5. The Schworzschivel solution

The Einstein egs. (9.8) are set of 10 coupled, non-linear ind orcler partial differential equations for gpu \Rightarrow very hard to solve in general. The problem simplifies significantly if we concentrate on spacetimes with certain symmetries. The strategy is to make an Ansate for gur conssitent with the symmetries and then substitute it into (4.8).
S.l The Schwarzschich metric

The solution of Einstein equations for an empty spacetime surrounding a spherically symmetric object was found by K. Schmarzschild in 1916. The Schwarzschild sol, is of key importance: it describes the spacetime surrounding stars and it describes the simplest black holes.

Let us derive the Schmarzschild solution. Assume the following:

1) Empty spacetime outside the object $T_{\mu \nu}=0$:

$$
\begin{gathered}
R_{\mu \nu}-\frac{1}{2} g_{\mu} R=8 \pi C_{c} T_{\mu} \Leftrightarrow R_{\mu}=8 \pi C_{1}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) \\
T_{\mu \nu}=0 \Rightarrow R_{\mu \nu}=0
\end{gathered}
$$

2) Static system: \exists cod's where $\frac{\partial_{0} g_{\mu \nu}=0 \& g_{0 j}=0}{\text { if } g_{0 j} \neq 0, d s^{2} \partial d+d x \text { which is }}$ not invariant under $+\rightarrow-+\Rightarrow$ space dime cannot be static
3) Spherical symmetry: $I \mathrm{cid}^{\prime} \mathrm{s}$ where θ, ϕ enter do ${ }^{2}$ through $\left(d \theta^{2}+\sin ^{b} \theta d_{p}{ }^{2}\right.$, ie. no terms of type $d r d \theta, d r d \varphi, d \theta d \varphi$
$1,2,3 \Rightarrow$ Metric must be of the form:

$$
(5.1) d s^{2}=-A(r) d t^{2}+B(r) d r^{2}+C(r)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

The functions $A(r), B(r), C(r)$ are found by substituting the Ansate $(5,1)$ into the Einstein eqs. (4,8). Before doing this, we can however simplify the form of $(5,1)$ a bit.

Rescale the radial cid:

$$
d s^{L}=-\underbrace{A(r(\tilde{r}))}_{\equiv \tilde{A}(\tilde{r})} d t^{2}+\underbrace{B(r(\tilde{r})) \frac{4 C(r(\tilde{r}))}{C^{\prime}(r(\tilde{r}))^{2}}}_{\equiv \tilde{B}(\tilde{r})} d \tilde{r}^{2}+\tilde{r}^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

In order to have the right signature, $d s^{2}<0$ for timalike curves, we need to have:

$$
\begin{aligned}
\tilde{A}, \tilde{B}>0 \Rightarrow \tilde{A}(\tilde{r}) & =e^{2 \alpha(\tilde{r})} \quad\left(\alpha=\frac{1}{2} \ln \tilde{A} \in \mathbb{R}\right) \\
\tilde{B}(\tilde{r}) & =e^{2 \beta(\tilde{r})}
\end{aligned}
$$

Rename $\tilde{r} \equiv r$:
(5.2) $d s^{2}=-e^{2 \alpha(r)} d t^{2}+e^{2 \beta(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$

The connection coefficients and Ricai tensor of this metric are given bs (exercise):
$(5,3)$

$$
\begin{array}{llll}
\Gamma_{01}^{0}=\alpha^{\prime}(r) & \Gamma_{00}^{1}=e^{2(\alpha(r)-\beta(r))} \alpha^{\prime}(r) & \Gamma_{12}^{2}=\frac{1}{r} & \Gamma_{13}^{3}=\frac{1}{r} \\
& \Gamma_{1 \prime}^{\prime}=\beta^{\prime}(r) & \Gamma_{33}^{2}=-\sin \theta \cos \theta & \Gamma_{23}^{3}=\operatorname{coc} \theta \\
& \Gamma_{22}^{\prime}=-e^{-2 \beta(r)} & & \\
& \Gamma_{33}^{\prime}=-r e^{-2 \beta(r)} \sin ^{2} \theta & &
\end{array}
$$

(5.4)

$$
\begin{array}{ll}
R_{00}=e^{2(\alpha-\beta)}\left(\alpha^{\prime \prime}+\alpha^{\prime 2}-\alpha^{\prime} \beta^{\prime}+\frac{2 \alpha^{\prime}}{r}\right) & R_{11}=-\alpha^{\prime \prime}-\alpha^{\prime \prime}+\alpha^{\prime} \beta^{\prime}+\frac{2 \beta^{\prime}}{r} \\
R_{22}=e^{-2 \beta}\left(r\left(\beta^{\prime}-\alpha^{\prime}\right)-1\right)+1 & R_{33}=\sin ^{2} \theta R_{22}
\end{array}
$$

The Einstein eqs. read:

$$
R_{\mu \nu}=(8 \pi L)\left(T_{\mu \nu}-\frac{1}{2} T_{J_{\mu}}\right)
$$

Outicle the ofject $T_{\mu \nu}=0 \Rightarrow R_{\mu}=0$
Using (5.4) $R_{\mu \nu}=0$ implies:

$$
\begin{aligned}
& \frac{e^{-2(\alpha-\beta)} R_{00}+R_{11}}{}=0 \quad \text { as } R_{00}=0, R_{11}=0 \\
& \frac{\alpha^{\prime \prime}+\alpha^{\prime}-\alpha / \beta^{\prime}+2 \alpha^{\prime}}{r}-\alpha^{\prime \prime}-\alpha^{\prime}-\alpha^{\prime} \beta^{\prime}+\frac{2 \beta^{\prime}}{r}=0 \\
& \alpha^{\prime}=-\beta^{\prime} \\
& \alpha(r)=-\beta(r)+c_{1}^{L^{\text {cons }} .}
\end{aligned}
$$

Rescate $\tilde{f}=e^{c_{1} t: ~}$

$$
e^{2 \alpha} d t^{2}=e^{2\left(-\beta+c_{1}\right)} d t^{2}=e^{-2 \beta} d \tilde{t}^{2}
$$

Renam FFt:
(5.5) $\quad d s^{2}=-e^{-2 A} d t^{2}+c^{2 \beta} d c^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$

Then solve for $\beta(r)$ using $R_{22}=0$:

$$
\begin{aligned}
& \begin{aligned}
R_{22} & =\underbrace{e^{-2 \beta}\left(r 2 \beta^{\prime}-1\right)}+1=0 \quad \Leftrightarrow \quad \frac{d}{d r}\left(r e^{-2 \beta}\right)=1 \\
& \left.=r e^{-2 \beta}\right)
\end{aligned} \\
& \int d\left(r e^{-2 B(r)}\right)=\int d r \\
& r e^{-2 B(r)}=r-R_{s} \\
& \uparrow \\
& e^{-2 \beta}=1-\frac{R_{s}}{r} \\
& \text { cost. of integration }
\end{aligned}
$$

Substituting this into (5.5) we get:

$$
\text { (5.6) } \quad d s^{2}=-\left(1-\frac{R_{s}}{r}\right) d t^{2}+\left(1-\frac{R_{s}}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

What is the physical cole of the integration constant R_{s} ? In the limit $R_{s} \rightarrow 0$ we recover the Minkowslei metric. The limit $r>R_{s}$ corresponds to the Newtinien limit where we have shown that:

$$
\begin{gathered}
g_{00}=-(1+2 \Phi)=-\left(1-\frac{R_{s}}{r}\right), r>R_{s} \\
\Rightarrow R_{s}=-2 \Phi_{r}
\end{gathered}
$$

In Newton's gravity the solution outside a spherical body of mass M is:

$$
\Phi=-\frac{G M}{r} \Rightarrow R_{s}=2 G M
$$

Thentore, the Schwarzschild metric (5.6) becomes:
$(5.7) \quad d s^{2}=-\left(1-\frac{2 C M}{r}\right) d t^{2}+\left(1-\frac{2 M M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$

The combination 26H defines the Schwarzschild radius of mass M :
(5.8)

$$
R_{J}=2 G M
$$

This describes the spacetime outside a spherically symmetric static object of mass M.

There is an apparent divergence at $r=26 M$. However this is just a coordinate effect no component of $R_{\mu a v}^{\sigma}$ diverges at $r=2 G M$. The Schwarzschild radius still has a physical role. If the radius R_{0} of the object of man M is smaller than its Schwerzschild radius $R_{0}<2 G M$, the object is a black hole. In this case not even light can escape from the regime $r<2 G M$. the Schwarerchile radius determines the horizon of the black hole. How large is R_{s} for familiar bodies:

Earth: Meath $\simeq 6 \cdot 10^{24} \mathrm{~kg} \Rightarrow R_{s} \simeq 0,9 \mathrm{~cm}$
Sun: $\quad M_{\theta} \simeq 2,0 \cdot 10^{30} \mathrm{~kg} \Rightarrow R_{s}=3 \mathrm{~km}$
\Rightarrow The Schmarrschitd radius of the Earth and the Sun much smaller than their size $R_{S} \ll R_{0}$.

When $R_{0}>R_{\text {, }}$ we always have $r>R_{3}$ and the coordinates (5:7) can be used throughout the analysis. In this section we will discuss Sehmareschild solutions where $R_{0}>R_{J}$ and return to black hoke in the next section.
5.2 Birkhoff's theorem

It can be shown that the Schwarzschitd metric (5.7) is the unique spherically symmetric vacuum solution. This is the Birkhoff's theorem, see egg. Wald's book for the proof.
Due to the Birchofff' th. we could have dropped the assumption of static spacetime above; Einstein es. impose this. Moreover, this implies that the gravitational field of a collapsing spherically symmetric object is static outride the object and described by the Schwarzschild solution.
5.3 Dis dances, time intervals, red - and buceshifs

Distances :
On $t=$ cont. surfaces the line element (6.7) reds:

$$
d s^{2}=\left(1-\frac{2 L r}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \theta^{2}\right)
$$

Due to ph. sumer. we can ratite the cud's sit. any two point (on toconts. surface)
lie on the pare $\theta=$ cont, $\phi=$ cont.

$$
d s^{2}=\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}>d r^{2}
$$

Proper distance between two points, and r_{2} is then:
(5.9) $\quad S_{n}=\int_{1}^{r_{2}} d r(1-2 \alpha M)^{-1 / 2}=\left(r_{2}\left(r_{2}+2 a M\right)\right)^{1 / 2}-\left(r_{1}\left(r_{1}-2 G M\right)\right)^{1 / 2}+2 a M \ln \left(\frac{\sqrt{r_{2}}+\sqrt{r_{2}-2 a m}}{\sqrt{r_{1}}+\sqrt{r_{1}-2 a r}}\right)$

For $r \gg 24 M$ this gives $s_{12} \simeq\left|r_{2}-r_{1}\right|$. Therebre, Δr comuponde to ditencos in the asymptotic flat space limit. Close to the object, gravity stitches the
distances since $\Delta r^{2}>\Delta r^{2}$.

Time intervals:
Consider a stationary observer $d_{r}=d \theta=d \phi=0$. The time measured by her is her proper time

$$
d r^{2}=-d s^{2}=\left(1-\frac{2 a G}{r}\right) d t^{2}
$$

(5.10) $d r=\sqrt{1-\frac{2 G M}{r}} d t<d t$

Again $d r \rightarrow d t$ as $r \Rightarrow 2 G M \Rightarrow t$ is the time of arympbbe flat space. Close to the object time show down $d \boldsymbol{e d t}$, gravity, matter clocks tick slaver.

Gravitational reed - and blueshiff

Consider a light ray emitted at $\left(t_{1}, r_{1}, \theta_{1}, \phi_{1}\right)$ and received at $\left(t_{2}, r_{2}, \theta_{2}, \phi_{2}\right)$, where the emitter and receiver are stationary $\frac{d r_{i}}{d t}=\frac{d \theta_{i}}{d t}=\frac{d \psi_{i}}{d t}=0$.

Light rays move along soul curves:

$$
\begin{aligned}
& d s^{L}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+g_{i j} d x^{i} d x^{j}=0 \\
& d t=\sqrt{\left(1-\frac{2 G M}{r}\right)^{-1} g_{i j} \frac{d x^{\prime}}{d \sigma} \frac{d x^{j^{\prime}}}{d \sigma}} d \sigma
\end{aligned}
$$

The paths $x^{\prime}(\sigma)$ are the same for any emissian/receiving time since we assume stationery source and observer and since the spacetime is static.

Consider two signals emitted at t_{1} and $t_{1}^{\prime}=t_{1}+\Delta t_{1}$:

$$
t_{2}^{\prime}-t_{1}^{\prime}=t_{2}-t_{1} \Rightarrow \Delta t_{2}=\Delta t_{1}
$$

But this concerns the coordinate time.

In terms of the oberver/enitter proper time (5.10):

$$
\frac{\Delta \tau_{2}}{\Delta \tau_{1}}=\frac{\sqrt{1-\frac{2 a M}{r_{2}}}}{\sqrt{1-\frac{2 G M}{r_{1}}}} \frac{\Delta t_{2}}{\Delta t_{2}}=\left(\frac{1-\frac{2 G M}{r_{2}}}{1-\frac{2 G M}{r_{1}}}\right)^{1 / 2} \quad \text { as } \quad \Delta t_{2}=\Delta t_{1}
$$

Correspondingly the relation between the observed and emitted wavelengths and frequencies are given by:
(5.11) $\quad \frac{\lambda_{2}}{\lambda_{1}}=\frac{\Delta \pi_{2}}{\Delta \tau_{1}}=\left(\frac{1-\frac{2 G M}{r_{2}}}{1-\frac{2 a M}{r_{1}}}\right)^{1 / 2}$
$(5.12) \quad \frac{f_{2}}{f_{1}}=\frac{\Delta \pi}{\Delta \pi_{2}}=\left(\frac{1-\frac{2 G M}{r_{1}}}{1-\frac{2 G_{2}}{r_{2}}}\right)^{1 / 2}$

Gravitational red-/blueshift

$$
\begin{aligned}
& r_{2}>r_{1} \Rightarrow \lambda_{2}>\lambda_{1} \\
& r_{2}<r_{1} \Rightarrow \lambda_{2}<\lambda_{2}
\end{aligned}
$$

Photons climb up a "gravitational potential" \rightarrow loose energy \rightarrow redshift

In the asymptotic limit $r \gg 2 G M$ there yield:

$$
\begin{array}{ll}
\frac{\lambda_{2}}{\lambda_{1}} \simeq 1+G M\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) & r>2 G M \\
\frac{f_{2}}{f_{1}} \simeq 1-G M\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) & r>2 G M
\end{array}
$$

5.4 Geodesics of the Schwareschitd space

To discuss the motion of objects we need to find the geodesics. The Schmereschild space is spherically symmetric and stationary: the metric is independent of t and ϕ. This independence leads to the existence of two constants of motion celcked to the symmetries $t \rightarrow t+\Delta t$ and $\phi \rightarrow \phi+\Delta \phi$.

To find the geodesics we writ down the Euler -Lagrange equations for the metric $\mathscr{L}=\frac{1}{2} g_{\mu} x^{\prime} \mu^{\prime}{ }^{\nu}$ as we did in section 3 .

For the Schwareschild metric (5.7):

$$
\mathscr{L}=\frac{1}{2} g_{\mu \nu} \dot{x}^{\prime} \dot{x}^{\nu}=\frac{1}{2}\left(-\left(1-\frac{2 k \mu}{r}\right) \dot{t}^{2}+\frac{\dot{r}^{2}}{1-\frac{2 a \mu}{r}}+r^{2}\left(\theta^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)\right),
$$

where $\dot{x}^{\mu} \equiv \frac{d x^{\mu}}{d \tau}$ and τ is the proper time (consider timelike geodesics, ie. trajectories of massive objects)
Geodesic eq. $\frac{d}{d T}\left(\frac{\partial \mathscr{L}}{\partial x^{\mu}}\right)-\frac{\partial \mathcal{L}}{\partial x^{\mu}}=0$
t-component: $\quad \frac{\partial \mathscr{L}}{\partial t}=0, \frac{\partial \mathscr{L}}{\partial \dot{t}}=-\left(1-\frac{2 G M}{r}\right) \dot{t} \equiv-k$

$$
\frac{d}{d r}\left(-\left(1-\frac{2 G M}{r}\right) \dot{r}\right)=0 \Leftrightarrow \frac{d k}{d r}=0 \text { constant of motion }
$$

ϕ-component:

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial \phi}=0, \frac{\partial \mathscr{L}}{\partial \phi}=r^{2} \sin ^{2} \theta_{\phi} \equiv h \\
& \frac{d}{d r}\left(r^{2} \sin ^{2} \theta_{\phi}^{\prime}\right)=\frac{d h}{d r}=0 \quad \text { constant of motion }
\end{aligned}
$$

θ-component :

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \theta}=r^{2} \sin \theta \cos \theta \phi^{2}, \frac{\partial \mathcal{L}}{\partial \theta}=r^{2} \theta^{\prime} \\
& \left(r^{2} \dot{\theta}\right)-r^{2} \sin \theta \cos \theta \dot{\phi}^{2}=0 \\
& 2 r \dot{r} \dot{\theta}+r^{2} \ddot{\theta}-r^{2} \sin \theta \cos \theta \dot{\phi}^{2}=0 \\
& \dot{\theta}^{\prime \prime}+\frac{2 \dot{r} \dot{\theta}}{r}-\sin \theta \cos \theta \dot{\phi}^{2}=0
\end{aligned}
$$

r-component:

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial r}=-\frac{G M}{r^{2}} \dot{t}^{2}-\frac{1}{2}\left(1-\frac{2 G M}{r}\right)^{-2}\left(\frac{2 G M}{r^{2}}\right) \dot{r}^{2}+r\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\theta}^{2}\right) \\
& \frac{\partial \mathscr{L}}{\partial \dot{r}}=\frac{\dot{r}}{1-\frac{2 G M}{r}} \\
& \frac{\ddot{r}}{1-\frac{2 G M}{r}}-\frac{\dot{r}^{2}}{\left(1-\frac{2 G M}{r}\right)^{2}} \frac{2 G M}{r^{2}}+\frac{G M}{r^{2}} \dot{t}^{2}+\frac{G M}{r^{2}}\left(1-\frac{\dot{r}^{2}}{r}\right)^{2} \\
& \left.\ddot{r}+\frac{G M}{r^{2}}\left(1-\frac{2 G M}{r}\right) \dot{t}^{2}-\frac{G M}{r^{2}}\left(1-\frac{2 G M}{r}\right)^{-1} \dot{\varphi}^{2}\right)=0 \\
& \dot{r}^{2}-r\left(1-\frac{2 G M}{r}\right)\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)=0
\end{aligned}
$$

At any given time we can rotate the coordinates sit. $\theta=\frac{\pi}{2}$ due 16 the rotational symmetry of the system. Then:

$$
\ddot{\theta}+\frac{2}{r} \dot{r} \dot{\theta}^{\prime}-\sin \frac{\pi}{2} \cos \frac{\pi}{2} \dot{\theta}^{\prime 2}=\ddot{\theta}+\frac{2}{r} \dot{r} \dot{\theta}=0 \Rightarrow \theta=\text { canst } .
$$

Therefore we can chook the coordinates rif. $\theta(T)=\frac{\pi}{2}$ and the above set of geaclesic eqs. becomes:
(5.13) $\quad\left(1-\frac{2 G M}{r}\right) \dot{f}=k=$ const.
(5.14) $\quad r^{2} \phi=h=$ cont.
$(5.15) \quad \ddot{r}+\frac{G M}{r^{2}}\left(1-\frac{2 G M}{r}\right) \dot{t}^{2}-\frac{G M}{r^{2}}\left(1-\frac{2 G M}{r}\right)^{-1} \dot{r}^{2}-r\left(1-\frac{2 G M}{r}\right) \phi^{2}=0$

In addition to the geodesic egre there is a celation that tollows dirctits from the defirition of the preper time:

$$
\begin{align*}
& d r^{2}=-d s^{2}=\left(1-\frac{2 a M}{r}\right) d t^{2}-\left(1-\frac{2 a \mu}{r}\right)^{-1} d r^{2}-r^{2} d s^{2} \\
\Rightarrow & \left(1-\frac{2 a H}{r}\right) t^{2}-\left(1-\frac{2 a H}{r}\right)^{-1} r^{2}-r^{2} \phi^{\prime 2}=1 \quad \text { (5.16) } \tag{5.16}
\end{align*}
$$

For massive test parchices we can define:
(5.16) $\quad E \equiv m k=\left(1-\frac{2 G A}{r}\right) m t \equiv$ consered encosy

These definitions are jurificel below.
(5.17) $L \equiv m h=m r^{2} \phi{ }^{\prime} \equiv$ connerved angular momention.

Take a stetionary obicriven $u^{\prime}=0$:

$$
\begin{aligned}
& d r^{2}=-g_{00} d t^{2} \\
& u^{0}=\frac{d f}{d r}=\frac{1}{\sqrt{-g_{00}}} \\
& u_{0}=g_{00} u^{0}=-\sqrt{-g_{00}=}=-\sqrt{1-\frac{2 a m}{r}}
\end{aligned}
$$

includev only non-gravivetronal enersy
$=$ mas + Linetic enersy
includes all eneroys

Using the conserved quantities E and L, we can rewrik eq. (5.16) as:

$$
\frac{E^{2}}{m^{2}}-\dot{r}^{2}-\left(1-\frac{2 G M}{r}\right) \frac{L^{2}}{m^{2} r^{2}}=\left(1-\frac{2 G M}{r}\right) \quad / \cdot \frac{m}{2}
$$

(5.18) $\underbrace{\frac{E^{2}}{2 m}}_{\equiv \tilde{E}}=\frac{1}{2} m r^{2}+\underbrace{\frac{L^{2}}{2 m r^{2}}-\frac{G M m}{r}-\frac{G M L^{2}}{m r^{3}}+\frac{m}{2}}_{\equiv V(r)}$

Written in this way (5.18) looks jut like the energy conservation equation of (10) Newtrion physics for a particle with energy E. This is an analogy that can be used to understand the motion. The effective potential V(I) differs from the Nawbivin resist by a trivial constant $\frac{m}{2}$ and by the term $-\frac{M M L^{2}}{m \mathrm{~N}^{3}}$. This attractive term is a pure $C R$ effect and it gives rise to precession of planetring orbit.

For mastew test particles $m=0$, we choose to parametrise the geodesics by λ normalized such that:

$$
p^{\mu}=\frac{d x^{\mu}}{d \lambda} \quad\left(\text { dimensions } \quad[\lambda]=m^{-2}\right)
$$

The equations for null geodesics are then given by:
(5.19) $\quad\left(1-\frac{2 \alpha M}{r}\right) \dot{f} \equiv E=$ cost. $\quad \equiv \frac{d}{d \lambda}$
(5.20) $\quad r^{2} \dot{\phi} \equiv L=$ cont.
$(5.21) \quad \ddot{r}+\frac{G M}{r^{2}}\left(1-\frac{2 C M}{r}\right) \dot{t}^{2}-\frac{G M}{r^{2}}\left(1-\frac{2 C M}{r}\right)^{-1} r^{2}-r\left(1-\frac{2 G M}{r}\right) \phi^{2}=0$
and $d s^{2}=0$ yields:
(5.22) $\quad\left(1-\frac{2 \alpha M}{r}\right) t^{\prime 2}-\left(1-\frac{2 L M H}{r}\right)^{-1} \dot{r}^{2}-r^{2} \dot{\phi}^{2}=0$
which using (5.19) and (5.20) can be recast as:

$$
\begin{aligned}
E^{2}-\dot{r}^{2}-\left(1-\frac{2 L M}{r}\right) r^{2} \dot{\phi}^{2} & =0 \\
E^{2}-\dot{r}^{2}-\left(1-\frac{2 G M}{r}\right) \frac{L^{2}}{r^{2}} & =0 \\
E^{2} & =\dot{r}^{2}+\frac{L^{2}}{r^{2}}-\frac{2 G M L^{2}}{r^{3}}
\end{aligned}
$$

S.5 Motion in the Schwarsechild pace

Using the geodesic eqs. we can now investigate the motion of massive and massless test particles. We concentrate on a few special cases.

Vertical fall

For vertical fall $\phi=$ constr. Concentrating on massive test particles and setting $\phi=0$ in eq. (5.16) we gel:

$$
\begin{aligned}
& \left(1-\frac{2 G M}{r}\right) \dot{t}^{2}-\left(1-\frac{2 G M}{r}\right)^{-1} r^{2}=1 \\
& \underbrace{\left(1-\frac{2 G M}{r}\right)^{2} \dot{t}^{2}}_{=k^{2}(9 \cdot 5 \cdot 13)}=1-\frac{2 G M}{r}+\dot{r}^{2} \\
& k^{2}=\dot{r}^{2}+\left(1-\frac{2 G M}{r}\right) \\
& \uparrow
\end{aligned}
$$

${ }^{\text {kinetic pert }} \uparrow_{\text {potential part }}$
From eq. (5.16): $E=m k \quad k<1 \Rightarrow E<m \quad$ bound particle
$k \geqslant 1 \Rightarrow E \geqslant m \quad$ unbound particle

Consider vertical fall starting from rest: $r\left(r_{0}\right)=r_{0}, r\left(r_{0}\right)=0$

$$
\begin{aligned}
& k^{2}=\dot{r}^{2}+1-\frac{2 G M}{r}=1-\frac{2 G M}{r_{0}}<1 \quad \text { bound partick } \\
& \dot{r}^{2}=1-\frac{2 G M}{r_{0}}-\left(1-\frac{2 G M}{r}\right) \\
& \frac{1}{2} \dot{r}^{2}=G M\left(\frac{1}{r}-\frac{1}{r_{0}}\right) \quad / \frac{d}{d r}
\end{aligned}
$$

Compute the proper time that the observer measures when falling down to same (112) $r<r_{0}$:

$$
\begin{aligned}
& d r=\frac{d r}{d r} d r=\frac{d r}{r} \\
& \tau_{r}^{r} \\
& \int_{\tau_{0}}^{r} d r=\int_{r_{0}}^{r} \frac{d r}{\sqrt{26 M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)}} \\
& \tau_{r}-r_{0}=\int_{r_{0}}^{r} \frac{d r}{\sqrt{2 a M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)}}
\end{aligned}
$$

What is the proper time required to reach the Schwareschild radius * $r=2 a 14$? Using $k^{2}=1-\frac{2 G M}{r_{0}} \Rightarrow r_{0}=\frac{2 G M}{1-k^{2}}$ we can cowrik:

$$
\tau_{r}-\tau_{0}=\int_{r_{0}}^{r} \frac{d r}{\frac{\underbrace{}_{\rightarrow 1-1}}{\sqrt{\frac{2 a M}{r}-1+k^{2}}}}<\infty \text { as } r \rightarrow 2 G M
$$

\Rightarrow It takes a finite peepers thine to reach the Schwrerzschild radius

But the corrouponding coordinate time $t=$ time measured by an observer at $r=\infty$ diverges:

$$
\begin{array}{rlrl}
d t & =\frac{d t}{d r} d r & & c_{1} \cdot(5 \cdot 13):\left(1-\frac{2 G M}{r}\right) \dot{r}=k \\
d t & =\frac{k}{1-\frac{2 G M}{r}} d r \quad & k^{2}=1-\frac{2 a M}{r_{0}} \\
& =\frac{\sqrt{1-\frac{2 a M}{r_{0}}}}{1-\frac{2 G M}{r}} \frac{d r}{d r} d r \quad \frac{1}{2} \dot{r}^{2}=6 M\left(\frac{1}{r}-\frac{1}{r_{0}}\right) \Rightarrow \dot{r}=-\sqrt{2 G M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)} \\
& =-\frac{\sqrt{1-\frac{2 G M}{r_{0}}}}{1-\frac{2 G M}{r}} \frac{d r}{d r}<0 \\
\sqrt{2 L M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)}
\end{array}
$$

* We assume the Schwareschild radius is outside the object, so the object is a black hole.

$$
\int_{t_{0}}^{t} d t=-\int_{r_{0}}^{r} \frac{\sqrt{r_{0}-2 G M}}{\sqrt{2 a M}} \frac{r^{s / 2}}{(r-2 a M)\left(r_{0}-r\right)^{1 / 2}} d r
$$

Set $r=26 M(1+\epsilon), \epsilon \rightarrow 0$ as the integration limit

$$
t-t_{0}=-\sqrt{\frac{r_{0}}{2 G M}-1} \int_{r_{0}}^{2 a M(1+\epsilon)} d r \frac{r^{3 / 2}}{(r-2 a \mu)\left(r_{0}-r\right)^{1 / 2}}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Consider the upper limit: } \\
2 G M(1+\epsilon)
\end{array} \int_{(r-2 G M)\left(r_{0}-r\right)^{1 / 2}} \xrightarrow{\int_{t \rightarrow 0}^{3 / 2}} \frac{(2 G M)^{3 / 2}}{r_{0}^{1 / 2}} \int_{\left(r_{0}>2 C M\right)}^{2 G M(1+\epsilon)} \frac{d r}{r-2 G M} \times \ln (2 G M E) \rightarrow \infty \\
& \text { as } \in \rightarrow 0
\end{aligned}
$$

$\Rightarrow t \rightarrow \infty$ as $r \rightarrow 2 G M$; an asymptotic observer never sees the object reaching $R_{J}=2619$.

The signal becomes infinitely redihiffed as the object approaches $R_{s}=26 M$:

$$
\frac{\lambda_{0 b j}}{\lambda_{e m}}=\frac{1-\frac{2 a M}{r_{0} b_{j}}}{1-\frac{2 a M}{r_{e m}}} \uparrow=\frac{1}{1-\frac{2 a M}{r_{e n}}} \rightarrow \infty \text { as } r_{c m} \rightarrow 2 a H
$$

$$
y^{\circ} r_{\text {obs }} \ggg 2 a M
$$

$$
\lambda_{o b s} \rightarrow \infty
$$

$f_{\text {obs }} \rightarrow 0$ signals received at infinitely 10 ns intervals

Circular orbit

For circular orbits $r=$ canst eq. (S.15) becomes:

$$
\begin{aligned}
& \frac{G M}{r^{2}}\left(1-\frac{2 G M}{r}\right) \dot{t}^{2}-r\left(l-\frac{2 G M}{r}\right) \phi^{2}=0 \\
& \frac{G M t^{2}}{r^{3}}=\phi^{2} \\
&\left(\frac{d \phi}{d t}\right)^{2}=\frac{G M}{r^{3}}=\text { cons. } \\
& \Rightarrow \phi(t)=\sqrt{\frac{G M}{r^{3}}}+
\end{aligned}
$$

Therefore the coordinate time to complete an orbit $\Delta \phi=2 \pi$ is:

$$
\Delta t=\sqrt{\frac{r^{3}}{a M}} 2 \pi
$$

$(\Delta t)^{2}=\frac{4 \pi_{r}^{2}{ }^{3}}{a M} \quad \begin{aligned} & \text { Again this looks like the Newtonian walt (Copter's law) } \\ & \text { but differences arise due }\end{aligned}$
The orbit time measwed by an observer at fixed r_{0} (not a frats falling observer, force seeded to stay stationary at $1=10$):

$$
\begin{aligned}
& \Delta \pi_{0}=\sqrt{1-\frac{2 G M}{r_{0}}} \Delta t<\Delta t \\
& \Delta \pi_{r_{0}}=\sqrt{1-\frac{2 G M}{r_{0}}}\left(\frac{4 \pi_{r}^{2}}{G M}\right)^{1 / 2}
\end{aligned}
$$

The orbit time measured by an observer living on the orbiting planet:

$$
\begin{aligned}
& d r^{2}=\left(1-\frac{2 G M}{r}\right) d t^{2}-\underbrace{r^{2} d \phi^{2}}=\left(1-\frac{3 G M}{r}\right) d t^{2} \\
& =\frac{a M r^{2} d t^{2}}{r^{3}} \\
& \Delta \tau_{a b,}=\left(1-\frac{3 G M}{r}\right)^{1 / 2}\left(\frac{4 \pi_{r}^{2}}{a M}\right)^{1 / 2}=2 \pi\left(\frac{r^{3}}{a M}\left(1-\frac{3 G M}{r}\right)\right)^{1 / 2} \rightarrow 0 \text { as } r \rightarrow 3 G M
\end{aligned}
$$

Circular orbits of freely falling objects not possible for $r<3 G M$. A circular path with $r<3 G M$ requires powered flight.

It is also instructive to compare the orbit times meavancel by an observer on a planet with the orbit radian r. (freely falling object):

$$
\Delta \tau_{0 b s}=2 \pi\left(\frac{r_{0}^{3}}{a M}\left(1-\frac{3 G M}{r_{0}}\right)\right)^{1 / 2}
$$

and an astronaut hovering at $r=r_{0}, \phi=\psi_{0}$ (powered flight)

$$
\Delta T_{a}=\sqrt{1-\frac{2 G M}{r_{0}}}\left(\frac{4 \pi_{r_{0}^{3}}^{2}}{G M}\right)^{1 / 2}=2 \pi\left(\frac{r_{0}^{3}}{G M}\left(1-\frac{2 G M}{r_{0}}\right)\right)^{1 / 2}>\tau_{0} b_{j}
$$

\Rightarrow the freely falling observer measures a shorter time, geodesics not necessassly global maximal of the proper time.

Consider photons on a circular orbit $r=$ constr. The null condition $d s^{2}=0$ given by eq. (5.22) yields:

$$
\begin{aligned}
& \left(1-\frac{2 G M}{r}\right) \dot{t}^{2}=r^{2} \phi^{2} \quad \equiv \frac{d}{d \lambda} ; p^{\mu}=\frac{d x \mu}{d \lambda} \\
& \left(\frac{d \phi}{d t}\right)^{2}=\frac{1}{r^{2}}\left(1-\frac{2 G M}{r}\right)
\end{aligned}
$$

The geodesic ep. (5.21) gives

$$
\begin{gathered}
\frac{G M}{r^{2}}\left(1-\frac{2 G M}{r}\right) \dot{t}^{2}=r\left(1-\frac{2 G M}{r}\right) \phi^{2} \\
\left(\frac{d \phi}{d t}\right)^{2}=\frac{G M}{r^{3}}
\end{gathered}
$$

Combining these two we get:

$$
\begin{aligned}
& \frac{G M}{r^{3}}=\frac{1}{r^{2}}\left(1-\frac{2 G M}{r}\right) \\
& \frac{G M}{r}=1-\frac{2 G M}{r} \quad \Rightarrow r=3 G M
\end{aligned}
$$

Photons orbit at $r=3 \mathrm{CM}$, extreme bending light.

For radially moving photons $\phi^{\prime}=0$ and eq. (5.22) yields:

$$
\begin{aligned}
\left(1-\frac{2 G M}{r}\right) t^{2} & =\left(1-\frac{2 G M}{r}\right)^{-1} r^{2} \\
\left(\frac{d r}{d t}\right)^{2} & =\left(1-\frac{2 G M}{r}\right) \Rightarrow \frac{d r}{d t}=1-\frac{2 G M}{r} \rightarrow 0 \text { as } r \rightarrow 2 G M
\end{aligned}
$$

loutward motion $\frac{d r}{d t}>0$) A radial line of sight never reaches $r=2 G M$, cannot see inside $r=24 M$

General orbits

In Newtonian gravity, planetary orbits are ellipses, parabolas or hyperbole. In the Schwareschild solution this is no longer true but there will be $G R$ modifications to the orbits.

To facilitate the discussion of general orbits, let us recollect the the geodesic exr. together with the $d s^{2}<0$ or $d s^{2}=0$ condition of massive and massless test particle w, respectively:
$\begin{aligned} \text { (5.23) } \\ \text { (5.24) }\end{aligned} \quad\left(1-\frac{2 G M}{r}\right) \dot{t}=k \quad \cdot \equiv \frac{d}{d \lambda} \quad\left\{\begin{array}{l}\lambda=\tau \quad m \neq 0 \\ r^{2} \dot{\phi} \dot{d x}=h=p^{\mu} \quad m=0\end{array}\right.$
(5.25) $\quad\left(1-\frac{2 G M}{r}\right) \dot{j}^{2}-\left(1-\frac{2 G M}{r}\right)^{-1} \dot{r}^{2}-r^{2} \dot{\phi}^{2}= \begin{cases}1 & , m \neq 0 \\ 0 & , m=0\end{cases}$
Using the first two in the last one we get:

$$
\begin{aligned}
& k^{2}-r^{2}-r^{2}\left(1-\frac{2 G M}{r}\right) \frac{h^{2}}{r^{4}}=\left\{\begin{array}{c}
1-\frac{2 G M}{r} \\
0
\end{array} \dot{r}=\frac{d r}{d \lambda}=\frac{d r}{d \phi} \frac{d p}{d \lambda}=\frac{d r}{d \phi} \dot{\phi}=\frac{d r}{d \phi} \frac{h}{r^{2}}\right. \\
& k^{2}-\left(\frac{d r}{d \phi}\right)^{2} \frac{h}{}^{r^{4}}-\frac{h^{2}}{r^{2}}\left(1-\frac{2 G M}{r}\right)=\left\{\begin{array}{c}
1-\frac{2 G M}{r} \\
0
\end{array}\right. \\
& \frac{k^{2} r^{4}}{h^{2}}-r^{2}\left(1-\frac{2 G M}{r}\right)-\frac{r^{4}}{h^{2}}\left\{\begin{array}{c}
1-\frac{2 G M}{r} \\
0
\end{array}\right\}=\left(\frac{d r}{d \phi}\right)^{2}
\end{aligned}
$$

Define a new variable $u=\frac{1}{r}, d u=-\frac{d r}{r^{2}}=-u^{2} d r \Rightarrow d r=-\frac{d u}{u^{2}}$

$$
\begin{aligned}
\left(\frac{d u}{d \varphi}\right)^{2} & =u^{4}\left(\frac{k^{2}}{h^{2} u^{4}}-\frac{1}{u^{2}}(1-2 a M u)-\frac{1}{a^{4} h^{2}}\left\{\begin{array}{c}
1-2 a M u \\
0
\end{array}\right\}\right) \\
& =\frac{k^{2}}{h^{2}}-u^{2}(1-2 a M u)-\frac{1}{h^{2}}\left\{\begin{array}{c}
1-2 a M u \\
0
\end{array}\right\}
\end{aligned}
$$

Massive case $m \neq 0$:

$$
\left(\frac{d u}{d \varphi}\right)^{2}=\frac{k^{2}}{h^{2}}-\left(u^{2}+\frac{1}{h^{2}}\right)(1-2 a M u)
$$

(5.26) $\left(\frac{d u}{d \psi}\right)^{2}+u^{2}=\underbrace{h^{2}}_{\substack{k^{2}-1 \\ h^{2} \\ \text { cont. }}}+\frac{2 G M u}{h^{2}}+2 G M u^{3} \equiv \underbrace{A+\frac{2 G M u}{h^{2}}}_{\text {Newtonian terms }}+\underbrace{2 G M u^{3}}_{G R \text { correction }}$

Massless case $m=0$:
(5.27) $\quad\left(\frac{d u}{d \varphi}\right)^{2}+u^{2}=\frac{k^{2}}{h^{2}}+2 G M u^{3} \equiv F+2 a M u^{3}$

Perihelion precession

For $A<0$ the Newtonian eq.

$$
\left(\frac{d u}{d \varphi}\right)^{2}+u^{2}=A+\frac{2 G M u}{h^{2}}
$$

has the elliptic solution (bound system):

$$
u=\frac{G M}{h^{2}}\left(1+e \cos \left(\phi-\phi_{0}\right)\right), e=1+\frac{A h^{2}}{a^{2} M^{2}}
$$

Planets in the Solar system are moving slowly $v \ll 1$:
eccentricity of the orbit

$$
v^{2} \sim r^{2} \phi^{2} \ll 1
$$

The GR term in (5.36) is a small correction:

$$
\delta \equiv \frac{2 G M u^{3}}{\left(\frac{2 a M^{2}}{h^{2}}\right)}=h^{2} u^{2}=\frac{h^{2}}{r^{2}}=r^{2} \dot{\phi}^{2} \sim v^{2} \ll 1
$$

Thus we can expand (5,36) around the Newtonian solution :

$$
\begin{aligned}
\left(\frac{d u}{d \varphi}\right)^{2} & =\underbrace{}_{=\frac{A}{A}+\frac{2 G M u}{h^{2}}+2 G M u^{3}-u^{2}} \\
& =2 G M\left(u-u_{1}\right)\left(u-u_{2}\right)\left(u-u_{3}\right) \text { where } u_{1} \text { are roots of } \\
& =2 G M u^{3}-\underbrace{2 G M\left(u_{1}+u_{2}+u_{3}\right)}_{=1} u^{2}+\underbrace{2 G M\left(u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}\right)}_{=\frac{2 G M}{h^{2}}} u
\end{aligned} \underbrace{-2 G M u_{1} u_{2} u_{3}}_{=-A} .
$$

Here u_{i} are roots of $\left(\frac{d u}{d \phi}\right)^{2}=A+\frac{2 G M u}{h^{2}}+2 G M u^{3}-u^{2}=0$, ie. they correspond to local extricmals of the distance $r=\frac{1}{u}$.
In the Newtonian limit there are only two roots:

$$
\begin{aligned}
&\left(\frac{d u}{d \varphi}\right)^{2}=\underbrace{A+\frac{2 G M u}{h^{2}}-u^{2}}=0 \\
&=2 M\left(u-\bar{u}_{1}\right)\left(u-\bar{u}_{2}\right)
\end{aligned}
$$

which are the perihelion (furthest distance) and aphelion (closest distance) and the orbit are closed elliplas. Since the GR effects are small we can approximate:

$$
u_{1}=\bar{u}_{1}(1+\theta(\delta)), u_{1}=\bar{u}_{2}(1+\theta(\delta))
$$

perimalion
aphelion
However, now $\left(\frac{d u}{d e}\right)^{2} /=\theta(\delta)$ which causes slight precession of the perikelton/aphalion:

$$
\begin{aligned}
\left(\frac{d u}{d \phi}\right) & =\left(2 G M\left(u-u_{1}\right)\left(u-u_{2}\right)\left(u-u_{3}\right)\right)^{1 / 2} \\
& =\left(\left(u-u_{1}\right)\left(u-u_{2}\right)\right)^{1 / 2}\left(2 a M\left(u-\left(\frac{1}{2 a M}-u_{1}-u_{2}\right)\right)\right)^{1 / 2}, \quad u \leq u \leq u_{2} \Leftrightarrow r_{2} \leq c \leq r_{1}
\end{aligned}
$$

$$
\begin{aligned}
&\left(\frac{d u}{d \varphi}\right)=\sqrt{\left(u-u_{1}\right)\left(u_{2}-u\right)} \sqrt{1-\underbrace{2 G\left(u+u_{1}+u_{2}\right.}_{=\sigma\left(\frac{2 a \mu}{r}\right) \ll 1})} \\
& \simeq \sqrt{\left(u-u_{1}\right)\left(u_{2}-u\right)}\left(1-u M\left(u+u_{1}+u_{2}\right)\right) \\
& \Rightarrow \frac{d \phi}{d u}=\frac{1+G M\left(u+u_{1}+u_{2}\right)}{\sqrt{\left(u-u_{1}\right)\left(u_{2}-u\right)}}
\end{aligned}
$$

Integrate this from an aphelion u_{2} to the successive perihelion u_{1} : (Exercicic)

$$
\phi_{12}=\int_{u_{1}}^{u_{2}} d u \frac{1+a M\left(u+u_{1}+u_{2}\right)}{\sqrt{\left(u-u_{1}\right)\left(u_{2}-u\right)}}=\pi+\frac{3 \pi}{2} a M\left(u_{1}+u_{2}\right)
$$

The perihelion precession $=$ the deviation of successive perihelia from 2π

$$
\Delta \phi=2 \phi_{12}-2 \pi=2 \pi+3 \pi c M\left(u_{1}+u_{2}\right)-2 \pi=3 \pi a M\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

For the planet Mercury we get: $\Delta \phi=\frac{49,0^{"}}{\text { century }} \quad$ (arses)
This matches wall with the observed value (from which the $O(10)$ bigger effects due t other planets are first subtracted).

Bending of light
Taking fist $M=0$ in ag. (5.27) we get:

$$
\begin{aligned}
\left(\frac{d u}{d \phi}\right)^{2}+u^{2}=F \Rightarrow u & =\sqrt{F} \sin \phi \\
r & =\frac{1}{\sqrt{F} \sin \phi}
\end{aligned}
$$

GR generates deviations from the $M=0$ sdubion, causing bending of the light rasp.
In the limit $r \gg 2 G H$, $G R$ terms are a small correction:

$$
\begin{aligned}
& \frac{2 G M u^{3}}{u^{2}}=\frac{2 G M}{r} \ll 1 \\
& \left(\frac{d u}{d \varphi}\right)^{2}=F-u^{2}(1-2 G M u)
\end{aligned}
$$

Denote by u_{0} the point where the distance is extrenised:

$$
\left.\left(\frac{d u}{d c_{\psi}}\right)^{2}\right|_{\psi_{0}}=F-u_{0}^{2}+2 G M u_{0}^{3}=0 \Rightarrow F=u_{0}^{2}\left(1-2 G M u_{0}\right)
$$

We can rurik (5.27) as :

$$
\left(\frac{d u}{d \phi}\right)^{2}=u_{0}^{2}\left(1-2 G M u_{0}\right)-u^{2}(1-2 a M u)
$$

Since $26 M u \ll 1$, the solution should be close to the $M=0$ case.
Make an Ansate:

$$
\begin{aligned}
& u(\phi)=u_{0}(\sin \phi+\underbrace{2 C M M_{0} v(\phi)}_{\equiv \epsilon \ll 1} K_{\text {arbitrary function } \theta(1)} \\
& u^{\prime}(\phi)=u_{0}\left(\cos \phi+\epsilon v^{\prime}(\psi)\right)
\end{aligned}
$$

Substitute into eq. (5.27) and linearise in ϵ.

$$
\begin{aligned}
& u_{0}^{2}\left(\cos \phi+\epsilon V^{\prime}\right)^{2}=u_{0}^{2}(1-\epsilon)-u_{0}^{2}(\underbrace{\left(\sin ^{2} \phi+\epsilon(2 v i \theta\right.}_{\left(\sin ^{2} \phi+2 \sin \phi+\epsilon V\right)^{2}(1-\epsilon(\sin \phi+\epsilon V)(1-\epsilon \sin \phi+\theta(\epsilon))}) \\
& =\sin ^{2} \phi+\epsilon\left(2 v \sin \phi-\sin ^{3} \phi\right)+\theta\left(\varepsilon^{2}\right) \\
& \left(\cos \psi+\epsilon v^{\prime}\right)^{2}=1-\sin ^{2} \psi+\epsilon\left(-1-2 v \sin \psi+\sin ^{3} \psi\right)+\theta\left(\varepsilon^{2}\right) \\
& \cos ^{2} \phi+2 \epsilon v^{\prime} \cos \psi=1-\sin ^{2} \psi+\epsilon\left(-1-2 r \sin \phi+\sin ^{3} \phi\right) \\
& \epsilon 2 v^{\prime} \cos \psi=\epsilon\left(\sin ^{3} \psi-1-2 v \sin \psi\right) \\
& \underbrace{V^{\prime} \cos \phi+v \sin ^{\prime} \phi}=\frac{1}{2}\left(\sin ^{3} \phi-1\right) \\
& =\cos ^{2} \psi \frac{d}{d \psi}\left(\frac{v}{\cos \psi}\right) \\
& \frac{d}{d \phi}\left(\frac{v}{\cos \phi}\right)=\frac{1}{2 \cos ^{2} \phi} \underbrace{\left(\sin ^{3} \phi-1\right)}_{=\sin \phi\left(1-\cos ^{2} \phi\right)-1} \\
& =\frac{1}{2}(-\sin \phi+\underbrace{\frac{\sin \phi}{\cos \psi}}-\underbrace{\frac{1}{\cos ^{2} \phi}}) \\
& =-\frac{d}{\frac{d}{d \varphi} \cos \varphi} \frac{\cos ^{\circ} \psi}{d \varphi}=\frac{d}{d \varphi} \tan \varphi \\
& \frac{d}{d \phi}\left(\frac{V}{\cos \phi}\right)=\frac{1}{2}\left(-\sin \phi-\frac{1}{\cos ^{2} \phi} \frac{d}{d \phi} \cos \phi-\frac{d}{d \phi} \tan \phi\right) \\
& \int d\left(\frac{v}{\cos \phi}\right)=-\int \frac{1}{2} d \phi \sin \psi-\frac{1}{2} \int \frac{d \cos \phi}{\cos ^{2} \psi}-\frac{1}{2} \int d \tan \phi \\
& \frac{v}{\cos \psi}=\frac{1}{2} \cos \phi+\frac{1}{2} \frac{1}{\cos \phi}-\frac{1}{2} \tan \phi+\frac{\beta}{\hat{N}_{\operatorname{con}}} \\
& V(\phi)=\frac{1}{2}\left(1+\cos ^{2} \phi-\sin \phi+B \cos \phi\right) \\
& \Rightarrow u(\phi)=u_{0} \sin \phi+G M u_{0}^{2}\left(1+\cos ^{2} \phi-\sin \phi+B \cos \phi\right)
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
x=+\infty \quad r(\psi=0)=\infty & \Rightarrow u(0)=\frac{1}{\infty}=0 \\
u(0) & =G M u_{0}^{2}(2+B)=0 \Rightarrow B=-2
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow u(\phi) & =u_{0}\left(\sin \phi+G M u_{0}\left(1+\cos ^{2} \phi-\sin \phi-2 \cos \phi\right)\right) \\
& =u_{0}\left(1-G M u_{0}\right) \sin \phi+G M u_{0}(1-\cos \phi)^{2}
\end{aligned}
$$

Out coming light lag:

$$
x=-\infty: \quad r(\pi+\alpha)=\infty
$$

Small $\alpha \ll 1$ deflection angle

$$
\begin{aligned}
& =u_{0}\left(1-G M u_{0}\right)(-\alpha)+G M u_{0}^{2}(1+1)^{2}
\end{aligned}
$$

Predicted deflection angle for a light ray passing by a star of mas M with the distance r_{0}.

For a light cay tracing the surface of the Sun $\alpha=1,75^{n}$, first observed by Eddington in 1919.

