
Astrophysical and collider implications of pseudo-Goldstone boson dark matter

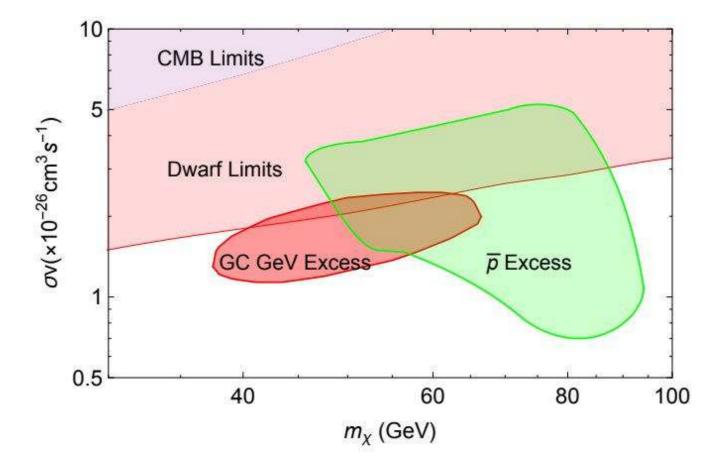
Jim Cline, McGill University

Inflation and the dark sector, Jyväskylä, 7 June 2019

Cosmic ray anomalies

GC excess / stat, E = 1.1 - 6.5 GeV

Fermi-LAT observes excess \sim GeV γ -rays from the galactic center (1704.03910)


AMS detects antiprotons, determined by numerous theorists to exceed predicted flux (Phys.Rev.Lett. 2016)

– p. 2

Could they have a common dark matter origin?

DM annihilation to $b\bar{b}$

Cholis, Linden & Hooper find compatible parameters for both excesses from $\chi\chi \to b\bar{b}$ (1903.02549)

They also claim strong significance for the \bar{p} excess, 4.7 σ .

Likelihood of other final states is less, $u\bar{u}, d\bar{d} \rightarrow 3.3 \sigma$, $W^+W^- \rightarrow 3.6 \sigma$.

The GC $\gamma\text{-ray excess and pulsars}$

Researchers vigorously debate DM versus millisecond pulsars (MSPs) as origin of the γ -ray excess.

Population of unresolved MSPs seemed a good astrophysical candidate.

pro-MSP:

Mirabal,1309.3428 Calore *et al.*, 1406.2706 O'Leary *et al.*, 504.02477 Bartels *et al.*, 1805.11097 anti-MSP:

Hooper *et al.,* 1305.0830 Cholis *et al.,* 1407.5625 Haggard *et al.,* 1701.02726

Statistics of γ -rays argued to favor MSPs over DM. Bartels *et al.*, 1506.05104

Lee et al., 1506.05124

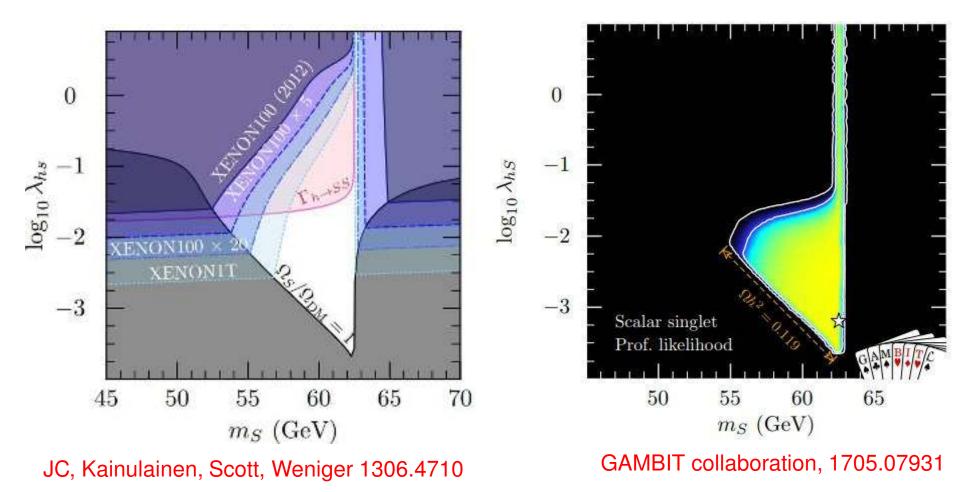
Recently Leane & Slatyer (1904.08430) dispute that claim, favoring DM. Encouragement to pursue DM explanations!

The Higgs portal

Scalar DM generically couples to Higgs,

 $\frac{1}{4}\lambda_{hs}\chi^2 h^2 \to \frac{1}{2}\lambda_{hs}v\,\chi^2 h^2$

A nice answer to the question "why $b\overline{b}$?" Higgs couples most strongly to b (assuming $m_{\chi} < m_t$).


There are strong constraints from direct detection,

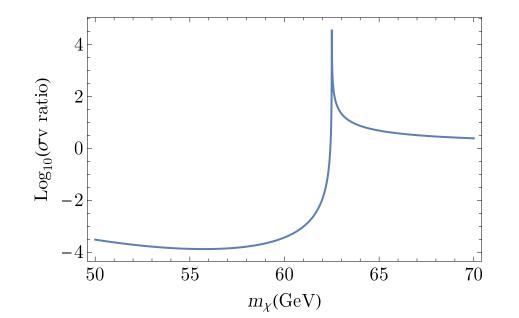
that can be evaded by being close to the Higgs resonance,

$$m_{\chi} \sim \frac{m_h}{2}$$

Singlet scalar DM global fits

Region from 55 GeV to $m_h/2 = 62.5$ GeV is not ruled out.

But the indirect detection cross section is highly suppressed in this region!


Suppression of σv in galaxy

Thermal average of σv for $\chi \chi \to b \overline{b}$ during freezeout of DM in early universe can probe resonance when $m_{\chi} < m_h/2$:

$$\langle \sigma v \rangle_{\rm f.o.} \sim N \int d^3 p \, e^{-\beta E} \frac{\text{const.}}{(4(m_{\chi}^2 + p^2) - m_h^2)^2 + (\Gamma_h m_h)^2}$$

Present-day annihilations in galaxy have $v \ll 1$,

$$\langle \sigma v \rangle_{\text{gal.}} \sim \frac{\text{const.}}{(4m_{\chi}^2 - m_h^2)^2 + (\Gamma_h m_h)^2}$$

The ratio $\langle \sigma v \rangle_{\text{gal.}} / \langle \sigma v \rangle_{\text{f.o.}}$ is highly suppressed for $m_{\chi} < m_h/2$.

We need it to be ~ 1 to explain the cosmic ray excesses.

Pseudo-Nambu-Goldstone Boson DM

JC & Takashi Toma, arxiv:1906.02175

pNGB DM can reconcile $m_{\chi} > m_h/2$ with direct detection constraints.

Introduce complex scalar singlet $S = (s + i\chi)/\sqrt{2}$ with softly- (and spontaneously) broken global U(1) symmetry:

$$V = \frac{\lambda_S}{2} \left(|S|^2 - \frac{v_s^2}{2} \right)^2 + \frac{m_\chi^2}{4} \left(S^2 + S^{*2} \right) + \lambda_{HS} |H|^2 |S|^2$$

The pNGB gets mass m_{χ} , but its couplings to matter vanish as momentum transfer $\rightarrow 0$, no direct detection signal

We can take $m_{\chi} > m_h/2$ to get large enough $\chi \chi \to b \overline{b}$ annihilation cross section

Suppression of direct detection signal

When S gets VEV, Higgs portal causes mixing between h and s,

$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} c_{\theta} & s_{\theta} \\ -s_{\theta} & c_{\theta} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

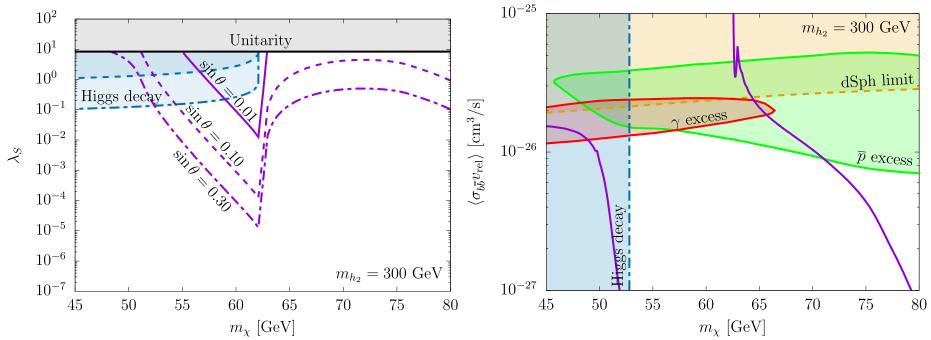
The two diagrams interfere destructively, vanishing as $t \rightarrow 0$:

$$\begin{array}{c|c} \chi & & \chi \\ & h_{1}, h_{2} \\ \hline N & & N \end{array} & \frac{f_{N}}{2v_{s}} c_{\theta} s_{\theta} \left(\frac{m_{h_{1}}^{2}}{t - m_{h_{1}}^{2}} - \frac{m_{h_{2}}^{2}}{t - m_{h_{2}}^{2}} \right) (\bar{N}N) \end{array}$$

Cancellation is ineffective in *s*-channel, leaving indirect signal,

$$\chi = \frac{\chi}{\lambda_{1}, \lambda_{2}} = \frac{\overline{b}}{b} = \frac{y_{b}}{2v_{s}}c_{\theta}s_{\theta} \left(\frac{m_{h_{1}}^{2}}{s - m_{h_{1}}^{2}} - \frac{m_{h_{2}}^{2}}{s - m_{h_{2}}^{2}}\right) (\overline{b}b)$$

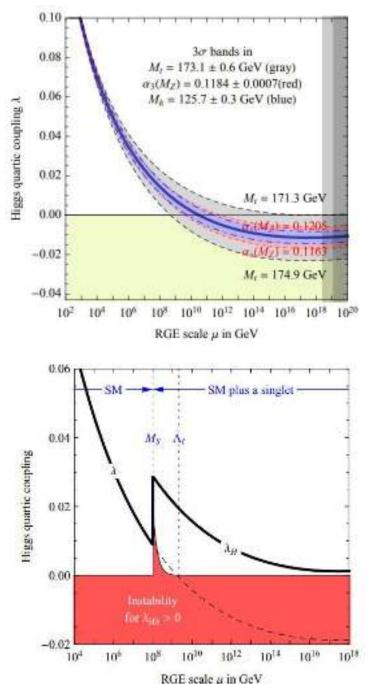
since $s \cong 4m_{\chi}^2$ is not small


Searching parameter space

There are four independent parameters,

 $m_{\chi}, \quad \sin \theta, \quad m_{h_2}, \quad v_s \; (\text{or} \; \lambda_s)$

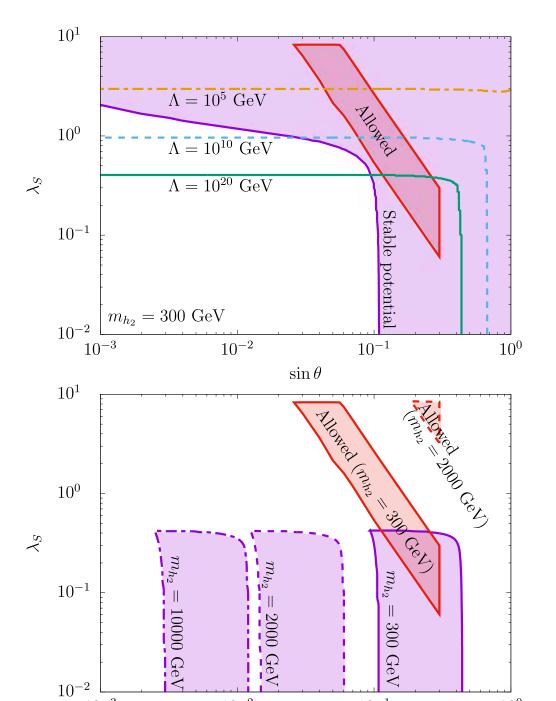
with $m_{h_1} = 125 \,\text{GeV}$ the SM-like Higgs mass.


Relic abundance gives one constraint (MicrOmegas). For fixed m_{h_2} and $\sin \theta$, allowed regions are curves in m_{χ} - λ_s plane.

Galactic σv depends on combination $\sin^2 \theta / v_s^2$; We explain cosmic ray excesses for $m_{\chi} = (64 - 67)$ GeV.

J.Cline, McGill U. - p. 10

Higgs stability



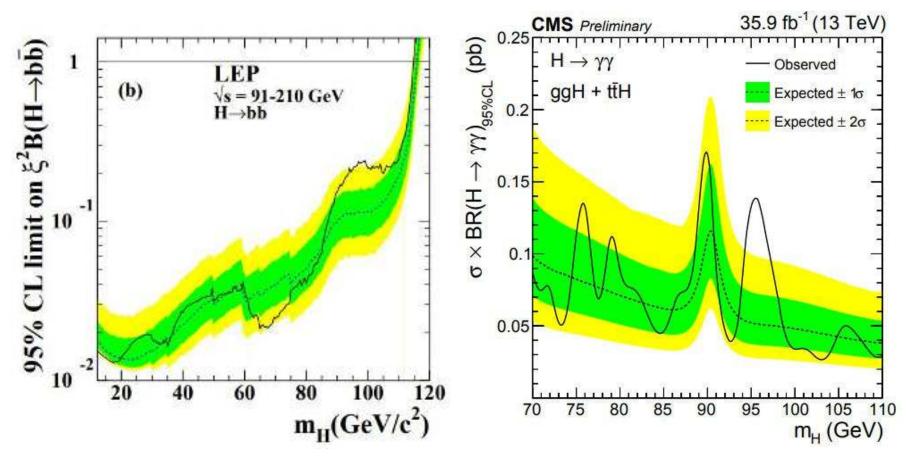
In the SM, the Higgs self-coupling $\lambda_H(\mu)$ becomes < 0 above scale $\mu \sim 10^{11} \text{ GeV}$ (Degrassi *et al.* 1205.6497).

The portal coupling λ_{HS} can prevent this, through a threshold correction at scale $\mu = m_{h_2}$ (Elias-Miro *et al.* 1203.0237)

We find parameters that can do this + cosmic ray anomalies

Higgs stability + CR anomalies

For $m_{h_2} \sim 300$ GeV, we find overlap with CR-allowed region (red), Higgs stability (purple) and perturbativity of couplings ($\Lambda =$ scale of Landau pole)


Overlap not present for higher m_{h_2} , and λ_H is not stabilized at lower m_{h_2} .

J.Cline, McGill U. - p. 12

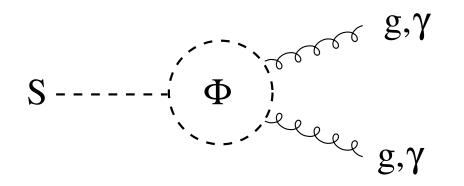
Tentative collider anomalies

If $m_{h_2} \sim 96 \,\text{GeV}$ we can also explain unconfirmed excesses in collider experiments:

LEP $e^+e^- \rightarrow h_2 \rightarrow b\bar{b}$, 2.3σ excess CMS $gg \rightarrow h_2 \rightarrow \gamma\gamma$, 2.9σ excess

Intriguing that they are at the same mass ...

Strength of collider anomalies


It is instructive to compare to the signal of a 96 GeV SM Higgs: (Fox & Weiner, 1710.07649; Biekötter *et al.*, 1905.03280)

$$\frac{\sigma(e^+e^- \to h_2 \to Zb\bar{b})_{\text{LEP}}}{\sigma(e^+e^- \to h \to Zb\bar{b})_{\text{SM}}} = \mu_{\text{LEP}} = 0.117 \pm 0.057$$
$$\frac{\sigma(gg \to h_2 \to \gamma\gamma)_{\text{CMS}}}{\sigma(gg \to h \to \gamma\gamma)_{\text{SM}}} = \mu_{\text{CMS}} = 0.6 \pm 0.2$$

LEP anomaly can be explained by h_1 - h_2 mixing alone, with

$$\sin\theta \cong \sqrt{\mu_{\rm LEP}} = 0.34$$

But this would predict too small $\mu_{\text{CMS}} = \mu_{\text{LEP}}$.

Need to couple singlet *S* to new colored/charged particles to enhance the diphoton signal

Models with charged/colored Φ

Since S carries global U(1), new particle Φ must be scalar to couple to S via $\Phi|^2|S|^2$.

 Φ is pair-produced at LHC and must decay to quarks. We consider two possibilities, $\Phi \rightarrow qq$ and $\Phi \rightarrow qqqqq$:

$$\mathcal{L} \quad \ni \quad \lambda_{S\Phi} |S|^2 |\Phi|^2 + \lambda_{H\Phi} |H|^2 |\Phi|^2 \\ + \left(y_{\Phi} \Phi(\bar{q}_R q_R^c) \text{ or } \frac{1}{\Lambda^3} \Phi^*(\bar{q}_R q_R^c)^2 \right) + \text{H.c.}$$

(Models with $\Phi \rightarrow 6q$ would tend to decay outside the detector.)

We take Φ to be in 3, $\overline{3}$ or 6 representation of SU(3)_c.

Possible charges are $\frac{8}{3}$, $\frac{5}{3}$, $\frac{2}{3}$, $-\frac{1}{3}$, $-\frac{4}{3}$ depending on quark flavors

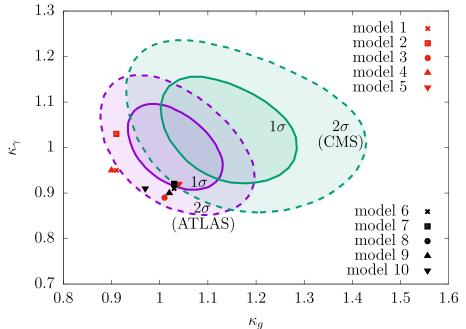
Once charges of Φ are fixed, anomalous signal strengths depend only on θ , $m_{\Phi}/\sqrt{\lambda_{S\Phi}}$ and $\lambda_{H\phi}v/\lambda_{S\Phi}v_s$.

Higgs signal strengths

There is a third important observable: couplings of the SM Higgs get modified by the new physics.

Couplings to fermions and vector bosons:

$$\mathcal{L} \to c_\theta \, \frac{h}{v} \, \left(m_f \bar{f} f + 2m_W^2 \, W^+_\mu W^{\mu-} + m_Z^2 \, Z_\mu Z^\mu \right)$$


Couplings to photons and gluons:

$$\mathcal{L} \to \frac{\alpha}{8\pi v} h \left(\left[R_{\Phi}(-s_{\theta}\eta_{S} + c_{\theta}\eta_{H}) + \frac{2}{3}c_{\theta} \right] G^{a}_{\mu\nu} G^{a\mu\nu} \right. \\ \left. + \left[\frac{N_{c}}{3} q^{2}_{\Phi}(-s_{\theta}\eta_{S} + c_{\theta}\eta_{H}) + b^{\gamma}_{\mathrm{SM}}c_{\theta} \right] F_{\mu\nu} F^{\mu\nu} \right)$$

with
$$\eta_S = \lambda_{S\Phi} \frac{vv_s}{m_{\Phi}^2}$$
, $\eta_H = \lambda_{H\Phi} \frac{v^2}{m_{\Phi}^2}$, $b_{SM}^{\gamma} = -6.5$, $R_{\Phi} = \frac{1/6}{1/6}$ for triplet $\Phi_{(5/6 \text{ for sextet})}$

We fit to effective Higgs couplings κ_g , κ_γ , $\kappa_{W/Z}$ and signal strengths μ for $gg \to h \to \gamma\gamma$, $gg \to h \to ZZ \to 4\ell$.

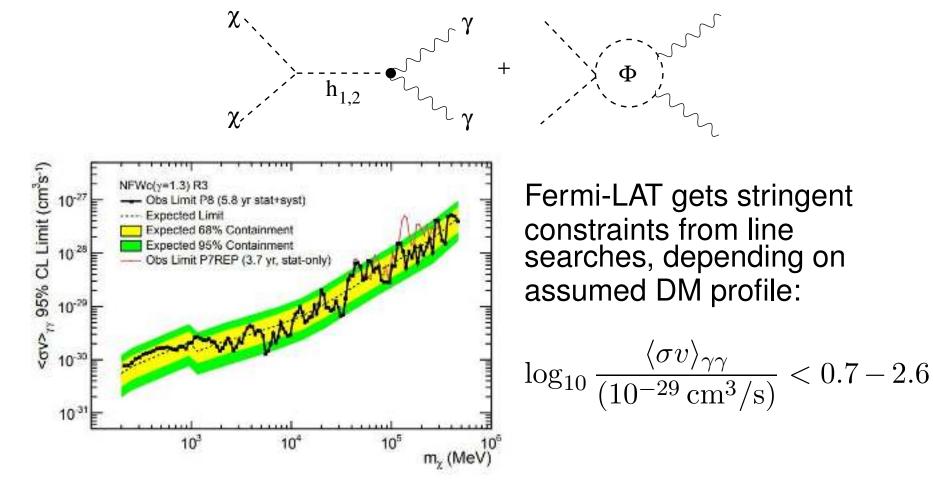
Fits to Higgs couplings

Define
$$\kappa_x = rac{\mathcal{M}(h \to xx)}{\mathcal{M}(h \to xx)_{SM}}$$

Models 2-5 give the best fits to κ_{γ} versus κ_{g}

observable	$gg \rightarrow h_1$ $\rightarrow \gamma\gamma$	$gg \rightarrow h_1 \rightarrow ZZ \rightarrow 4\ell$	Кg	κ_{γ}	$^{6}Z,W$			
predicted	$\kappa_g^2 c_{\gamma\gamma}$	$\kappa_g^2 c_{ff}$	$ \frac{3}{2}b_1^S $	$ b_1^\gamma/b_{ m SM}^\gamma $	CH	•		
model 1	0.87	0.82	0.91	0.95	0.92			
model 2	1.02	0.83	0.91	1.03	0.93			
model 3	0.91	1.00	1.01	0.89	0.94			
model 4	0.87	0.82	0.90	0.95	0.92	We compute χ^2		
model 5	1.03	1.06	1.04	0.92	0.93	we compute χ		
model 6	0.99	1.04	1.03	0.91	0.94	for κ_{γ} , κ_{g} , $\kappa_{W/Z}$, $\mu_{gg \rightarrow h \rightarrow \gamma\gamma}$,		
model 7	1.03	1.03	1.03	0.92	0.92	$H_{\alpha\alpha} \rightarrow b \rightarrow \alpha \alpha$		
model 8	1.02	1.04	1.03	0.92	0.93	$\mu gg \rightarrow \eta \rightarrow \gamma \gamma$		
model 9	0.95	1.02	1.02	0.90	0.94	$\mu_{gg \to h \to ZZ \to 4\ell}$		
model 10	0.88	0.94	0.97	0.91	0.94			
CMS	1.15 ± 0.15 84	$0.94 \pm 0.10 \ \boxed{85}$	$1.18^{+0.16}_{-0.14}$ 87	1.07 ± 0.15 87	$\kappa_Z = 1.00 \pm 0.11$ 87			
ATLAS	0.96 ± 0.14 [86]	$1.04^{+0.16}_{-0.15}$ 86	$0.99^{+0.11}_{-0.10}$ 86	1.05 ± 0.09 86	$\kappa_W = 1.05 \pm 0.09$ $\kappa_Z = 1.11 \pm 0.08$ 86			
combined	1.06 ± 0.10	0.99 ± 0.10	$1.09^{+0.10}_{-0.09}$	1.06 ± 0.09	1.05 ± 0.08	J.Cline, McGill U. –		

Fits to all observables


model	q_{Φ}	N_c	$\frac{m_{\Phi}}{ \lambda_{S\Phi} ^{1/2}}$	$rac{ar{\mu}_\Phi}{ \lambda_{S\Phi} ^{1/2}}$	$s_{ heta}$	$\lambda_{S\Phi}$	$\lambda_{H\Phi}$	χ^2 /d.o.f.
1	8/3	6	943	836	0.39	1.9	3.3	3.6
2	8/3	3	601	778	0.36	1.4	1.6	2.2
3	5/3	6	700	741	0.34	3.4	3.4	2.1
4	5/3	3	417	838	0.39	3.0	3.0	3.7
5	2/3	6	588	795	0.37	4.8	5.9	1.4
6(*)	2/3	3	284	765	0.35	3.4	3.6	1.5
7	-1/3	6	554	830	0.39	5.4	8.0	1.5
8(*)	-1/3	3	256	810	0.38	4.1	5.6	1.4
9	-4/3	6	666	752	0.35	3.8	3.9	1.8
10(*)	-4/3	3	333	737	0.34	2.4	3.0	2.5

CMS constrains $m_{\Phi} > 720 \text{ GeV} (1.3 \text{ TeV})$ for triplet (sextet) $\Phi \rightarrow qqqq$. $\lambda_{S\Phi} > (720/601)^2 = 1.4$ for model 2, least tuned scenario: 1-loop correction gives $\delta = \frac{3\lambda_{H\Phi}\lambda_{S\Phi}}{1-2} = 0.008 \pm \delta = \frac{5}{2}$

$$\delta\lambda_{HS} \sim \frac{3\lambda_{H\Phi}\lambda_{S\Phi}}{16\pi^2} \sim 0.04, \quad \lambda_{HS} = 0.008 \sim \delta\lambda_{HS}/5$$

Fermi gamma-ray line prediction

We predict annihilation $\chi\chi \to \gamma\gamma$, dominated by Higgs exchange,

Our models predict 0.5 - 2, close to current sensitivity of Fermi

Conclusions

pNGB DM is tightly constrained to explain GeV γ ray + \bar{p} excesses: $m_{\chi} \in [64, 67] \text{ GeV}.$

Model is safe from direct detection constraints, somewhat below Fermi dwarf spheroidal limits

Can also stabilize Higgs + scalar potential up to Planck scale if second Higgs mass is $m_{h_2} \sim (200 - 600) \,\text{GeV}$

Can accommodate tentative LEP & CMS anomalies if $m_{h_2} \cong 96 \,\text{GeV}$, adding new charged/colored scalar Φ with $m_{\Phi} \sim 720 \,\text{GeV}$

Extended model predicts up to 17% deviation in Higgs couplings, and observable $\chi\chi \to \gamma\gamma$ in the galaxy

Unfortunately, no two-step electroweak phase transition in this model