Return by 12.00, Wednesday 19.1.2022 (electronically to pyry.m.rahkila@jyu.fi).

1. Boosts: Show that the transformation

$$
\Lambda_{\nu}^{\mu^{\prime}}=\left(\begin{array}{cccc}
\cosh \psi & -\sinh \psi & & \\
-\sinh \psi & \cosh \psi & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

satisfies the condition $\eta=\Lambda^{T} \eta \Lambda$.
2. Twin "paradox": Alice stays on Earth. Betty leaves Alice, travels to Alpha Centaury (distance 4 lightyears) at the speed $v=0.8 c$, turns around, and returns at the same speed. How much have Alice and Betty aged when they meet again?
3. General boosts: A general Lorentz boost $\left(K \rightarrow K^{\prime}\right)$, i.e. a Lorentz transformation without spatial rotations, is represented by (here $c=1$ and latin indices run over $i=$ $1,2,3)$

$$
\begin{aligned}
\Lambda_{0}^{0^{\prime}} & =\frac{1}{\sqrt{1-v^{2}}} \equiv \gamma \\
\Lambda_{0}^{j^{\prime}}=\Lambda_{j}^{0^{\prime}} & =-v \gamma n^{j} \\
\Lambda_{k}^{j^{\prime}}=\Lambda_{j}^{k_{j}^{\prime}} & =(\gamma-1) n^{j} n^{k}+\delta_{k}^{j} .
\end{aligned}
$$

Components of the inverse transformations are given by $\Lambda^{\mu}{ }_{\nu^{\prime}}=\Lambda^{\nu^{\prime}}{ }_{\mu}$ with the replacement $(v \rightarrow-v)$. Here v, n^{i} are parameters satisfying $\left(n^{1}\right)^{2}+\left(n^{2}\right)^{2}+\left(n^{3}\right)^{2}=1$.
a) Show that $\Lambda^{T} \eta \Lambda=\eta$.
b) Show that K^{\prime} moves at velocity $v \mathbf{n}$ (here \mathbf{n} is just a usual Euclidean 3 -vector) with respect to K , and that K moves at velocity $-v \mathbf{n}$ with respect to K^{\prime}.
c) Show that if \mathbf{n} is parallel to a coordinate axis, we get the "ordinary" Lorentz boost.
4. Tangent vectors and gradients: In Euclidean 3 -space, let p be the point with coordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,0,-1)$. Consider the following curves that pass through p :

$$
\begin{aligned}
x^{i}(\lambda) & =\left(\lambda,(\lambda-1)^{2},-\lambda\right) \\
x^{i}(\mu) & =(\cos \mu, \sin \mu, \mu-1) \\
x^{i}(\sigma) & =\left(\sigma^{2}, \sigma^{3}+\sigma^{2}, \sigma\right) .
\end{aligned}
$$

a) Calculate the components of the tangent vectors to these curves at p in the coordinate basis $\left\{e_{x}, e_{y}, e_{z}\right\}$.
b) Let $f=x^{2}+y^{2}-y z$. Calculate $d f / d \lambda, d f / d \mu$ and $d f / d \sigma$.

