Excercise 4.

Return by 12.00, Wednesday 9.2.2022 (electronically to pyry.m.rahkila@jyu.fi).

1. Metric compatibility: Show that the metric compatibility $\nabla_{\sigma} g_{\mu \nu}=0$ implies

$$
\begin{aligned}
\nabla_{\sigma} g^{\mu \nu} & =0 \\
g_{\mu \nu} \nabla_{\sigma} u^{\nu} & =\nabla_{\sigma} u_{\mu}
\end{aligned}
$$

2. Divergences: Denote the determinant of the metric by $g \equiv \operatorname{det}\left(g_{\mu \nu}\right)$. Show that the following identities, where $\Gamma_{\beta \gamma}^{\alpha}$ are Christoffel symbols, hold:

$$
\begin{aligned}
\partial_{\mu} g & =g^{\alpha \beta} g \partial_{\mu} g_{\alpha \beta}, \\
\Gamma_{\alpha \beta}^{\alpha} & =\partial_{\beta}(\ln \sqrt{-g}), \\
\nabla_{\mu} u^{\mu} & =\frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} u^{\mu}\right) .
\end{aligned}
$$

Hint: One possibility is to use the relation $\ln (\operatorname{det} M)=\operatorname{Tr}(\ln M)$, that holds for any $n \times n$ matrix M, and differentiate this.
3. Geodesics and connection: Consider a static spherically symmetric spacetime for which the line element can be written in the form

$$
d s^{2}=-e^{2 \alpha(r)} d t^{2}+e^{2 \beta(r)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2},
$$

where $\alpha(r)$ and $\beta(r)$ are some functions. Derive the geodesic equations by using the Euler-Lagrange equations for the Lagrangian $L=\frac{1}{2} g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}$ (where $\dot{x}^{\mu} \equiv d x^{\mu} / d \tau$). Find the non-zero connection coefficients.
4. Parallel transport: Consider parallel transports on a two sphere of constant radius R

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

a) Show that the longitudes ($\phi=$ const.) are geodesics but the only latitude $(\theta=$ const.) that is a geodesic is the equator $\theta=\pi / 2$.
b) Take a vector $v^{\mu}=(1,0)$ and parallel transport it once around a circle of constant latitude. What are the components of the resulting vector as a function of θ ?

