
 

5 TheSchwarzschildsolution

TheEinstein egs 48 are set of 10 coupled non linear 2nd orderpartial

differentialequations for gyu very hard to solve in general

Theproblem simplifies significantly if we concentrate on spacetimes with

certain symmetries The strategy is to make an Ansate for gyu consistent

with the symmetries and then substitute it into 48

5.1 The Schwarzschildmetric

The solution of Einstein equations for an empty spacetime surrounding a

spherically symmetric object was found by K Schwarzschild in 1916 The

Schwarzschildsol is of key importance it describes the spacetime surrounding

stars and it describes the simplest black holes

Let us derive the Schwarzschild solution Assume the following

1 Empty spacetime outsidetheobject Tm 0

Ryu IggyR 8ThTru Ryu 8ThTm Lygrut
Tm o Ryu o

2 Static system I d's where Jogy o goi 0

if go 1 0 di dtdx which is
not invariant uncle t t spacetime

cannot be static



3 Sphericalsymmetry I ud's where 0,4 enter ds through DG'tsin bdot
i.e no terms oftype dido did4 dody

12,3 Metricmustbe of theform

5D di ACMdt't 134di Ccr do't sin'od

The function Alr BG Clr are foundby substituting the Ansate
5 1 into the Einstein egs 48 Before doing this we can howeversimplify

the form of 15.1 a bit
Rescale the radial Cid

p I di dr
2

di A RCF dt't Bury 4CCRED di F do'tsin'od
c RCT 2

FAIR Btr
In order to have the right signature Ds L 0 for timelike curves we

need to have

I I o ICF et L th I c IR
B F IBCT

Rename F r

5.2 di est dt't em dr r do't sin'Qd

The connection coefficients and Ricci tensor of this metric are given by

exercise



to L'Cri ri e L'Cri r tr r f
5.3 fi Mrl f sinocoso Mas use

ftp e
2M

Sinor'sre
2M
siio

5.4 Roo et MCL L't L's 1.2 R d L L'B 2

Rn e r B L 1 1 Rzz sin'oRm

The Einstein egs read

Rm 8Th Tru ITgro

Outside the object Ty 0 Ryu 0

Using 5.4 Ryu 0 implies

e
2K Roo R 0 as Roo O R 0

L L Lts 12 d L L'P 21 0
L p

LG Bcn j
const

Rescale F e t

ekdt eh at eMAIL
Rename F t

15.5 ds e Mdt enter rifle't sintoday



Then solve for Blr using 1222 0

Raz e r 2B 1 1 0 re
2B l

d f re
2B

or fdlret.MN fdr
re
M

r Rs
const ofintegration

e
M
I I

Substituting this into 15.5 we get
r

15.6 ds fl R dt't l Rf dr r do'esinody

What is thephysicalrole of the integration constant Rs In the limit R 70

we recover the Minkowskimetric The limit r Rs corresponds to the Newtonian

limit where we have shown that

go 1 210 Ll Rst r R

Rs 2Ior

In Newton's gravity the solution outside a sphericalbody of massM is

Io term Rs 26M

Therefore the Schwarzschildmetric 56 becomes

5.7 di fl 2hr1 dt I 2hr1 drier'ldolesinodom

The combination 26M defines the Schwarzschildradius of mass M r

5.8 Rs LGM



This describes the spacetime outside a spherically symmetric staticobject of massM

There is an apparent divergence at r 26M However this is just a coordinate

effect no component of Roya diverges at r LGM The Schwarzschildradius

stillhas a physicalrole If the radius Roof theobject of mass M is smaller

than its Schwarzschild radius Rf 26M the object is a blackhole In
this case not even light can escape from the regime r C 26M the Schwarzschild

radius determines the horizon of the blackhole Howlarge is Rs for familiar
bodies

Earth Meath 61024kg Rs 0,9 cm

Sun Mo 2,0180kg Rs 3km

TheSchwarzschildradius of theEarth and the Sun much smaller
than their size Rs ka Ro

When Ro R we always have r R and the coordinates 5.7 can be

used throughout the analysis In this section we willdiscuss Schwarzschild solutions

where Ro Rs and return to black holes in the next section

5.2 Birkhoff's theorem

It can be shown that the Schwarzschildmetric 5.7 is theunique spherically

symmetric vacuum solution This is the Birkhoff's theorem see e.g Wald'sbook

for theproof
Due to the Birkhoff's th wecouldhave dropped theassumption of staticspacetime

above Einstein egs impose this Moreover this implies that thegravitational field

of a collapsing sphericallysymmetric object is static outside the object and described

by the Schwarzschildsolution



53Distances timeintervals red andblueshifts

Distances

On t const surfaces thelineelement 5.7 reads

ds I 2hr1 dr t rydoi siiod.ci

Due to sph symm we can rotate the ad's s t any two points on t const surface

lie on theplane 0 const 4 const

di l 26,1J dr dr

Proper distance between twopoints r and he is then

5.9 sz dr I 26M rrlrr ikMDK lr.fr 26M 126MIn Eam
r rr Ean

For r 2hm this gives 5,2 th rel Therefore Sr corresponds to distance

in the asymptotic flat space limit Close to the object gravity stretches the

distances since AT Dr

Time intervals

Consider a stationary observer de do 14 0 The time measuredbyher is

herproper time

IT di I Later dt

5.10 DT fl 21pm It It

Again dT It as r 2hm t is the time ofasymptotic flat space Close

to the objecttimeslows down dT Cdt gravitymakesclocks tickslower



Gravitational red andblueshift

Consider a light ray emitted at Ct r o de and received at tz h Q 4

where the emitter and receiver are stationary adf.i doi.cl O
dt

Tir 2
UT
To i

scarof
massM

Light rays move along nullcurves

ds I 2h1 dt gijdxidx.co

It I 2hr1 gijdaxiddxIdoo o

receiving 2 a
time

fftp 2armjigijddxidaxI doo o

i 0
emission

0
time

tr t I 2hr1tgijddxddxI doo o

o 9Thepaths x lo are the same for
any emission receiving time since
we assume stationary source and
observer and since thespacetime
is static

Consider two signals emitted at and t t est i
r e r r

t t t t st St

But this concerns the coordinatetime



In terms of the observerknitter propertime I10

f
42

Ei f hit 11,17 as stash
2

Correspondingly the relation between the observed and emittedwavelengths

and frequencies are given by

42
511 sat l 2h17 Gravitational redIblueshift

I 2hr71
n r Yr Xi
her X L a

cµ
Yr Photons climb up a gravitational

5 12
ftp.byttq flj yT potential looseenergy redshift

hMrz

In the asymptotic limit rss 2hm these yield
1 644 t r 2am

f l GMft try r 2am



5.4GeodesicsoftheSchwarzschildspace

To discuss the motion of objects we need to find the geodesics TheSchwaresch

space is spherically symmetric and stationary the metric is independentof 1 and

This independence leads to the existence of two constants ofmotion related

to the symmetries 1 test and s

To find the geodesics we write down the Euler Lagrange equations for the

metric 1 12gyu knit as we did in section B

For the Schwarzschildmetric 5.7

L Izquierdo t f I 2hr1 t't HE't sin'oE7

where it dxI and T is theproper time considertimelikegeodesics i e
At trajectories of massive objects

Geodesic eg.dz djf O

component 8 O Syfy fl 2hr1 t k

f I 2hr11t O dik o content ofmotion
IT

component

tf O Kyo r'sin'Q L

d r'sin dh_ O content ofmotion
DT DT



Q component HsinGoo 0 4 8 rio 1080

rio r sinocoso if o

Irri tr r'sina.osoE
OO2ro sinoco.EE O

r component

Jtg Gift 1 1 2414241 i riot sinai
2

Enea
r

F yIay2 aff't't ftp.I rCE4siioiY o

rr
r thirty2hr1 t Iff l 2hr1 i rflharMYE isiio oiy.to

Atany given time we can rotate the coordinates s t Q Is due to the roletronal
symmetry of the system Then

trio sin cosign Et Zi o Q const

Therefore we can choose the coordinate s t ECT Iz and theabove set of
geodesic egs becomes

5.13 f 2hr1 t k const

5.14 rt h const

5.15 r ioy.fi2hr11t 6 11 soffit rft 2 16 o



In addition to the geodesic ego there is a relation that followsdirectly

from the definition of the proper time

IT des I 2hr1 dt I 2hr1 dr r'd

I

f 2hr1 t fl 2hr1 i r 1 5k

Formassive testparticles we can define

5.16 E m k I 264Mt
conservedenergy These definitions are

justified below

5.17 L Mh Mrt conservedangular momentum

energymeasuredby an observerwiththe4 velocityum
Nole that E t temp Eobs

Take a stationary observer ui o DT's goodt
w It 1

IT Fgoo
Uo go.li Fgoo

Eob Unpts UPo f m't t E pm mdxI
T T IT

includesonlynon gravitationalenergy includes all energy
mass kineticenergy

Using the conservedquantities E and L we can rewrite eq 5.16 as

E ri Ii t 2 l z
15.18 EI Izmit LI AMI GML me

2M 2mm mrs 2

E Vcr



Written in this way 518 looks just like the energyconservation equation of
Newtonian physics for a particle with energy E This is an analogy that can

beused to understand themotion Theeffective potential Vlr differsfrom theNewtonian

result by a trivial constantme and by the term GMI Thisattractiveterm isMr3
a pure 612 effect and it gives rise to precession of planetaryorbits

Formassless testparticles m o we choose to parameterize the geodesic by 4
normalised such that

PM DI dimensions 55 m
Z

DX

The equations for null geodesics arc then givenby

5.19 f 2hr1 t E const d
DX

15.20 Rio L const

5.21 r
iamr.fithirtyarmy soffit rf tanto o

and ds O yields

I
15.22 l 2hr1 t fl 2hr1 i r 0

which using 519 and15.20 can be recast as

E i I 2hr1 rt O

E i Il 2hr1 Lrt O

E sir 26 4



55 Motion in the Schwarzschildspace

Using the geodesic egs we can now investigate the motion of massive and
massless testparticles We concentrate on a few special cases

Vertical fall

For vertical fall const Concentrating on massive testparticles and setting o in

eq 516 we get

f 2h11t f 2artji I

f 26,1J't l hair r

k leg 5.13

k i f hard
t
kineticpart potential part

From eg 5.16 E mk ke l ELM boundparticle

k I E 3 m unboundparticle

considerverticalfellstarting from rest rko no r To O

k's i't 1 Land I 26 1 bound particle

i I 26 Ll hat

zit anti that
r amp looks like theNewtonianequation but recallthat day and

IT It



Compute thepropertime that the observer measure when falling down to some

r ar

din de dr de
dr r

Tr r

dt dnt F
To ro r

tr to µa
r

What is theproper time required to reach the Schwarzschildradius r 2am

Using K l 26 ro 261 we can rewrite
l ke

r

Tr To f Zanupf
N as r 26M

T l k
ro

I I k a r 26M

It takes a finitepropertime to reach the Schwarzschildradius

But the corresponding coordinate time t time measured by an observer at r a

diverges

dt dt DT ee 15.13 4 2hr1 t kdin

dt k din k's I KI
ro

1 KI
r

D daredr ti anHr f r

g
2amH

az.io
dr

l 2 Fit
Weassume theSchwarzschildradius isoutsidethe object so the object is a blackhole



I

r

It JEM r
r 2am r ryadi

to ro

Sef r 26M GE C 0 as the integration limit
26MHE

t to 7 far Pkr 26M ro r
to

consider the upperlimit 26MHE

I II'Imer my far aineaneha
r 2am as c 0

Cos2hm

t a a r 26M an asymptotic observer never sees the object

reaching Rs 26M

The signal becomes infinitely redshifledas the objectapproaches 12 26M

toed 12472 I in as rears 2am
I 2h1 n l 2am

em Ten
Mobs A

robs 2hm

Job
fobs 0 signals received at infinitely

long interval

JI
I

f i
i RI
y
a Blackhole



Circular orbit

For circular orbits r const eg 515 becomes

ampfitureft rft 2 16 0

Grift oil
do Gif const

Htt artft
Therefore the coordinate time to complete an orbit S4 21T is

St fin21T
St 41 Again thislooks like theNewtonian result Kepler's1a

GM but differences arise due to St ST

The orbit time measuredby an observer at fixedno not a freely falling observer

force neededto stay stationary at r ro

Str 11262 est est
ro

Yz
s painta

The orbit time measured by an observer living on the orbitingplanet

DT fl 2hr1 dt r'd

agree
are dt

stone fl SamyYf4Ig
2Tfatal shirt o as r 3am

Circular orbits of freelyfallingobjects not possible for re 36M A circularpathwith
r 34M requirespowered flight



It is also instructive to compare the orbit times measuredby an observer
1150

on a planetwith theorbit radius r freely falling object

Stob 21T aka I 3hr1Y
and an astronaut hovering at r ro 4 40 poweredflight

Sta FI
21Trainy hairY Tob

ro

the freely falling observer measured a shorter time geodesics not necessarilyglobal

Maximals of thepropertime

Consider photons on a circularorbit r const The nullcondition Is o

given by eq 15.22 yields
m

42hr1 t r oil day ipn

ddx.TKI rtfi 2
The geodesic eg 521 gives

offthrift rft2h46

4 Gee
p3

Combining these two we get

Girls tf 2hr1
GMT I 2Gt r 36M Photons orbit at r 36M

extreme bending light

For radiallymovingphotons o and eg 5.22 yields



Hardy p 2a ji
EFI 1211 Az I Kra so as r 2am

outwardmotion o A radialline of sightnever
reaches r 26M cannot see

inside r 2AM

General orbits

In Newtonian gravity planetary orbits are ellipses parabolas or hyperbola In the

Schwarzschild solution this is no longer true but there will be GR modifications to

the orbits

To facilitate the discussion of general orbits let us recollect the the geodesicego

together with the ds o or d o condition of massive and massless test

particles respectively

5.23 l 2hr1 t k L X T m to
DX ddx pr m o

5.24 rig h
l

5.251 I 2hr1 t fl Kiffin moi to i.mn oo

Using the first two in the last one we get

i i r'll 2 h I IF i adf.eeddof gzoi

dEhaiqjhru hIt 2arMf sio'of

En r't if fe
Define a new variable U tr du dry Wdr dr D



FEI u ICI 2am I agua

hi u'll 2am I2oamu

Massive case m to n

defy ak fi I 26ha

516 da uh k1 2612 26Ma A Lanka 26MW

r
const Newtonianterms GRcorrection

Massless case m 0

5.27 dug tu's k 26Ma F 26MW

Perihelion precession

For A co the Newtonian eq

danz tu A c Hymen

has the elliptic solution bound system

U Gtf I eco Colol e l Aayhly eccentricity of theorbit

i
Planets in theSolarsystem are moving slowly ve 1

i ax Il rdy v r y



The 612 term in 15.36 is a smallcorrection

26M hi hi moi nu k 1
26Mu
F

Thus we can expand 536 aroundthe Newtoniansolution

Athank Lamu a

26M h h h Wh Uz where u are roots of

26MW 26Mu hitUs u 26M hikeUrustusudu 2hMummy

I 2h1 A
h2

Here Ui are roots of e

A 26µg 26MW a o i.e they correspond to local

extremal of the distance r Lu

In theNewtonian limit there are only two roots

At 26Mu u o

2hmU Tr h T

which are theperihelion furthestdistance and aphelion closest distance and theorbits

are closed elliples Since the GReffects are small we can approximate

Ue E 1 04 h Tell cOCS
q t
perihelion aphelion

However now d OCS which causes slightprecession of theperihelionlapheton

Yy 26MU u u u a a
bit of theplanet

uU.HUup 26M n Han ai n queue rue r e r



qq.f ru
u.nu ri ayEui

O 2hY K1

fEu u l GM Utu Ud

dadu 1 GM UtUr
U U Uz U

Integrate this from an aphelion U to the successive perihelion me Exercise

U2

4 e f du It 321amCu th

U
CUUi Cuz u

Theperihelion precession the deviation of successive perihelia from 21T

b4 24,2 21T IT SIGN hitch 21T 35hm rt rt
For theplanet Mercury we get S4 410 arcsecs

century

Thismatcheswellwiththeobserved value from which the01101 bigger effects dueto other

planets are firstsubtracted



Bending of light
Taking first M O in eg 5.277 we get

defy u F u resiny
r 1
f since
he A run

A straight line the Minkowski solution r YE
14 x

t since

GR generates deviations from the M 0 solution causing bending of the lightrays

In the limit r 26M GR terms are a smallcorrection

76M 1hr1 1
smallcorrection

ddu F a fl Lama

Denote by u the point where the distance is extremised

df F ai Lamu so F u I 2amno

We can rewrite 527 as

j u I 26mmol u'll 26ha

Since 26Mu 1 the solution shouldbe close to the M 0 case

Make an Ansatz

uC Uo sing 26ha vc
C itsarbitrary function Oct

644 U cos4 t EV'C4



Substitute into eg 15.27 and linearise in E

Ufcosyc cV'T U I E ut sing Ev 41 Ekin EV

since 2sing Ev l Csing cOCEY
sing c 2using sing OLED

cosy Eu l since EC T 2using sin 4 OLE

coff LEVIcos I sink CCy 2vsingtsin y

E IVWoof E s y t 2using

cosy using f sin 1

voice Ey

r i
f fsince

Lycos d fancy
d4

ashy

f fsince come kno

JdE.g flydolsinx tagdEy tfdkn4

f co t I Letang Bp
content

4 g l cook sing Bus4

uC Uosince c CM u It cos sing cBusy

Initial conditions

X x r 4 0 a uco ly 0

Uco hmu 2 13 0 B 2



acct a since GMA It cos since 2am
1220

Uo 1 hmu sing GMU I cosy

Outcoming light ray µ
S

X n r IT L N x l

q r.fr
SmallLK l deflection angle µ x

U Ttd U I GMao sin ITH Lmao'll cosCIT12
in HoostL ocaytco.IT sin 5 2 OLLY
L I

Noll GMU C d GMutce115
WITH Lll hmu 4hMat L 4GM 46th akaMaol GMao
tf 0

Predicteddeflectionangle for a light

ray passingby a star of mass M with

thedistance r

For a light ray tracingthe surface of the Sun L 1,75 first observed

by Eddington in 1919


