General Relativity (FYSS7320), 2022

Return by 12.00, Wednesday 19.1.2022 (electronically to pyry.m.rahkila@jyu.fi).

1. Boosts: Show that the transformation

$$\Lambda^{\mu'}_{\ \nu} = \begin{pmatrix} \cosh\psi & -\sinh\psi & \\ -\sinh\psi & \cosh\psi & \\ & & 1 \\ & & & 1 \end{pmatrix}$$

satisfies the condition $\eta = \Lambda^T \eta \Lambda$.

- 2. Twin "paradox": Alice stays on Earth. Betty leaves Alice, travels to Alpha Centaury (distance 4 lightyears) at the speed v = 0.8c, turns around, and returns at the same speed. How much have Alice and Betty aged when they meet again?
- 3. General boosts: A general Lorentz boost $(K \to K')$, i.e. a Lorentz transformation without spatial rotations, is represented by (here c = 1 and latin indices run over i = 1, 2, 3)

$$\begin{split} \Lambda_{0}^{0'} &= \frac{1}{\sqrt{1-v^2}} \equiv \gamma \\ \Lambda_{0}^{j'} &= \Lambda_{j}^{0'} = -v\gamma n^j \\ \Lambda_{k}^{j'} &= \Lambda_{j}^{k'} = (\gamma-1)n^j n^k + \delta_k^j \end{split}$$

Components of the inverse transformations are given by $\Lambda^{\mu}_{\nu'} = \Lambda^{\nu'}_{\mu}$ with the replacement $(v \to -v)$. Here v, n^i are parameters satisfying $(n^1)^2 + (n^2)^2 + (n^3)^2 = 1$.

- a) Show that $\Lambda^T \eta \Lambda = \eta$.
- b) Show that K' moves at velocity $v\mathbf{n}$ (here \mathbf{n} is just a usual Euclidean 3-vector) with respect to K, and that K moves at velocity $-v\mathbf{n}$ with respect to K'.
- c) Show that if **n** is parallel to a coordinate axis, we get the "ordinary" Lorentz boost.
- 4. Tangent vectors and gradients: In Euclidean 3-space, let p be the point with coordinates (x,y,z)=(1,0,-1). Consider the following curves that pass through p:

$$\begin{aligned} x^i(\lambda) &= (\lambda, (\lambda - 1)^2, -\lambda) \\ x^i(\mu) &= (\cos \mu, \sin \mu, \mu - 1) \\ x^i(\sigma) &= (\sigma^2, \sigma^3 + \sigma^2, \sigma) . \end{aligned}$$

- a) Calculate the components of the tangent vectors to these curves at p in the coordinate basis $\{e_x, e_y, e_z\}$.
- b) Let $f = x^2 + y^2 yz$. Calculate $df/d\lambda$, $df/d\mu$ and $df/d\sigma$.