8. Maximally symmetric solutions and RW metric

If can be shown that for an n-dim spacetime M the maximal possible number of symmetries (mathematically isometries $M \rightarrow M$) is given by
(8.1)

$$
\frac{n(n+1)}{2}
$$

(See Carroll pages 134-144 for details). A maximally symmetric spacetime is one for which the number of symmetries is given by $(8,1)$.

For $n=4$, there are three maximally symmetric spacetines: Minkowski; de sitter (dSt) and anti-cle sitter (AdS)

The Minkouski is easy to check: $d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}$ is invariant under:

4 translations $x^{\mu} \rightarrow x^{\mu}+a^{\mu}$
6 Lorentz -trash. $X^{\mu} \rightarrow \Lambda_{\nu}^{\mu} X^{\nu}$
$\Rightarrow 4+6=10$ symmetries, ie.
10 generators of the symmetry transformations

The two other maximally symmetric spacetimes, IS and AdS, have the same symmetries but they ane not flat.

The Riemann tensor for a maximally symmetric spacetime must be of the form (see Carroll for the derivation)
(8.2) $R_{\rho \sigma_{\mu v}}={ }_{\mu}\left(g_{\rho \mu} g_{\sigma \nu}-g_{\rho u} g_{\sigma \mu}\right)$
constant

This yield

$$
\begin{aligned}
R_{\sigma \nu} \cdot R_{\sigma_{\mu \nu}}^{\mu} & =x\left(g_{\mu}^{\mu} g_{\sigma \nu}-g^{\mu} g_{\sigma \mu}\right) \\
& =x\left(n g_{\sigma \nu}-g_{\sigma \nu}\right), n=\operatorname{dim} \mu=g_{\mu}^{\mu} \\
& =x(n-1) g_{\sigma \nu}
\end{aligned}
$$

(8.3)

$$
R=R_{\nu}^{\nu}=x(n-1) n \Rightarrow x=\frac{R}{(n-1) n}
$$

Hence $R=$ const. for the max.symm. sol's. ?
The 4-d cases are:

$$
\begin{aligned}
& x=0 \Leftrightarrow \text { Minkowski } \\
& x>0 \Leftrightarrow \text { aS } \\
& x<0 \Leftrightarrow \text { AdS }
\end{aligned}
$$

8.1 de Sitter space $(R=$ cons $>0)$

The de Sitter spacetione can be emcledbed in a 5-d Mirkowsti spacetime

$$
d s^{2}=-d u^{2}+d x^{2}+d y^{2}+d z^{2}+d w^{2}
$$

as the hyperboloid

$$
\text { (8.4) }-u^{2}+x^{2}+y^{2}+z^{2}+w^{2}=\alpha^{2}=\text { cost. }
$$

The metric evaluated on the 4-d surface of the hyperboloid ($=$ embedded metric) gives the as metric. To find its expression, introduce cord's (t, x, θ, f) on the hyperboloid (8.4) as:
$(8,5)$

$$
\begin{array}{ll}
u=\alpha \sinh (t / \alpha) & x=\alpha \cosh (t / \alpha) \sin x \cos \theta \\
w=\alpha \cosh (t / \alpha) \cos x & y-\alpha \cosh (t / \alpha) \sin x \sin \theta \cos \phi \\
& z=\alpha \cosh (t / \alpha) \sin x \sin \theta \sin \phi
\end{array}
$$

check:

$$
\begin{aligned}
-u^{2}+x^{2}+y^{2}+2^{2}+w^{2}= & \alpha^{2}\left(-\sinh ^{2}(t / \alpha)+\cosh ^{2}(t / \alpha) \sin ^{2} x \cos ^{2} \theta+\right. \\
& \cosh ^{2}(t / \alpha) \sin ^{2} x \sin ^{2} \theta \cos ^{2} \phi+\cosh ^{2}(t / \alpha) \sin x \sin \hat{\theta} \sin ^{2} \phi \\
& \left.+\cosh ^{2}(t / \alpha) \cos x\right) \\
= & \alpha^{2}\left(-\sinh ^{2}(t / \alpha)+\cosh ^{2}(t / \alpha) \sin ^{2} x \cos ^{2} \theta+\right. \\
& \left.\cosh ^{2}(t / \alpha) \sin ^{2} x \sin ^{2} \theta+\cosh ^{2}(t / \alpha) \cos ^{2} x\right) \\
= & \alpha^{2}\left(-\sinh ^{2}(t / \alpha)+\cosh ^{2}(t / \alpha) \sin ^{2} x+\cosh ^{2}(t / \alpha) \cos ^{2} x\right) \\
= & \alpha^{2} \quad \text { ok, }(8.5) \operatorname{satisfics}(8.4)
\end{aligned}
$$

The induced metric on (8.4) is obtained by substitution (8.5) into $d s^{2}=-d u^{2}+d x^{2}+d y^{2}+d z^{2}+d w^{2}$ which yidds (exercise)

$$
\begin{aligned}
& (8,6) \quad d s^{2}=-d t^{2}+\alpha^{2} \cosh ^{2}(t / \alpha)\left(d x^{2}+\sin ^{2} x\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& +\in]-\infty, \infty[\\
& x \in[0, \pi] \\
& \theta \in[0, \pi] \\
& \text { soak factor } \\
& =d \Omega_{3}^{2} \text { metric of a 3-sphere (ide. 3-d } \\
& \phi \in[0,2 \pi] \\
& \rightarrow \infty \text { as } t \rightarrow \pm \infty \\
& =1 \quad a t=0
\end{aligned}
$$

The spatial part of (8,6) describes a 3-sphere that shrinks until $f=0$ and then grows.

The cid's x, θ must both be constrained to $[0, \pi]$ since $g_{\theta \theta}, g_{\phi \phi} \rightarrow 0$ as $x \rightarrow \pi$ and $g_{\phi p} \rightarrow 0$ as $\theta \rightarrow \pi$. The metric becomes non-invertible ($\operatorname{det} g=0$) and therefore we cannot extend the ard range beyond $[0, \pi]$.

each point reprents a 2-sphere

$$
d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

As always, we can use different cord's instead of (t, x, θ, ϕ). Start from

$$
\begin{aligned}
& d s^{2}=-d u^{2}+d x^{2}+d y^{2}+d z^{2}+d w^{2} \\
& -u^{2}+x^{2}+y^{2}+z^{2}+w^{2}=(w-u)(w+u)+x^{2}+y^{2}+z^{2}=\alpha^{2}
\end{aligned}
$$

and define

$$
\tilde{x} \equiv w+u
$$

Then $w-u=\frac{\alpha^{2}-r^{2}}{\tilde{f}} \quad, r^{2} \equiv x^{2}+y^{2}+z^{2}$
and we can use ord's (\tilde{f}, x, y, z) for the $d s$. However, these cover only half of the manifold as

$$
\begin{aligned}
\tilde{x}=0 \Leftrightarrow w=-u \Rightarrow \underbrace{(w-u)}_{=0}(w+u)+x^{2}+y^{2}+z^{2} & =\alpha^{2} \\
x^{2}+y^{2}+z^{2} & =\alpha^{2} \\
r & = \pm \alpha
\end{aligned}
$$

So $\tilde{t}=0 \Leftrightarrow w=-u, r=\alpha$ or $w=-u, r=-\alpha$ ie. the mapping is not single valued $\Rightarrow(\tilde{t}, x, y, z)$ charts cannot be extended beyond $w=-u$ lines. We need two separate patches to cover the manifold: $0<\tilde{f}<\infty$
and $-\infty<\tilde{I}<0$ and neither of these includes the boundary. (175) Let us concentrate on the patch:

$$
\begin{aligned}
& 0<\tilde{f}<\infty \\
& -\infty<x, y, z<\infty
\end{aligned}
$$

From $\quad w+u=\mp$

$$
\begin{aligned}
\Rightarrow \quad w & =\frac{1}{2}\left(\tilde{t}+\frac{\alpha^{2}-r^{2}}{\tilde{f}}\right) \\
u & =\frac{1}{2}\left(\tilde{t}-\frac{\alpha^{2}-r^{2}}{\tilde{F}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d w=\frac{1}{2}\left(1-\frac{d^{2}-r^{2}}{\tilde{t}^{2}}\right) d \tilde{t}-\frac{1}{\tilde{t}}(x d x+y d y+z d z) \\
& d u=\frac{1}{2}\left(1+\frac{d^{2}-r^{2}}{\tilde{T}^{2}}\right) d \tilde{t}+\frac{1}{\widetilde{t}}(x d x+y d y+z d z) \\
& d w+d u=d \tilde{t} \\
& d w-d u=-\frac{d^{2}-r^{2}}{\tilde{T}^{2}} d \tilde{t}-\frac{2}{\tilde{T}}(x d x+y d y+z d z)
\end{aligned}
$$

Substituting these into the line element we get:

$$
\begin{aligned}
& d s^{2}=-d u^{2}+d x^{2}+d y^{2}+d z^{2}+d w^{2} \\
& =(d w-d u)(d w+d u)+d x^{2}+d y^{2}+d z^{2} \\
& =-\frac{\alpha^{2}-r^{2}}{\tilde{t}^{2}} d \tilde{t}^{2}-\frac{2}{\tilde{t}}(x d x+y d y+z d z) d \tilde{t}+d x^{2}+d y^{2}+d z^{2} \\
& =\underbrace{-\frac{\alpha^{2}}{\tilde{t}^{2}} d \tilde{t}^{2}}_{\equiv d \hat{t}^{2}}+\underbrace{(\underbrace{-\frac{x}{\tilde{f}} d \tilde{t}}+d x)^{2}}_{\equiv \tilde{f} d \hat{x}}+\underbrace{(\underbrace{}_{\equiv \frac{\tilde{f}}{\tilde{f}} d \tilde{z}} d \tilde{t}+d y)^{2}}_{\equiv \frac{\tilde{f}}{\alpha} d \hat{y}}+\underbrace{\left(-\frac{z}{\tilde{F}} d \tilde{t}+d z\right)^{2}} \\
& \Rightarrow \hat{t}=\alpha \ln \frac{\tilde{f}}{\alpha}, \tilde{x}=\frac{\alpha x}{\tilde{F}}, \hat{y}=\frac{\alpha y}{\tilde{t}}, \hat{z}=\frac{\alpha z}{\tilde{F}}
\end{aligned}
$$

In the new variables $(\hat{f}, \hat{x}, \hat{y}, \hat{z})$ the metric then reads:
$(8.7) \quad d s^{2}=-d \hat{t}^{2}+e^{2 \hat{t} / \alpha}\left(d \hat{x}^{2}+d \hat{y}^{2}+d \hat{z}^{2}\right)$

This describes an exponentially expanding spatially flat ($=t=$ cost. uarfices have Euclidean geometry) spacetime which corresponds to $t>0$ half of the full $d S$ manifold. In commolosy inflation in the very early universe and dark energy domination in the late universe are approximatively described by $d S$ metric of the form (8.7).

The causal structure of a spacetime is often described in terms of conformal diagrams (Penroue diagrams) where cid's are chosen s.t. an infinite spacetime is mapped into a finite ard patch. To construct the conformal diagram of the oS space, start from (8.6)

$$
\begin{aligned}
d s^{2} & =-d t^{2}+\alpha^{2} \cosh ^{2}(t / \alpha)\left(d x^{2}+\sin ^{3} x\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& +\in]-\infty, \infty[\\
& x \in[0, \pi] \\
& \theta \in[0, \pi] \\
& \phi \in[0,2 \pi]
\end{aligned}
$$

Define a new time ard f^{\prime} as:
(8.8) $\cosh \frac{t}{\alpha}=\frac{1}{\cos t^{\prime}}$

The full interval $-\infty<+<\infty$ can now be mapped to

$$
\begin{array}{ll}
t^{\prime} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad & t^{\prime}=\frac{\pi}{2} \Rightarrow t \rightarrow \infty \\
t^{\prime}=-\frac{\pi}{2} \Rightarrow t \rightarrow-\infty
\end{array}
$$

The metric in $\left(t^{\prime}, x, \theta, \psi\right)$ becomes

$$
\begin{aligned}
d s^{2}= & \underbrace{-\left(\frac{\alpha}{\sinh \frac{t}{\alpha}} \frac{\sin ^{\prime} t^{\prime}}{\cos ^{2} t^{\prime}}\right)^{2}} d t^{\prime 2}+\frac{\alpha^{2}}{\cos ^{2} t^{\prime}}\left(d x^{2}+\sin ^{2} x\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& =\frac{\alpha^{2}}{\cos ^{4} t^{\prime}} \frac{\sin ^{2} t^{\prime}}{\cosh ^{2} \frac{t}{\alpha}-1}=\frac{\alpha^{2}}{\cos ^{4} t^{\prime}} \frac{1-\cos ^{2} t^{\prime}}{\frac{1}{\cos ^{2} t^{\prime}}-1}=\frac{\alpha^{2}}{\cos ^{2} t^{\prime}}
\end{aligned}
$$

$(8,9)$

$$
\begin{aligned}
d s^{2}= & \frac{\alpha^{2}}{\cos ^{2} t^{2}}\left(-d t^{\prime 2}+d x^{2}+\sin ^{2} x\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& +^{\prime} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
& x \in[0, \pi] \\
& \theta \in[0, \pi] \\
& \phi \in[0,2 \pi]
\end{aligned}
$$

Light cones correspond to $t^{\prime}= \pm x$ (can rotate θ, ϕ sit. motion along x)
and we can plot the entire spacetione as:

Each point corrupoinds to a two sphere ($\theta, 4$) except the edges $x=0, x=\pi$ which are points ($\sin ^{2} x=0$)

What is the Tres that gives rise to de solution?

$$
\begin{aligned}
& R_{\mu \nu}=H(n-1) g_{\mu \nu} \\
& R=H(n-1) n>0 \quad, n=4 \\
& G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\left(3 x-\frac{1}{2} 4.3 x\right) g_{\mu \nu}=-3 x g_{\mu \nu} \\
& C_{\mu \nu}=8 \pi G T_{\mu \nu} \Rightarrow T_{\mu \nu}=-\frac{3 x}{8 \pi G} g_{\mu \nu}
\end{aligned}
$$

Assuming the ideal fluid form $T_{\mu}=(\rho+p) u_{y} u_{u}+p g_{\mu}$ we see that

$$
\begin{aligned}
& \rho+p=0 \text { and } p=-\frac{3 x l}{8 \pi G} \\
& \Rightarrow p=-\rho=-\frac{3 x}{8 \pi h} \quad \text { and } T_{\mu \nu}=-\frac{3 x}{8 \pi h} g_{\mu \nu}
\end{aligned}
$$

This kind of matter comesponds to vacuum energy with a positive energy density.
8.2 Ant'-de Sitter spacetime (AdS)

The Ads space corresponds to $x<0$ in $(8,2)$. Embedded into a 5 d space with the metric
(8.10)

$$
\begin{aligned}
d s^{2}= & -d u^{2}-d v^{2}+d x^{2}+d y^{2}+d z^{2} \\
& \uparrow \bigcap_{\text {note }},
\end{aligned}
$$

this corresponds to the hyperboloid:

$$
(8.11) \quad-u^{2}-v^{2}+x^{2}+y^{2}+z^{2}=-\alpha^{2}
$$

Then define cred's $\left(t^{\prime}, \rho, \theta, \psi\right)$ on the hyperboloid as:
(8.12)

$$
\begin{aligned}
& u=\alpha \sin t^{\prime} \cosh \rho \\
& v=\alpha \cos t^{\prime} \cosh \rho \\
& x=\alpha \sinh \rho \cos \theta \\
& y=\alpha \sinh \rho \sin \theta \cos \psi \\
& z=\alpha \sinh \rho \sin \theta \sin \psi
\end{aligned}
$$

which satisfy (8.11) (check). Substituting (8.12) into (8.10) one obtains (exercise) the AdS metric:
$(8,13) \quad d s^{2}=\alpha^{2}\left(-\cosh ^{2} \rho d t^{\prime 2}+d \rho^{2}+\sinh ^{2} \rho\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)$
$-\infty<t^{\prime}<\infty \quad\left(t^{\prime}\right.$ and $t^{\prime}+2 \pi$ are NOT the same points $0<\rho<\infty \quad$ although (8.12) appears periodic, periodicity $0 \leqslant \theta \leqslant \pi$ in the embedding space is not necessarily $\left.\sinh _{\rho}\right|_{\rho=0}=0 \quad 0 \leqslant \phi \leqslant 2 \pi \prod_{\text {see }}^{\top}$ a real property of the embedded surface) \Rightarrow cannot extend to $\rho<0$ in these cid's

Using $(8,2)$ we again get

$$
\begin{aligned}
G_{\mu \nu}=-3 x g_{\mu \nu} \quad \Rightarrow T_{\mu} & =-\frac{3 x}{8 \pi h} g_{\mu \nu} \\
p=-\rho & =-\frac{3 x}{8 \pi h}
\end{aligned}
$$

But now $x<0$ implying that $\rho<0$. The AdS space therefore corresponds to vacuum energy with negative energy density.

Let us then work out the conformal digram of the AdS space. We would like to map $-\infty<f^{\prime}<\infty$ and $-\infty<\rho<\infty$, and have light cones in 45° angles. It turns out that we cannot achive all three simultaneowls, thus we will leave t^{\prime} uncompactified. To compactify ρ, we define a new cid ρ^{\prime} as:

$$
\cosh \rho=\frac{1}{\cos x} \quad \text { s.t. } \quad 0<\rho<\infty \rightarrow x \in\left[0, \frac{\pi}{2}\right]
$$

The metric becomes

$$
d s^{L}=\alpha^{2}(-\frac{1}{\cos ^{2} x} d t^{\prime 2}+\underbrace{\frac{1}{\sin ^{2} \rho \frac{\sin ^{2} x}{\cos ^{4} x}} d x^{2}+\underbrace{\left(\cos ^{2} x\right.}_{=\frac{\sin ^{2} x}{\cos ^{2} x}}-1)}_{=\frac{1}{\cos ^{2} x}}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right))
$$

(8.14)

$$
d s^{L}=\frac{\alpha^{2}}{\cos ^{2} x}\left(-d t^{\prime 2}+d x^{2}+\sin ^{2} x\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right)
$$

$$
\begin{aligned}
& \left.t^{\prime} \in\right]-\infty, \infty\left[\quad \text { lighteones } \quad t^{\prime}= \pm x\right. \\
& x \in\left[0, \frac{\pi}{2}\right] \\
& \theta \in[0, \pi] \\
& \psi \in[0,2 \pi]
\end{aligned}
$$

Compare this to the aS metric (8.9). The differences are:

$$
\begin{aligned}
& d s^{L}= \frac{\alpha^{2}}{\cos ^{2} x}\left(-d t^{\prime 2}+d x^{2}+\sin ^{2} x\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right) \\
& \uparrow_{x \in\left[, \frac{\pi}{2}\right] \text { in } A d S}([\overline{0}, \pi] \text { in } d S)
\end{aligned}
$$

The conformal factor
depends on X in Ads
(on f^{\prime} in $d S$)
In these cid's the AdS space is static but shrinks as function of the radial ard X. Constant time slices $t^{\prime}=$ const, ane not Euclidean and not even 3-spheres as x does not extend up to π but $x \in\left[0, \frac{\pi}{2}\right]$

The conformal diagram for AdS is given by

Each point represent a two -sphere (θ, θ) except for the dashed line $x=0$ which is a point ($\sin ^{2} x=0$).
spatial infinity $\rho \rightarrow \infty \Leftrightarrow X=\frac{\pi}{2}$ timelike surface $\left(d s^{2}=-\alpha^{2} d t^{\prime 2}\right)$

In AdS any observer sees the spatial infinity (reach in finite time t^{\prime}) and it is possible for any two observers to communicate in the future and have communicated in the past. The fact that the spatial infinity is timelike also means that instal value problem are not well pored with initio data given on spacelike surfaces, information can leak in from the spatial infinity to any process.
8.3 Robertson - Walker metric

The observed universe appears to be homogeneous and isotropic on distance scales $d \gtrsim 100$ Mpc (galaxies $d \sim 0.1$ Mpc) but it is not stationary. From observations we know that the universe grows in time and the matter properties have also evolved in time implying that $R \neq$ const. The universe is therefore not described by a maximally symmetric spacetime, there is no timelike symmetry.

What is the metric describing a homogeneous \& isotropic (in spatial ard's x^{\prime}) but time evolving spacetime? In the comoving coordinates (t, x^{\prime} ') where homogeneity \& isotropy are manifest the metric must take the form:
(8.16)
 and since homogeneity \& isotropy are real symmetries
this cid system should cover the entire manifold. The metric on the t-const. surfaces

$$
\begin{equation*}
d s^{2} \int_{d t=0}=a^{2}(t) \gamma_{i j} d x^{i} d x^{j} \equiv g_{i j}(t) d x^{i} d x^{j} \tag{8.17}
\end{equation*}
$$

is maximally symmetric so that the Riemann tensor of there 3-d surfaces mut take the form:
(8.18)

$$
\text { (3) } R_{i j k l}=k\left(g_{i k} g_{j l}-g_{i \ell} g_{j k}\right)=k a^{4}(t)\left(\gamma_{i k} \gamma_{j e}-\gamma_{i l} \gamma_{j k}\right)
$$

From this we get:
$(8,19)$

$$
\text { (3) } \begin{aligned}
R_{j l} & =k\left(g^{i} i g_{j e}-g_{i} e g_{j}{ }^{i}\right) \\
& =k\left(3 g_{j e}-g_{j e}\right) \\
& =2 k a^{2}(t) \gamma_{j l}
\end{aligned}
$$

(8.20) $\quad{ }^{(3)} R={ }^{(2)} R_{i}=6 k$

The maximally symmetric 3-space is invariant under rotation ($=$ spherically symmetric) so that in spherical cid's: (see Chapter 5)
$(8,21) \quad d s^{2} /=a_{t=\text { cont. }}^{2}(t)\left(e^{2 B(r)} d r^{2}+r^{2} d \Omega^{2}\right), d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$

$$
\begin{aligned}
\Rightarrow \text { (3) } R_{11}=a^{2}(t) \frac{2}{r} \partial_{r} \beta \\
\text { (3) } R_{22}=a^{2}(t) e^{-2 \beta}\left(r \partial_{r} \beta-1\right)+1 \\
\text { (3) } R_{33}=a^{2}(t)\left(e^{-2 \beta}\left(r \partial_{r} \beta-1\right)+1\right) \sin ^{2} \theta \\
\text { (3) } R=e^{-2 \beta} \frac{2}{r} \partial_{r} \beta+
\end{aligned}
$$

Comparing these to (8.19) we get:

$$
\begin{aligned}
& \frac{2}{r} \partial_{r} \beta=2 k \gamma_{11}=2 k e^{2 \beta}, \\
& c^{-2 \beta}\left(r \partial_{r} \beta-1\right)+1=2 k \gamma_{22}=2 k r^{2}, e^{2 \beta} \\
& \gamma_{22} \sin ^{2} \theta=\gamma_{33} \\
& \Rightarrow\left\{\begin{aligned}
e_{22}=r^{2}
\end{aligned}\right. \\
& e^{-2 \beta}\left(1-r \frac{d \beta}{d r}\right)=1-2 k r^{2} \frac{d \beta}{d r} \Rightarrow e^{-2 \beta}\left(1-r e^{2 \beta} k r\right)=1-2 k r^{2} \\
& e^{-2 \beta}=1-2 k r^{2}+k r^{2} \\
&=1-k r^{2}
\end{aligned}
$$

$$
\beta=-\frac{1}{2} \ln \left(1-k r^{2}\right)
$$

Substituting this into $(8,21)$ yields:
$\left.(8,22) \quad d s^{2}\right|_{t=\text { cost. }}=a^{\prime}(t)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right)$
and the full metric (8.16) becomes:
(8.23) $\quad d s^{2}=-d t^{2}+a^{\prime}(t)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right) \quad k=$ cons α.

This is the Robertson-Walker metric for a homogeneous \& isotropic spacetime written in comoving coordincks.

Note that the metic ic is invariant under scalings:

$$
\begin{aligned}
& r \rightarrow \lambda r \\
& a \rightarrow a \lambda^{-1} \\
& k \rightarrow k \lambda^{-2}
\end{aligned} \quad \text { where } \lambda=\text { const. }
$$

There are two common ways to rescale:

1) $k=0, k>0, k<0 \rightarrow k=0, \pm 1$
2) Set $a\left(t_{0}\right)=1$ at some reference time to loften chosen to be today)

The three different values of k correspond to different geometries of the $t=$ const surface:

$$
\begin{array}{lll}
k=1 & \Leftrightarrow{ }^{(3)} R>0 & \text { "open" } \\
k=0 & \Leftrightarrow(3) \\
k=0 & \text { "flat" } \\
k=-1 & \Leftrightarrow(3) \\
k & \text { "closed" }
\end{array}
$$

The physical meaning of these can be illuminated by switching to a new radial coordinate x defined by:
(8.24) $d x=\frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}$
so that (8.23) becomes:
(8.25) $d s^{2}=-d t^{2}+a^{\prime}(t)\left(d x^{2}+S_{k}(x)^{2} d \Omega^{2}\right)$
where $S_{k}(x) \equiv r(x)$ determined by $(8,24)$:

$$
\begin{aligned}
x=\int^{r} \frac{d r}{\sqrt{1-k r^{2}}} \equiv S_{k}^{-1}(r) & \Rightarrow r=S_{k}(x) \\
(8.26) \quad & S_{k}(x)= \begin{cases}\sin x & , k=1 \\
x & , k=0 \\
\sinh x & , k=-1\end{cases}
\end{aligned}
$$

For $k=0$:

$$
d s^{2}=-d t^{2}+a^{2}(t) \underbrace{\left(d x^{2}+x^{2} d \Omega^{2}\right)}_{\text {Euclidean 3-space }}
$$

$t=$ const slices have flat Euclidean geometry, topology can be \mathbb{R}^{3} (infriite) on e.g. 3-torus (finite)

For $k>0$:

$$
d s^{2}=-d t^{2}+a^{2}(t) \underbrace{\left(d x^{2}+\sin ^{2} x d \Omega^{2}\right)}_{3-\text { sphere } s^{3}}
$$

$t=$ const. slices have the geometry and topology of 3-sphere, the manifold is finite $(0<r<1 / k)$.

For $k<0$:

$$
d s^{2}=-d t^{2}+a^{2}(t) \underbrace{\underbrace{d} \text {. }}_{3-d \text { space w. cost. negative curvature } H^{3}\left(3-h x^{2}+\sinh ^{2} x d \Omega^{2}\right)}
$$ the manifold is infinite (assuming the simplest topology)

8.31 Friedmann equations

The non-zers components of the Riccio tensor and the Ricci-scalar computed for the RW metric (8.23) are given by (exercise)
(8.27)

$$
\begin{array}{ll}
R_{00}=-\frac{3 \ddot{a}}{a} & R_{22}=r^{2}\left(1-k r^{2}\right) R_{11} \\
R_{11}=\frac{a \ddot{a}+2 \dot{a}^{2}+2 k}{1-k r^{2}} & R_{33}=R_{22} \sin ^{2} \theta \\
R=6\left(\frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k}{a^{2}}\right) & \cdot \equiv \frac{d}{d t}
\end{array}
$$

Assume the matter consists of ideal fluid (s) with:
(8.28) $T_{\mu \nu}=(\rho+p) u_{\mu} u_{\nu}+p g_{\mu \nu}, u^{\mu}=(1, \overline{0})$ in comoving ard's all fluids must have same u^{μ} due to homogeneity + isotropy (if the fluid moves wit comovins cid's the universe will not be homogeneous + isotropic)

Substituting $(8,27)$ and $(8,28)$ into the Einstein es.

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G T_{\mu \nu}
$$

results two independent eqs. known as the Friedmann egg.
$(8.29) \quad\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi k}{3} \rho-\frac{k}{a^{2}}$
$(8,30) \quad \frac{\ddot{a}}{a}=-\frac{4 \pi a}{3}(\rho+3 p)$

These govern the evolution of the scale factor $a(t)$. The time-dep. quantity $\frac{\dot{a}}{a}$ is called the Hubble rate:
(8.31) $\quad H(t) \equiv \frac{\dot{a}}{a}$

Defining the critical density as:

$$
\begin{equation*}
\rho_{c} \equiv \frac{3 H^{2}}{8 \pi G} \tag{8,32}
\end{equation*}
$$

$$
I=\frac{\rho}{\rho_{c}}-\frac{k}{a^{2} H^{2}} \quad k=a^{2} H^{2}\left(\frac{\rho}{\rho_{c}}-1\right)
$$

We can recast (8.29) into the form:

$$
\begin{align*}
k=a^{2} H^{2}\left(\frac{\rho}{\rho_{c}}-1\right) \Rightarrow & \rho=\rho_{c} \Leftrightarrow k=0 \\
& \rho>\rho_{c} \Leftrightarrow k>0 \tag{8.33}\\
& \rho<\rho_{c} \Leftrightarrow k<0
\end{align*}
$$

Cosmological obrecruations tell that $\rho=\rho c$, up to observational errors, and hence our universe is described by the case $k=0$.

The energy momentum tensor (8.28) satisfies the continuity equation

$$
\nabla^{\mu} T_{\mu c}=0
$$

Contracting this with a" yields:

$$
\begin{aligned}
& u^{\nu}\left(\partial^{\mu}(\rho+p) u_{\mu} u_{\nu}+(\rho+p)\left(\nabla^{\mu} u_{\mu}\right) u_{\nu}+u_{\mu} \nabla^{\mu} u_{\nu}+g_{\mu \nu} \partial^{\mu} p\right)=0 \\
& -(\dot{\rho}+\dot{p})+(\rho+p) \underbrace{-\nabla^{\mu} u_{\mu}}_{=3 H}+u_{\mu}(\underbrace{u_{s}}_{=\frac{1}{2} \nabla^{\mu}(\underbrace{u^{\nu} \nabla^{\mu} u_{\nu}}_{=-1})+\dot{p}=0}=0 \\
& \Rightarrow \quad \dot{\rho}+3 H(\rho+p)=0 \quad \text { (8.34) }
\end{aligned}
$$

This follows also from $(8,31)$ and $(8,32)$ but the form $(8,34)$ is often useful. Assuming the equation of state is constant

$$
p=w \rho, w=\text { cons. }
$$

we can integrate $(8,34)$ to get

$$
\begin{equation*}
\rho=\rho_{0}\left(\frac{a}{a_{0}}\right)^{-3(1+w)} \quad ; \rho_{0}, a_{0}-\text { constants } \tag{8.35}
\end{equation*}
$$

Substituting this into the Friedman $(8,31)$ one can then solve for $a(t)$. The common cases in cosmology are:
radiation $\quad p=\frac{1}{3} \rho, \rho \alpha a^{-4}, a \alpha t^{1 / 2}$
matter $p=0, \rho \alpha a^{-3}, a \alpha t^{2 / 3}$
vacuum cressy $p=-\rho=$ const.,$\rho=$ const, $a \alpha e^{H t}, H=$ canst.
A more detailed cliscussion of the Friedmann cosmology and RW geometry is postponed to the Cosmology course.

