7. Gravitational waves (GW)

Gravitational waves are wavelike pertanbucions of the metric, ripples in the spacetime. The first direct detection of gravitational waves was announced on Feb II, 2016 by the LIaO interferometer which measured the gravitational wave signal produced by coalescence of $M \sim 30 M_{0}$ black holes. The LW produced by this violent process modify distance scales by self $\sim 10^{-21}$ as they propagate through the earth \rightarrow GW are very meat! Yet the effect is meawrable by, the carefully constructed interferometer separation of Lice.

Before LNGO the GWV were indirectly detected already in the 1975's by ado observations of binary pulviss. The bireng system emit GW which reduce its energy causing the orbit time to decline. This was detected by Halle \& Taylor in 1974 and they were awarded the Nobs Prize in 1993.

Recall that 10 of the 20 diffs of the Riemann tensor are encoded in the Rice, tensor R_{p} a and the other 10 in the Weal tenor. The gravitational warn are included in the Weal part. The Ricis is directly determined by the local matter distribution through the Einstein eq. $R_{p u}=8 \pi \pi a\left(T_{\mu \nu}+\frac{1}{2} \sigma_{j} T\right)$. The Weq/prot ie. gravitational waves carry information about non-local properties. The CW propgst with the speed of light: if you change the matter distribution the spacetime does not immedintly change everywhere but the information is carried by aw's. The GW propagak even in the empty space $T_{\mu}=0 \Rightarrow R_{w}=0$. We shall concentrate on this case first, ie. consider snarl perturbations around the Minkowsti pace.
7.1 Linear perturbations around the Minkowski space

Consider small perturbations around the Minkowrth space
(7.1) $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad$ bp ul $\ll 1$ but unlike in Chapter 4, we de not require stoic spacetime here:

$$
\eta_{r^{\nu}}=\operatorname{diag}(-1,1,1,1)
$$

Work to linear order in perturbations, ie. drop all O(δ^{2}) terms. All equalities in the following hold to linear precision.

The inverse metic is:
(7.2) $g^{\mu \nu}=\eta^{\mu \nu}-h^{\mu \nu} \quad$ where $\quad h^{\mu \nu} \equiv \eta^{\mu \alpha} \eta^{\nu \beta} h_{\alpha \beta}$

Check:

$$
\begin{aligned}
g^{\mu \nu} g_{v \sigma} & =\left(\eta^{\mu \nu}-h^{\mu \nu}\right)\left(\eta_{v \sigma}+h_{\nu \sigma}\right) \\
& =\delta_{\sigma}^{\nu}+\eta^{\mu \nu} h_{\nu \sigma}-h^{\mu \nu} \eta_{\nu \sigma}+\theta\left(h^{c}\right)^{0} \\
& =\delta_{\sigma}^{\nu}+\eta^{\mu \nu} h_{\sigma v}-\eta^{\mu \alpha} \eta_{\nu \beta}^{\nu} \eta_{v \sigma} h_{\alpha \beta} \\
& =\delta_{\sigma}^{\nu}+\eta^{\mu \nu} h_{\sigma \nu}-\eta^{\mu \alpha} h_{\alpha \sigma} \\
& =\delta_{\sigma}^{\nu} \text { ok }
\end{aligned}
$$

Indices of perturbations raised/lowered by the background metric Ipa:
$V^{\mu}=1$ st. order perturbation

$$
v_{\mu}=g_{\mu \nu} v^{\nu}=\eta_{\mu} v^{2}+\underbrace{h_{\mu} v^{\nu}}_{\sigma\left(\delta^{2}\right)} \text {, }
$$

$O\left(\delta^{2}\right)$ term which we drop in the linear perturbation theory.

The splitting (7.1) of the metric into background and perturbation is not coordinate invariant, consequently Ire and hype are not tenons but their sum $g_{\mu \nu}=\eta_{p u}$ thy is. Choosing different nearly cartesian coordinates \tilde{x}^{μ} for oar nearly Minkowsti space results a different detisision of the perturbation ainu.

Let us see how this works in practice by considering a small coordinate transformation $\tilde{x}^{\mu}\left(X^{\nu}\right)$ that can be expanded as:
(7.3) $\quad \tilde{x}^{\mu}=x^{\mu}+\underset{\uparrow}{\mu}\left(x^{\nu}\right)+\theta\left(\xi^{2}\right)^{0}$
lsd. order small perturbation
The inverse transformation to linear order is:

$$
\begin{equation*}
x^{\mu}=\tilde{x}^{\mu}-\xi^{\mu}\left(x^{\nu}\right)=\tilde{x}^{\mu}-\xi^{\mu}\left(\tilde{x}^{v}\right) \tag{7.4}
\end{equation*}
$$

The corresponding Jacobions are then given by:
(7.5)

$$
\frac{\partial \tilde{x}^{\mu}}{\partial x^{\nu}}=\delta_{\nu}^{\mu}+\partial_{\nu} \xi^{\mu}, \frac{\partial x^{\mu}}{\partial \tilde{x}^{\nu}}=\delta_{\nu}^{\mu}-\partial_{\nu} \xi^{\mu}
$$

Under (7.3) the metric transforms in the usual way:

$$
\begin{aligned}
g_{\mu \nu}(\tilde{x}) & =\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}(x) \\
& =\left(\delta_{\mu}^{\alpha}-\partial_{\mu} \xi^{\alpha}\right)\left(\delta_{\nu}^{\beta}-\partial_{\nu} \xi^{\beta}\right) g_{\alpha \beta}(x) \\
& \left.=\left(\delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}-\delta_{\mu}^{\alpha}\right)_{\nu}^{\beta} \xi^{\beta}-\delta_{\nu}^{\beta} \partial_{\mu} \xi^{\alpha}\right)\left(\eta_{\alpha \beta}+h_{\alpha \beta}(x)\right) \quad\left(\text { drop } \quad \xi h=\theta\left(\delta^{2}\right)\right) \\
& =\eta_{\mu \nu}+\xi_{\nu}(x)-\eta_{\mu \beta} \partial_{\nu} \xi^{\beta}-\eta_{\nu \alpha \alpha} \xi^{\alpha}
\end{aligned}
$$

$=\eta_{\mu}+k_{\nu}(x)-d_{\nu} \xi_{\mu}-\partial_{\mu} \xi_{\nu} \quad \eta_{\mu}=$ constr. $\begin{aligned} & \text {, indices of the lot. order } \\ & \text { perturbation } \xi^{\mu} \text { lowered }\end{aligned}$ by Ir.

Now $g_{\mu \nu}(\tilde{x}) \equiv \eta_{\mu \nu}+\tilde{h}_{\mu \nu}(\tilde{x}) \quad$ splitting into backround + perturbations in the

$$
=\eta_{\mu \nu}+\tilde{\xi}_{\mu \nu}(x)
$$ new ard system \bar{x}^{m}.

so that we get:
(7.6) $\quad \tilde{b}_{\mu \nu}=b_{\mu \nu}-\partial_{\nu} \xi_{\mu}-\partial_{\mu} \xi_{L}$

A perturbative cid transformation of the (7.3) is called gauge tran formation
A cid system x^{μ} defines the gauge where perkinbation, such as hyp, are defined. In general, perturbations change under gauge transformation as we see in ap. (7.5). The gauge trawtirmation, however does not change the physical setup. This may sound somewhat perndosical. The resolution is that penturbcotion defied in a given gauge are not directly physical quantities, there are more perturbative degrees of freedom them there are dynamical equation. The extra degrees of freedom are sparrows gage nodes that originate from the arbittraincess in pplibing guanitibes into background + perturbations. This is not a problem for us, we are froe t chaos e any gage in which we study a given physical problem. The gauge modes will alleys drop out from the final result and appear only in the intermediate steps which look different in different gauges.
7.2 Linearised field equations

Let us the corot the linearised Einstein eq. for the metric (7.1). The connection coefficients are given by:

$$
\begin{aligned}
\Gamma_{\nu \sigma}^{\mu} & =\frac{1}{2} g^{\mu \lambda}\left(\partial_{\nu} g_{\sigma \lambda}+\partial_{\sigma} g_{\lambda \nu}-\partial_{\lambda} g_{\sigma \nu}\right), \quad \eta_{\nu}=\text { cons } \\
& =\frac{1}{2} \eta^{\mu \lambda}\left(\partial_{\nu} h_{\sigma \lambda}+\partial_{\sigma} h_{\lambda \nu}-\partial_{\lambda} h_{\sigma \nu}\right) \\
& =\frac{1}{2}\left(\partial_{\nu} h_{\sigma}^{\mu}+\partial_{\sigma} h_{\nu}^{\mu}-\partial^{\mu} h_{\sigma \nu}\right), \text { note that } \quad h_{\nu}^{\mu}=\eta^{\mu \alpha} h_{\alpha \nu} \neq \delta_{\nu}^{\mu}
\end{aligned}
$$

The linearised Ricer tensor becomes:

$$
\begin{aligned}
R_{\mu \nu} & =\partial_{\sigma} \Gamma_{\mu}^{\sigma}-\partial_{\nu} \Gamma_{\sigma}^{\sigma}
\end{aligned} \underbrace{\Gamma_{\sigma \lambda}^{\sigma} \Gamma_{\mu \nu}^{\lambda}-\Gamma_{\nu \lambda}^{\sigma} \Gamma_{\sigma \mu}}_{=\theta\left(\delta^{2}\right)}
$$

Denote:

$$
\begin{aligned}
& h \equiv h^{\mu} \\
& \square \equiv \eta^{\mu \nu} \partial_{\mu} \partial_{\nu}=\partial^{\mu} \partial_{\mu}=-\frac{\partial^{2}}{\partial t^{2}}+\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x^{i 2}} \equiv-\frac{\partial^{2}}{\partial f^{2}}+\nabla^{2}
\end{aligned}
$$

(7.7) $\quad R_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \partial \sigma h_{\nu \sigma}+\partial_{\nu} \partial \sigma h_{\mu \sigma}-\partial_{\mu} \partial_{\nu} h-\square h_{\mu \nu}\right)$

The Ricei scaler is given by:

$$
\begin{aligned}
R=g^{\mu \nu} R_{\mu} & =\eta^{\mu \nu} R_{\mu \nu} \\
& =\frac{1}{2}\left(2 \partial_{\mu} \partial^{\sigma} h_{\sigma}^{\mu}-\nabla h-\square h\right)
\end{aligned}
$$

(7.8)

$$
R=\partial^{\mu} \partial^{\sigma} h_{\mu \sigma}-\nabla h
$$

The Einstein tenion reeds:

$$
\begin{aligned}
G_{\mu \nu} & =R_{\mu \nu}-\frac{1}{2} g_{\mu} R \\
& =\frac{1}{2}\left(\partial_{\mu} \partial h_{\nu \sigma}+\partial_{\nu} \partial^{\sigma} h_{\mu}-\partial_{\mu} \partial_{\nu} h-\nabla h_{\mu \nu}\right)-\frac{1}{2} \eta_{\mu \nu}\left(\partial \sigma \sigma^{\lambda} h_{\sigma \lambda}-\nabla h\right) \\
& =\frac{1}{2}\left(\partial_{\mu} \partial h_{\nu \sigma}+\partial_{\nu} \partial \partial_{\mu \sigma}-\Delta h_{\mu}+\eta_{\mu} \Delta \partial h-\partial_{\mu} \partial_{\nu} h-\eta_{\nu} \partial \sigma \partial^{\lambda} h_{\sigma \lambda}\right)
\end{aligned}
$$

Define the trace revered pertarbation \bar{b}_{p}, b_{2} :
(7.9) $\quad \bar{b}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} \eta_{\mu} h \quad \bar{T} \equiv \eta^{\mu \nu} \bar{L}_{\mu \nu}=h-\frac{4}{2} h=-h$

Rencritions Gav in terms of bur we get:
(7.0) $G_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \partial^{\sigma} \bar{h}_{v \sigma}+\partial_{\nu} \partial^{\sigma} G_{\mu \sigma}-\eta_{\mu} \partial^{\sigma} \partial \lambda \bar{h}_{\sigma \lambda}-\nabla \bar{K}_{\mu \nu}\right)$

The energy momentim tentor Tru is 1st. onder pertarbation since Tru $=0$ for Jusipu.
Therchire, the lincaried Eintein equation tater the form:
(7.4) $\partial_{\mu} \partial \sigma_{\nu \sigma} T_{\nu} \partial \sigma_{\mu \sigma}-\eta_{\mu} \partial^{\sigma \sigma} \partial^{\lambda} T_{\sigma \lambda}-\Delta \sigma_{\mu \nu}=16 \pi a T_{\mu}$

Chosing the gange

Eg. (7.1) can be tarther simplibied by chaving a partiouler gavge. Under the gavge trewfirmoton $\tilde{x}^{\mu}=x^{\mu}+\xi^{r}$ we obtain frion (7.6) the trentermation propathes:
(7.12) $\tilde{h}=h-2 J^{\mu} \xi_{\mu}$

$$
\tilde{h}_{\mu \nu}=\xi_{\mu \nu}-\partial_{\nu} \xi_{\mu}-\partial_{\mu} \xi_{L}-\frac{1}{2} \eta_{\mu \nu}\left(h-2 \partial^{\sigma} \xi_{\sigma}\right)
$$

(7.13) $\quad \tilde{\zeta}_{\mu}=\bar{h}_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}+\eta_{\mu} \partial^{\sigma} \xi_{\sigma}$

In eq. (7.11) the three first terms on the LHJ are proportional to d^{σ} bur which can be set to zero by a suitable choice of the gauge parcomeker 5 ?
(7.14)

$$
\begin{aligned}
\partial^{\sigma} \tilde{h}_{\nu \sigma}=\partial^{\sigma}\left(\bar{h}_{\nu \sigma}-\partial_{\nu} \xi_{\sigma}-\partial_{\sigma} \xi_{\nu}+\eta_{\nu \sigma} \partial^{\mu} \xi_{\nu}\right) & =0 \\
\partial^{\sigma} \bar{h}_{\nu \sigma}-\partial_{\nu} \partial \xi_{\sigma}-\square \xi_{\nu}+\partial_{\nu} \partial \nu \xi_{\nu} & =0 \\
\square \xi_{\nu} & =\partial^{\sigma} \bar{h}_{\nu \sigma}
\end{aligned}
$$

In the gauge specified by the condition (7.14), the linearised Einstein egg. (7.11) take the form:
(7.15)

$$
\square \widetilde{h_{\mu \nu}}=-16 \pi k \widetilde{\beta_{\mu \nu}} \quad, \quad \partial_{\sigma} \widetilde{h_{\mu}}{ }^{\sigma}=0
$$

Note added:

$$
\begin{aligned}
& \text { In this gauge } \tilde{C}_{\mu \nu}=-\frac{1}{2} \square \tilde{h_{p r}} \\
& \text { and the contimait eg. }
\end{aligned}
$$

and the constant eq.

$\Rightarrow \Delta \pi \tilde{F}_{\mu}=0+f(x)$, When $D f=0$
The gauge condition $\partial^{\mu} \tilde{b}_{\text {pu }}=0$ now imposes
the condition $\nabla^{M} G_{\text {jus }}=0$ but does not yet
the condition DrCyn $=0$ but does not yet
fully fix the gauge, see the next page.
For an empty spacetime $\tilde{T}_{\sim}=0$ this yields:

$$
\square \widetilde{h_{\mu \nu}}=-\frac{\partial^{2}}{\partial t^{2}} \widetilde{h}_{\mu \nu}+\nabla^{2} \tilde{h}_{\mu \nu}=0
$$

which is just the wave equation. The perturbations $\tilde{\bar{h}}_{\mathrm{p}}$ describe gravitational waves which propagate at the speed of light $c=1$. Eg. (7.15) tells how the GW are sourced by matter.

From now on we assume that all perturbations are given in the gauge (7.16) $\quad \partial_{\sigma} \bar{h}_{\mu}{ }^{\sigma}=0$
and drop the till $\tilde{\bar{h}} \equiv \bar{h}$.

The condition (7.16) actually does not fully determine the gauge but there is some gauge freedom still left.

Any gave transformation:
(7.17) $\quad \hat{x}^{\mu}=x^{\mu}+\xi^{\mu}$ where $\quad \square \xi^{\mu}=0$
preserves the condition (7.16)

$$
\begin{aligned}
\frac{\partial}{\partial \hat{x}^{\sigma}} \hat{\bar{h}}_{r}^{\sigma} & =\frac{\partial x^{\alpha}}{\partial x^{\sigma} \partial x^{\alpha}}\left(\bar{b}_{\mu}{ }^{\sigma}-\partial_{\mu} \xi^{\sigma}-\partial^{\sigma} \xi_{\mu}+g_{\mu} \sigma^{\sigma} \xi_{\beta}\right) \\
& =\left(\delta_{\sigma}^{\alpha}-\xi^{\alpha}{ }_{\sigma}\right) \partial_{\alpha}\left(\bar{b}_{\mu} \sigma_{-\mu} \xi^{\sigma}-\partial^{\sigma} \xi_{\mu}+y_{\mu}{ }^{\sigma} \partial^{\beta} \xi_{\beta}\right) \\
& =\partial_{\sigma} \bar{h}_{\mu}^{\sigma}-\partial_{\sigma} \gamma^{2} \xi^{\sigma}-D \xi_{\mu}+\partial_{\mu} \partial \xi_{\beta} \\
& =\partial_{\sigma} \bar{h}_{\mu}^{\sigma}-D \xi_{\mu}=0
\end{aligned}
$$

How many physical gegres of freedom we have? (when $T_{\mu \nu}=0$)
hip syne. 4×4 matrix $\Rightarrow 10$ ind. components
$\xi^{\mu} 4$ components associated to gauge transformation
$\nabla^{\mu} a_{p L}=0 \quad 4$ non-dynnenical constraint egsations

$$
\Rightarrow 10-4-4=2 \text { physical doff's }
$$

To fully fix the gauge we need to impose 8 conditions. The gavage condition $\partial_{\sigma} \bar{b}^{\sigma}=0$ fixes 4 of the 8 gage doffs. The remaining 4 are fixed in the following by going to the so called transverse traceless gauge.

When there is a source present $T_{\mu \nu} \neq 0$ and there are more dof's in total.
7.3 Gravitational waves in vacuum

In vacuum $T_{\mu \nu}=0$, eq. (7.15) reads:
(7.18) $\quad \square \bar{b}_{\mu \nu}=\left(-\frac{\partial^{2}}{\partial \alpha^{2}}+\nabla^{2}\right) \bar{h}_{\mu \nu}=0 \quad, \partial^{\nu} \bar{b}_{\nu}=0$

The solutions of this wave equation are plane waver:
$\begin{aligned} & \bar{h}_{p \nu}=\operatorname{Re}\left(\bar{A}_{\mu} e^{i k_{\sigma} X^{\sigma}}\right) \text { where } \quad k^{\mu} k_{\mu}=0 \text { lightike wave vector } \\ & \bar{A}_{\mu \nu}=\bar{A}_{\nu \mu}=\text { cont. } 4 \times 4 \text { matrix }\end{aligned}$

$$
\bar{A}_{\mu}^{\prime}=\bar{A}_{\nu \mu}=\text { cont. } 4 \times 4 \text { matrix }
$$

Check:

$$
\begin{aligned}
\square \bar{h}_{\mu} & =\eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} \operatorname{Re} \bar{A}_{\mu} e^{i k_{\sigma} x^{\sigma}} \\
& =\operatorname{Re} \bar{A}_{\mu \nu} \eta^{\alpha \beta} \partial_{\alpha} i k_{\beta} e^{i k_{\sigma} x^{\sigma}} \\
& =\operatorname{Re} \bar{A}_{\mu \nu} \eta^{\alpha \beta} i_{\beta} i k_{\alpha} e^{i k_{\sigma} x^{\sigma}} \\
& =-k_{\alpha} k^{\alpha} \bar{h}_{\mu \nu}=0
\end{aligned}
$$

The gauge condition $\partial{ }^{\nu} \bar{h}_{\mu}=0$ implies

$$
\partial_{\nu} \bar{h}_{\mu}^{\nu}=\operatorname{Re}\left(\bar{A}_{\mu}^{\nu} k_{\nu} e^{i k_{\sigma} x^{\sigma}}\right)=0 \Rightarrow \bar{A}_{\mu}^{\nu} k_{\nu}=\bar{A}_{\mu} k^{\nu}=0
$$

Thercobre, we find that the solution of (7.18) is given bs: (7.19) $\quad \bar{b}_{\mu \nu}=\operatorname{Re}\left(\bar{A}_{\mu} e^{i k_{\sigma} x^{\sigma}}\right) \quad$ where $k_{\mu} k^{\mu}=0, \bar{A}_{\mu \nu} k^{\nu}=0$

Consider a single plane wave propagating into the direction of z-axis for any other difection, our bancleground is inveriour under rotations):
(7.20) $\quad k^{\mu}=(k, 0,0, k) \quad k^{r} k_{p}-k^{2}+k^{2}=0 \quad o k$.

Gauge cord: $\bar{A}_{\mu} k^{\circ}=\bar{A}_{\mu} k+\bar{A}_{\mu s} k=0 \Rightarrow \bar{A}_{\mu 0}=-\bar{A}_{\mu s}$

The coeffient matrix the thess the form:
(7.21)

$$
\bar{A}_{p \nu}=\left[\begin{array}{cccc}
\bar{A}_{00} & \bar{A}_{01} & \bar{A}_{02} & -\bar{A}_{00} \\
\bar{A}_{01} & \bar{A}_{11} & \bar{A}_{12} & -\bar{A}_{01} \\
\bar{A}_{02} & \bar{A}_{12} & \bar{A}_{22} & -\bar{A}_{02} \\
-\bar{A}_{00} & -\bar{A}_{02} & -\bar{A}_{o 2} & \bar{A}_{00}
\end{array}\right]
$$

6 independent components

$$
\bar{A}_{00}, \bar{A}_{01}, \bar{A}_{02}, \bar{A}_{11}, \bar{A}_{12}, \bar{A}_{22}
$$

Transverse traceless (TT) gauge
Recall that (7.16) fixes only 4 of the 8 gauge modes" in $5_{p r \text {. To fix }}$ the remaining \& we consider gauge transformations with $\Delta^{2} \xi M=0$ which preserve (7.16).
Perform a gauge transformation:
(7.22) $\quad \hat{x}^{\mu}=x^{\mu}+\xi^{\mu}, \quad \xi^{\mu}=-\operatorname{Re}\left(j \epsilon^{\mu} e^{i k \nu x^{\nu}}\right) \Rightarrow \square \xi^{\mu}=0$

Under this hap transforms as: (C.f. (7.13))

$$
\begin{aligned}
\hat{\bar{h}}_{\mu \nu} & =\operatorname{Re}\left[\left(\bar{A}_{\mu \nu}-k_{\mu} \epsilon_{\nu}-k_{\nu} \epsilon_{\mu}+\eta_{\mu \nu} k^{\sigma} \epsilon_{\sigma}\right) e^{i k_{\lambda} x^{\lambda}}\right] \\
& =\operatorname{Re}\left(\hat{\bar{A}_{\mu \nu}} e^{i k_{\sigma} x^{\sigma}}\right)
\end{aligned}
$$

So that:
(7.23) $\quad \hat{\bar{A}}_{\mu \nu}=\bar{A}_{\mu \nu}-k_{\mu} \sigma_{\nu}-k_{\nu} \epsilon_{\mu}+\eta_{\mu} k^{\sigma} \epsilon_{\sigma}$

Apply this to (7.21): $\quad\left(k_{p}=(-k, 0,0, k)\right)$
$(7.24)\left\{\begin{array}{l}\hat{\bar{A}}_{00}=\bar{A}_{00}+2 k \epsilon_{0}-k\left(\epsilon_{0}+\epsilon_{3}\right)=\bar{A}_{00}+k\left(\epsilon_{0}-\epsilon_{3}\right) \\ \hat{\bar{A}}_{01}=\bar{A}_{01}+k \epsilon_{1} \\ \hat{\bar{A}}_{02}=\bar{A}_{02}+k \epsilon_{2} \\ \hat{\bar{A}}_{11}=\bar{A}_{11}+k\left(\epsilon_{0}+\epsilon_{3}\right) \\ \hat{\bar{A}}_{12}=\bar{A}_{12}\end{array}\right.$
*Became in vacuan the 4 constraint D'Kivu=0 all act on hun only.

We now fix the remaining 4 gange parcemetess 6^{μ} by settring:

(7.26)

$$
\begin{aligned}
& \hat{\overline{A_{O O}}}=0, \hat{\bar{A}}_{01}=0, \bar{A}_{02}=0 \quad 3 \text { cond. } \\
& \Leftrightarrow\left\{\begin{array}{c}
\epsilon_{0}-\epsilon_{0}=-\frac{-\bar{A}_{00}}{k} \\
\epsilon_{1}=-\frac{\bar{A}_{01}}{k} \\
\epsilon_{2}=-\frac{\bar{A}_{o n}}{k}
\end{array}\right.
\end{aligned}
$$

The condibions (7.25) \& (7.26) rpecits the tranverse and traceless gaage where:
(7.27)

$$
\hat{A_{\mu \nu}}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \hat{\bar{A}}_{11} & \hat{\bar{A}}_{12} & 0 \\
0 & \hat{\bar{A}}_{21} & -\hat{A}_{11} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Denobing $\quad \hat{\bar{A}}_{n} \equiv \alpha, \hat{\bar{A}}_{12} \equiv \beta$ and definining the polesization matrices:
(7.28)

$$
e_{\mu}^{+}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad e^{x}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

the perturctation in the Π gacge reads:

$$
\hat{h}_{\mu \nu}=\operatorname{Re}\left[\left(\alpha e_{\mu \nu}^{+} e+\beta e_{\mu \nu}^{x}\right) e^{i k_{\sigma} x^{\sigma}}\right] \quad \alpha, \beta \in \mathbb{C} \text { constants }
$$

In the TT gange $\hat{\vec{A}}^{\mu}=0 \Rightarrow \hat{h}^{\mu}=0$ so that

$$
\hat{b}_{\mu c}=\hat{h}_{\mu \nu}
$$

In this section, we will use the $T T$ gauge and drop the hat.
Therefore, the metric perturbation reads:
(7.29)

$$
h_{\mu \nu}=\operatorname{Re}\left[\left(\alpha e_{\mu \nu}^{+} e+\beta e_{\mu \nu}^{x}\right) e^{i k_{\sigma} x^{\sigma}}\right]
$$

$\alpha, \beta \in \mathbb{C}$ constants

In this form the gage is fully fixed and hpv has 2 degrees of freedom left.
Gravitational waves and test particles

Our next task is to consider the effect of GW's of the form $(7,29)$ on a cloud of test particles, ie. how do distances btw particles change when the GW passes through? We assume $T_{\mu u}=0$ all the time here.

There are two parts in the problem: 1) the motion determined by geodesics and 2) distances determined by as'.

Geodesics:
To find the geoclaic eqs we need the Christoffels:

$$
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2}\left(\partial_{\alpha} h_{\beta} \mu_{+} \partial_{\beta} h_{\alpha}^{\mu}-\partial h_{\alpha \beta}\right)
$$

In the TT gauge where $h_{p o}=0$ so that:

$$
\begin{aligned}
& \Gamma_{00}^{\mu}=\frac{1}{2}\left(\partial_{0} h_{0}^{\mu}+\partial_{0}^{0} h_{0}^{\mu}-\partial^{\mu} h_{00}^{0}\right)=0 \\
& \Gamma_{0 i}^{\mu}=\frac{1}{2}\left(\partial_{0} h_{i}^{\mu}+\partial_{i} h_{0}^{\mu}-\partial \mu_{0 i}^{0} h_{0 i}^{0}\right)=\frac{1}{2} \partial_{0} h_{i} \mu
\end{aligned}
$$

The geoclasie eggs. then simplify to:

$$
\begin{equation*}
\ddot{x} \mu+\Gamma_{\alpha \beta}^{\mu} \dot{x}^{\alpha} \dot{x}^{\beta}=\ddot{x} \mu+2 \Gamma_{0 i}^{\mu} x^{0} \dot{x}^{i}+\Gamma_{\ddot{j}}^{\mu} x^{\prime} \dot{x}^{\dot{j}}=0 \tag{7.30}
\end{equation*}
$$

A solution of (7.30) is given by $x^{\prime}=$ constr.
check:

$$
\begin{array}{ll}
\mu=i: & \ddot{x}^{\prime}+2 \Gamma_{o j}^{i} x^{0} x^{i}+\Gamma_{m}^{i} x^{e_{x}^{m}}=0 \\
\mu=0: & \ddot{x}^{0}+2 \Gamma_{i j}^{0} x^{0} x^{i v}+\Gamma_{e n}^{0} x^{0} x^{m}=x^{0}
\end{array}
$$

but from $u^{\mu}{ }_{a y}=(y_{00}+\underbrace{h_{00}}_{=0}) x^{0} x^{0}=-1$

$$
\begin{aligned}
\left(\dot{x}^{0}\right)^{2} & =1 \\
\Rightarrow \quad \ddot{x}^{0} & =0
\end{aligned}
$$

OK
Therefore, we find that the GW does change the ard location x^{\prime} of test particles in the TT gauge, they stay put at x 'ioconst (no ext. forces, assume the test particle cloud at rest initially). The distances btw particles however do change because hpv affects dst?

Distances:

Consider two test parbiks infinitesimally close to each other

$$
\begin{array}{ll}
\\
x_{A}^{\mu} x_{B}^{\mu} & x^{\mu}(\lambda) \quad x_{A}^{\mu}=\left(x_{A}^{0}, x_{A}^{j}\right), x_{A}^{j}=\text { cont. } \& \text { sol. of. the } \\
x_{B}^{\mu}=\left(x_{B}^{0}, x_{B}^{j}\right), x_{B}^{j}=\text { cont. } \& \text { geodesic eq. }
\end{array}
$$

Infinitesimal physical distance at fixed time t :

$$
\begin{aligned}
d s_{A B}^{2} & =g_{\mu \nu} d x_{A B}^{\mu} d x_{A B}^{\nu} & d t=0 \\
& =g_{i j} d x_{A B}^{i} d x_{A B}^{j} & , d x_{A B}^{j} \equiv x_{B}^{j}-x_{A}^{i}
\end{aligned}
$$

$$
d S_{A B}=\left(g_{i j} d x_{A B}^{j} d x_{A B}^{j}\right)^{1 / 2}
$$

Here $g_{i j}=\delta_{i j}+h_{i j}$ and working to linear order in $h_{i j}$, this can be recast as:

$$
d s_{A B}=\left(\left(\delta_{j}+h_{j j}\right) d x_{A B}^{j} d x_{A B}^{j}\right)^{1 / 2}=\left(\delta_{i j}\left(d x_{A B}^{\prime}+\frac{1}{2} h_{k}^{i} d x_{A B}^{k}\right)\left(d x_{A B}^{j}+\frac{1}{2} h_{k}^{j} d x_{A B}^{k}\right)\right)^{1 / 2}
$$

Now dropping the differentials (implicitly understood that we are referring to infinitesimal distances, we can express the physical distance btw. any test particles A and B at a time t as:
(7.30) $\quad S_{A B}(t)=\left(\delta_{i j} \widetilde{S}_{A B}^{i}(t) \widetilde{S}_{A B}^{j}\right)^{1 / 2}$
where we have clefined
(7.31)

(physical dist) ${ }^{1 / 2}$
coordinate distance
time clependent modulation
Because of the time dependent modulation due to $h_{i j}(t)$, the physical distances change in dime although the ard dajonnces x 'remain constant. That means the GW causes the test particles to accelerate.

Inserting into eq. (7.51) the solution (7.29) for GW propagating into the x^{3}-direction, we get

$$
\tilde{S}_{A B}^{\prime}=\left(x_{A B}^{1}+\frac{1}{2}\left(h_{11} x_{A B}^{1}+h_{12} x_{A B}^{2}\right), x_{A B}^{2}+\frac{1}{2}\left(h_{21} x_{A B}^{1}+h_{22} x_{A B}^{2}\right), x_{A B}^{3}\right)
$$

distances transverse to the propagation direction change
distances along the GW direction not affected

Consider then a set of test particks. Choose one of them as the reference point and investigate how distances relative to it change as a aW passes through.

Consider first the case $\beta=0$ in (7.29), and choose $\alpha>0:+$ polarisation

$$
\begin{aligned}
& h_{\mu \nu}=\operatorname{Re}\left(\alpha e_{\mu-}^{+} e^{i k_{\sigma} x^{\sigma}}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 \\
0 & 0 & -\alpha & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cos \left(k\left(-x^{0}+x^{3}\right)\right) \\
& \tilde{S}^{\prime}=x^{i}+\frac{1}{2} h_{j}^{i} x^{j}=\left(x^{1}, x^{2}, x^{3}\right)+\frac{\alpha}{2} \cos \left(k\left(t-x^{3}\right)\right)\left(x^{1}-x^{2}, 0\right)
\end{aligned}
$$

$\Rightarrow \tilde{S}^{3}=$ cost, \tilde{S}^{1} and \tilde{S}^{2} oscillate:

This causes the shape of the test parked cloud around the reference point to oscillsk.

$t=x^{3}$

$$
\longrightarrow+\text { grows }
$$

Consider then the ak $\alpha=0$, and choose $\beta>0$: X polarisation

$$
\begin{aligned}
& h_{\mu \nu}=\operatorname{Re}\left(\beta e_{\mu}^{x} e^{i k_{\sigma} x^{\sigma}}\right)=\binom{\beta}{\beta} \cos \left(k\left(-x^{0}+x^{3}\right)\right) \\
& \tilde{s}^{i}=s^{i}+\frac{1}{2} h_{j}^{i} s^{j}=\left(s^{1}, s^{2}, s^{3}\right)+\frac{\beta}{2} \cos \left(k\left(x^{0}-x^{3}\right)\right)\left(s^{2}, s^{1}, 0\right)
\end{aligned}
$$

A general GW is a superposition of t and \times polerijctions according to C) (7.29).
7.4 Production of gravitational waves

So far we have been discussing the vacuum solution $T_{\mu v}=0$ for which eq.(7.15) becomes:

$$
\square \bar{h}_{\mu \nu}=0 \quad, \partial^{\mu} \bar{h}_{\mu \nu}=0
$$

In this case the solutions are plane waves and we were able to fix the residual gauge freedom ($\partial^{\mu} \overline{h p \nu}^{\prime}=0$ unaffected by gauge trans. D $D \xi=0$) by going to the transverse traceless gauge which can be defined by

$$
h_{\mu}^{\mu}=0, \quad h_{0 i}=0, \quad \partial^{\mu} h_{\mu c}=0
$$

The last 2 conditions imply $\delta^{\mu} h_{\mu_{0}}=\partial^{\circ} h_{00}+\underbrace{\partial^{\prime} h_{i 0}}_{=0}=0 \Rightarrow h_{00}=$ count.
By doing a further gauge transf. $h_{00} \rightarrow h_{\infty 0}-2 \partial_{0} \xi_{0}=0$ we can set hoo $=0$ without affecting the T conditions (exercise).

If we now return to eq. $\left(7,15^{\circ}\right)$ in the presence of a source Trio

$$
\Delta \bar{h}_{\mu c}=-16 \pi h T_{\mu \nu} \quad, \partial^{\mu} \bar{h}_{\mu}=0
$$

we see that trying to impose the TT gauge cold. would imply $T_{00}=\rho=0^{*}$, i.e. vanishing energy density. Therefore, in we cannot use the TT gauge in the regime where $T_{\mu \nu} \neq 0$

The strategy then is the following

1) In the regime $T_{\mu \nu} \neq 0$ use the Lorenz gauge $\partial{ }^{\text {Kips }}=0$ and solve for $\bar{T}_{\mu \nu}$ from

$$
\square \bar{h}_{\mu \nu}=-16 \pi G \sigma_{\mu \nu}
$$

2) Far away from the source $T_{\mu \nu}=0$ and we can convert
 how GW affect test bodies

The general solution is of $\square \bar{h}_{\mu \nu}=-16 \pi T_{\mu} T_{\nu}, \partial_{\sigma} \bar{h}_{\mu}{ }^{\sigma}=0$ can be expressed as
(7.32) $\quad \bar{G}_{\mu}\left(x^{\sigma}\right)=-16 \pi G \int d^{\xi} y a\left(x^{\sigma}-y^{\sigma}\right) T_{\mu \nu}\left(y^{\sigma}\right)$
where $G(x-y)$ is the Green function of the operator D. The Green function is defined as the solution of
(7.33) $\square a\left(x^{\mu}-y^{\mu}\right)=\left(-\frac{\partial^{2}}{\partial t^{2}}+\delta^{i j} \frac{\partial^{2}}{\partial x^{j} \partial j}\right) a\left(x^{\mu}-y^{\mu}\right)=\delta^{(4)}\left(x^{\mu}-y^{\mu}\right)$
with appropriate boundary conditions. The Green function split into the advanced part proportional to $\theta\left(y^{\circ}-x^{\circ}\right)$ and the retired past proportional to $\theta\left(x^{\circ}-y^{\circ}\right)$ which lie respectively on the future and path light conc of x^{σ}. Due to causalig, only the past light conc contributes to Five $\left(x^{\sigma}\right)$ and we therefore need the retarded Green function.

From the definition (7.33) it follows that $\square \bar{h}_{\mu \nu}$ of (7.32) reads:

$$
\begin{aligned}
\square_{x}\left(-16 \pi G \int d^{4} y G\left(x^{\sigma}-y^{\sigma}\right) T_{\mu \nu}\left(y^{\sigma}\right)\right) & =-16 \pi G \int d^{4} y \nabla_{x} G\left(x^{\sigma}-y^{\sigma}\right) T_{\mu \nu}\left(y^{\sigma}\right) \\
& =-16 \pi G \int d_{y}^{\xi} \delta\left(x^{\sigma}-y^{\sigma}\right) T_{\mu \nu}\left(y^{\sigma}\right) \\
\nabla_{x} \equiv-\frac{\partial^{2}}{\partial\left(x^{\sigma}\right)^{2}}+\frac{\partial^{2}}{\partial \bar{x}^{2}} & =-16 \pi h T\left(x^{\sigma}\right),
\end{aligned}
$$

so that (7.32) indeed is the solution of (7.15).

The retarded Green function of \square is given by (exerciic)
(7.34) $\quad G\left(x^{\sigma}-y^{\sigma}\right)=-\frac{1}{4 \pi|\bar{x}-\bar{y}|} \delta\left(|\bar{x}-\bar{y}|-\left(x^{0}-y^{0}\right)\right) \theta\left(x^{0}-y^{0}\right)$
where $\mid \bar{x}-\bar{y})=\left(\delta_{i j}\left(x^{i}-y^{i}\right)\left(x^{j}-y^{j}\right)\right)^{1 / 2}$

Subutianing this into (7.32) we get

$$
\begin{aligned}
\bar{h}_{\mu}\left(x^{\sigma}\right) & =4 C \int d^{4} y \frac{\left.\delta(\sqrt{x}-\bar{y})-\left(x^{0}-y^{0}\right)\right) \theta\left(x^{0}-y^{0}\right)}{|\bar{x}-\bar{y}|} T_{\mu \nu}\left(y^{\sigma}\right) \\
& =4 G \int \frac{d y}{|\bar{x}-\bar{y}|} \int d y^{0} \delta\left(y^{0}-x^{0}+|\bar{x}-\bar{y}|\right) T_{\mu \nu}\left(y^{\sigma}\right) \theta\left(x^{0}-y^{0}\right)
\end{aligned}
$$

(7.35)

$$
\operatorname{T}_{\operatorname{pov}}\left(x^{\sigma}\right)=4 a \int d \bar{y} \frac{\operatorname{Tru}\left(x^{0}-|x-\bar{y}|, \bar{y}\right)}{|\bar{x}-\bar{y}|}
$$

time events $y^{\circ}=x^{0}-|\bar{x}, \bar{y}|$ lie on the pout light cone of the point x^{σ}

Take the fourier transform of (7.35) wit x^{0} :

$$
\begin{aligned}
& T_{\mu \nu}\left(\omega, x^{i}\right) \equiv \int_{-\infty}^{\infty} d x^{0} e^{i \omega x^{0}} F_{\mu \nu}\left(x^{0}, x^{i}\right) \quad, \quad \bar{h}_{\mu \nu}\left(x^{\sigma}\right)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega x^{0}} \bar{j}_{\nu}\left(\omega, x^{i}\right) \\
& =4 k \int d \bar{y} \frac{1}{|\bar{x}-\bar{y}|} \underbrace{\int_{-\infty}^{\infty} d x^{0} e^{i \omega x^{0}} \bar{T}_{\mu}\left(x^{0}-|\bar{x}-\bar{y}|, \bar{y}\right)}_{\left.u=x^{0}-\mid \bar{x}-\bar{y}\right)} \\
& =e^{i \omega / \bar{x}-\bar{y} \mid} \int_{-\infty}^{\infty} d u e^{i \omega u} T_{\mu}(u, \bar{y})=e^{i \omega / \bar{x}-\bar{Y} / \Gamma_{\nu}(\omega, \bar{y})} \\
& =4 G \int d \bar{y} e^{i \omega / \bar{x}-\bar{y} \mid} \frac{T_{\mu}(\omega, \bar{y})}{|\bar{x}-\bar{y}|}
\end{aligned}
$$

$|\bar{y}| \leq L$
Assume the source is localised in the region $|\bar{y}| \leqslant L$ and $T_{\mu \nu}(y)=0$ for $|\bar{y}|>L$

We are interested in the GW solution far away from the source:

$$
|\bar{x}| \gg L \frac{e^{i \omega|\bar{x}-\bar{y}|}}{|\bar{x}-\bar{y}|} \simeq \frac{e^{i \omega|\bar{x}|}}{|\bar{x}|}
$$

and we get:
(7.36) $T_{\mu \nu}\left(\omega, x^{i}\right) \simeq 4 h \frac{e^{i \omega(\bar{x} \mid}}{|\bar{x}|} \int d \bar{y} T_{\mu \nu}(\omega, \bar{y})$

Recall that we are working in the Lorenz gauge $\partial^{\mu} \bar{h}_{\mu}=0$. Using the gauge condition, we can express $T_{o p}$ in terms of $T_{i j}$ and it suffices to solve for $T_{i j}$ only.

Indeed, taking the Fourier transform of $\partial_{\sigma} \xi_{\mu}^{\sigma}=0$ we get:

$$
\begin{gathered}
\partial_{\sigma} \bar{\xi}_{r}^{\sigma}=\int \frac{d \omega}{(2 \pi} e^{-i \omega x^{0}}(-i \omega) \bar{\xi}_{\mu}^{0}\left(\omega, x^{j}\right)+\int \frac{d \omega}{2 \pi} e^{-i \omega x^{0}} \partial_{j}^{\prime}\left(\omega, x^{i}\right)=0 \\
\Rightarrow \bar{b}_{\mu}^{0}\left(\omega, x^{\prime}\right)=\frac{i}{\omega} \partial_{k} \bar{h}_{\mu}^{k}\left(\omega, x^{\prime}\right)
\end{gathered}
$$

From this we get:

$$
(7.37) \quad\left\{\begin{array}{l}
\bar{h}_{00}=\frac{-\dot{\prime}}{\omega} \partial_{k} \bar{h}_{0} k \\
\overline{b_{j 0}}=-\frac{1}{\omega} \partial_{k} \bar{h}_{j} k
\end{array}\right.
$$

Let us now work out the expression for $\bar{h}^{i j}$ using (7.36):

$$
\begin{aligned}
& =-\int d_{\bar{y}} y^{i} \partial_{k} T^{k}(a, \bar{y}) \quad \partial_{,} T^{\prime \prime}=\partial_{0} T^{0 u}+\partial_{i} T^{i}=0 \\
& \Rightarrow-i \omega T^{0}(\omega, \bar{y})+d ; T^{i}(\omega, \bar{r})=0 \\
& =-i \omega \int d \bar{y} y^{i} T \dot{V}(\omega, \bar{y}) \\
& \Rightarrow+i \omega T^{0 i}(\omega, \bar{y})=\partial ; T^{i \prime \prime}(\omega, \bar{\xi}) \\
& =-\frac{i \omega}{2} \int \underbrace{\left(y^{i} T^{0}(\omega, \bar{y})+y^{j} T^{0}(\omega, \bar{y})\right)}_{=d_{k}\left(y^{i} y^{j} T^{0}\right)-y^{i} y^{j} d_{k} T^{0 k}} \\
& \text { our stations point } \\
& \text { is synatric in is } \\
& \begin{array}{l}
\text { rn this most be os } \\
\text { well }
\end{array} \\
& =-\frac{i \omega}{2} \int d \bar{y}(\partial_{k}\left(y_{j}^{j} y^{j} T^{0 k}\right)-y^{i} y^{j} \underbrace{\partial_{k} T^{0 k}}_{=i \omega T^{000}})(\text { firm })_{\mu} T^{\mu_{0}}, 0)] \\
& =-\frac{\omega^{2}}{2} \int d \bar{y} y^{i} y^{j} T^{0}
\end{aligned}
$$

$$
\Rightarrow \bar{h}^{i j}(\omega, \bar{x})=-\frac{2 G \omega^{2} e^{i \omega|\bar{x}|}}{|\bar{x}|} \int d \bar{y} y^{i} y^{j} T^{\circ o}(\omega, \bar{y})
$$

The quantity on the RHIS is the quadrupole moment tensor
(7.39)

$$
\begin{aligned}
& \tilde{I}^{\prime \prime}(\omega) \equiv \int d \bar{y} y^{\prime} y^{i} T^{\infty}(\omega, \bar{y}) \\
& I^{\ddot{j}}(t) \equiv \int d \bar{y} y^{i} y^{j} T^{\infty}(t, \bar{y})
\end{aligned}
$$

Recall that the ency density:

$$
\rho \equiv u^{\mu} \mu_{n}^{\nu} T_{\mu}
$$

For slowly moving particles:

$$
u^{r} \simeq(1, \overline{0}) \Rightarrow \varphi \simeq T_{00}=T^{\circ}
$$

Taking the inverse Fourier transformation of (7.38) we finally get:

$$
\begin{aligned}
\bar{h}_{i j}\left(t, x^{\prime}\right) & =-2 G \int \frac{d \omega}{2 \pi} e^{-i \omega t} \omega^{2} \frac{e^{i \omega \mid}|\bar{x}|}{|\bar{x}|} \tilde{I^{j}}(\omega) \\
& =-\frac{2 G}{|\bar{x}|} \int \frac{d \omega}{2 \pi} e^{-i \omega(t-|\bar{x}|)} \omega^{2} \tilde{\Gamma^{\prime} \ddot{j}}(\omega) \\
& =\frac{2 G}{|\bar{x}|} \frac{d^{2}}{d t^{2}} \underbrace{\int \frac{d \omega}{2 \pi} e^{-i \omega(t-|x|) \tilde{I^{\prime}}(\omega)}}_{=I^{i} \ddot{j}(t-|x|)}
\end{aligned}
$$

(7.40)

$$
\bar{h}_{i j}\left(t, x^{j}\right)=\frac{2 a}{|\bar{x}|} \frac{d^{2}}{d t^{2}} I_{i j}(t-|\bar{x}|), \quad|\bar{x}| \gg L \sim \omega^{-1}
$$

characteristic frequency of the source $w \sim L^{-1}$
Thus we learn that GW are sourced by the quadrupole momentum (not dipole like EM waves) and diluted as $|\bar{x}|^{-1}$ far away from the source (not $|\bar{x}|^{-2}$ as one might have expected).

Example: GW from a binary star
Consider two stars of mass M on a circuls orbit on the $x_{1}^{1} x^{2}$-plane.

Use Newtonian gravity to describe the motion (ie. neglect UR correction here).

$$
\frac{G M^{2}}{(2 R)^{2}}=\frac{M V^{2}}{R} \Rightarrow v=\left(\frac{G M}{4 R}\right)^{1 / 2}
$$

The angular frequencer is: $\omega=\frac{2 \pi}{\tau}=\frac{2 \pi v}{2 \pi R}=\left(\frac{C M}{4 R^{3}}\right)^{1 / 2}$
Trajectories of the stars $A \& B$ are (see the figure):

$$
\begin{array}{ll}
x_{A}^{1}=R \cos \omega t & x_{B}^{1}=-R \cos \omega t \\
x_{A}^{2}=R \sin \omega t & x_{B}^{2}=-R \sin \omega t
\end{array}
$$

Assuming the motion is slow $v \ll 1$, we can approximate $T^{\infty} \simeq \rho$. Using this we get:

$$
T^{\infty 0}\left(t, x^{\prime}\right)=M \delta\left(x^{3}\right)\left(\delta\left(x^{1}-x_{A}^{1}\right) \delta\left(x^{2}-x_{A}^{2}\right)+\delta\left(x^{1}-x_{B}^{1}\right) \delta\left(x^{2}-x_{B}^{2}\right)\right)
$$

Substituting this into (7.39) we find:

$$
\begin{aligned}
& I_{11}=\int d \bar{y} y^{1} y^{1} T^{00}=M x_{A}^{\prime} x_{A}^{\prime}+M x_{B}^{1} x_{B}^{1}=2 M R^{2} \cos ^{2} \omega t \\
& I_{22}=2 M R^{2} \sin { }^{2} \omega t \\
& I_{12}=2 M R^{2} \text { cos } \omega t \sin \omega t=I_{21} \\
& I_{i 8}=0
\end{aligned}
$$

Using that

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}(\cos 2 \omega t)=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2}(1+\cos 2 \omega t)\right)=-2 \omega^{2} \cos 2 \omega t \\
& \frac{d^{2}}{d t^{2}}\left(\sin ^{2} \omega t\right)=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2}(1-\cos 2 \omega t)\right)=2 \omega^{2} \cos 2 \omega t \\
& \frac{d^{2}}{d t^{2}}(\cos \omega t \sin \omega t)=\frac{d^{2}}{d t^{2}}\left(\frac{1}{2} \sin 2 \omega t\right)=-2 \omega^{2} \sin 2 \omega t
\end{aligned}
$$

we find:

$$
\frac{d^{2} I_{\ddot{\prime}}}{d t^{2}}=4 M R^{2} \omega^{2}\left(\begin{array}{ccc}
-\cos 2 \omega t & -\sin 2 \omega t & 0 \\
-\sin 2 \omega t & \cos 2 \omega t & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Substituting this into (7.40) we then gel:

$$
\bar{h}_{i j}(t, r)=-\frac{8 G M R^{2} \omega^{2}}{r}\left(\begin{array}{ccc}
\cos 2 \omega t_{r} & \sin 2 \omega t_{r} & 0 \\
\sin 2 \omega t_{r} & -\cos 2 \omega t_{r} & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& \text { where } \\
& t_{r}=t-r
\end{aligned} \text { and } r>\omega^{-1}
$$

This describes GW with an angular frequency 26.
What about the T gauge? For an observer on the x^{3} axis, $x^{i}=(0,0, r)$, the result is already in the T-gauge and we can writ:

$$
F_{i j}(t, r)=\frac{-8 h M R^{2} \omega^{2}}{r} \operatorname{Re}[\underbrace{\left(e_{i j}^{t}+i e_{i j}^{x}\right.}_{\equiv \sqrt{2} e_{i j}^{R}}) e^{-i 2 \omega(t-r)}]
$$

For an observer not on the x^{3} axis we need to rotate the cid system by a constant angle to go to the TT gauge.
7.5 Energy loss due to gravitational radiation

As we have already mentioned, there is no universally good way of defining the gravitational energy in $G R$ where gravity is not treated as a force. In the weak field limit we can however define the energy momentum tension for the metric fluctuations, here the GW's. The procedure is complicated by the gauge dependence, ie. arbitrariness in splitting the metric into background (not included in Fro) and fluctuation. Here we will use the TT gauge throughout, it can be shown that the final result is gauge-invariant althought this is not obvious in the intermedoist stops. For further discussion see Carroll Chapter 7.6, Wald Chapter 4.46 and Miner, Thorne and Wheeler Chapters 35 and S6. The presentation here is a mixture of Camel and Wald.

Expanding Eivkein eggs. to second order
To find the T_{μ}, we need to go to second order in perturbations:

$$
g_{\mu \nu}=\eta_{\mu \nu}+\delta h_{\mu \nu}+\delta^{2} h \mu \nu \nu \sigma_{1} \text { order perturbation } \text { and. order perturbation }
$$

Here we introduce temporaills the notation where $\delta . .$. and $\delta^{2} \ldots$ refer to first and second order perturbations respectively.

The Ricci tensor is expanded similarly as:

$$
\begin{equation*}
R_{\mu \nu}=0+\delta R_{\mu}+\delta^{2} R_{\mu} \tag{7.41}
\end{equation*}
$$

In the TT gauge (Note that this specified the gauge only to Mst, order)
(7.42) $\delta h_{\mu}^{\mu}=0, \quad$ Shoi $=0, \quad \partial^{\mu} \delta h_{\mu c}=0$
we get from (7.7)

$$
(7.43) \quad \delta R_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \partial^{\sigma} \delta h_{\mu \sigma}+\partial_{\nu} \partial^{\sigma} \delta h_{\mu \sigma}-\partial_{\mu} \partial_{\nu} \delta h-\square \delta h_{\mu \nu}\right) \stackrel{\downarrow}{=}-\frac{1}{2} \square \delta h_{\mu \nu}^{\text {Ta }}
$$

and by expanding $R_{p u}$ to second order (exercise):
(7.44)

$$
\begin{aligned}
\delta^{2} R_{\mu \nu}= & \frac{1}{2} \delta h^{\rho \sigma} \partial_{\mu} \partial_{\nu} \delta h_{\rho \sigma}+\frac{1}{4}\left(\partial_{\mu} \delta h_{\rho \sigma}\right) \partial_{\nu} \delta h^{\rho \sigma}+\left(\partial^{\sigma} \delta h_{\nu}^{\rho}\right) \partial_{[\sigma} \delta h_{\rho] \mu} \\
& -\delta h^{\rho \sigma} \partial_{\rho} \partial_{\mu} \delta h_{\nu) \sigma}+\frac{1}{2} \delta h^{\rho \sigma} \partial_{\sigma} \partial_{\rho} \delta h_{\mu \nu} \\
& +\frac{1}{2}\left(\partial_{\mu} \partial^{\sigma} \delta^{2} h_{\mu \sigma}+\partial_{\nu} \partial^{\sigma} \delta^{2} h_{\mu \sigma}-\partial_{\mu} \partial_{\nu} \delta^{2} h-\square \delta^{2} h_{\mu \nu}\right)
\end{aligned}
$$

(Recall: $\left.\partial_{[\sigma} h_{g}\right] \mu=\frac{1}{2} \partial_{\sigma} h_{g \mu}-\frac{1}{2} \partial_{\rho} h_{\sigma \mu}$

$$
\partial\left(\mu h_{\nu) \sigma}=\frac{1}{2} \partial_{\mu} h_{\nu \sigma}+\frac{1}{2} \partial_{\nu} h_{\mu \sigma}\right)
$$

The first order perturbation shan satisfies the equation of motion:
(7.45) $\quad \square \delta h_{\mu \nu}=0 \Rightarrow \delta R_{\mu \nu}=0$
and hence
(7.46) $\quad R_{\mu \nu}=\delta^{2} R_{\mu \nu}$

To proceed, let us introduce some notation and define:
(7.47)

$$
R_{\mu \nu}^{(1)}\left(u_{\alpha \beta}\right) \equiv \frac{1}{2}\left(\partial_{\mu} \partial^{\sigma} u_{\mu \sigma}+\partial_{\nu} \partial^{\sigma} u_{\mu \sigma}-\partial_{\mu} \partial_{\nu} u_{\alpha}^{\alpha}-\nabla u_{\mu \nu}\right)
$$

\uparrow function argument with 2 indices
(7.48)

$$
\begin{aligned}
R_{\mu \nu}^{(2)}\left(u_{\alpha \beta}\right)= & \frac{1}{2} u^{\rho \sigma} \partial_{\mu} \partial_{\nu} u_{\rho \sigma}+\frac{1}{4}\left(\partial_{\mu} u_{\rho \sigma}\right) \partial_{\nu} u^{\rho \sigma}+\left(\partial^{\sigma} u^{\rho}\right) \partial_{[\sigma} u_{\rho] \mu} \\
& -u^{\rho \sigma} \partial_{\rho} \partial_{\mu} u_{\nu) \sigma}+\frac{1}{2} u^{\rho \sigma} \partial_{\sigma} \partial_{\rho} u_{\mu \nu}
\end{aligned}
$$

With this notation we then have:
(7.49) $\quad \delta R_{\mu \nu}=R_{\mu \nu}^{(1)}\left(\delta h_{\alpha \beta}\right)=0 \quad$ (as in 7.45)
(7.50)

$$
\delta^{2} R_{\mu \nu}=R_{\mu \nu}^{(2)}\left(\delta h_{\alpha \beta}\right)+R_{\mu \nu}^{(1)}\left(\delta^{2} h_{\alpha \beta}\right)
$$

Quadratic in $\delta h_{\alpha \beta} \quad$ Linear in $\delta^{2} h_{\alpha \beta}$
The expansion for the Ricci scalar becomes:

$$
\begin{align*}
R=g^{\mu \nu} R_{\mu \nu} & =\left(\eta^{\mu \nu}-\delta h^{\mu \nu}+O\left(\delta^{2}\right)\right)\left(0+\delta R_{\mu \nu}+\delta^{2} R_{\mu \nu}\right) \\
R & =\eta^{\mu \nu} \delta R_{\mu \nu}+\eta^{\mu \nu} \delta^{2} R_{\mu \nu}-\delta h^{\mu \nu} \delta R_{\mu \nu}+\sigma\left(\delta^{3}\right) \\
& \equiv \delta R+\delta^{2} R \\
\Rightarrow \quad \delta R & =\delta R_{\mu}^{\mu}=R^{(1)} \mu_{\mu}\left(\delta h_{\alpha \beta}\right)=0 \\
\delta^{2} R & =\delta^{2} R_{\mu}^{\mu}-\delta h^{\mu \nu} \delta R_{\mu \nu}(7.45) \tag{7.51}\\
& =R^{(1) \mu_{\mu}}\left(\delta^{2} h_{\alpha \beta}\right)+R^{(2)} \mu_{\mu}\left(\delta h_{\alpha \beta}\right)-\delta h^{\mu \nu} \underbrace{R_{\mu}^{(1)}\left(\delta h_{\alpha \beta}\right)}_{=0} \\
& =R^{(1) \mu}\left(\delta^{2} h_{\alpha \beta}\right)+R^{(2) \mu} \mu_{\mu}\left(\delta h_{\alpha \beta}\right) \quad
\end{align*}
$$

Finally using the definition $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R$ and eggs. (7.50-7.51) we find the expression for the perturbed Einstein tensor to second order:

$$
\delta^{2} G_{\mu \nu}=\delta^{2} R_{\mu \nu}-\frac{1}{2} \delta h_{\mu \nu} \underbrace{\delta R}_{=0}-\frac{1}{2} \eta_{\mu \nu} \delta^{2} R
$$

(7.52)

$$
\begin{aligned}
\delta^{2} G_{\mu \nu}= & R_{\mu \nu}^{(1)}\left(\delta^{2} h_{\alpha \beta}\right)-\frac{1}{2} \eta_{\mu \nu} R^{(1) \mu}\left(\delta^{2} h_{\alpha \beta}\right) \\
& +R_{\mu \nu}^{(2)}\left(\delta h_{\alpha \beta}\right)-\frac{1}{2} \eta_{\mu \nu} R_{\mu}^{(2)} \mu_{\mu}\left(\delta h_{\alpha \beta}\right)
\end{aligned}
$$

The vacuum Einstein eq. expanded to second order then yields:
(7.53)

$$
\delta^{2} G_{p L}=0
$$

$$
\Leftrightarrow R_{\mu \nu}^{(1)}\left(\delta^{2} h_{\alpha \beta}\right)-\frac{1}{2} \eta_{\mu \nu} R^{(1) \mu} \mu_{\mu}\left(\delta^{2} h_{\alpha \beta}\right)=-\left(R_{\mu \nu}^{(2)}\left(\delta h_{\alpha \beta}\right)-\frac{1}{2} \eta_{\mu \nu} R^{(2)} \mu_{\mu}\left(\delta h_{\alpha \beta}\right)\right)
$$

where $\square \delta h_{\mu \nu}=0$
(Since $G_{p \nu}=0=0+\delta C_{p \nu}+\delta K_{p \nu}$ and $\delta G_{p \nu}=0$ for $\square \delta h_{p \nu}=0$)
The LHS has the form of the first order perturbation slay but with $\delta^{2} h \mu s$ instead of Shape as the argument. The RHS is quadratic in $\delta h p$ and acts as the source for $\delta^{2} h$ pu. The second order part $\delta^{2} h p$ can be thought to arise as a backereaction of the first order part Shape to the spacetime dynamics. Since we are in vacuum this is purely through gravitational self interactions (term $\left(\delta h_{\mu \nu}\right)^{2}$ arise from $\left(\delta h_{\mu \nu}\right)^{3}$ in the action).
Defining:
(7.54) $\quad G_{\mu \nu}^{(1)}\left(u_{\alpha \beta}\right) \equiv R_{\mu \nu}^{(1)}\left(u_{\alpha \beta}\right)-\frac{1}{2} \eta_{\mu \nu} R^{(1) \mu}\left(u_{\alpha \beta}\right)$
(7.55) $\quad 8 \pi \operatorname{lata}_{\mu_{\nu}} \equiv-\left(R_{\mu \nu}^{(2)}\left(\delta h_{\alpha \beta}\right)-\frac{1}{2} \eta_{\mu \nu} R^{(2)} \mu_{\mu}\left(\delta h_{\alpha \beta}\right)\right)$
we can recast eq. (7.53) into the form:

$$
\text { (7.56) } \quad G_{\mu^{\prime}}^{(1)}\left(\delta^{2} / \mu_{\nu}\right)=8 \pi G t_{\mu \nu}
$$

Here we identify ty the RHS as the energy momentum tensor of gravitational waves.

Radiated energy, part I
For a general energy momentum tensor Tor defines the energy densitity in the fluid rest frame ($=$ no bulk motion) and T_{01} is the flax of energy in the x^{i} direction (momentum density).

Taking (7.55) as the definition of CW energy momentum tensor, the total radiated energy can be defined as:
(7.57) $\quad E=\int_{S}$ tiods ${ }^{i}$
where S is a timelike surface at $r \rightarrow \infty$ define such that all future oriented null mays cross through it (see Wald Chapter II for details).

The area element $d S^{\prime \prime}$ in (7.57) can be written as:

$$
d S^{\prime}=n^{\prime} r^{2} d \Omega d t, \quad d \Omega=\sin \theta d \theta d \phi
$$

where n^{\prime} is the unit normal vector of the surface $\left(n^{\prime} n_{i}=1\right)$. We rotate (globally) the cid's sit. in spherical coordinates (r, θ, ϕ) n^{\prime} points along \hat{e}_{r}, the radial unit basis vector:

$$
n^{\prime}=(1,0,0)
$$

Let us investigate separately the various terms entering in (7.57). We start with:

$$
\begin{aligned}
\int d S^{\prime} R_{o i}^{(2)}\left(\delta h_{\alpha \beta}\right)=\int d S^{\prime} & \left(\frac{1}{2} \delta h^{\rho \sigma} \partial_{0} \partial_{i} \delta h_{\rho \sigma}+\frac{1}{4}\left(\partial_{0} \delta h_{\rho \sigma}\right) \partial_{i} \delta h^{\rho \sigma}+\left(\partial^{\sigma} \delta h_{i}^{\rho}\right) \partial_{[\sigma} \delta h_{\rho] 0}\right. \\
& \left.-\delta h^{\rho \sigma} \partial_{\rho} \partial_{0} \delta h_{i}\right) \sigma
\end{aligned}
$$

This can be simplified by doing partial integrations and using that δ hus $\alpha \frac{1}{r}$ (see en. 7.40), e.g.:

$$
\begin{aligned}
& \begin{aligned}
& \int d S^{\prime} \frac{1}{4}\left(\partial_{0} \delta h_{\rho \sigma}\right) \partial_{i} \delta h^{\rho \sigma}=\frac{1}{4}\underbrace{\left(\int_{\mu} d S^{\prime} \delta_{i}\left(\delta h^{\rho \sigma} \partial_{0} \delta h_{\rho \sigma}\right)\right.}_{\sim \frac{1}{r} \rightarrow 0 \text { as } r \rightarrow \infty}-\int d S^{i} \delta h^{\rho \sigma} \partial_{j} \partial_{0} \delta h_{\rho \sigma}) \\
& \sim r^{2} \sim \frac{1}{r} \sim \frac{1}{r} \sim \frac{1}{r}
\end{aligned} \\
& =-\frac{1}{4} \int d S^{i} \delta h^{\rho \sigma} \partial_{i} \partial_{0} \delta h_{\rho \sigma}
\end{aligned}
$$

In the same way all other boundary terms vanish and we get:

$$
\begin{aligned}
\int d S^{\prime} R_{o i}^{(2)}\left(\delta h_{\alpha \beta}\right)=\int d S^{i}(\frac{1}{2} \delta h^{\rho \sigma} \partial_{0} \partial_{i} \delta h_{\rho \sigma}-\frac{1}{4} \delta h_{\rho \sigma} \partial_{0} \partial_{i} \delta h^{\rho \sigma}-\frac{1}{2} \delta h_{i}^{\rho} \underbrace{j^{\sigma} \partial_{\sigma} \delta h_{\rho 0}} \\
=0 \text { as } \\
\square \delta h_{\mu \nu}=0
\end{aligned}
$$

By further doing double partial integration in the last two terms we get:

$$
\begin{aligned}
& \int d S^{\prime} R_{o i}^{(2)}\left(\delta h_{\alpha \beta}\right)=\int d S^{i}(\frac{1}{4} \delta h^{\rho \sigma} \partial_{0} \partial_{i} \delta h_{\rho \sigma}-\frac{1}{2} \delta h_{o \sigma} \underbrace{\partial_{i} \partial_{\rho} \delta h^{\rho \sigma}}_{=0} \\
&+\frac{1}{2} \delta h_{0 i} \partial_{\partial_{\sigma} \partial_{\rho} \delta h^{\rho \sigma}}^{\underbrace{}_{=0}}) \\
&= \frac{1}{4} \int d S^{i} \delta h^{\rho \sigma} \partial_{0} \partial_{i} \delta h_{\rho \sigma}
\end{aligned}
$$

By doing one find partial integration we finally get:
(7.59) $\int d s^{\prime} R_{o i}^{(2)}\left(\delta h_{\alpha \beta}\right)=-\frac{1}{4} \int d S^{i}\left(\partial ; \delta h^{\rho \sigma}\right)\left(\partial_{0} \delta h_{g \sigma}\right)$

In a similes way we fund (exercise):
(7.60) $\quad \int d s^{\prime} R^{(2)}\left(S_{\alpha \beta}\right)=0$

Using these in (7.57) we then arrive at the result

$$
\begin{aligned}
& E=\int_{S} \phi_{0} d s^{i}=\frac{-1}{8 \pi G} \int d s^{i} R_{0 i}^{(i)}\left(\delta h_{\alpha \beta}\right) \\
& E=\frac{1}{32 \pi G} \int d S^{i}\left(\partial_{i} \delta h^{\mu \nu}\right)\left(\partial_{0} \delta h_{\mu \nu}\right)
\end{aligned}
$$

From now on we return to our origins notation hay $=$ Shay and rewrik the above result as:
(7.61) $\quad E=\frac{1}{32 \pi a} \int d S^{\prime}\left(\partial_{i} h^{\mu \nu}\right)\left(\partial_{0} h_{\mu \nu}\right) \quad$ TT gauge

This the main result of this technical part I.

Radiated energy, part II

The next step is to substitute (7.40) into (7.61) to obtain the expression for GW energy in terms of the source properties encoded in the quadrupole moment $I_{i j}$ in (7.40). Recall that (7.61) is written in the TT. Therefore we need to convert (7.40) into the TT gauge as well (in the vacuum resime $\ggg L$). To this end we define the projection operator
(7.62) $\quad P_{i j} \equiv \delta_{i j}-n_{i} n_{j} \quad$ where n^{i} points along the GW propagation direction and is normal to the surface $S(7.58)$.

Far away from the source, $r \gg L$, the solution of (7.40) is a plane wave:

$$
\hbar_{\mu \nu}=\operatorname{Re}\left(A_{\mu \nu} e^{-i n_{\sigma} x^{\sigma}}\right), \partial^{\mu} \bar{h}_{\mu \nu}=\operatorname{Re}\left(-i n^{\mu} A_{\mu \nu} e^{-i n_{\sigma} x^{\sigma}}\right)=0
$$ Lorenz gauge cond.

Defining:

$$
\hat{h}_{i j} \equiv\left(P_{i}^{k} p_{i} l_{-\frac{1}{2}} P_{i j} p^{k l}\right) T_{k l}
$$

we get a quantity satisfying (exercise)

$$
\partial^{\prime} \hat{h}_{i j}=0, \hat{h}^{i}=0
$$

which using (7.37) can be shown to be equivalent to the TT gauge conditions (7,42).

Therefore, we sect that the the Π gauge perturbation can be projected out of hyp simply by:
(7.63) $\quad h_{i j}^{T T}=\left(p_{i}^{k} p_{j} e_{-\frac{1}{2}} p_{i j} p^{k l}\right) \bar{h}_{k e}$

We can then rewrite the Lorenz gauge equation (7.40) in the TT gauge by simply contracting it with ($\left.p_{i} k p_{j} e_{-} \frac{1}{2} P_{i j} p^{k l}\right)$:
(7.64) $\quad h_{i j}^{T T}(t, r)=\frac{2 G}{r} \frac{d^{2}}{d t^{2}} I_{i j}^{\pi T}(t-r), r \gg L$
where now:

$$
\text { (7.65) } \quad I_{i j}^{T T}=\left(p_{i}^{k} p_{j} e-\frac{1}{2} P_{i j} p^{k \ell}\right) I_{i j}
$$

In the TT gauge $\left(I^{T T}\right)^{i} ;=0$ and instead of $I_{i j}$ we can equivalently use the reduced quadrupole moment
(7.66) $\quad J_{i j} \equiv I_{i j}-\frac{1}{3} \delta_{i j} \delta^{k \ell} I_{k \ell} \quad J_{i j}^{\pi T}=I_{i j}^{T T}$

The point is that $d_{i j}$ is easier to connect to real lite applications, it arpeerss as a coefficient in the (maltipole) expansion of the Newtonian potential:

$$
\begin{array}{r}
\Phi(\bar{r})=-\frac{G M}{r}-\frac{G}{r^{3}} \prod_{i} ; x^{\prime}-\frac{3 G}{2 r^{5}} J_{i j} x^{\prime} x^{j}+\ldots \\
\text { dipole } \int T_{00} x^{i} d^{3} x
\end{array}
$$

Thus we can recast (7.64) as
(7.67) $\quad h_{i j}^{T T}(t, r)=\frac{2 G}{r} \frac{d^{2}}{d t^{2}} \int_{i j}^{\pi T}(t-r)$,
which can be directly substituted into (7.61):

$$
E=\frac{G}{8 \pi} \int_{S} d \Omega d t r^{r^{2} n^{\prime} \partial_{i}\left(\frac{1}{r} \frac{d^{2}}{d t^{2}} \int_{n^{\prime}=(0,1,0,0)}^{l m}(t-r)\right) \partial_{0}\left(\frac{1}{r} \frac{d^{2}}{d t^{2}} \delta_{l m}^{\pi}(t-r)\right)}
$$

choice of sids, aW $\uparrow \uparrow \hat{e}_{r}$

$$
\begin{aligned}
& =\frac{a}{8 \pi} \int d \Omega d t r^{r^{2} \partial r\left(\frac{1}{r} \frac{d^{2}}{d t^{2}} \int_{\pi}^{l m}(t-r)\right)} \frac{1}{r} \frac{d^{3}}{d t^{3}} \int_{\operatorname{lm}}^{\pi \pi}(t-r) \\
& =-\frac{1}{r^{2}} \frac{d^{2}}{d t^{2}} d^{l m}+\frac{1}{r} \underbrace{\frac{\partial}{\partial r} \frac{d^{2}}{d t^{2}} d^{l m}(t-r)} \\
& =-\frac{d^{3}}{d t^{3}} J^{l m}(t-r) \text { as } \frac{\partial}{\partial r} f(t-r)=-\frac{\partial}{\partial t} f(t-r) \\
& \begin{array}{r}
=\frac{a}{8 \pi} \int d \Omega d t r^{2}(\underbrace{-\frac{1}{r^{2}} \frac{d^{2}}{d t^{2}} J^{l m}-\frac{1}{r} \frac{d^{3}}{d t^{3}} j^{l m}}) \frac{1}{r} \frac{d^{3}}{d t^{3}} d_{l m} \\
\simeq-\frac{1}{r} \frac{d^{3}}{d t^{3}} J^{l m} \text { as } r \rightarrow \infty
\end{array} \\
& =-\frac{a}{8 \pi} \int d \Omega d t r^{2} \frac{1}{r^{2}}\left(\frac{d^{3}}{d t^{3}} J_{\pi T}^{l m}(t-r)\right)\left(\frac{d^{3}}{d t^{3}} J_{\ln }^{\pi}(t-r)\right) \\
& =\frac{-a}{8 \pi} \int_{S} d \Omega d t\left(\frac{d^{3}}{d t^{3}} J_{\pi T}^{\operatorname{lm}}(t-r)\right)\left(\frac{d^{3}}{d t^{3}} J_{\ln }^{\pi}(t-r)\right)
\end{aligned}
$$

Defining the power P of the radiated GW's as
(7.68) $\quad E \equiv \int P d t$
we find from above
(7.69)

$$
P=\frac{-a}{8 \pi} \int_{S} d \Omega\left(\frac{d^{3}}{d t^{3}} J_{\pi T}^{\operatorname{lm}}(t-r)\right)\left(\frac{d^{3}}{d t^{3}} J \ln ^{\pi}(t-r)\right)
$$

As the final step, let us express this in terms of our original Lorenz gauge quantity $d_{i j}$ instead of $J_{i j}^{T T}$.

From the relations (exercise):

$$
\begin{aligned}
& {J_{i j}^{\pi T}}_{i \pi}\left(P_{i}^{k} p_{i} e_{-\frac{1}{2}} P_{i j} p^{k l}\right) J_{k l} \\
& P_{i}^{k} p_{j} e J_{\pi T}^{i} \ddot{j}=J_{T \pi}^{k l} \\
& P_{i j} J_{T T}^{i j}=0
\end{aligned}
$$

it follows that:
(7.70)

$$
\begin{aligned}
& \int_{T T}^{\ddot{i}} \partial_{i j}^{T T}=\int_{T T}^{k l} d_{k l} \\
& =\left(P^{k i} P^{\ell_{j}}-\frac{1}{2} P^{k \ell} p^{i j}\right) J_{i j} d_{k l}
\end{aligned}
$$

$$
\begin{aligned}
& =J^{k l} j_{k l}-2 d_{j}^{l} d_{k e} n^{k} n^{i}+n^{k} n^{\prime} n^{l} j^{j} j_{i j} d_{k l}-\frac{1}{2}\left(J_{k}^{k}-n^{k} n^{l} d_{k e}\right)\left(d_{i}^{i}-n^{\prime} j^{j} j_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =j^{k l} \int_{k l}-2 d_{i} l_{k l} n^{k} n^{i}+\frac{1}{2} n \sin n^{k} l_{k l} /_{k l} d_{i j}
\end{aligned}
$$

where in the last step we used $J \equiv J_{j}^{j}=0$ which follows from the definition (7.66).
(7.70) Holds equally for $\frac{d^{3}}{d t^{3}} \int_{\pi T}^{\pi i} \frac{d^{3}}{d t^{3}} \int_{i j}^{T T}$ and we can the directly recast (7.69) as
(7.71)

$$
\begin{aligned}
P=-\frac{a}{8 \pi} \int_{S} d \Omega & \left(\frac{d^{3} J_{i j}}{d t^{3}} \frac{d^{3} J_{i j}}{d t^{3}}-2 \frac{d^{3} d_{i} l}{d t^{3}} \frac{d^{3} J_{k l}}{d t^{3}} n^{k} n^{i}\right. \\
& \left.+\frac{1}{2} n^{n} \operatorname{nin}^{2} n^{l} \frac{d^{3} d_{k l}}{d t^{3}} \frac{d^{3} d_{i j}}{d t^{3}}\right)
\end{aligned}
$$

Here all $J_{i j}=J_{i j}(t-r)$ so they come out of the $\int d \Omega$ integrals, e.s.

$$
\begin{aligned}
\int d \Omega\left(\frac{d^{3} l_{i j}}{d t^{3}}(t-r) \frac{d^{3} J_{i j}(t-r)}{d t^{3}}\right) & =\frac{d^{3} l_{i j}}{d t^{3}} \frac{d^{3} j_{i j}}{d t^{3}} \int d \Omega \\
& =4 \pi \frac{d^{3} 3_{i j}}{d t^{3}} \frac{d^{3} J_{i j}}{d t^{3}}
\end{aligned}
$$

For the next two terms we use carksian cred's where the spatial components of n^{\prime} are given by $n^{i}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ and:

$$
\int d \Omega n_{i} n_{j} \propto \delta_{i j} \quad, \quad i=j=3: \int_{-1}^{1} d \cos \theta \int_{0}^{2 \prime \prime} d \psi \cos ^{2} \theta=2 \pi \cdot \frac{2}{3}=\frac{4}{3} \pi
$$

and others give the same by symmetry

$$
\Rightarrow \quad \int d \Omega n_{i} n_{j}=\frac{4 \pi}{3} \delta_{i j}
$$

Similarly one finds:

$$
\int d \Omega n_{i} n_{j} n_{k} n_{l}=\frac{4 \pi}{15}\left(\delta_{i j} \delta_{k e}+\delta_{i k} \delta_{j e}+\delta_{i,} \delta_{j k}\right)
$$

so that

$$
\begin{aligned}
& \int d \Omega \frac{d^{3} j^{e}}{d t^{3}} \frac{d^{3} k e}{d t^{3}} n^{b} n^{i}=\frac{4 \pi}{3} \frac{d^{3} l_{i j}}{d t^{3}} \frac{d^{3} j^{i j}}{d t^{3}} \\
& \left.\int d \Omega \operatorname{nin}^{n_{n}} \hat{n}^{l} \frac{d^{3} h_{k}}{d t^{3}} \frac{d^{3} j_{i j}}{d t^{3}}\right)=\frac{4 \pi}{15}\left(\delta_{i j} \delta_{k e}+\delta_{i k} \delta_{i e}+\delta_{i e} \delta_{i k}\right) \frac{d^{3} J^{k l}}{d t^{3}} \frac{d^{3} J^{i j}}{d t^{3}} \\
& =\frac{4 \pi}{15}(\underbrace{\frac{d^{3} J}{d t^{3}} \frac{d^{3} J}{d t^{3}}}_{=0 \text { ar } J=0}+2 \frac{2 d^{3} J_{i j}}{d t^{3}} \frac{d^{3} j^{i j}}{d t^{3}})
\end{aligned}
$$

Using there in (7.71) we finally arrive at the result:

$$
\begin{aligned}
P & =\underbrace{-\frac{a}{8 \pi}\left(4 \pi-\frac{2}{3} \cdot 4 \pi+\frac{1}{2} \frac{2}{15} 4 \pi\right)} \frac{d^{3} b_{i j}}{d t^{3}} \frac{d^{3} j^{i j}}{d t^{3}} \\
& =\frac{a}{2}\left(\frac{1}{3}+\frac{1}{15}\right)=\frac{a}{2} \frac{6}{15}=\frac{a}{5}
\end{aligned}
$$

$$
P=-\frac{a}{5} \frac{d^{3} v_{i j}}{d t^{3}} \frac{d^{3} j i j}{d t^{3}} \quad \begin{gather*}
J^{i i}=J^{i j}(t-r) \tag{7.72}\\
r \rightarrow \infty
\end{gather*}
$$

This is the main result of this section, it giver the power of gravitational wave emission far away from the source characterised by the reduced quadrupole moment $S_{i j}$.

