Excercise 5.

Return by 12.00, Wednesday 16.2.2022 (electronically to pyry.m.rahkila@jyu.fi).

1. Connection coefficients: The spacetime outside a spherically symmetric object of mass M is described by the Schwarzschild metric

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

where G is Newton's constant. Compute the components of Christoffel connection for this metric.
2. Clocks and satellites: The metric outside the surface of the Earth can be approximated by

$$
d s^{2}=-(1+2 \Phi(r)) d t^{2}+(1-2 \Phi(r)) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
$$

where

$$
\Phi(r)=-\frac{G M}{r}
$$

can be thought as the Newtonian gravitational potential and M is Earth's mass. Here $\Phi \ll 1$ and it suffices to work to first order in Φ. (This is just the Schwarzschild metric linearised in $2 G M / r$.)
a) Consider two clocks, one on the surface of the Earth at distance R_{1} from the Earth's center and another on a tall buliding at distance R_{2}. Calculate the (proper) time elapsed on each clock as a function of the coordinate time t. Which clock ticks faster?
b) How much proper time elapses in a clock located on a satellite while the satellite at radius R_{1} (skimming along the surface of the Earth, neglect air resistance) completes one orbit? How does this number compare to the proper time elapsed on a clock stationary on the surface of the Earth? Put in the numbers and express the results in seconds.
3. Observers in a homogenous and isotropic universe: Consider a spatially flat, expanding universe for which the metric in comoving coordinates reads

$$
d s^{2}=-d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}, \quad a(t)=\left(\frac{t}{t_{0}}\right)^{2 / 3}
$$

Consider two observers A and B, and an object C all located at $x^{\mu}=\left(t_{0} /(2 \sqrt{2}), 0,0,0\right)$. Their four-velocities expressed in the comoving coordinate system are given by

$$
\begin{aligned}
u_{A}^{\mu} & =(1,0,0,0) \\
u_{B}^{\mu} & =\left(u_{B}^{0}, 1 / 2,0,0\right) \\
u_{C}^{\mu} & =\left(u_{C}^{0}, 3 / 2,0,0\right) .
\end{aligned}
$$

What are the values of u_{B}^{0} and u_{C}^{0} (use that $u_{\mu} u^{\mu}=-1$)? What is the coordinate velocity $d x / d t$ of C ? What is the velocity of the object C as measured by A? What is the velocity of the object C as measured by B? (Hint: Recall that in the local Lorentz frame all physics at a point reduces to special relativity.)
4. Riemann tensor: Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be four points on a manifold with coordinates $x^{\mu}, x^{\mu}+\xi^{\mu}, x^{\mu}+\xi^{\mu}+\eta^{\mu}$ and $x^{\mu}+\eta^{\mu}$ respectively. Here ξ^{μ} and η^{μ} are small so that ABCDA forms a small parallelogram. Parallel transport a vector v^{μ} from A to C along the sides of the parallelogram via the different routes, ABC and ADC. Show that to leading order in ξ^{μ} and η^{μ} the difference between the two resulting vectors is

$$
\delta v^{\mu}=-R_{\nu \sigma \rho}^{\mu} v^{\nu} \xi^{\sigma} \eta^{\rho},
$$

where $R^{\mu}{ }_{\nu \sigma \rho}$ has the form in terms of $\Gamma_{\nu \sigma}^{\mu}$ given in the lectures.

