Excercise 12.

Return by 12.00, Wednesday 6.4.2022 (electronically to pyry.m.rahkila@jyu.fi).

1. Geodesics in de Sitter: Consider a test particle on a geodesic path $\chi=\theta=\pi / 2, \phi=$ $3 \pi / 2$ in dS space (you do not need to verify that this is a geodesic), with the metric given by eq. (8.6) of the lectures, and set $\alpha=1$. How does the path look in the coordinates (\hat{t}, \hat{x}) where

$$
d s^{2}=-d \hat{t}^{2}+e^{2 \hat{t}} d \hat{x}^{2},
$$

along the geodesic? (Give $\hat{t}(\tau), \hat{x}(\tau), \hat{x}(\hat{t})$ where τ the proper time of the particle.) What is the velocity of the particle at $\hat{t}=0$ and at later times, as measured by on observer at rest in the (\hat{t}, \hat{x}) coordinates? Show that from $\hat{t}=-\infty$ to $\hat{t}=0$ the particle has spent only a finite proper time in the patch (\hat{t}, \hat{x}). From where did it enter this patch?
2. Geodesics in anti-de Sitter: We introduced the AdS space as the 4-dimensional surface $-u^{2}-v^{2}+x^{2}+y^{2}+z^{2}=-\alpha^{2}$ in a flat 5 -d embedding space with the metric $d s^{2}=-d u^{2}-d v^{2}+d x^{2}+d y^{2}+d z^{2}$. In the coordinates $\left(t^{\prime}, \rho, \theta, \phi\right)$ used in the lectures, the AdS metric becomes

$$
d s^{2}=\alpha^{2}\left(-\cosh ^{2} \rho d t^{\prime 2}+d \rho^{2}+\sinh ^{2} \rho\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) .
$$

Use now another set of coordinates (t, χ, θ, ϕ) defined by

$$
\begin{aligned}
& u=\alpha \sin (t / \alpha), \quad v=\alpha \cos (t / \alpha) \cosh (\chi), \quad x=\alpha \cos (t / \alpha) \sinh (\chi) \cos (\theta) \\
& y=\alpha \cos (t / \alpha) \sinh (\chi) \sin (\theta) \cos (\phi), \quad z=\alpha \cos (t / \alpha) \sinh (\chi) \sin (\theta) \sin (\phi) .
\end{aligned}
$$

What is the metric in these new coordinates? What range of the entire manifold $\left(t^{\prime}, \rho, \theta, \phi\right)$ is covered by the new coordinates? Use the fact that $(\chi, \theta, \phi)=$ const. is a geodesic to show that all timelike geodesics that beging from a given event P meet at another event Q.
3. Milne univere: Consider the RW metric

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)
$$

with $k=-1$ and $a= \pm t$ (this the solution of Friedmann equations for $\rho=p=0$, i.e. empty space). Show that this represents a patch of the Minkowski space by finding the coordinate transfrom which converts the metric into

$$
d s^{2}=-d t^{\prime 2}+d r^{\prime 2}+r^{\prime 2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
$$

(or vice verca). What part of the Minkowski space is covered? Draw a figure of the $t=$ const., $r=$ const. lines on the $\left(t^{\prime}, r^{\prime}\right)$ plane.

