Excercise 2.

Return by 12.00, Wednesday 26.1.2021 (electronically to pyry.m.rahkila@jyu.fi).

1. Manipulating tensors and vectors: Consider a tensor A and vector v with components

$$
A^{\mu \nu}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), \quad v^{\mu}=(-1,2,0,-2)
$$

Compute the components of $A^{\mu}{ }_{\nu}, A_{\mu}^{\nu}, A^{(\mu \nu)}, A_{[\mu \nu]}, A^{\mu}{ }_{\mu}$ and $v^{\mu} v_{\mu}, v_{\mu} A^{\mu \nu}$.
2. Four-force: The four-force acting on a particle of mass m is defined as the four-vector

$$
f^{\mu}=\frac{d p^{\mu}}{d \tau}=m a^{\mu}
$$

We can now define components of the three-force (three-vector, not Lorentz invariant) as $F^{i}=f^{i} / \gamma$ where $\gamma=1 / \sqrt{1-v^{2}}$ and v^{i} is three-velocity of the particle. Show that

$$
f^{0}=\gamma \sum_{i=1}^{3} F^{i} v^{i}=\gamma \boldsymbol{F} \cdot \boldsymbol{v}
$$

Derive a connection between the three acceleration $\boldsymbol{a} \equiv d \boldsymbol{v} / d t$ and the three-force: $m \gamma \boldsymbol{a}=\boldsymbol{F}-(\boldsymbol{F} \cdot \boldsymbol{v}) \boldsymbol{v}$. Study the behaviour of the acceleration as a function of (direction and magnitude) of \boldsymbol{v} with respect to \boldsymbol{F}.
3. Aberration: Inertial frame K^{\prime} is moving with velocity $v \hat{\mathbf{x}}$ with respect to frame K ($\hat{\mathbf{x}}$ is the unit vector along the x-axis). Show that the angles θ^{\prime} and θ between the direction of light ray and x-axis in the two frames are related by

$$
\tan \theta^{\prime}=\frac{\tan \theta}{\gamma(1-v / \cos \theta)}
$$

4. Lorentz transformations of the electromagnetic field: Components of the electromagnetic field strength tensor are given in terms of the electric E^{i} and magnetic B^{i} fields as

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E^{1} & -E^{2} & -E^{3} \\
E^{1} & 0 & B^{3} & -B^{2} \\
E^{2} & -B^{3} & 0 & B^{1} \\
E^{3} & B^{2} & -B^{1} & 0
\end{array}\right)
$$

a) Using the tensor transformation law $F_{\mu^{\prime} \nu^{\prime}}=\Lambda^{\rho}{ }_{\mu^{\prime}} \Lambda^{\sigma}{ }_{\nu^{\prime}} F_{\rho \sigma}$ derive the transformation laws for E^{i} and B^{i} under a boost in the x-direction.
b) Find the electric and magnetic feld of a charge moving at a constant velocity v in the x direction, by doing a Lorentz transformation on the feld of a nonmoving charge.

