Excercise 3.

Return by 12.00 , Wednesday 2.2 .2022 (electronically to pyry.m.rahkila@jyu.fi).

1. Commutator of vector fields: The composition of two vector fields $u \circ v$ and their commutator $[u, v]$ are defined by their action on an arbitrary function f as

$$
(u \circ v)(f) \equiv u(v(f)), \quad[u, v](f)=u(v(f))-v(u(f)) .
$$

Show that the commutator $[u, v]$ transforms like a vector under a generic coordinate transformation whereas the composition $u \circ v$ does not.
2. Horizon size: A homogeneous and isotropic universe is described by the metric

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

For a radiation dominated universe $a(t) \propto t^{1 / 2}$. Compute the distance travelled by light rays from $t=0$ to the formation of Cosmic Microwave Background (CMB) at $t_{\mathrm{CMB}}=3 \times 10^{5}$ years. This determines the particle horizon, the size of causally connected patches.
3. Locally inertial coordinates: Geometry of a sphere is represented by the metric

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2},
$$

where (θ, ϕ) are the usual spherical coordinates. Consider a coordinate transformation

$$
x=\theta \cos \phi, \quad y=\theta \sin \phi,
$$

and show that (x, y) are locally inertial coordinates at the north pole $\theta=0$. (In the neighbourhood of the north pole, x and y are small, so you can write the metric components as an expansion in powers of x and y and include only the lowest powers, if this helps.)
4. Covariant derivatives: In curved spacetime we can define the covariant derivative of a vector as

$$
\nabla_{\mu} v^{\nu} \equiv \partial_{\mu} v^{\nu}+\Gamma_{\mu \sigma}^{\nu} v^{\sigma} .
$$

None of the terms on the right hand side is a tensor separately but their sume is if we choose the connection coefficients $\Gamma_{\mu \sigma}^{\nu}$ appropriately. Requiring that $\nabla_{\mu} v^{\nu}$ transforms as a tensor derive the implied transformation rule for the connection coefficients

$$
\Gamma_{\alpha \beta}^{\gamma}=\Gamma_{\nu \rho}^{\mu} X_{\mu}^{\gamma}\left(X^{-1}\right)^{\nu}{ }_{\alpha}\left(X^{-1}\right)^{\rho}{ }_{\beta}-\left(X^{-1}\right)_{\alpha}^{\mu}\left(X^{-1}\right)^{\nu}{ }_{\beta} \partial_{\nu} X^{\gamma}{ }_{\mu},
$$

where

$$
X_{\beta}^{\alpha}=\frac{\partial x^{\prime \alpha}}{\partial x^{\beta}} .
$$

