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7 Gravitationalwaves Gw

Gravitational waves are wavelike perturbations of the metric ripples in thespacetime

The first direct detection ofgravitational waves was announced on Feb 11 2016

by the 460 interferometer which measured the gravitational wave signal
produced by coalescence of Mr 30Mo blackholes The hw producedby
this violent process modify distance scale by Sllenlo as theypropagate

through the earth hw are very weak Yet the effect is measurableby
the carefully constructed interferometer apparatus of 460

Before 460 the hw were indirectly detectedalready in the 1970s by radio
observations of binary pulsars The binary system emit 6W which reduce its

energy causing the orbit time to decline This was detectedby Hulse

Taylor in 1974 and they were awardedtheNobePrize in 1993

Recall that 10 of the 20 dofs of the Riemann lensor are encodedin theRice

tensor Ryu and the other 10 in the Weyltensor The gravitational wars

are includedin the Weylpart The Ricci is directly determinedby the local
matter distribution through the Einstein Eg Ryu 8Th Truthful The Weadpart

ie gravitationalwaves carry information about non localproperties The GWpropagate

with the speed of light if you change the matter distribution the spacetime

doesnot immediately change everywhere but the information is carriedby GW's The

hw propagate even in the emptyspace to o Raio Weshallconcentrate

on this case first ie consider smallperturbations aroundtheMinkowski space



7.1 LinearperturbationsaroundtheMikowskispace
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Consider smallperturbations around the Minkowskispace

7.1 gpu you thru 14141 but unlike in Chaplen 4 we do not
require static spacetime here

Prv dial 1,11,1
2ohm to

Work to linear order in perturbations ie drop all O 82 terms All
equalities in the following hold to linear precision

The inverse metric is

7 2 gMyM h where h p has

check GMguo pro h prothro o

So ymhuo hmyuo.iohY
5o yMhou yHg qohos
8o yMhou yMhao
5 01

Indices ofperturbations raised loweredby the backgroundmetric fu
M 1st order perturbation

4 grow further
no84 term which we drop in the linearperturbation theory

The splitting 17.1 of the metric intobackground and perturbation is not
coordinate invariant consequently if and h are not tendons but their sun

geo fu thru is Choosing different nearly Cartesian coordinates In for our nearly

Minkowski space results a differentdefinition of the perturbation In



Let us see how this works in practise by considering a smallcoordinate

transformation XV Xu that can be expanded as

7.31 IM xM 54 4 06 5
1st order smallperturbation

The inverse transformation to linear order is

74 xn Ir 54 7 In 5459

The corresponding Jacobian are thus given by

17.51 317 81 25 2yu Sh Sus

Under F 3 the metric transforms in the usual way

gmtxtdffyxyfgar.CH

H 45418 Su's go.CH
848 spits81454gas hadxD drop 5h Ocs

gruthulx Yussufgadid
gyu hyuk dis Jiu gyu const indices of the 1storder

perturbation 5h lowered
bygyu

Now
gyu Y Ym Truck splitting into backround perturbations in the

gyu IqC
new ad system In

So that we get

Ha Inu ha Suk Yuk



A perturbative aid transformation of type 7.3 is calledgauge transformation

A ad system XMdefines the gauge where perturbations such as hen are

defined In general perturbations change under gauge transformations as

we see in eq.tt 6 Thegaugetransformation however does not changethephysical

setup This may sound somewhat paradoxical Theresolution is that perturbation

defined in a given gauge are not directlyphysicalquantities there are

more perturbative degrees of freedom than there are dynamicalequations The

extra degrees of freedom are spuriousgauge nodes that originate from the

arbitrariness in splitting quantities into background perturbations This is not

a problem for us we are free to choose any gauge in which we study a

given physicalproblem The gauge modes will always drop out from thefinal
result and appear only in the intermediate steps which lookdifferent in

different gauges



72 Linearised fieldequations

Let us the compute the linearisedEinstein ego for the metric 7 1 The connection

coefficients are givenby
Mw IgM Sugo Jog u s gov gyu const

L of Juho John I hou
2

f duhon doh Thou note that h gather 1 8 0

The linearised Ricci tensorbecomes o

Ryu sofa surfer r B
OCH

those hits Why f d Hah I 25hm2

L sodrhuo 29ohm 27h5 cWhio
Denote

h hmr
D yMdyh my i 3,7 0

17.7 Ryu La 75ha 22ohm Huh Why

The Ricciscalar is given by
R gmRy FRM

at 242 7 oh oh

ft 8 R Vdohro oh



The Einstein tensor reads

Gru Ryu Lage R

L Hiko 28 Ipoh Php Lark Wha Dh

Lakedohuotsithro oh quote Huh yum ha

Define the trace reversedperturbation Tsm by
17.9 Im hy Laquh I p tu h 4zh h

Rewriting Cyr in terms of him we get

Gyu tz d5Iuo h hV5o h Otsu ftp.ohirfuoh

mud In grzoh

HD Gm Ly 2,55W initio yard To Ot
The

energy momentum tensor Tru is 1st orderperturbation since Tru o for g yr

Therefore the linearised Einstein equation takes theform

ft.lt 2,55W128hL gruffTox Otsu 16ThTru

choosing the gauge

Egft.ltcanbe further simplifiedby choosing a particulargauge Under thegauge transformer

It Xt 5 we obtain from 76 the transformation properties

17.12 T h 285







7.3Gravitationalwaves in vacuum

In vacuum Tru O eg 715 reads

7.18 D Iru L 0 hIu O YTy o

The solutions of this wave equation are plane waves

Tsp Re Afueiko where Kirk O lightlike wave rack

Ay Au const 4 4 matrix

Check D Tru ydBJD.rs 2eAyeiko5
ReAyydBgaikpeikoxo

ReAIuyMiksih
koko

leakedIn 0

The gauge condition thru o implies

Juhi RelAfikueiho o Ifk Tteok o

Therefore we find that the solution of 718 is given by

7 19 Im Rectueiho where kyler 0 Inuk 0

Consider a singleplane wave propagating into the direction of z axis or any other

direction our background is invariantunder rotations

7.20 let k 0,0 h kik k th O ok

Gauge cord ftp.uku Ayok Aysk 0 Ago Irs





































7.48 Rft um La u du Uso f Caruso hurtful Seong

Usodgdgnupo f Usododgy
With this notation we then have

17.49 8Ryu RY Shan O as in 7.45

E50 842M RY Shas 12,9 Shas

f T
Quadratic in 8ha Linear in 52hm

The expansion for the Ricci scalar becomes

R grid Cgm Shintos OtsRyu 842,4

R gray gas'Re shifty Ocs

812 842

Et 45
812 8124 12 m Shas O

842 8424 Shinsky
7 51

R f 82hm R fn Shan 8h42 fishas
O

R f 82hm R fn Shan







The area element IS in 7 57 can be written as

7.58 Isi n r'drdt old sired0dg

where ni is the unit normal vector of the surface mini 1 We rotate

globally the aid's at in spherical coordinates 1,74 ni points along
Er the radial unit basis vector

ni CI 0,0

Let us investigate separately the various terms entering in 7 57 We

start with

dsi1247 Shas fdsifzshsododishsottfaoshsohishso EShsilhoshgo

shsodgt.co8hyo Lathersod Sho

This can be simplified bydoing partial integrations and using

that Shy L Ir see es 7.40 e.g

fdsifdoshsohishso.ly JdsisifhsodoShso fdsishsosisoShso

if i r
M 1 n Ir n trr

Lr o as r a

Lygdsishsodisosh.gg

In the same way all other boundary terms vanish and we get
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Ids RE Shas fdsifzshsododishso fshsodosishso zshsidodoshe.com

0 as

D ftp.u O

itgfhsisodgshoo lzshsodsdiShoo

Jefftoo 0 because Shy o

Lathersod Sho

Sdss'RE Shas fdsif shsododishso lzshsod.siShoo4

Lathersod Sho

By further doing double partial integrations in the last two terms we get

fds RE Shas fdsiftsheodod Sher f Shoodidsshso4
O

I Shoidodgsher
2

O

L fdsifhsoddishso
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Radiated energy part II

The next step is to substitute 40 into 7.61 to obtain the

expression for GW energy in terms of the source properties

encoded in the quadrupole moment Iij in 17.40 Recall that

17.61 is written in the TT Therefore we need to convert

40 into the TT gauge as well in the vacuum regime is L

To this end we define the projection operator

7.62 Pij Sij ninj where ni points along the GW

propagation direction and is normal

to the surface S 7.58

Far away from the source r L the solution of 7 40 is a

plane wave

Tru Re Am e
0

0

Shim Rel inmayue inoxy.co
Lorenz gauge cord

Defining
inj pikpje.LIjPkl hke2

we get a quantity satisfying exercise

jihij o.tn 0

which using 7.37 can be shown to be equivalent to the TT

gauge conditions 7.42
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Therefore we sat that the the TT gauge perturbation can be projected

out of Trp simply by

F 63 HIT PkPje LPjPkl Tue2

We can then rewrite the Lorenz gauge equation 7.40 in the TT

gauge by simply contracting it with pikpje IP.jp'd2

17.64 hit'Ttr 2
a IiITH r r L

where now

17.65 Iff PkPje LPjPkl I j2

In the TT gauge ITT 0 and instead of Iij we can

equivalently use the reducedquadrupole moment

17.66 Jij Iij LysijskeIke Iif I'ij
The point is that Jij is easier to connect to real life applications it

appears as a coefficient in the 4hpole expansion of the Newtonian

potential

Etr Girl Er Dixi 3 Jjxix0 t

dipole fTooXidsx



Thus we can recast 17.69 as

7.67 h Ttr II J Ct r

which can be directly substituted into 7.61

em
E fdddtmngidirai.at Ct r1 soffqIJeICt r1

s
ni 0,110,0

choice of ads GW TT Er
lm TT

Eggfdddtrtrradi.at Ct r1 IrdapJemCt r

trodden.it daIdemCt r

adf.fm t r asyfLtD Ht

fdrdtrf fifteen daiemtdpdem

e fdj.de as r so

fyfaratr
JEFE r ff 5eICt r

em

fdddtff.IS Ct r ffIJTetmCt r
s





where in the last step we used Jedi 0 which follows from

the definition 7 66

770 Holds equally for dd J dd JIf and we can the directly

recast G69 as

1771 D
fagged day.ii 2adfiedffyenkni

znininhnld ed.fi
Tta

Here all Jij Jij t r so they come out of the fold integrals e.g

far
tt t'd'atfit 1 d iid fdr

41Tdd ijdJdts

For the next two terms we use Cartesian crd's where the spatial
components of ni are given by ni sincecosy sinesing cost and

fDR ninja Sij i 3 fdcosoj.decost 21T2g 4ft
and others give the same by symmetry

Sddninj 4gISij




