
\sigma_{\mathrm{SI}}^{1-\text { loop }} \approx \frac{\sin ^{2} \alpha}{64 \pi^{5}} \frac{m_{N}^{4} f_{N}^{2}}{m_{h^{0}}^{4} v^{2}} \frac{m_{H^{0}}^{2} m_{\eta}^{2}}{w^{6}}
$$

Direct detection

The explicit symmetry breaking coupling λ_{X} becomes relevant at $\lambda_{x} \gtrsim 10^{-3}-10^{-2}$

Indirect detection

- Contrary to the direct detection cross section, the annihilation cross section $\eta \eta \rightarrow \mathrm{SM}$ does not vanish in the limit of zero incoming three-momentum, $\sqrt{s} \rightarrow 2 m_{\eta}$:

$$
v_{\mathrm{rel}} \cdot \sigma_{\eta \eta \rightarrow \bar{b} b}=\frac{N_{c} \lambda_{H S}^{2} \sqrt{s} m_{b}^{2}\left(s-4 m_{b}^{2}\right)^{3 / 2}}{4 \pi\left(s-m_{h^{0}}^{2}\right)^{2}\left(s-m_{H^{0}}^{2}\right)^{2}} .
$$

- The strongest constraints for the pseudo-Goldstone DM model arise from indirect detection
- For N degenerate DM species $(\mathrm{O}(N+1) / \mathrm{O}(N)$ symmetry breaking $)$, $\Omega_{i} h^{2} \sim\langle\sigma v\rangle^{-1}$, thus the annihilation cross section must scale as $\langle\sigma v\rangle \sim N$.
- The indirect detection signal strength for a single species scales as $n_{i}^{2}\langle\sigma v\rangle \sim N^{-2} \times N \sim N^{-1}$.
- Hence the total rate scales as N times the rate for a single species: $N \times N^{-1}$, i.e. the indirect detection signal rate is independent of the multiplicity of the GB-multiplet.

Indirect detection

Fermi-LAT exclusion limit (dark blue) from observation of dwarf spheroidal satellite galaxies, arXiv:1611.03184, and 10-year projection (light blue) 1605.02016.
Red line $=$ correct DM abundance.

Indirect detection

Fermi-LAT exclusion limit (dark blue) from observation of dwarf spheroidal satellite galaxies, arXiv:1611.03184, and 10-year projection (light blue) 1605.02016.
Red line $=$ correct DM abundance.

Conclusions

- Pseudo-Goldstone bosons of a spontaneously broken global symmetry are an attractive candidate for a thermal relic (WIMP) dark matter particle.
- The direct detection cross section vanishes in the non-relativistic limit at tree-level.
- Additional explicit symmetry breaking couplings and/or one-loop corrections will induce a non-vanishing cross section in the $t \rightarrow 0$ limit, but the cross section remains suppressed in comparison to a vanilla WIMP.
- Indirect detection signal is not suppressed, and the model is testable with future data up to a few hundred $\mathrm{GeV}\left(m_{D}\right)$.

Backup: Higgs invisible decay width

$$
\begin{gathered}
\Gamma_{h^{0} \rightarrow \eta \eta}=\frac{\lambda_{h^{0} \eta \eta}^{2}}{32 \pi m_{h^{0}}} \sqrt{1-\frac{4 m_{\eta}^{2}}{m_{h^{0}}^{2}}}, \\
\lambda_{h^{0} \eta \eta}=\frac{\left(\lambda_{H S}-\lambda x\right) m_{h^{0}}^{2} v}{\cos \alpha\left(m_{h^{0}}^{2}-m_{H^{0}}^{2}\right)}+2 \lambda_{X} v \cos \alpha .
\end{gathered}
$$

Backup: Annihilation cross sections

$$
\begin{aligned}
& \sigma_{\eta \eta \rightarrow \bar{f} f}= \frac{N_{c} m_{f}^{2} \beta_{f}^{3}}{8 \pi \beta_{\eta}\left(s-m_{h^{0}}\right)^{2}\left(s-m_{H^{0}}^{2}\right)^{2}} \\
& \times\left[\left(\lambda_{H S}+\lambda_{X}\right) s-2 \lambda_{X}\left(s_{\alpha}^{2} m_{h^{0}}^{2}+c_{\alpha}^{2} m_{H^{0}}^{2}\right)\right]^{2}, \\
& \beta_{x} \equiv \sqrt{1-\frac{4 m_{x}^{2}}{s}} . \\
& \sigma_{\eta \eta \rightarrow V V}= \frac{\delta V \beta_{V}\left(12 m_{V}^{4}-4 m_{V}^{2} s+s^{2}\right)}{16 \pi s \beta_{\eta}\left(s-m_{h^{0}}^{2}\right)^{2}\left(s-m_{H^{0}}^{2}\right)^{2}} \\
& \times\left[\left(\lambda_{H S}+\lambda_{X}\right) s-2 \lambda_{X}\left(s_{\alpha}^{2} m_{h^{0}}^{2}+c_{\alpha}^{2} m_{H^{0}}^{2}\right)\right]^{2},
\end{aligned}
$$

where $\delta_{V}=1,1 / 2$ for $W^{ \pm}$and Z.

Backup: Annihilation cross sections

$$
\begin{aligned}
& \sigma_{\eta \eta \rightarrow h^{0} h^{0}}=\frac{\beta_{h^{0}}}{32 \pi s \beta_{\eta}}\left[\frac{16 \lambda_{\eta \eta h^{0}}^{4}}{\left(s-2 m_{h^{0}}^{2}\right)^{2}}\right. \\
& +\left(\lambda_{\eta \eta h^{0} h^{0}}+\frac{\lambda_{h^{0} h^{0} h^{0}} \lambda_{\eta \eta h^{0}}^{s-m_{h^{0}}^{2}}+\frac{\left.\lambda_{h^{0} h^{0} H^{0} \lambda_{\eta \eta H^{0}}}^{s-m_{H^{0}}^{2}}\right)^{2}}{s}}{-\frac{8 \lambda_{\eta \eta h^{0}}^{2}}{s-2 m_{h^{0}}^{2}}\left(\lambda_{\eta \eta h^{0} h^{0}}+\frac{\lambda_{h^{0} h^{0} h^{0}} \lambda_{\eta \eta h^{0}}}{s-m_{h^{0}}^{2}}+\frac{\left.\left.\lambda_{h^{0} h^{0} H^{0} \lambda_{\eta \eta H^{0}}}^{s-m_{H^{0}}^{2}}\right)\right]}{}\right.} \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Backup: Direct detection recoil spectrum

Left: Pseudo-GB, $m_{\eta}=100 \mathrm{GeV}$, right: vanilla Higgs portal WIMP, $m_{D}=100 \mathrm{GeV}$.

