
 

4 Gravitation 790

In theprevious chapters we have developed machinery to measure curvature in

terms of tensors

We will see that Einstein egs are given by

Gm 8Th Tru
p energy momentum tensor describes

matterA Newton's constant
Einsteintensor13.23
measures curvature

This is a set of 10partialdifferentialegs of the form

Tg Tls p
9 t

geometry matter

Before motivating the form of Einstein egs we need to discuss

the energy momentum tensor on the 1241

4 1 Energy momentum tensor

Theenergy and pressure Enomentem and their lossesdue to dissipation can be

represented by the energymomentum tensorTru Its components are related

to thermodynamical quantities and transport equations derived from kinetic

theory energy particle number none conservation Eulerequabon etc can be obtained

from its properties



We do not present a systematical derivation here butjustgive the form ofTru
8C

Consider ideal fluid forwhich entropy is conservedalongthe fluid flow ids 0
IT

along theintegralcurves x7T of the 6 velocity of the fluid un dxf
do

This mean that there are no dissipative terms and the fluid is locally in thermal

equilibrium

For ideal fluid

4.1 TM gtp uni pGH g energydensity in therestframe dxi.ro
di

p pressure 11

Using that lemurs 1 we have

14.2 g unite
14.3 p s b gmt Vii Tv

Properties of the ideal fluid are definedby the equation of slate

14.5 wld

common cases are non relativistic non interacting particles dust p O

relativistic non interacting particles radiation pity

For a generic matter component describedbythe Lagrangian Lmatter theenergy
momentum tensor is determinedby

14.4 Tru
g

r

g gµfd xF9LmakerSgru

In the generic case 44 we use 14.2 and 4.3 to define theenergydensity

and pressure

In GR allquantifies are geometrical and there is no a priori preferredframewith a

specific physical significance Mathematically a manifold 9 and tensorfields T on



it are equivalent if they are related by a smooth topologypreserving map i e

a diffeomorphism see eg Nakahara Spacetimegeometry andphysics This means that

also the matter action smatter gµ 4 mustbe invariant under a generic
matterfields

diffeomorphism

ssmifdxffgm.gr 14 801 0
i

where 8g if4 are variations of the components under thediffeomorphism Adiffeon

is generatedby a vector field call it Vr and the variation of the metric under

it see Carroll Appendix B or Nakahara is given by

8g the Ovvy
Hence dog term seepageboun

Hmu sd9xsfz.qvifdxfgqlfgssgm.ru fd4xFsru0rffgsfmzfo

µ4 fgVµTM O for any Vu thatgenerates a diffeomorphism

This yields theenergy momentum non conservation

5 qT for TM defined by eg 6.4

By contracting this with u we get

O wat

u gip Wu xpguy
Wh Stp gtp f Pui civilly Worp
cidulstp starchy 01 1 0

dd stp e lstp

6 p Kii Stp dp



820This yields the continuity equation for the energydensity g
4.6 de que Stp O

dT

Example

Homogeneous isotropic universe ds s alt AYASijdxidxi
The fluidmustbe at rest in comoring crcl's otherwise homogeneity isotropy
of preserved

ur 1,0 0,0

quipu NEW
3 W eff no Mf Rioscia here'a d

3 s
a
sum over i 12,3

The continuity eg 14.6 becomes

if Ida gap O dtsdt in the movingframe

to even for an ideal fluidin the fluid rest frame if cito

The above example demonstrates thatenergy is not in generalconserved in curved

spacetime

Flat spacetime I TM O

test symmetry conservedchange E J T d x
dI 0
It

Exit bxi symmetry conservedcharge pi JT d

dpi e 0
It
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Carvedspacetime O TN O

test not a symmetry dE_ 0
at

Xi xitsxi not a symmetry dpi to
dt

These results concern the energy and momentum of matter fields Lgravity

In a dynamicalsystem of matter gravity it is not surprising that the matter

energy and momentum alone are not conserved c f harmonic oscillator with

a time dep mass energy not conserved Defining the energy of gravitational

degrees of freedom in LR for a generic spacetime is a non trivialproblem

see e g Carrollpages 120.137 and 252 253
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4 2 Newtonian limit

Define the Newtonian limitby
1 Particles more slowly real c l

2 Weakgravitationalfields

3 Static gravitationalfields

In this limit we know from observations that Newtonian gravity workswell

Any theory ofgravity shouldtherefore reduce to Newton in the limit 1 3

Let us consider the motion of freely falling testparticles The strong equivalence

priciple state that they move along geodesics

am WWW 0

Let us check if this reduces to

a e PIO

in the Newtonian limit

From 1 it follows that ddxipccadtp.ae

From Its it follows that I crd's which cover theentire spacetime and

Gnu fu thru Ihad41 Ino 0

To firstorder in hr the inverse metric is just

GMsym h 01h h y p hi

rd
g ga y party hav V ya 01h

8 ymha y ywhsry.nu Och
f Rip har g h
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The geodesiceg am WWW 0 then becomes linearize in thesmallquantities

dd 7 6441 014 0 too tag dogoxttog.io s Goo

d i 12542 hoo 12 O 12g d hoo
MX
y J hoo

Yeo
d 127 dohoo O DI O

DT
50 because of 3

r i

d i
tzpiidiho.cl f o

i a e i

f f tag'dihoo O

8 d hoo pi gii

Comparing to the Newtonian result

at
did

we see that these are the same provided that we identify

hoo II perturbation around theMinkowskimetric play
the role of the Newtonian gravitationalpotential

Goo 1 28

This confirms that gravitational effects indeed can be associated to geometry
in the Newtonian limit at leastwhat comes to freely falling objects



4.3Einstein equations

In Newton's gravity the gravitational potential E is determinedby the
Poisson equation Now we want to find a corresponding eq for GR

which in the Newtonian limit reduces to

LIO ITgm Fluidrestframe go l LE Too g em

µ
TE 4ThSm O'go stat

SEMI massdensity not a tensor as
Needsth lensorial gµ V Vchange anderLorentz
por.gr not ok since ASM 0

The energydensify g WiiTru is a
scalar why not include also other
components of Tgv

Try Ryu Rtu does not work qtr e

or
constant Or Rr LaFR to

Take insled Ryu Lage R Gyu on the LHS and postulate

4.77 Gyu RI Then XVI 0 ok

check if this gives the correct Newtonian limit In the Newtonian limit veal

which means thatparticles are non relativistic pl a mi

Tru gumi p o pressurelessdust

For 8 0 Gyu O gyu Yu is a s labor

In the Newtonian limit gm p thru
g is a first order perturbation

Tru SkirtSun Et Sli In 11,0

give ocgy
In L go

backgroundquashes

g OCS
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To first order in thesmallquantities

Too S Ti To O T GMTru yoTo g
t
f firstorder perturbation

Gyo KI Ryu f gyuR Ktm gr
12 4zR KT

R KT

Therefore Gyu Rtu can be rewritten as

Rm KI fgmR
Kttv Ign

Using the above results for Ty we get

Roo R Too fTgoo
K g IzC5Yoo
He
2

Now express Roo in terms of themetric

Roo RMyo R ooo 0 by symmetries

D o o

Sir O son Ocs's
0 as John O stab limit

JjLagi dogostdoggo Jggoo

12µg bgoo

Lay didjhoo

Lath p Sid's3



Thus

Roo Reg 12Wh K
2

Tho kg

Earlier we found that in the Newtonian limit

hoo 2Io WE Egg

This is just the Poisson eg TIO 6176g provided that we choose

E 4Th R 8Th

Therefore 14.7 becomes

4.8 Cyrus 8ThTru Ryu lzg.ru2 8tTGTf1

These are the Einstein equations 10coupledegs which are the GR equations of

motion for the metric gyu given matter described by Tyo
The Einstein egs have the following properties

1 Gyu O for a flat spacetime

2 Gyu constructed from RSrou and gyu only
3 Gpu linear in RSrov
4 Gyu symmetric and 2nd order in derivatives

5 Why 0 satisfied identically

It turns out that GR is the simplest theory where gravity curvature By
dropping 2 4 one can construct alternative theories of gravity They

are constrained both by the Newtonian limit and by cosmological observations So

far all observations are consistent with 612 so any modification of it must

reduce to GR in appropriate limits



p

4.3Classicalfieldtheory in curved space

Thefundamentalobject of a physicaltheory is its action or Lagransean The

Lagrangean formulation of a classicaltheory in curved spacetime is inprinciple

analogous to flat spacetime up to some technicalissues related to theGauss

law etc Let us illustrate the formalism first in the simple case of a

scalar fieldtheory before moving to GR

Scalar fieldtheory in flat space

Consider a theory with real scalar field of xn Classical trajectories from

an initial configuration Xin to a final configuration 4 XI foundby

extremising the action
Xf

S fol xh.coCx7 Su4Cx7
Xin

Thismeans that we vary the field 01 7 46 7 80167
Trulock sucker 28447

St endpoints are kept fixed 84Xin 84 XI 0

I
4 7 844

and find the configuration of xi for which 851411 0 to linearorder

in 84



Under 0 54 84 the variation of 550473 is

Xf TryS4
SS fd x 3 54 Iffy 74

Xi

7k 59 HIGH
Idxp 74k Ds4 fdkkkfe.se
E s

9
integralvolume

i
x

The second term is a boundary integral

tf Xf

JdxH q
84 fdtstfdxdydzff.ly 4 tfdx2xl t

E t XiF

dxdydzfjfy.jottIJdtdydzC t

Sassiness so HEE 3 Ei
nos l ni I

so as far
i i s i

9 unitrectornormal to 2g
boundaryof

This is just an application ofthe Gauss law Jd x fit Jdkn M

E as

or in3D fdvo.vsfd5 it



The boundary term vanishes because 80 0 at the boundary

k I z 84 fax nr s O

E T
841 o
33

Therefore we are just left with

85 Sdx 74k 84 o t 84
T
This we require because we want to find
a configurationhe x for which 8 1 0

H O Euler Lagrangeequation

The Euler Lagrangeequations are the classicalequations ofmotron of the

theory Classical trajectories x are those which extremise theaction



Scalarfieldtheory in curvedspace

Now repeat the same exercise in curvedspacetime In curved spacetime the

Gauss law lake the form

4.9 fd4xfgqV s

qd'xFrqV
assumingChristoffelconnection

E T
metricevaluated on SE inducedmetric

The scalar fieldaction in curved space is of theform

S fd4xfg1 4,94 where L is a scalar

Let the field rang 4 lot 84 q 4 0,84

Ss fdxFsµ 84 30 8 4
s

or k 54 91K 84

fgd4xrgffg qlffqdy4tfdxr.sk Ifos4s

3xFrnr s 0 as sgljo
fdxr.PE 91 14so

Requiring that the variation of s vanishes

85 0 f 84 q Iff
O equations ofmotion in

curved space



Example 930
Minimally coupledscalar field non minimalmeansadding e s 5124

on other curvature couplings suchterm
I 21 404 V generated through loop in general

note that for It signature we wouldhave here

S fd4xFgf gMq k4 Vol

3 Vtol I My
20,4

OrIffy
2 0 4 V'c so

04 V 4 O D Elton

Example

Energymomentum lenson of a scalar field

From the definition 4.6

Tru Eg4
Now 85ms 8JdxFgIn Li 0,404 VH

fax FgLm Fg gM0,4 4
I

2 X
q 424 no den on

SFge lzFggµ8g g.ru here

SdxFg Igrulm 12 4 4 8g

q SdxFgl Isak takeout gI
Fgf fgosh

828 84 0 yo

True 1,8 great 94 4 94 4 grub4004 grilled



94044 Einstein Hilbertaction

Now return to GR The action of 612 is given by

4.10 S fd xFJ 12 Einstein Hilbert actron
H 16176

Hilbertwas thefirstone to showthat
this yields Einstein ego The story
contains interesting sosiologicalaspects

The GR Lagrangian L 42 is the simplest scalar that contains sign
and no higher order derivatives This is why LR is the simplest theorywhere

gravity curvature

Let us now show that setting 8 o for 14.10 yields the Einstein egs 4 8
Sgro

It is actually easier todothisby varying GM instead of gin The two
variations are relatedby

Sgm 8lgHg gas
Sgt g gas GM 8g gµtgHg Sg
5 Sgt 818g gmg'sgas
28gMt gmg'sgas

Sgm gmg'sgas
89ms gag 8g

4 11

Vary eg 14.101

85µs s fedxFggMR
16Ta

fdxkFg gMRyu fd4xFg4gMRµtfd4xFggMsl
85 852 85
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85 is directly proportional to fgM so wedo not needto doanything for it

Theparts 85 and 85 need some manipulation to find out howtheydepend

on Sgro

Consider 85 first

m feigervalue
For any invertible m m matrix M let Ms ITXi

i i

In detM In TX

Inki

IndetM Trlr M

8detM Tr 8M

Apply this to themetric components gµ gzdetgyu

vs81 g 89M

g s ggµsg using 4.11

Sfg Lpg 4 Sg g j8g Lyfggpusg

85 fd4xftp.ggpusgm gMRas

fd4xFgfRzgpuSgr

Then 553

Want to compute SRyu

Rau Roaoo soft riff surer 1 1



As gyu gyu Sgp the connection changes MY MY Stfu
The variation 8M is a tensor because it is the difference between two

connections This is enough for us it is not necessary to work out the

explicit form of Srf

see sosau isrorfu.ro.sry.ssroo srsrfo u.sn

rose trouser oust rios

sosrg iro.sn as as

rzsr.eu raiser rise O Hoshi

Oostfu as

Therefore we get

SS fdhxfgg.ru 0osrfu 0usrfo
fd4xFg q gMSffu 0ugtSfo metric compatibility qq.so

jfgdxfrnogmsro n.grSnoop using Gauss law

0 if 874 O this assumes that song O

JE



Collecting the results we get 970

SSH gfd4xFg Ryu Iggy R Sgt

SSI agd4Fg RrozgmR STSgm sg Lx

Rm Lagu12
784C x x

1656

Setting t.gs
gu

0 Ryu Iggy R O Einstein egs in vacuum I 0

Including also matter the fullaction is

14.12 S SH Sm Sm fdhxfg.fm matteraction

setting Sigg
O yields

µ fgsgtlu ssmos.gr
felRru zRgru

SsgmRotzRgru 8Thf gSg
Tm 44

Now we can understand where the
definition comes from It includes
allparts of Sf that are left on

Sgm
the RHS after we organiseGru on theLt
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Properties of theEinsteinequations

The Einstein equations quiet85Gt are a set 10 coupled non linear

2nd order partial differentialequations for the metric gin
In addition to the dynamical equations there are 4 constraints

0µV D which follow from the Bianchi identity

10 dynamicalequation Gus85Gt
4 constraints gray o

10 4 6 dynamicaldot's in g

GR is a theory with constraints gpu contains 6 dynamical olof's and is

subject to 4 constraints You can think the constraints as conditions that

have to be satisfiedbyphysical initial conditions the dynamical dof's

tell how the initial configuration evolves

Note that Gpu Ryu Lag R depends only on the Riccitensor Ryuwhich
contains 10 of the total 20 olof's of the Riemann tensor The other

10 are contained in the Weyltensor gop
In vacuum

Tm o Ryu 0 but go to

The solutions Ryreo gopro 0 describe gravitational waves which propagate

through a spacetime empty ofmatter We willdiscuss gravitationalwaves in detail

later


