



































































































































3 Curvature 530

3.1 Covariantderivative and connection

In the flat Minkowski space we showed that partialderivatives of tensors form new

higher rank tensors

J Tp x xTp xTpx xTp Tp x xTp xTpx xTp whenacting on min tens

M copies in copies m copies n 11copies

JMT p sn is a m n 1 tensor in Minkowski

Wealreadynoted thatin a generalcarvedspacetimeSMT p sn is not a tensor

We want to generalise thepartialderivative into something I 0 that

is a tensor also in a curvedspacetime

Define the covariantderivative 0 as a map

J Tp x xTp xTpx xTp Tp x xTp xTp Tp whenacting on min ten
M copies in copies m copies n 11copies

and impose the followingconditions which hold for 8 in Minkowski

1 linearity 0 Tts PTT DS T s any tensors

2 Leibnitzrule PLT S GT S Talos
which holds alsowhen indices are contracted

3 For a scalar f M3112 Pf df 3yfdxM qfd h

Omf Jef
covariantderivative of a scalar is
just thepartralderivative

Consider now e.g a covariantderivative of a vector V CTp which should

give a 4,1 tensor or VM DX Jr






































































































































iv Olinde Corpse very 540
A

MCP dxM defines a function in a giver and set
DX

Use cord 3 above M dVM JuVMdXu

orJuVMdXu Yu V

Yo
covariant derivative of the basis
vector

Pdo detox I
Now define Connectioncoefficient

Tudo Piotr
SNM Mfo o dat So um dx So

Thus we get that the components of the covariant derivative of a

vector are given by

3.01 µvn 2WtM
i

f n
y

componentsof 1,11tensor not a tensor not a tensor

Let us see how the connection coefficients M transform under Xm xr

our fi a2xEs'kvBq3xIa2xEs'lsavr ir2rr
1,1 tensor eg 3.01

On theotherhand

a rn summer ro 2 2 m r it
a

transf of A






































































































































3 EE 1 r2rr7 sap Irg rII.zxIra
o 43 i'raiser

rs i mar EEr irIis Iyr
rat zx s i r 3 3 r

a r
tensorialpart non lensorialpart thatcancelsagainst

the non tensorial part of fro is
3 01

What about dual vectors wETp Bydefinition 0W should be a 10,2

tensor and proceeding as above we get another set ofconnection
coefficients

0W TWµdxn Wy dxntwPdxM f

waydxu define qdxtr Foidxo
suwdxuoxdxhwroudxooxdxufe.nameindices

went F wo dxTxdxn

The coefficients F can be related to T using the conditions 2 and 3 above

war dewy we wear 3 war
or a

cord 2 cord 3 withis a scalar

wrtEwdvh iwcsvr ivom qzvr ivrs.co
Fyi worth wow o

to rug qdxu ridxo






































































































































Hence we get
ow Har ri w dxnoxdxui.e.fr w

Nowwe know how to compute covariantderivatives of vectors and duals

Using the conditions 12,3 we can compak the covariantderivative of an

arbitrary rank tensor The components of covariantderivative of min tensor T is

given by

13.1 9Th dms on 7Th dms s t IT hmm at flit s rs

ftp.T dis rs Mfs T mm rn

For reference letus rewrite separately theresults forscalarsvectors andduals

Try 3,4
3.2 µ smut r

Tgwu Jeou fitwx






































































































































560
In flat spacetime we can finda coordinatesystem over theentire M where Nuo O So

the connection coefficientsmustsomehow carry information about the curvature Buthow

to compute them and are the uniquelydefinedin the firstplace Theanswer tothe

latte question is no

The conditions 1 3 do not uniquely define the connection and hence the

covariant derivative Consider another set of connection coefficients Yy
which define another covariant derivative

Fav2µV if V 1,1 tensor

quit IV fire v 7k A
n

qv qvtrfx rum.lv
X

4,1 tensor 1,01 tensor

Mum HI Em is a 4,2 know

The connection is not a tensor but thedifference btw two connections

is a tensor From any set of connection coefficients try we get a new

one by adding an arbitrary 4,2 tensor

Wealso get a new connection by switching the lower indices Ffv M

The difference btw PY and M is a 1,2 tensor called the

torsion tensor of the connection ftp.u

G3 Tj MY MY 217mg In GR we will set

Ttu 0 Thou to






































































































































Christoffelconnection

In general themetric gyu and the connection u are independent

degrees of freedom and as theabove discussion shows the connection for a

given spacetime is not uniquely defined there are severalpossiblechoices

We can however define a specific connection which is fullydeterminedby
the metric by imposing some extra conditions in addition to l 3

Require

4 Torsion free Ttu 0 MY TI
5 Metric compatibility Pgyu 0

The conditions 1 5 define a unique connection the Christoffelconnection

The explicit form of the Christoffelconnection can be found as follows Writeout

the condition 0 gyu 0 explicitly fordifferentpermutations and subtract

ToGru 3 gyu f g u MI 0

Fuguo Fuguo thug o x o

irgro hgro ru.in Ig
oJo9ru3rgvo Jvgort2ffug o o l goes

X4 true lzgsohygvo tugop 3og.ru Christoffelconnection






































































































































In GR it turns out thateven if we startfrom gpu and Ff as 580
independentdegreesof freedom the equations of motion set Mf equalto 3 4
Therefore in GRthe connection is always the Christoffelconnection Recall

that GR is a classical theory allphysics is on shell ii e obeys classicalears
of motion In more generaltheories of gravity this is not true and

we get different results if wevary gpu and Ff independently or setPfu

equal to b 4 This is something that you shouldkeep in mind but in this

course we discuss LR only and hence the connection is given by 3 4

It can be shown exercise that theconnection coefficients 34 also called

Christoffelsymbols satisfy

4 5 Ffv gJu Fg recall gedettgro

This yields

fv hit NEW
fit tgsulfg V

3.6 fit gµ FIT
which is sometimes a usefulrelation

In going from SR to 612 we basically replace Or in all non gravitational

expressions Thegravitationalsector is the non trivial part which we discuss later

This is just the strong equivalenceprinciple in action At any point P we can go

to the localLorentz frame where physics is SR and Ma O at P So in thesecrd's

at P we have f f But egs written in terms of are manifestly lensorial

and can bedirectly rewritten in terms of anyother ads So in practiseJn and

that's all






































































































































5903.2 Paralleltransports

In curvedspacetime there is no apriori unique way to compare tensors at different

points say VIP and V Q where P Q This because they live in different tensor

spaces Tp To To compare the tensors we need to define a curve which

connects P and Q and can be used to map an object of Ta to Tp
Theoutcome willdepend on the chosen curve or mapping

The paralleltransport of a rector gives us the concept of mapping a vector

V Q to VLP without changing its direction

Paralleltransport Q r Ql
alongCCHtop

Ta

p

Tp

Let C x IR M be a curve and U UH its

tangent vector V P C Tp M is a vector field defined over the entire M

or at least over points on the curve c x

Theparalleltransport of VCCH along the curve DX is defined as thesolution

of

3.7 UMPµV dXt 0µV O Sol gives thecomponentsof
DX theparalleltransport of M

This is thecurvedspace generalisation of ddx s DI To stress this
r d

Carroll denotes WORN DI
di






































































































































The same definitionapplies for a generalrank min tensor T 600

X 8 UrqTd dmp Bn O sol gives thecomponentsof
theparalleltransport of Td dmp sn

Using G2 theparalleltransportequation 4.7 becomes

ddxflsrri tm.nl o

4.9 davj trk.vhdxI.coDX

Given the vector VAat a point c XD the solution of 3.9 gives the

parallel transport at any otherpoint on the curve

Note that because of the metric compatibility p gµ 0 we get

U't gyu 0 for any UCT.plM

The parallel transport of the metric is just the metric itself From this it
follows that

Uno view Unqlgouvow
governorwow

Vulurqwu winnow
Therefore if Whand Vh are paralleltransported their innerproduct remains

Unchanged underparade transport

Unquwu O unqV o wq view o

Theparalleltransportpreserves lengths and angles






































































































































3.3 Geodesics

Geodesics are specialcurves which paralleltransport their own tangent
vector Thegeodesics are thegeneralisation of straight lines of Euclidean

space to curved spacetimes

The defining condition of geodesics curves CCH are that the tangent

vector h dd Jr is parallel transported along CCH

10 UMPW O Geodesic equation

Writing this out in explicit form we get

daxflsaiirum.ci o

daE dda trivia o

d
DX

4.11 d t Moudd dd O L
solutions xYx are geodesic

Consider the Minkowski limit Mou O In this case thegeodesic eg 3.11

reduces to
dry o ICH IX id
IX

in flat space geodesics straightlines

In the flat space straight line minimise the distance between two points P

and Q The geodesicsmaximise thepropertime fortimelikecurves dico






































































































































Consider the proper time between two spacetimepoints alongtimelikecurve 620
Xu

Ta fdtf.gr dx Andthecurvethat extremises The
DX DI

X

Ef
X

Vary x x 8 4 1 with fixedendpoints x Xi x d Xi

The variation of is given by

sina ddffgqx.EEIkfsgmdaxfdaI gmdagIdxf qudzfdE
112
DX

dxd fsgmda gm f quaff
W

did Hogan 8 0

IT

II fsogmfx sE2smda

fgniffusx dqjedaftxr
gmdfxpsxw.deodogru

Denote DX
ay

in

YogurtJugo Jugo iixosx just rename sun indices

fdaI 2gµiiYx 22 gr iiosxn 2ogmxnii8xo
Xi

Xi Xi 8 4 4 0

E jsx






































































































































XL
630

STz fdt genii f Yogurtsugar finger iix'o tx
Xi

Extremals
XL

Stiefdt genii f fogy sugar finger iix'o 8xM 0 Fsu
Xi

genii 422ogre sugar finger iix'o so 1 g

Ii 12g dogynthegro Igor xoxo to

to Christoffelconnectron 3.4

sowe found that

8 2 0 IM No xoxo 0 This is justthe geodesic egachon 311

Therefore we see that timelike geodesics connecting two points extremise the

proper time between thepoints The extremes are actually maxima so the

geodesics maximise theproper time btw differentpoints

Note that above in step theintegrand can can bewritten as

19mi f Yogurtsugar finger iixo 8x Itf 8x

where Is tzgqux.mx

check

Iff 3 8x 49mm zygasihis Sx

mixtxud dogµ Iiix'degas 8x
gnuiuttzfdogqxvxotdvgroxuxo.ygorxox.ir Sx ok






































































































































640
Therefore we find that extremising the action

f fdTL x x fdtggmx.mx

yields the geodesic equations

in
O

4.12 f 1 o intruders o L squirt

This gives an alternative way to compute the Christoffelconnectron for a giver
metric Variation of L guitar gives the Euler Lagrange equators which

according to4.12 are the geodesic egs for themetric gu The connection coeffrie

can then be read off from these Using 112 is often an easier way to get TTS

than thedefinition 3.41 On the other hand 6.4 can be readily implemented

on computer

Example

Findtheconnection coefficients for dis df't alt dx'edytedi

Coulduse 3.4 but we willhence demonstrate using 3 12

L grusiniu

Iz't agility't E s Iz't'tazfijx.in
dTL xix O ff.fm 3 0 E L

ponent

YE alt 2 hits aa x 2 5 5 aa's jXi J

a






































































































































650

b f t s t

EI I aa Lj x ix i so
I t adf.jxix.is Xo Mfs'xhi O

fig aa's

p r 0

incubi
did si E L 1 o

11 0 a Ii8g dat taxi si o

dxi
a IiLj 2am x it sj so 1 site
Ik 2 x xk_

Ik x hii o

note to X x her or
at 2 1 Erik

r ar o

sace'sj Minos allothercomponents are zero


























650Reminder of variatronalcalculus

t

consider an actor SLICH fdth1041,414
T

sis a functional function of thefunction44

Vary the form of 01ft keeping the endpoints fixed Oct 441 804

844,75441 0
Linearize everything in the smallvariation 8441

t

ss SINA.isoltB sIoltD fdt Llo tSo 4 84 114,4

11447 484 2,484 t

Idt 1 84 ftp.soi
EE.se ftp.t sx

Ietpfz dzpfz.Dso ftifs4
as 84tu Sect so

Hence requiring that 85 0 t 84 we getthe Euler Lagrange equations

SS of 84 3 f 0

This can becompared to thedifferentialof a function dflx dx Indeedfor

a functional stick we can define the functional derivative which acts

like an ordinary partialderivative except that

84,1 8 t t compareto a discrete set of variables di ftp.j 8ij
85143

fact fdt'Ll04t oilt'D

0



4k Sat'peYE sg.tt tselgaItyjIsgiftI
in
8ft t day81

84ft

daSH t

fdtbhlgq.gg SH H gat'E.pkloHt'toicHt

fat pe a.g.oia.y
th

ty
Ht't

stiffly www.tf.gg
So the Euler Lagrange ego are equivalent to 8542 0



Geodesics and freelyfalling objects 660

In SR objects which feel no force have constant 4 velocity

are u Jou O uMsdx

Consider a freely falling object feelsonlygravity no otherforces in GR Therest

frame of the object coincideswith the localLorente frame Physics lookslike SR

locally and we can write

are www.ciruw to

Cal Lorentzframe

The latter form is a tensorial equation and therefore freely falling objects in

any frame obey
3.13 ah WowUM 0 also gravitynot a force

This is just the geodesic equation

an Willens dxjduutwrf.us d've Pfodxudxo
did did

0

freeparticles move along geodesics

Example Lomoving observers Xiconst in the RW space

dis dt tact fijdxidxi

From page 65 the geodesic ego for this metric read

ads j ixJ O

Iii 2 Koji 0

Clearly Xi const X it C are solutions and hence geodesics

testparticles move along Xi const trajectories



If thereis a force f hacting on the testparticle we get

ah fml
Emtftp.rxdx.rs FI

m

mass of
theparticle

Using that ph mute the geodesic equation 3.13 can be rewritten as

3.14 pukph O

This form holds also for massless testparticles m o for which prp o

Massless testparticles move along nullgeodesics

Thechoice of curve parameter 1 of a geodesic XI is not unique We are free

to make reparameterisatron I a t b where ants are constants

da Manadf.iei tafdaYfirIsdzIdaxf o

XVI is a geodesic too

For massless particles we usually choose to s t

DI ph photon 4 momentum
DX

For massiveparticles we can choose X Ty dx man pm
DX

Example
photons in an expanding universe ds dt4aYHfjdxidxJ
Photons move along nullgeodesics for which Is 0 so we have
the equations

I aal fiji O
geodesicegs frompreviousexamples

Ii Laal'tXi o

I a'fjxixJso nullconditron di o



In general not all solutions of ds 0 are geodesics

Consider eg circularpath on X y plane

x coswas sijxixi wktycoiwtsi.tw w I
y sinColt attwhet o die 0 if W'CH L

a'Ct

But Ii Lad Iii o yields t.g.dz 2aalt Idina
z DX
so

d x Idina
a DX

In x i In a 2 5

out
Now I w't'sincott Ci w L

a'CA a

I
asinuct

j w'tcos wel t
att a co wot asincult

Hence X CoswCt are NOTgeodesics
y sinwas

However often it is clear from symmetries which solutions of old 0

are geodesics In practice it is usuallyeasiest to solve dit 0 Cander

some assumptions first and then check that the solution indeed satisfies

the geodesic egs

In our case the symmetries suggest that geodesics shouldbestraight

lines in the Bd subspace x y z whichat ang fixed t has a Euclidean

geometry

Rotate coordinates such that themotion is along X axis Egs become

1 It aa x 2 0
2 I Ladx't o

3 t tax o



690Solve 3 ie die to get
4 ELadat considermotion to x direction

Plug 4 into 1

Iraqi't o

dina
5 I wo

tat
l o const

Checkthat 141,15 satisfy 2 It 2 i't E 2 ta
Wow t 2aawao ii a't

2 a'wat e 2aa
w so 01

Nullgeodesicsgivenby

We these can beintegratedto get th X x once
aCt

we know act

It We

am sirens

P 1 wax Waa O O pnp O

t 9
measure energy andmomentum but in what frame how
can we connect to observables

Go tothe local inertial frame The energy E measured by an observer

un da given by the SR result 4.34

Eob 4PM group
Nowthat we know this is theobservedenergy we can compute it in
any coordinate system



Choose the comoving coordinates where dis dt ta'sjdxidxJ and 700

assume for simplicity that our observer is at rest in the comoving frame

UM 1 noOO O Umar groundgoon 1
nos FISoo

Hee go I no 1

Eob e goouop p
a

The comoving observer i e freelyfalling observer measures photon energy

E We cosmological redshift
act

Correspondingly the measuredwavelength is

1 241 2 a

stretchingdue to expansion of space



7103.4 Riemanncurvature lensor

We have now enough machinery to determine a tensorial ie coordinateinvariant

way to measure curvature deviation from flatgeometry

In a flat spacetime we have the following properties

1 Paralleltransportaround a closedloop is anidentity

2 Covariant derivatives commute i

µ V's TiVo because 2 coordinates
where F J fp EM

3 Parallelgeodesics remainparallel

None of theseproperties is true in a generic curved spacetime Here we consider the

first two properties
1 Consider an infinitesimal loopgeneratedby vectors a b asdxnd etc

a

b Paralleltransportequation for a vector taroundthe
loop splitsinto 4parts aoboi air b

Moree o
DX

Linear in VA and amb

Gus V HH Mao R µv b

D 9
linearmap

Going toopposite directiongives

Srs Rsomvob'd R qui Noy



I Now fit VothqVo Consider the commentator 720

www.qvvo kqvo
gov't III art flavor crew

470541 law Mint ftp ir4
suffer n yr rfarg.iry v iiv4

yr AerYvx ro er r.sr
durfxrx roX rHx ri.rjavd
lyr e7ar x

surj.rsrfx v
120µV
This definition turnsout tobeequivalent point1above Exercise

We defined q.ru
o 125µVR l o lemon

1 2 tensor

Hence Rom is a 1,3 tensor It is calledthe Riemann lesson and its

components can be read off from above

smite
In a flatspacetime Ford's where gµ const fp EM 7 0 12 0

This goesalso in theotherdirection 12 50 I crd's where grosconst FpEM

Exercise

Therefore weget the important result
TheRiemann tensormeasure deviations

12 so spacetimeisflat from flat spacetime

C



Given themetric in anycrd's we can now immediately compute the ChristoffelusingE

3.4 and components of theRiemann tensor using 3 15 If any of the components

12 4 0 the spacetime is curved

Symmetries oftheRiemannlesson

In a 4 d space the Riemann lesson 12 has 44 256components Not all

of them are independent however since theRiemann tensor has severalsymmetries

From the verydefinition q V's RIM and from 4.15 we see their

Roxy Roxy antisymmetric under exchange of lasttwo indices

There are also other symmetries which are not immediately transparent There

can be seen eg by going to the localinertialframe symmetry or antisymmetry

of a tensor wet indices is a crd invariant thing

RE.fi goIR2Ifil at Po where fie Po O

Po P

gailfirE Sir

gate g sign t.gr fig i Kai
Po TigersPo so

tgoagdlfisigi.rs fisigji Spfiggi fi i
2 rs's lag saggy

I Po

f finger filigii Jihiggitsisiggi
P

While this resultholdsonly at Po where girlDolezal JpgirlPo o the symmetric

of the resulthold for any PE M and in any frame



We thus find that the Riemann tensor has the following symmetries

3.16
Roxie Roxy

Roxy s thou
Row Ryo a Is Is

idogyffisogi.u dihgqi fih.gov

Howmany degrees of freedom are left among the 44256 components

Rohm Rogo
T t IT symm uncle in ox the sameantisymm wat oh antisymm wrt.ru

number of Iof's as for a Symon
4 4
2
4 6dof 4 424 6dof 6 6 matrix

6.6 6 21
2 Gx
f diagonals
112ofoffdiagonals

3.16 leaves 21 independent components in Rodeo

There is one more symmetry that follows from theexpression of Ringo Po above

3 7 RodentRonitRohr O cyclic permutation of last 3indices

This leaves altogether 21 1 20 independentcomponents in Rojo These are

precisely the 20 secondderivative JediGIFs which we could not set to zero in

going to the local Lorentz frame The Riemann curvature tensor is a tensorial

quantity that contains these 20 Iof's which measure deviation from a flat

spacetime

Bianchi identify

The Bianchi identity is a derivative constraint equation identically

satisfied by the Riemann tensor

O



Go to the local Lorentz frameagain consider thepointPo wheregfilpo o igECPo

TEMPO o and

0212 ifilp SIR girl
Po

siren sir fairy
Po

Kasimir vair ill
Po

Karis renren.oiririrlpi.fi rn SHI
Ti k 7
3 stiru L r v r L

Po
0

Since we can do this for any point PEM we find the tensorial Bianchi

identity

f 18 kRByµ PµRBrest OURBong O cyclic permutation over the
1st and last two indices

This turns out to be a usefulresult The Bianchi identity is essentially the

Jacobi identity for covariant derivatives Exercise

Pa Omri Ivy rural Ek rapid o

9Recall R run quihuis

Decomposition of theRiemanntensor

Recallthat a generic tensor can be uniquely decomposed into symmetric and

antisymmetric parts and the symmetric part further into trace and trace free

parts



Consider eg a 0,2 lemon Am 760

Anu Ayn Atm Ayn LakmeAyn symm

Ayn LatamAug antisymm

At GMAnu trace

AV.rs 0 Atm A

Ayn Ayn 1Agm 1Age Aint t Agrn n n

dimCM T
trace freepart

A ftp.e Agyut Airsn

rd independent decomposition into trace trace free and antisymmparts

We can also decomposethe Riemann tendon into trace and trace freeparts

Symmetries 316 set contractions over first and lastpair of indices of Roxy to zero

Room 0 12 oo o

Theonly non zero contraction is theRicci lensor

3.19 Ryu Rorov
o

Rvp Rouge 12 Romo Roaoo Rin
q p
317 3.16

Ryu Ray Riccitensor is symmetric

Thetrace of Ryu is called theRicciscalar

3.20 12 121 grRyu



TheRicci tensor Ryu and Ricci scalar R encode all information of 770
trace contractions of the Riemann lensor Roxy

Ryu symm 424,4 4 s 6 4 10 dof

Theother 10 dot of Roy are encoded in the trace free part of

Roque called the Weyltensor

13.21 C.io Rxqv 2lgxErRuso gotrRvsx tEnsy9xIr9u3oRn 2

mcm 9xrRuogxurro

TheWeyltensor hasthe same symmetries as R.iq but all contractors of C

are zero The Weyltensor is defined for dim M 33 and for dimCM 3

home0

ContractingtheBianchi idenity 3.18 we get

BR mu 1 12 rest OURBras to
un
Rs R

Rrvt Rrux turn O l g
P Ryu O R rd 0,12 0

Rg Rt R

2042µsOUR

3.22 042pm 12 12

It is usefulto define the Einstein tensor que as

13.23 Cpu Ryu 9,12
From 322 we then get
3.24 Dream O as bgruso



The trace of the Einstein tensor is 780

Ve R 412 12

We willsoon see that the Einstein tensor entersdirectly in the Einstein equations


