3. Curvature
3.1 Covariant derivative and connection

In the flat Minkowti space we showed that partial derivatives of tensors form new higher rank tensors:
$\partial: \underbrace{T_{p}^{*} \times \ldots \times T_{p}^{*}}_{m \text { copies }} \times \underbrace{T_{p} \times \ldots}_{n \text { copies }} \times T_{p} \rightarrow \underbrace{T_{p}^{*} \times \ldots \times T_{p}^{*}}_{m \text { copies }} \times \underbrace{T_{p} \times \ldots}_{n+1 \text { copies }} \times T_{p}$ when acting on (m, n) tenors
$\partial_{\mu} T^{\alpha_{1}, \ldots \alpha_{m}} \beta_{1} \ldots \beta_{n}$ is a $(m, n+1)$ tensor in Minkowsti
We already noted that in a general curved spacetime $\partial_{\mu} T^{\alpha_{1} \ldots \alpha_{m}} \beta_{1} \ldots \beta_{n}$ is not a tensor.
We want to generalise the partial derivative into something $\partial \rightarrow \nabla$ that is a tensor also in a curved spacetime.

Define the covariant derivative ∇ as a map:
 and impose the following conditions (which hold for ∂ in Minkowski)

1. linearity: $\nabla(T+S)=\nabla T+\nabla S$ (T,S any tensors)
2. Leibnitz rule : $\nabla(T \otimes S)=(\nabla T) \otimes S+T \otimes(\nabla S)$
which holds also when indices are contracted.
3. For a scales $f: M \rightarrow \mathbb{R}: \nabla f \equiv d f=\partial_{\mu} f d x^{\mu} \equiv \nabla_{\mu} f d x^{\mu}$

$$
\Rightarrow \nabla_{\mu} f=\partial_{\mu} f
$$

covariant derivative of a scalar is just the partial derivative

Consider now e.g. a covariant derivative, of a vector $v \in T_{p}$ which should give a $(1,1)$ tensor $\nabla V=\left(\nabla \nu V^{\mu}\right) d x^{\nu} \otimes \partial_{\mu}$

$$
\nabla V=\nabla\left(V^{\mu} \partial_{\mu}\right)=\underset{\uparrow}{\left(\nabla V^{\mu}\right) \partial_{\mu}+V^{\mu} \nabla \partial_{\mu}}
$$

$V^{\mu}(P)=\frac{d x^{\mu}(P)}{d \lambda}$ defines a function (in a given and ret) Use cond. 3) above: $\nabla v^{\mu}=d v^{\mu}=\partial_{\nu} v^{\mu} d x^{\nu}$

$$
=\partial_{\nu} \nu^{\mu} d x^{\nu} \otimes \partial_{\mu}+\nu^{\sigma} \nabla \partial_{\sigma}
$$

covariant derivative of the basis vector

$$
\nabla \partial_{\sigma}=d x^{\nu} \otimes\left(\nabla_{\nu} \partial_{\sigma}\right)
$$

Now define: connection coefficients

$$
\begin{aligned}
& \nabla_{\nu} \partial_{\sigma} \equiv \Gamma_{\nu \sigma}^{\mu} \partial_{\mu} \\
& \nabla V=\left(\partial_{\nu} V^{\mu}+\Gamma_{\nu \sigma}^{\mu} V^{\sigma}\right) d x^{\nu} \otimes \partial_{\sigma} \equiv\left(\nabla_{\nu} V^{\mu}\right) d x^{\nu} \otimes \partial_{\sigma}
\end{aligned}
$$

Thus we get that the components of the covariant derivative of a vector are given by:
(3.01)

$$
\nabla_{\nu} v^{\mu}=\partial_{\nu} v^{\mu}+\Gamma_{\nu \mu}^{\sigma} v^{\mu}
$$

$$
\uparrow
$$

(componatio of) $(1,1)$ tensor not a tensor not a tensor
Let us see how the connection coefficients Γ transform under $x^{\mu} \rightarrow x^{\mu}$

$$
\nabla_{u}, v^{\mu^{\prime}}=\frac{\partial x^{\alpha}}{\partial x^{\nu}}, \frac{\partial x^{\mu \prime}}{\partial x^{\beta}} \nabla_{\alpha} v^{\beta}=\frac{\partial x^{\alpha}}{\partial x^{\nu}}, \frac{\partial x^{\mu \prime}}{\partial x^{\beta}}\left(\partial_{\alpha} \nu^{\beta}+\Gamma_{\alpha r}^{\beta} v^{\gamma}\right)
$$

$(1,1)$ tensor eq. (3.01)
On the other hand:

$$
\nabla_{\nu} V^{\mu^{\prime}}=\partial_{\nu} V^{\mu^{\prime}}+\Gamma_{\nu}^{\prime} \mu^{\prime} V^{v^{\prime}}=\partial_{\nu}^{\prime}\left(\frac{\partial x^{\mu \prime}}{\partial x^{\alpha}} V^{\alpha}\right)+\Gamma_{\nu^{\prime} \sigma^{\prime}}^{\mu^{\prime}} \frac{\partial x^{\sigma^{\prime}}}{\partial x^{\alpha}} \nu^{\alpha}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\partial x^{\alpha}}{\partial x^{\prime \prime}} \frac{\partial x^{\mu \prime}}{\partial x^{\beta}}\left(\partial_{\partial} V^{\beta}+\Gamma_{\alpha \gamma}^{\beta} \nu^{\gamma}\right)=\partial_{\nu}\left(\frac{\partial x^{\mu} \nu^{\alpha}}{\partial x^{\alpha}}\right)+\Gamma_{\nu^{\prime} \sigma^{\prime}}^{\mu^{\prime}} \frac{\partial x^{\sigma^{\prime}}}{\partial x^{\alpha}} \nu^{\alpha} \\
& =\frac{\partial x^{\beta}}{\partial x^{\prime \prime}} \frac{\partial x^{\mu} /}{\partial x^{\alpha}} \partial_{\beta} \nu^{\alpha}+\frac{\partial x^{\beta}}{\partial x^{\nu^{\prime}}} \frac{\partial^{2} x^{\prime}}{\partial x^{\alpha} \partial x^{\beta}} \nu^{\alpha}+\Gamma_{\nu^{\prime} \sigma^{\prime}}^{\mu^{\prime}} \frac{\partial x^{\sigma^{\prime}}}{\partial x^{\alpha}} \nu^{\alpha} \\
& \Rightarrow v^{\gamma} \frac{\partial x^{\alpha}}{\partial x^{\prime}}, \frac{\partial x^{\mu \prime}}{\partial x^{\beta}} \Gamma_{\alpha \gamma}^{\beta}=\left(\frac{\partial x^{\beta}}{\partial x^{\prime \prime}} \frac{\partial^{2} x^{\mu \prime}}{\partial x^{\beta} \partial x^{\gamma}}+\Gamma_{\nu \mu^{\prime}}^{\prime} \frac{\partial x^{\sigma^{\prime}}}{\partial x^{\gamma}}\right) v^{\gamma} \\
& \Rightarrow \Gamma_{\nu \sigma^{\prime}}^{\mu^{\prime}}=\frac{\partial x^{\gamma}}{\partial x^{\sigma^{\prime}}} \frac{\partial x^{\alpha}}{\partial x^{\prime \prime}} \frac{\partial x^{\mu} \mu^{\prime}}{\partial x^{\beta}} \Gamma_{\alpha \gamma}^{\beta}-\frac{\partial x^{\gamma}}{\partial x^{\sigma^{\prime}}} \frac{\partial x^{\beta}}{\partial x^{\nu^{\prime}}} \frac{\partial^{2} x^{\mu \prime}}{\partial x^{\beta} \partial x^{\gamma}}
\end{aligned}
$$

non-tewsonil part that cancels against the non-tensorial part of apr' in (3.01)

What about dual vectors $\omega \in T_{p}^{*}$? By definition $\nabla \omega$ should be a $(0,2)$ tensor and proceeding as above we get:
another set of connection coefficients

$$
\begin{aligned}
& \downarrow \\
& \nabla \omega=\nabla \omega_{\mu} d x^{\mu}=\underbrace{\left(\nabla \omega_{\mu}\right)} \otimes d x^{\mu}+\omega_{\mu} \underbrace{\nabla d x^{\mu}} \\
& =\partial_{\nu} \omega_{\mu} d x^{\nu} \quad \text { clefine } \nabla_{\nu} d x^{\mu} \equiv \tilde{\Gamma}_{\sigma \nu}^{\mu} d x^{\sigma} \\
& =\partial_{\nu} \omega_{\mu} d x^{\nu} \otimes d x^{\mu}+\omega_{\mu} \tilde{T}_{\sigma_{\nu}}^{\mu} d x^{\sigma} \otimes d x^{\nu}
\end{aligned}
$$

rename indices

$$
=\left(\partial_{\nu} \omega_{\mu}+\tilde{\Gamma}_{\nu \mu}^{v} \omega_{\sigma}\right) d x^{\nu} \otimes d x^{\mu}
$$

The coefficients Γ can be celckd to Γ using the conditions 2 and 3 above:

$$
\nabla_{\nu}\left(\omega_{\mu} v^{\mu}\right)_{\mu}=\left(\nabla_{\nu} \omega_{\mu}\right) v^{\mu}+\omega_{\mu} \nabla_{\nu} V^{\mu}=\partial_{\nu}\left(\omega_{\mu} \nu^{\mu}\right)
$$

Lond. 2
Lond. 3 (wp is a scaler)

$$
\begin{aligned}
&\left(\partial_{\nu} \omega_{\mu}+\tilde{\Gamma}_{\nu}^{\sigma} \omega_{\sigma}\right) v^{\mu}+w_{\mu}\left(\partial_{\nu} V^{\mu}+V^{\sigma} \Gamma_{\nu \sigma}^{\mu}\right)=w_{\mu} \partial_{\nu} v^{\mu}+v^{\mu} \partial_{\nu} \omega_{\mu} \\
& \tilde{\Gamma}_{\nu \mu}^{\sigma} \omega_{\sigma} v^{\mu}+\Gamma_{v \mu}^{\sigma} \omega_{\sigma} v^{\mu}=0 \\
& \Rightarrow \Gamma_{v \mu}^{\sigma}=-\Gamma_{v \mu}^{\sigma} \quad\left(\Rightarrow \nabla_{\mu} d x^{\nu}=-\Gamma_{o \mu}^{v} d x\right)
\end{aligned}
$$

Hence we get :

$$
\nabla \omega=\left(\partial_{\mu} \omega_{\nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda}\right) d x^{\mu} \Delta d x_{\nu}^{\nu} \text { ie. } \nabla_{\mu} \omega_{\nu}=\partial_{\mu} \omega_{\nu}-\Gamma_{\mu}^{\lambda} \omega_{\lambda}
$$

Now we know how to compute covariant derivatives of vectors and duals. Using the conditions 1,2,3 we cam compute the covariant derivative of an arbiters rank tensor. The (components of) covariant derivative of (m, n) tensor T is given by
(3.1)

$$
\begin{aligned}
\nabla_{\mu} T^{\alpha_{1} \ldots \alpha_{m}} \beta_{1} \ldots \beta_{n} & =\partial_{\mu} T^{\alpha_{1} \ldots \alpha_{m}} \beta_{1} \ldots \beta_{n}+\Gamma_{\mu \lambda}^{\alpha_{1}} T^{\lambda \alpha_{2} \ldots \alpha_{m}} \beta_{1} \ldots \beta_{1}+\ldots+\Gamma_{\mu \lambda}^{\alpha_{n}} T^{\alpha_{1}, \ldots \alpha_{n}, \lambda} \beta_{1} \ldots \beta_{n} \\
& -\Gamma_{\mu \beta_{1}}^{\lambda} T^{\alpha_{1} \ldots \alpha_{n}} \lambda_{2} \ldots \beta_{n}-\ldots-\Gamma_{\mu \beta_{n}}^{\lambda} T^{\alpha_{1} \ldots \alpha_{m}} \beta_{1} \ldots \beta_{n-1} \lambda
\end{aligned}
$$

For reference, let us rewrik separately the results for solos, vectors and duals:
(3.2)

$$
\begin{aligned}
& \nabla_{\mu} \phi=\partial_{\mu} \phi \\
& \nabla_{\mu} V^{\nu}=\partial_{\mu} v^{\nu}+\Gamma_{\mu^{\lambda}}^{\nu} \nu^{\lambda} \\
& \nabla_{\mu} \omega_{\nu}=\partial_{\mu} \omega_{\nu}-\Gamma_{\mu}^{\lambda} \omega_{\lambda}
\end{aligned}
$$

In flat space bine we can find a cosodingte seven over the entire M where $\Gamma_{v o}^{\mu}=0$. So the connection coefficients must somehow carry information about the curvature. But how to compute then and are the uniquely defined in the first place? The answer to the latte question is no.

The conditions 1-3 de not uniquely define the connection and hence the covariant derivative. Consider another set of connection coefficients $\hat{\Gamma}_{\Gamma}$ which define another covariant derivalure $\hat{\nabla}$:

$$
\begin{aligned}
& \hat{\nabla}_{\mu} v^{2}=\partial_{\mu} v^{2}+{\hat{F_{\mu \lambda}}}_{\nu} v^{\lambda} \text { (1.1) tenor } \\
& \nabla_{\mu} v^{\nu}-\hat{\nabla}_{\mu} v^{\nu}=\partial_{\mu} v^{\nu}+\Gamma_{\mu_{\lambda}^{\lambda}}^{\nu} v^{\lambda}-\partial_{\mu} v_{-}^{\nu} \hat{\Gamma}_{\Gamma^{\lambda}}^{\nu} v^{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Gamma_{\mu d}^{\nu}-\hat{\Gamma}_{\mu \lambda}^{\nu} \equiv C_{\mu \nu}^{\nu} \text { is a }(1,2) \text { tensor }
\end{aligned}
$$

The connection $\Gamma_{\mu^{\lambda}}^{i}$ is not a knur but the difference btw two connection is a tensor. From any set of connection coefficients $\Gamma^{2} \lambda$ we get a new one by adding an arbitress $(1,2)$ tensor

We also get a new connection by switching the lower indices $\bar{P}_{\mu v}^{\lambda}=\Gamma_{\nu \mu}^{\lambda}$.
The difference btw Γ_{μ}^{λ} and $\Gamma_{i \mu}^{\lambda}$ is a $(1,2)$ tenor called the torsion Ensor of the connection Γ^{μ}
(3.3) $\quad T_{\mu \nu}^{\lambda} \equiv \Gamma_{\mu \nu}^{\lambda}-\Gamma_{\nu \mu}^{\lambda}=2 \Gamma_{[\mu \nu]}^{\lambda}$ In $G R$ we will set

$$
\tau_{\mu \nu}^{\lambda}=0 \Rightarrow \Gamma_{\mu \nu}^{\sigma}=\Gamma_{\mu \nu}^{\sigma}
$$

Christoffel connection
In general, the metric gpu and the connection $\Gamma_{\mu-1}^{\lambda}$ are independent degrees of freedom and, as the above disestivion shows, the connection for a given spacetime is not uniguets defined (there are severa/pasible choiches).

We can however deffre a specific connection which is fully determined by the metric by imposing some extra condition in addition to 1-3.
Require:
4. Torsion-fice: $T_{\mu \nu}^{\lambda}=0 \Leftrightarrow \Gamma_{\mu \nu}^{\lambda}=\Gamma_{\mu \mu}^{\lambda}$
5. Metric compatibility: $\nabla_{\lambda} g_{\mu \nu}=0$

The conditions 1-5 define a unique connection, the Christoffel connection.
The explicit form of the Christofel connection can be found as follows. Write out the condition $\nabla_{\lambda} g_{\mu \nu}=0$ explicitly for different permutation and subtract:

$$
\begin{aligned}
& +\nabla_{\sigma} g_{\mu \nu}=\partial_{\sigma} g_{\mu \nu}-\Gamma_{\sigma}^{\lambda} g_{\lambda \nu}-\Gamma_{\lambda_{0} g_{\mu}}=0 \\
& -\nabla_{\mu} g_{\nu \sigma}=\partial_{\mu} g_{\nu \sigma}-\Gamma_{\mu \nu}^{\lambda} g_{\lambda \sigma}-\Gamma_{\mu \sigma}^{\lambda} g_{\nu}=0 \\
& -\frac{\nabla_{\nu} g_{\mu \sigma}=\partial_{\nu} g_{\mu \sigma}-\Gamma_{\nu \mu}^{\lambda} g_{\lambda \sigma}-\Gamma_{\nu \sigma}^{\lambda} g_{\mu \lambda}=0}{\partial_{\sigma} g_{\mu \nu}-\partial_{\mu} g_{\nu \sigma}-\partial_{\nu g_{\sigma \mu}}+2 \Gamma_{\mu \nu}^{\lambda} g_{\lambda \sigma}=0 \quad 1 \cdot g^{\sigma \rho}}
\end{aligned}
$$

(3.4) $\quad \Gamma_{\mu \nu}^{f}=\frac{1}{2} g^{g \sigma}\left(\partial_{\mu} g_{\nu \sigma}+\partial_{\nu g_{\sigma \mu}}-\partial_{\sigma \sigma \mu \nu}\right) \quad$ Christofel connection

In $G R$ it tums out that even if we start from $g_{\mu \nu}$ and $\Gamma_{\mu \nu}^{\rho}$ as independent degrees of freedom, the equations of motion set $\Gamma_{\mu} \rho$ equal to (3.4). Therefore, in GR the connection is always the Christoffel connection. (Recall that $G R$ is a classical theory, all physics is on-shell, ie. obeys clapleal eggs of motion.) In more general theories of gravity this is not true and we get different results if we vary $g_{\mu \nu}$ and $\Gamma_{\mu \nu}^{\rho}$ independently or set $\Gamma_{\mu \nu}^{s}$ equal to (3.4). This is something that you should keep in mind but in this course we discuss $C R$ only and hence the connection is given by (3.4).

It can be shown (exercise) that the connection coaffrients (3.4) (also called Christoffl symbols) satisfy:
(3.5) $\quad \Gamma_{\mu \nu}^{\mu}=\frac{1}{\sqrt{-g}} d_{\nu}(\sqrt{-g}) \quad$ recall $j \equiv \operatorname{det}(g \mu)$

This yields:

$$
\begin{aligned}
\nabla_{\mu} V^{\mu} & =\partial_{\mu} \nu^{\mu}+\Gamma_{\mu}^{\mu} V^{\nu} \\
& =\partial_{\mu} \nu^{\mu}+\frac{1}{\sqrt{-g}} \partial_{\nu}(\sqrt{-g}) V^{\nu}
\end{aligned}
$$

(3.6) $\quad \nabla_{\mu} V^{\mu}=\frac{1}{\sqrt{-g}} d_{\mu}\left(\sqrt{-g} V^{\mu}\right) \quad$ which is sometimes a uxcfal relation.

In going from $S R$ to $G R$ we basically replace $\partial_{p} \rightarrow D_{p}$ in all non-jravitational expressions. The gravitational sector is the nen-trivial past which we discuss later. This is just the strong equivalence principle in action. At any point P, we can go to the local Lorentz frame where physics is $S R$ and $\Gamma_{\mu^{\lambda}}^{N}=0$ at P.. So in the sad's at P_{0} we have $\partial_{\mu}=\nabla_{\mu}$. But ens written in terms of ∇_{μ} are manifestly tensonial and can be directly rewritten in term of any other ards. So in practise $\delta_{p} \rightarrow D_{p}$ and that's all.
3.2 Parallel transports

In curved spacetime there is no a priors unique way to compare tenors at different points, say $r(P)$ and $V(Q)$ where $P \neq Q$. This because they live in different benson spaces $T_{p} \neq T_{Q}$. To compare the tensors, we need to define a curve which connects P and Q and can be used to map an object of T_{Q} to T_{P}. The outcome will depend on the chosen curve, or mapping.

The parallel transport of a vector gives us the concept of mapping a vector $V(Q)$ to $V(P)$ "without changing its direction":

Let $L(x): \mathbb{R} \rightarrow M$ be a curve and $u=u^{\mu} \partial,=\frac{d x^{M}(\lambda(\lambda))}{d x} \frac{\partial}{\partial x^{\mu}}$ its tangent vector. $V(D) \in T_{p}(M)$ is a vector field defined over the entice M (or at least over points on the curve $c(\lambda)$).

The parallel tramport of $V(c(\lambda))$ along the curve $c(\lambda)$ is defined as the solution of:
(3.7) $\quad U^{\mu} \nabla_{\mu} V^{\nu}=\frac{d x^{\mu}(c(A))}{d \lambda} \nabla_{\mu} V^{\nu}=0 \quad \begin{aligned} & \text { sol. given the component of } \\ & \text { the parallel transport of } V \mu .\end{aligned}$

This is the curved space generabiction of $\frac{d x^{\mu}}{d x} \frac{\partial V^{\nu}}{\partial x^{\mu}}=\frac{d V^{\nu}}{d \lambda}$. To stress this Carroll denote $u^{\mu} D_{\mu} V^{\nu} \equiv \frac{D V^{\nu}}{d \lambda}$.

The same definition applies for a general rank (m, m) tensor T :
(3.8)

$$
\begin{aligned}
& u^{\mu} \nabla_{\mu} T^{\alpha_{1}, \ldots \alpha_{m}}, \ldots \beta_{n}=0 \text { sol. given the component of }
\end{aligned}
$$

Using (3.2) the parcelled trenport equation (3.7) becrumas:

$$
\frac{d x^{\mu}}{d \lambda}\left(\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda}\right)=0
$$

(3.9) $\quad \frac{d V^{\nu}}{d \lambda}+\Gamma_{\mu^{\lambda}}^{\nu} V^{\lambda} \frac{d x^{\mu}}{d \lambda}=0$

Given the vector V^{μ} at a point $c\left(\lambda_{0}\right)$ the solution of (3.9) giver the parallel tranposit at any other point on the curve.

Note that because of the metric compatibility $\nabla_{\lambda} g_{\mu \nu}=0$ we get:

$$
u^{\lambda} \nabla_{\lambda} g_{\mu \nu}=0 \text { for any } u \in T_{\mu}(M)
$$

The parallel transport of the metric is jut the metric itself. From this it follows the:

$$
\begin{aligned}
u^{\mu} \nabla_{\mu}\left(v_{\nu} w^{\nu}\right) & =u^{\mu} p_{\mu}\left(g_{\sigma \nu} v^{\sigma} w^{\nu}\right) \\
& =g_{\sigma \nu} u^{\mu} \nabla_{\mu}\left(v^{\sigma} w^{\nu}\right) \\
& =v_{\nu}\left(u^{\mu} \nabla_{\mu} w^{\nu}\right)+w_{\nu}\left(u^{\mu} \nabla_{\mu} v^{\nu}\right)
\end{aligned}
$$

Therefore, if w^{μ} and v^{μ} are panelled transported, their inner product kemedw unchanged under parole transport:
$u^{\mu} \nabla_{\mu} w^{\nu}=0, u^{\mu} \nabla_{\mu} V^{\nu}=0 \Rightarrow u^{\mu} \nabla_{\mu}\left(v_{\nu} w^{\nu}\right)=0$
\Rightarrow The parallel treapost preserves lengths and angles.

Geodesics are special curves which parallel transport their own tangent vector. The geodesics are the generalisation of straight lines of Euclidean space to curved spacetimes.

The defining condition of geodesics curves $C(\lambda)$ are that the tangent vector $u=\frac{d x^{\mu}}{d \lambda} \partial_{\mu}$ is parallel transported along $c(\lambda)$:
(3.10) $\quad u^{\mu} \nabla_{\mu} u^{\nu}=0 \quad G e o d e s i c ~ e q u a t i o n ~$

Writing this out in explicit form we get:

$$
\begin{aligned}
& \frac{d x^{\mu}}{d \lambda}\left(\partial_{\mu} u^{\nu}+\Gamma_{\mu \lambda}^{\nu} u^{\lambda}\right)=0 \\
& \underbrace{\frac{d x^{\mu}}{d \lambda}}_{=\frac{d}{d \lambda}} \frac{\partial}{\partial x^{\mu}}
\end{aligned}\left(\frac{d x^{\nu}}{d \lambda}\right)+\Gamma_{\mu \lambda}^{\nu} u^{\mu} u^{\lambda}=0 \quad l
$$

(3.11)

$$
\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma_{\sigma \nu}^{\mu} \frac{d x^{\sigma}}{d \lambda} \frac{d x^{\nu}}{d \lambda}=0
$$

solutions $x^{\prime \prime}(x)$ are geodesics

Consider the Minkowski limit $\Gamma_{\sigma u}^{\mu}=0$. In this case the geodesic eg. 3.11) reduces to:

$$
\begin{aligned}
\frac{d^{2} x^{\mu}}{d \lambda^{2}}=0 \Rightarrow & x^{\mu}(\lambda)=c^{\mu} \lambda+d^{\mu} \\
& \text { in flat space geadsicus }=\text { straight lines. }
\end{aligned}
$$

In the flat space, straight lines minimise the distance between two points p and Q. The geodesics maximise the proper time (bor timelike curves ds'co).

Consider the proper time between two spectine points along timelike curved

Vary $x^{\mu}(\lambda) \rightarrow x^{\mu}(\lambda)+\delta x^{\mu}(\lambda)$ with fixed endpoints $x^{(}(\lambda)=x_{2}^{\mu}, x^{\mu}\left(\lambda_{1}\right)=x_{2}^{\mu}$.
The variation of τ_{12} is given by:

Denote $\frac{d x^{\mu}}{d \tau} \equiv \dot{x}^{\mu}$

$$
=\left(\partial_{\sigma} g_{y \mu}+\partial_{r} g_{\mu} \sigma-\partial_{\mu} g_{\sigma} u\right) \dot{x}^{\circ} x^{\sigma} d x^{\mu} \quad j^{j u t} \text { rename sum indices }
$$

$$
\begin{aligned}
& =\int_{\lambda_{1}}^{\lambda_{2}} \frac{d \tau}{2}(2 g_{\mu \nu} \ddot{x}^{\prime} \delta x^{\mu}+\overbrace{2 \partial_{r} g_{\mu} \dot{x}^{\prime \prime} x^{\sigma} \delta x^{\mu}-\partial_{\sigma} g_{\mu \nu} x^{\mu} x^{\prime} \delta x^{\sigma}}) \\
& \quad-\int_{\lambda_{1}}^{\lambda_{1}} d r \frac{d}{d \tau}\left(g_{\rho} \frac{d x^{\nu}}{d \tau} \delta x^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta \tau_{12}=\int_{\lambda_{1}}^{\lambda_{2}} d \lambda \frac{1}{2}(\underbrace{-g_{\mu} \frac{d x^{2}}{d \lambda} \frac{d x^{\nu}}{d x}}_{=\frac{d r^{2}}{d \lambda^{2}}})^{-1 / 2}\left(-\delta g_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}-g_{\mu} \frac{d \delta x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}-J_{\mu} \cdot \frac{d x^{\mu} d \delta x^{\nu}}{d \lambda} \frac{d \lambda}{d \lambda}\right) \\
& =\int_{\lambda_{1}}^{\lambda_{L}} \frac{1}{2} \underbrace{d \lambda}_{=d \lambda} \frac{d \lambda}{d \tau}(-\underbrace{d \tau_{\mu}}_{=\left(\partial_{\sigma} g_{\mu \nu}\right)} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}-g_{\mu} \nu \frac{d \delta x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}-J_{\mu} \nu \frac{d x^{\mu}}{d \lambda} \frac{d s^{\nu}}{d \lambda}) \\
& =\int_{\lambda_{1}}^{\lambda_{2}} \frac{d \tau}{2}(-\partial_{\sigma} g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} \delta x^{\sigma}-\underbrace{2 \cdot g_{\mu \nu} \frac{d x^{\prime}}{d \tau} \frac{d \delta x^{\mu}}{d \tau}})
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{d x}{d r}{ }^{\sigma} \operatorname{dg} \mu \nu
\end{aligned}
$$

$$
\begin{equation*}
\delta \tau_{12}=\int_{\lambda_{1}}^{\lambda_{2}} d \tau\left(g_{\mu \nu} x^{\nu}+\frac{1}{2}\left(d_{\sigma} g_{\nu \mu}+\partial_{\nu} g_{\mu \sigma}-\partial_{\mu} g_{\sigma \nu}\right) \dot{x}^{2} \dot{x}^{\sigma}\right) \delta x^{\mu} \tag{*}
\end{equation*}
$$

Extremals:

$$
\begin{aligned}
& \delta \delta_{n}=\int_{\lambda_{l}}^{\lambda_{2}} d \tau\left(g_{\mu \nu} x^{\prime \mu}+\frac{1}{2}\left(\partial_{\sigma-g_{\nu \mu}}+\partial_{\nu} g_{\mu \sigma}-\partial_{\mu} j_{\sigma \nu}\right) \dot{x}^{\nu} \dot{x}^{\sigma}\right) \delta x^{\mu}=0 \quad \forall \delta_{x^{\mu}} \\
& \Rightarrow \quad g_{\mu \nu} x^{\prime \nu}+\frac{1}{2}\left(\partial_{\sigma-g_{\nu \mu}}+\partial_{\nu} g_{\mu \sigma}-\partial_{\mu} j_{\sigma \nu}\right) \dot{x}^{\nu} \dot{x}^{j \sigma}=01 \cdot g^{\lambda \mu} \\
& \dot{x}^{\lambda \lambda}+\underbrace{\frac{1}{2} g^{\lambda \mu}\left(\partial_{\sigma} g_{\nu \mu}+\partial_{\nu \mu} g_{\sigma}-\partial_{\mu} g_{\sigma u}\right)}_{=\Gamma_{\sigma \nu}^{\lambda} \text { (hrijbffel conncechon (3,4) }} x^{\sigma_{x}} x^{\nu}=0
\end{aligned}
$$

So we found that
$\delta \pi_{12}=0 \Rightarrow \ddot{x}^{\mu}+\Gamma_{\sigma i}^{\mu} \dot{x}^{\sigma} \dot{x}^{\nu}=0 \quad$ This in just the geodesic equation (3.11)
Therefore, we see the timeline geodesics connecting two points extrenise the proper time between the points. The extrema are actually maxima so the geodesics maximise the proper time btw. different pints.

Note the above in stop (x) the integrand can can be written as

$$
\left(g_{\mu \nu} x^{\mu \nu}+\frac{1}{2}\left(d_{\sigma} g_{\nu \mu}+\partial_{\nu} g_{\mu \sigma}-\partial_{\mu} g_{\sigma \nu}\right) \dot{x}^{\nu} x^{\sigma}\right) \delta x^{\mu}=\left(\frac{d}{(e \sigma}\left(\frac{\partial \mathscr{L}}{\partial x^{\mu}}\right)-\frac{\partial \mathscr{L}}{\partial x^{\mu}}\right) \delta x^{\mu}
$$

where $\mathscr{L}=\frac{1}{2} \operatorname{gr}_{\mu} \dot{x}^{\mu}{ }_{x}^{2}$
Check:

$$
\begin{aligned}
& \left(\frac{d}{C \tau}\left(\frac{\partial \mathscr{L}}{\partial x^{\mu}}\right)-\frac{\partial \mathscr{L}}{\partial x^{\mu}}\right) \delta x^{\mu}=\left(\left(g_{\mu} x^{\prime}\right)^{\prime}-\frac{1}{2} \partial_{\mu} g_{\alpha \beta} x^{\alpha} \dot{x}^{\beta}\right) \delta x^{\mu} \\
& =\left(g_{\nu} \dot{x}^{\nu}+\dot{x}^{j} \frac{d x^{\sigma}}{d \tau} \partial_{\sigma} g_{\mu \nu}-\frac{1}{2} \dot{x}^{\alpha} x^{\prime 3} g_{2}-g_{\alpha A}\right) \delta x^{\mu}
\end{aligned}
$$

Theatre, we find that extremising the action:

$$
S=\int d \tau \mathscr{L}(x, \dot{x})=\int d \tau \frac{1}{2} \operatorname{g\mu \nu } x^{\mu} \dot{x}^{\nu}
$$

yield the geodesic equations:

$$
\frac{\delta S}{\delta x^{m}}=0 \Leftrightarrow
$$

$(3,12) \frac{d}{d \tau}\left(\frac{\partial \mathscr{L}}{\partial \dot{x}^{\mu}}\right)-\frac{\partial \mathscr{L}}{\partial x^{\mu}}=0 \Leftrightarrow \ddot{x}^{\mu}+\Gamma_{\alpha \beta}^{\mu} x^{-\alpha} \dot{x}^{\beta}=0 \quad \mathscr{L}=\frac{1}{2} \operatorname{g}_{\mu} \dot{x}^{\mu} \ddot{x}^{\nu}$
This giver an alternative way to compute the Christoffel connection for a given metric. Variation of $\mathscr{L}=\frac{1}{2} g_{\nu} \dot{x}^{-} \ddot{x}^{-2}$ gives the Euler-Lagrange equations which according to (s.12) are the geodesic eggs. for the metric gu. The connection coctitents can then be read off from these. Using (3.12) is often an evader way to got Γ as then the definition (3.4). On the other hand, (3.4) can be readily implemented on computer.

Example:
Find the connection coefficients for $d s^{2}=-d t^{2}+a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right)$.
Could use (3.4) but we will here demonstrate using (3.12).

$$
\begin{aligned}
& \mathscr{L}=\frac{1}{2} J \mu \nu \dot{x} F \dot{x} \\
&=-\frac{1}{2} \dot{j}^{2}+\frac{a^{2}}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=-\frac{1}{2} \dot{j}^{2}+\frac{a^{2}}{2} \delta_{i j} \dot{x}^{i} \dot{x} j \\
& \delta \int d r \mathcal{L}(x, \dot{x})=0 \Rightarrow \frac{d}{d r}\left(\frac{\partial d}{\partial \dot{x}^{\mu}}\right)-\frac{\partial \mathbb{L}}{\partial x^{\mu}}=0 \quad E-L
\end{aligned}
$$

$\mu=0$ component:

$$
\frac{\partial L}{\partial t}=a(t) \underbrace{\frac{\partial a}{\partial t}}_{\equiv a^{\prime}}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=a a^{\prime}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=a a^{\prime} \delta_{i j} \dot{x}^{\dot{j}} \dot{x^{j}}
$$

$$
\frac{d}{d T}\left(\frac{\partial L}{\partial \dot{t}}\right)=\frac{d}{d T}(-\dot{t})=-\vec{t}
$$

ELL: $\quad-\ddot{t}-a a^{\prime} \dot{f}_{j j} x^{-1} x^{j}=0$

$$
\begin{aligned}
\ddot{x}+a a^{\prime} d i j x^{\prime} \dot{x}^{j}= & \ddot{x}^{0}+\Gamma_{\alpha \Delta}^{0} \dot{x}^{\alpha} \dot{x}^{\beta}=0 \\
& \Rightarrow\left\{\begin{array}{l}
\Gamma_{i j}^{0}=a a^{\prime} S_{i j} \\
\Gamma_{0 i}^{0}=\Gamma_{o 0}^{0}=0
\end{array}\right.
\end{aligned}
$$

i-component:

$$
\begin{aligned}
& \frac{\partial \mathcal{R}}{\partial \dot{x}^{i}}=a^{2} \dot{x}^{j} \delta_{i j} \\
& E-L: \frac{d}{d \tau}\left(\frac{\partial f}{\partial x^{\prime}}\right)=0 \\
& \frac{\partial \mathscr{L}}{\partial x^{\prime}}=0 \\
& a^{2} \ddot{x}^{j} \delta_{j j}+\frac{d t}{d \tau} \frac{\partial}{\partial t}\left(a^{2} \dot{x}^{j} \delta_{i j}\right)=0 \\
& a^{2} \bar{x}^{j} \delta_{j j}+2 a a^{\prime} \dot{x}^{0} \dot{+} \delta_{i j}=01 \cdot \delta^{i k} \\
& \ddot{x}^{k}+2 a^{\prime} x^{0} \dot{x}^{k}=0 \\
& \ddot{x}^{k}+\Gamma_{\alpha \beta}^{k} \dot{x}^{\alpha} \dot{x}^{\beta}=0 \\
& \Rightarrow\left\{\begin{array}{l}
\Gamma_{0 k}^{k}=a^{\prime} \\
a^{n} \\
\Gamma_{0 k}^{k} x^{0} \dot{x}^{k}+\Gamma_{o}^{k} \dot{x}^{\circ} \dot{x}^{k} \\
=2 \Gamma_{0 k}^{k} \dot{x}^{0} \dot{x}^{k}
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\Gamma_{0 k}^{k}=\frac{a^{\prime}}{a} \\
\Gamma_{00}^{k}=\Gamma_{i j}^{k}=0
\end{array}\right.
\end{aligned}
$$

$\Rightarrow \Gamma_{i j}=a a^{\prime} \delta_{i j}, \Gamma_{i o}^{i}=\frac{a^{\prime}}{a}$, all other corrponcuts ave zeco

Reminder of variational calculus:
Consider an action $S[\phi(t)] . \int_{t}^{t_{L}} d t+\mathscr{L}\left(\phi(t), \phi^{\prime}(t)\right)$

$$
\text { sis a functional }=\text { functor of the function } \phi(t)
$$

Vary the form of $\phi(t)$ kaph n the endpoints fixed: $\phi(t) \rightarrow \phi(t)+\delta \phi(t)$ $\delta \psi\left(f_{1}\right)=\delta \psi\left(f_{t}\right)=0$
Linearize everything in the small veriction $\delta \phi(t)$:

$$
\begin{aligned}
& \delta S \equiv S[\phi(t)+\delta \phi(t)]-S[\phi(t)]=\int_{t_{1}}^{t_{2}} d t \underbrace{(\underbrace{\ell(\phi+\delta \phi,(\phi+\delta \phi)}_{=\mathscr{L}(\phi, \phi)})}_{t_{2}})-\mathscr{L \ell}(\phi, \phi))) \\
& =\int_{t_{1}}^{t_{2}} d t(\frac{d \ell}{\partial \phi} d \phi+\underbrace{\frac{\partial \mathscr{L}}{d \varphi} \delta \dot{\varphi}}) \\
& =\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \phi}\right) \delta \phi \\
& =\int_{t_{1}}^{t_{2}} d t\left(\frac{d L}{\partial \phi}-\frac{d}{d t}\left(\frac{d L}{\partial \dot{\phi}}\right)\right) \delta \phi+\underbrace{\int_{t_{1}}^{t_{L}} \frac{\partial L}{\partial \phi^{\prime}} \delta \phi}_{=0 \text { as } \delta_{\varphi}\left(t_{L}\right)=\delta_{\varphi}\left(t_{1}\right)=0}
\end{aligned}
$$

Hence, requiring that $\delta S=0 \forall \delta \psi$ we get the Euler -Lagrange equation:

$$
\delta S=0 \forall \delta \psi \Rightarrow \frac{\partial \Omega}{\partial \psi}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=0
$$

This can ac compared to the differential of a function $d f(x)=\frac{\partial f}{\partial x} d x$. Inced for a functional $S[\phi()]$ we can define the functional derivative which acts like an ordinary partial clerivadive except that:
$\frac{\delta \phi(t)}{\delta \phi\left(t^{\prime}\right)}=\delta\left(t-t^{\prime}\right)$, compare to a dijacte set of variables $\left\{\phi_{i}\right\}_{i=1}^{n}: \frac{\partial \phi_{i}}{\partial \phi_{j}}=\delta_{i j}$

$$
\frac{\delta S[\phi]}{\delta \phi(t)}=\frac{\delta}{\delta \phi(t)} \int d t^{\prime} \mathscr{L}\left(\phi\left(t^{\prime}\right), \dot{\varphi}\left(t^{\prime}\right)\right)
$$

$$
\begin{aligned}
& \frac{\delta \delta[\phi]}{\delta \phi(t)}=\int d t^{\prime}(\frac{\partial \mathcal{L}\left(\phi\left(t^{\prime}\right), \dot{\prime}\left(f^{\prime}\right)\right)}{\partial \phi\left(t^{\prime}\right)} \underbrace{\frac{\delta \phi\left(t^{\prime}\right)}{\delta \phi(t)}}_{=\delta\left(t^{\prime}-t\right)}+\frac{\partial \mathcal{L}\left(\phi\left(t^{\prime}\right) \dot{\phi}\left(t^{\prime}\right)\right)}{\partial \dot{\phi}\left(t^{\prime}\right)} \underbrace{\frac{\delta \dot{\phi}\left(t^{\prime}\right)}{\delta \phi(t)}}_{=\frac{d}{d t^{\prime}} \frac{\delta \phi\left(t^{\prime}\right)}{\delta \phi(t)}}) \\
& =\frac{d}{d t^{\prime}} \delta\left(t^{\prime}-t\right) \\
& =\int d t^{\prime} \frac{\partial \mathcal{L}\left(\phi\left(t^{\prime}\right), \phi^{\prime}\left(t^{\prime}\right)\right)}{\partial \phi\left(t^{\prime}\right)} \delta\left(t^{\prime}-t\right)+\int d t^{\prime} \frac{d}{d t^{\prime}}\left(\frac{\left.\partial \mathcal{L}\left(\phi\left(t^{\prime}\right) \dot{(t)}(t)\right) \delta\left(t^{\prime}-t\right)\right)}{\partial \phi\left(t^{\prime}\right)}\right. \\
& -\int d t^{\prime} \frac{d}{d t^{\prime}}\left(\frac{\partial \mathcal{L}\left(\phi\left(t^{\prime}\right), \dot{\phi}\left(t^{\prime}\right)\right)}{\partial \phi^{\prime}\left(t^{\prime}\right)}\right) \delta\left(t^{\prime}-t\right) \\
& =\frac{\partial \mathcal{L}(\phi(t), \dot{\phi}(t))}{\partial \phi(t)}-\frac{d}{d t}\left(\frac{\partial f(\phi(t) \dot{\phi}(t))}{\partial \dot{\varphi}(t)}\right)
\end{aligned}
$$

So the Eule-Legrenge eqs. ane equimbent to $\frac{\delta S[\phi]}{\delta \phi}=0$.

Geodesics and freely falling objects
In SR objects which feel no force have constant 4-velocity;

$$
a^{\mu}=u^{\nu} \partial_{\nu} u^{\mu}=0 \quad u^{\mu}=\frac{d x^{\mu}}{d \tau}
$$

Consider a freely falling object (hals only gmuity, no other forces) in GR. The rest frame of the object coincides with the local Lorentz frame. Physics locks like SR locally and we can write:

$$
a^{\mu}=u^{\nu} \partial_{\nu} u^{\mu}=u^{\nu} \nabla_{\nu} u^{\mu}=0
$$

loccal Lorentz frame
The latter form is a tensorial equation and therefore freely falling objects in any frame obey:
(3.13) $\quad a^{\mu}=u^{\nu} \nabla_{\nu} u^{\mu}=0 \quad\left(a^{\mu}=0 \leadsto\right.$ gravity not a force $)$

This is just the geodesic equation

$$
a^{\mu}=u^{\nu} \nabla_{\nu} u^{\mu}=\frac{d x^{\nu}}{d \tau} \partial_{\nu} u^{\mu}+u^{\nu} \Gamma_{\nu r}^{\mu} u^{\sigma}=\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\nu \sigma}^{\mu} \frac{d x}{d \tau} \frac{d x}{d \tau}=0
$$

\Rightarrow free particles move along geodesics!

Example Comoving observers x^{\prime} cont. in the RW space:

$$
d s^{L}=-d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}
$$

From page 65, the geodesic eggs. for this metric read:

$$
\begin{aligned}
& \ddot{x}^{0}+a a^{\prime} d_{i j} x^{i} x^{\dot{j}}=0 \\
& \ddot{x}^{\prime}+2 \frac{2 a^{\prime}}{a} \dot{x}^{0} \dot{x}^{\prime}=0
\end{aligned}
$$

Clearly $x^{\prime}=$ const, $x^{\circ}=c_{1} t+C_{2}$ are solutions and hence geodesics.
\Rightarrow test particles move along $x^{\prime}=c o u t$ trajectories.

If there is a force f^{μ} acting on the test particle, we get:

$$
a^{\mu}=\frac{f^{\mu}}{m_{R} R} \Rightarrow \ddot{x}_{\substack{\mu \\ \text { mass of } \\ \text { the particle }}} \Rightarrow \Gamma_{\alpha \beta}^{\mu} \dot{x}^{\alpha} \dot{x}^{\beta}=\frac{f^{\mu}}{m}
$$

Using that $p^{\mu}=m u^{\mu}$, the geodesic equation (3.13) can be rewritten as:

$$
\text { (3.14) } \quad p^{\nu} \nabla_{\nu} p^{\mu}=0
$$

This form holds also for masters test particles $m=0$ for which p rp $=0$. Masters test particles move along null geodesics.

The choice of curve parameter λ of a geodesic $x^{\mu}(-1)$ is not unique. We are free to make reparameterisations $\tilde{\lambda}=a \lambda+b$, where a, b are constants:

$$
\frac{d^{2} x^{\mu}}{d \tilde{\lambda}^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=\frac{1}{a^{2}}(\underbrace{\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}}_{=0})=0
$$

$\Rightarrow x^{\mu}(\tilde{\lambda})$ is a geodesic too.
For massless particles we usually choose λ sot.

$$
\frac{d x^{\mu}}{d \lambda}=p^{\mu} \leftarrow \text { photon } 4 \text {-momentum }
$$

For massive particles we can choose $\lambda=\frac{\pi}{m}: \frac{d x^{\mu}}{d \lambda}=m u^{\mu}=p^{\mu}$

Example
Photons in an expending universe $\quad d s^{2}=-d t^{2}+a^{2}(t) d_{i j} d x^{i} d x^{j^{\prime}}$.
Photons move along null geodesics for which $d^{2}=0$ so we have the equations:

In general not all solutions of $d_{s}^{2}=0$ are geodesics.

$$
\begin{aligned}
& \text { Consider ecg. Lirculer pout on } x-y \text { plane } \\
& x=\cos \omega(t) \quad \delta_{i j} \dot{x}^{\prime} \dot{x}^{j}=\omega^{\prime 2} \dot{x}^{2}\left(\cos ^{2} \omega+\sin ^{2} \omega\right)=\omega^{\prime 2} \dot{j}^{2} \\
& y=\sin \omega(t) \quad-\dot{x}^{2}+a^{2}(t) \omega^{\prime 2} \dot{t}=0 \Rightarrow d s^{2}=0 \text { if } \omega^{\prime}(t)^{2}=\frac{1}{a^{2}(t)} \\
& \text { PARENTHESIS } \\
& \text { But } \ddot{x}^{\prime}+\frac{2 a^{\prime}}{a}+\dot{x}^{\prime}=0 \quad \text { yields } \\
& \frac{1}{x^{\prime}} \frac{d x^{\prime}}{d \lambda}=-\frac{2 a^{\prime}}{a} t^{\prime}=-2 \frac{d \ln a}{d \lambda} \\
& \frac{d \ln x^{\prime}}{d \lambda}=-\frac{2 d \ln a}{d \lambda} \\
& \ln \dot{x}^{i}=\ln a^{-2}+\tilde{c}_{i} \\
& \dot{x}^{\prime}=\frac{c_{i}}{a^{2}(t)}
\end{aligned}
$$

Now $x^{\prime}=-\omega^{\prime} t^{\prime} \sin \omega(t)=\frac{c,}{a^{2}(t)} \quad, \omega^{\prime}=\frac{1}{a}$

$$
\begin{gathered}
\dot{x}=\frac{-c,}{a \sin \omega(t)} \\
y^{\prime}=\omega^{\prime} \dot{f} \cos \omega(t)=\frac{c_{L}}{a^{2}(t)} \Rightarrow t^{\prime}=\frac{c_{L}}{a \cos \omega(t)} \neq-\frac{c_{1}}{a \sin \omega(t)}
\end{gathered}
$$

Hence $x=\cos \omega(t)$ are NOT geodesics!

$$
y=\sin \omega(t)
$$

However, often it is clear from symmetries which solutions of $d_{s}{ }^{2}=0$ are geodesics. In practice it is usually easiest to solve $d s^{2}=0$ finder some assumptions) first and then check that the solution incleed satisfies the geodesic eggs.
In our case the symmetries suggest that geodesics should be straight lines in the 30 subspace (x, y, z) which at any fixed t has a Euclidean geometry.

Rotate coordinates such that the motion is along x-axis. Eggs. (x) become:
(1) $f^{\prime \prime}+a a^{\prime} x^{\prime 2}=0$
(2) $\ddot{x}+\frac{2 a^{\prime}}{a} \dot{x} \dot{x}=0$
(3) $-\dot{f}^{2}+a^{2} x^{2}=0$

Solve (3), ie. $d^{2}=0$, to get:
(4) $\frac{d x}{d \lambda}=(t) \frac{1}{a} \frac{d t}{d \lambda} \quad$ (consider motion to $+x$ direction)

Plug (4) into (1):

$$
\begin{aligned}
\ddot{t}+\frac{a a^{\prime}}{a^{2}} \dot{t}^{2} & =0 \\
\frac{d \ln \phi}{d \lambda} & =-\frac{d \ln a}{d \lambda}
\end{aligned}
$$

(5) $\quad \dot{f}=\frac{\omega_{0}}{a(t)} \quad, \omega_{0}=$ cons .

Check that (4), (5) satisfy (2):

$$
\begin{aligned}
\ddot{x}+\frac{2 a^{\prime}}{a} x^{\prime} \dot{f}^{\prime} & =\left(\frac{\dot{f}}{a}\right)^{\prime}+\frac{2 a^{\prime}}{a} \frac{\dot{t}^{2}}{a} \\
& =\omega_{0}\left(\frac{1}{a^{2}}\right)^{\prime}+\frac{2 a^{\prime}}{a^{2}} \frac{\omega_{0}^{2}}{a^{2}} \quad, \dot{a}=a^{\prime} \dot{b}^{\prime} \\
& =-\frac{2 \omega_{0}}{a^{3}} a^{\prime} \frac{\omega_{0}}{a}+\frac{2 a^{\prime}}{a^{4}} \omega_{0}^{2}=0 \text { ok }
\end{aligned}
$$

$\Rightarrow \quad$ Val geodesics given by

$$
\begin{cases}\frac{d x}{d \lambda}=\frac{\omega_{0}}{a^{2}(t)} & \text { thee can be integncked to get } t(\lambda), x(\lambda) \text { once } \\ \frac{d t}{d \lambda}=\frac{\omega_{0}}{a(t)} & \text { we know } a(t) .\end{cases}
$$

Photon 4 -momentuon given by:

$$
p^{\mu}=\frac{d x^{\mu}}{d \lambda}=\left(\frac{w_{0}}{a}, \frac{w_{0}}{a^{2}}, 0,0\right) \quad p^{\mu} p_{\mu}=0
$$

へ \uparrow
measure energy and momentum but in what frame, how can we connect to observables?

Go to the local inertial frame. The energy E measured by an observers $u^{\mu}=\frac{d x^{\mu}}{d \tau}$ given by the $S R$ result (1.34):

$$
E_{o b j}=-u_{\mu} p^{\mu}=-g_{\mu} u^{\mu} \mu^{\nu}
$$

Now that we know this is the observed energy, we can compute it in any coordinate system.

Choose the comoving coordinates where $d_{s}{ }^{L}=-d t^{2}+a^{2} \delta_{i j} d x^{i} d x^{j}$ and assume for simplicity that our observer is at rest in the commoving frame:

$$
\begin{aligned}
& \begin{array}{l}
u^{\mu}=\frac{d x^{\mu}}{d r}=\left(u^{0}, 0,0,0\right) \quad u^{\mu} u_{\mu}=g_{\mu} u^{r} u^{\nu}=g_{000} u^{0}=-1 \\
u^{0}=\sqrt{\frac{-1}{j_{00}}} \\
\text { Here } \\
E_{00}=-1 \Rightarrow u_{s}=-g_{00} u^{0} p^{0}=p^{0}=\frac{\omega_{0}}{a}
\end{array} .
\end{aligned}
$$

The commoving observer (ie. freely falling observer) measuics photon energy $E=\frac{w_{0}}{a(t)} \ll$ cosmological redshift

Correspondingly, the measured wavelength is

$$
\lambda=\frac{2 \pi}{\omega}=\frac{2 \pi}{\omega_{0}} a(t)
$$

stretching due to expansion of space
3.4 Riemann curvature tensor

We have now enough machinery to determine a tonsorial, ie coordinck invariant, way to measure curvature = deviation from flat geometry.

In a flat spacetime we have the following properties:

1. Parallel transport around a closed loop is an identity:
2. Covariant derivatives commute:

$\nabla_{\mu} \nabla_{\nu} V^{\sigma}=\nabla_{\nu} D_{\mu} V^{\sigma} \quad$ because \exists coordinator where $\nabla_{\mu}=\partial_{\mu} \quad \forall p \in M$
3. Parallel geodesics remain parallel.

None of these properties is true in a generic curved spacetime. Here we consider the first two properties.

1. Consider an infinitesimal loop generated by vectors $a, b \quad$ ($a=d x^{\mu} d_{p}$ etc.)

Parallel tramport equation for a vector VT around the loop:

$$
\frac{d v^{\mu}}{d \lambda}+\Gamma_{\nu \sigma}^{\mu} V^{\nu} \frac{d x^{\sigma}}{d \lambda}=0 \quad \text { splits into } 4 \text { parts } a^{\sigma}, b^{\sigma},-a^{\sigma},-b^{\sigma}
$$

Linear in r^{μ} and a^{μ}, b^{μ} :

$$
\begin{aligned}
& \delta V^{\rho} \equiv V^{\rho}(\lambda=1)-V^{\rho}(\lambda=0) \equiv R_{\sigma \mu \nu}^{\rho} V^{\lambda=1} \downarrow V^{\sigma} a^{\mu} b^{\nu} \\
& \prod_{\text {linear map }}^{\rho}
\end{aligned}
$$

Going to oppasik direction gives

$$
-\delta v^{\rho}=R_{\sigma \mu \nu}^{\rho} v^{\sigma} b_{a}^{\mu} \quad \Rightarrow R_{\sigma \mu \nu}^{\rho}=-R_{\sigma v \mu}^{\rho}
$$

2. Now $D_{\mu} D_{\nu} V^{\sigma} \neq D_{\nu} D_{\mu} V^{\sigma}$. Consider the commutator:

$$
\begin{aligned}
& {\left[\nabla_{\mu}, \nabla_{\nu}\right] V^{\sigma}=\nabla_{\mu} \nabla_{\nu} V^{\sigma}-\nabla_{\nu} \nabla_{\mu} V^{\sigma}} \\
& =\partial_{\mu} \nabla_{\nu} V^{\sigma}+\Gamma_{\mu \lambda}^{\sigma} \nabla_{\nu} V^{\lambda}-\Gamma_{\mu \nu}^{\lambda} \nabla_{\lambda} V^{\sigma}-(\mu \leftrightarrow \nu) \\
& =\partial_{\mu} D_{\alpha}^{\sigma \sigma}+\partial_{\mu}\left(\Gamma_{\nu \lambda}^{\sigma} V^{\lambda}\right)+\Gamma_{\mu-1}^{v}\left(\partial_{\nu} V^{\lambda}+\Gamma_{\nu \alpha}^{\lambda} V^{\alpha}\right)-\Gamma_{\nu}^{\lambda}\left(l_{1} V^{\sigma}+\Gamma_{i \alpha}^{\sigma} V^{\alpha}\right) \\
& -\partial_{\nu} \partial_{\mu} V^{\sigma}-\partial_{\nu}\left(\Gamma_{r^{\lambda}}^{\sigma} v^{\lambda}\right)-\Gamma_{\nu \lambda}^{\sigma}\left(\partial_{\mu} v^{\lambda}+\Gamma_{\mu^{\alpha}}^{\lambda} v^{\alpha}\right)+\Gamma_{\nu \mu}^{\lambda}\left(\partial_{1} v^{\sigma}+\Gamma_{i \alpha}^{\sigma} V^{\alpha}\right) \\
& =\partial_{\mu} \Gamma_{\nu \lambda}^{\sigma} V^{\lambda}+\Gamma_{y<}^{\sigma} \partial_{\mu} V^{\lambda}+\Gamma_{\mu^{\lambda}}^{\alpha} \partial_{\alpha} V^{\lambda}+\Gamma_{\mu^{\lambda}}^{\sigma} \Gamma_{\alpha \alpha}^{\lambda} V^{\alpha} \\
& -\partial_{\nu} \Gamma_{\mu^{\lambda}}^{\sigma} V^{\lambda}-\Gamma_{\mu^{\lambda}}^{\sigma} \alpha_{L} v^{\lambda}-\Gamma_{\nu \lambda}^{\sigma} \partial_{\mu} V^{\lambda}-\Gamma_{\nu \lambda}^{\sigma} \Gamma_{\mu \alpha}^{\lambda} V^{\alpha} \\
& =\left(\partial_{\mu} \Gamma_{\nu \lambda}^{\sigma}+\Gamma_{\mu \alpha}^{\sigma} \Gamma_{\nu \lambda}^{\alpha}-\partial_{\nu} \Gamma_{\mu^{\prime}}^{\sigma}-\Gamma_{\nu \alpha}^{\sigma} \Gamma_{\mu^{\alpha}}^{\alpha}\right) V^{\lambda} \\
& \equiv R_{\text {jj }}^{\sigma} V^{\lambda}
\end{aligned}
$$

This definition tarns out th be equivalent point 1 above (Exercise).
We defined: $\underbrace{\left[\nabla_{\mu}, D_{\nu}\right] V^{\sigma}}_{(1,2) \text { tenor }}=R_{\nu \mu \nu}^{\sigma} V_{N(1,0)}^{\lambda}$ tensor
Hence, $R_{\mu \nu \lambda}^{\sigma}$ is a $(1,3)$ tensor. It is called the Riemann tensor and its components can be read off from above:
(3.15)

$$
R_{\lambda \mu \nu}^{\sigma}=\partial_{\mu} \Gamma_{\nu \lambda}^{\sigma}+\Gamma_{\mu}^{\sigma} \Gamma_{\nu \lambda}^{\alpha}-\partial_{\nu} \Gamma_{\mu \lambda}^{\sigma}-\Gamma_{\nu \alpha}^{\sigma} \Gamma_{\mu \lambda}^{\alpha}
$$

In a flat spacetime $\exists \mathrm{crd}$'s where $g_{\mu \nu}=$ cost $\forall r \in M \Rightarrow \Gamma=0 \Rightarrow R_{\mu \nu \lambda}^{\sigma}=0$

This goes alto in the other direction: $\frac{R_{\mu^{\nu \lambda}}^{\sigma}=0 \Rightarrow \exists c i d ' s \text { where gpu }=0 \text { oast } \forall p \in M}{(\text { Exercises })}$

Therefore, we got the important result:

$$
R_{\mu \nu \lambda}^{\sigma}=0 \Leftrightarrow \text { spacetime is flat }
$$

The Riemann ember measures deviations from flat spacetime.

Given the metric in any cid's we can now immediately campus the Christoffels using (3.4) and components of the Riemann tensor using (3.15). If any of the components $R_{\mu \nu \lambda}^{\sigma} \neq 0$ the spacetime is curved.

Symmetries of the Riemann tensor
In a 4-d space the Riemann tensor $R_{\mu \nu \lambda}^{\sigma}$ has $4^{4}=256$ components. Not all of them are independent, however, since the Riemann tensor has several symmetries.

From the very definition $\left[\nabla_{\mu}, \nabla_{\nu}\right] V^{\sigma}=R_{\nu \mu u V^{\lambda}}^{\sigma}$ and from (3.15) we see that $R_{\lambda \mu v}^{\sigma}=-R_{\lambda \nu \mu}^{\sigma} \quad$ antisymmetric under exchange of last two indices

There are also other symmetries which are not immedinitly transparent. The oc can be seen e.g. by going to the local inertial frame (symmetry or andismmetry of a tenser wot. indices is a and invariant thing).

$$
\begin{aligned}
& =\left.g_{\hat{\sigma} \hat{\alpha}}\left(\partial_{\mu} \Gamma_{\hat{\nu} \hat{\lambda}}^{\hat{\alpha}}-\partial_{\hat{\nu}} \Gamma_{\hat{\mu} \hat{\lambda}}^{\hat{\lambda}}\right)\right|_{P_{0}} \\
& =\left.\frac{1}{2} g_{\hat{\sigma} \alpha} \partial_{\hat{\mu}}\left(g^{\hat{\alpha} \hat{\beta}}\left(\partial_{\nu} g \hat{\lambda} \hat{\beta}+\partial_{\hat{\lambda}} g \hat{\beta} \hat{\nu}-\partial_{\hat{\beta}} g_{i} \hat{\nu}\right)-\left(\hat{\beta}_{\hat{\alpha}} \hat{\nu}\right)\right)\right|_{P_{0}} \quad\left(\partial_{\hat{\prime}} g \hat{\alpha} \hat{\rho}\left(P_{0}\right)=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1}{2}\left(\partial_{\hat{\mu}} \partial_{\hat{\lambda}} g_{\hat{\sigma} \hat{\nu}}-\partial_{\hat{\mu}} \partial_{\hat{\sigma}} g_{\lambda} \hat{\nu}-\partial_{\hat{\nu}} \partial_{\hat{\lambda}} g_{\hat{\sigma} \hat{\mu}}+\partial_{\hat{\nu}} \partial_{\hat{\sigma}} g_{\hat{\lambda} \hat{\mu}}\right) \right\rvert\, \\
& P
\end{aligned}
$$

Whit this result holds only at P_{0} where $g \hat{\nu} \hat{\nu}\left(P_{0}\right)=\eta \hat{\mu}_{\hat{\nu}}^{\hat{n}}, \partial_{\rho} \rho \underline{\alpha} \hat{\beta}\left(P_{0}\right)=0$, the symmetries of the result hold for any $P \in M$ and in any frame.

We thus find that the Riemann Ensor has the following symmetries:

$$
\text { (3.16) }\left\{\begin{array}{l}
R_{\sigma \lambda \mu}=-R_{\sigma \lambda \mu} \\
R_{\sigma \lambda \mu \nu}=-R_{\lambda \sigma \mu \nu} \\
R_{\sigma \lambda \mu \nu}=R_{\mu \nu \sigma \lambda}
\end{array}\right.
$$

How many degrees of fred om ar left among the $4^{4}=256$ components?

$$
\frac{4 \times 4-4}{2}=6 \text { oof } \quad \frac{4 \times 4-4}{2}=6 \text { dot }
$$

symm. uncle $\mu \mu \leftrightarrow \sigma \lambda$, the same number of dol's as for a symm. 6×6 matrix :

$$
\begin{aligned}
& \frac{6.6-6}{1^{2}}+{ }_{\text {dicsonels }}^{6}=\frac{21}{1 / 2 \text { of off-diagoncli }}
\end{aligned}
$$

\Rightarrow (3.16) leaves 21 independent components in $R_{\text {ripe }}$

There is one more symmetry that follows from the expression of $R_{\hat{\sigma} \hat{\lambda} \hat{j} \hat{\nu}}\left(P_{0}\right)$ above: (3.17) $\quad R_{\sigma \text { du }}+R_{\sigma p \nu \lambda}+R_{\sigma \nu \lambda p}=0 \quad$ cyclic permutation of last 3 indices This leaver altogether $21-1=20$ independent components in R^{σ} spud. These are precisely the 20 second derivatucu $\partial_{\mu} \mathcal{J i g g}_{\hat{\alpha} \hat{\beta}}$ which we could not set to zero in going to the local Lorentz frame. The Riemann curuatioce tensor is a tensocial quantity that contains these 20 doff's which mesisice deviation from a flat spacetime.

Bianchi identity

The Bianchi identity is a derivative constraint equation identically satisfied by the Riemann tensor.

Go to the local Lorentz frame again consider the $\operatorname{pin} L P_{0}$ where $g \hat{\mu}\left(P_{0}\right)=0, \operatorname{din} \operatorname{gan}\left(P_{a}\right)$-0
$\Rightarrow \Gamma_{\hat{\alpha} \hat{\beta}}^{\hat{\beta}}\left(P_{0}\right)=0$ and :

$$
\begin{aligned}
& =\partial_{\hat{\alpha}}\left(\partial_{\hat{\mu}} \Gamma_{\hat{\nu} \hat{\gamma} \hat{\gamma}}^{P_{0}}-\partial_{\hat{\nu}} \Gamma \Gamma_{\hat{\mu} \hat{\gamma}}+\Gamma \Gamma \Gamma^{0}-\Gamma \Gamma \Gamma^{0}\right) \mid \text { as } \Gamma\left(P_{0}\right)=0 \\
& \left.=\left(\partial_{\hat{\alpha}}\right)_{\mu} \Gamma_{\hat{\nu} \hat{\gamma}}^{\hat{\beta}}-\partial_{\hat{\alpha} \hat{\nu}} \Gamma_{\hat{\mu} \hat{\gamma}}^{\hat{\beta}}\right)\left.\right|_{P_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& =0
\end{aligned}
$$

Since we can do this for any point $P \in M$, we find the tensorial Biamehi identity:
$(3,18) \quad \nabla_{\alpha} R_{\gamma \mu \nu}^{\beta}+\nabla_{\mu} R_{\gamma \nu \alpha}^{\beta}+\nabla_{\nu} R_{\gamma \alpha \mu}^{\beta}=0$ cyclic permeation over the 1 st and last two indices This turns out to be a useful result. The Bianchi identity is essentially the Jacobi identity for covariant clesimbiver (Exercise):

$$
\left[\nabla_{\alpha},\left[\nabla_{\mu}, \nabla_{\nu}\right]\right]+\left[\nabla_{\mu},\left[\nabla_{\nu}, \nabla_{\alpha}\right]\right]+\left[\nabla_{r},\left[\nabla_{\alpha}, \nabla_{\mu}\right]\right]=0
$$

Recall $R_{\lambda \mu u}^{\beta}{ }_{\lambda}^{\lambda}=\left[D_{p}, D_{2}\right] u^{\beta}$

Decomposition of the Riemann tensor

Recall that a generic tensor can be uniquely decomposed into symuntric and antisymmetric parts and the symmetric part furthers into trace and trea-fre parts.

Consider egg. a $(0,2)$ tensor Apr:

$$
\begin{aligned}
A_{\mu \nu}=A_{(\mu \nu)}+A_{[\mu \nu]}, A_{(\mu \nu)} & =\frac{1}{2}\left(A_{\mu \nu}+A_{\nu \mu}\right) \text { ssm. } \\
A_{[\mu \nu]} & =\frac{1}{2}\left(A_{\mu \nu}-A_{\nu \mu}\right) \text { andiymm. } .
\end{aligned}
$$

$A \equiv g^{\mu \nu} A_{\mu \nu} \quad$ trace

$$
\begin{aligned}
& A\left[\mu_{\mu}\right]=0, \quad A \varphi_{\mu \nu}=A \\
& A_{(\mu \nu)}=A_{(\mu \nu)}-\frac{1}{n} A_{g_{\mu \nu}}+\frac{1}{n} A g_{\mu \nu} \equiv \hat{A}_{\mu \nu}+\frac{1}{n} A g_{\mu \nu} \\
& \operatorname{dim}_{\mu}(M)
\end{aligned}
$$

trace - free pant

$$
\Rightarrow A=\hat{A}_{\mu \nu}+\frac{1}{n} A g_{\mu \nu}+A_{[\mu \nu]}
$$

Ard independent decomposition into trace, trace-fice and ontismm. perth.

We can also decompose the Riemann tension into trace and trace-free parts. Symmetries (3.16) set contractions over find and last pair of indices of $R_{\text {ape }}^{\sigma}$ to zero

$$
R_{\sigma \mu \nu}^{\sigma}=0, \quad R_{\nu \sigma}^{\mu}=0
$$

The only non-zero contraction is the Ricer tensor:
(3.19)

$$
\begin{aligned}
& R_{\mu \nu} \equiv R_{\mu \sigma \nu}^{\sigma} \\
& R_{\nu \mu}=R_{\nu \sigma \mu}^{\sigma}=-R_{\sigma \mu \nu}^{\sigma}-R_{\mu \nu \sigma}^{0} \underset{\mu}{(3.17)}=R_{\mu \sigma \nu}^{\sigma}=R_{\mu \nu}^{\sigma}
\end{aligned}
$$

$\Rightarrow R_{p s}=R_{\text {up }} \quad$ Ricicitensor is symmetric
The trace of $R_{p u}$ is called the Rici'scaler:
(3.20) $\quad R \equiv R_{\mu}^{\mu}=g^{\mu \nu} R_{\mu}$

The Rice, tensor $R_{p e r}$ and Ricei scaler R encode all information of traces (= contractions) of the Riemann tensor R^{0} du.
$R_{\text {po }}$ sum $\frac{(4 \times 4-4)}{2}+4=6+4=10$ dot
The other 10 dot of $R_{\text {vine }}^{v}$ are encoded in the trace-fice past of R^{σ} der called the Weal tensor:
(3.21)

The Weal tensor has the same symmetrias as $R_{\text {dope }}$ but all contractions of C are zero. The Weal tensor is clefincd for $\operatorname{dim}(M) \geqslant 3$ and for $\operatorname{dim}(M)=3$ $C_{\lambda \sigma \mu}=0$.

Contracting the Bianchi idenits (3.18) we get:

$$
\begin{gathered}
\nabla_{\alpha} \underbrace{R_{\gamma \beta \nu}}_{=R_{\gamma \nu}}+\nabla_{\beta} R_{\gamma \nu \alpha}^{\beta}+\nabla_{\nu} \underbrace{R_{\gamma \nu}}_{=-R_{\gamma \alpha} R_{\gamma \alpha \beta}}=0 \\
\nabla_{\alpha} R_{\gamma \nu}+\nabla_{\beta} R_{\gamma \nu \alpha}^{\beta}-\nabla_{\nu} R_{\gamma \alpha}=0 \quad 1 \cdot g^{\alpha \gamma} \\
\nabla^{\gamma} R_{\gamma \nu}+\nabla_{\beta} \underbrace{R_{\gamma \nu}^{\gamma}}_{=R_{\gamma}^{\beta \gamma}}-\nabla_{\nu} R=R_{\gamma \nu}^{\gamma \beta}=R_{\nu}^{\beta} \\
\Rightarrow 2 \nabla^{\mu} R_{\mu \nu}=\nabla_{\nu} R \\
\text { (3.22) } \quad \nabla^{\mu} R_{\mu \nu}=\frac{1}{2} \nabla_{\nu} R
\end{gathered}
$$

It is useful define the Einstein tensor Gap as:
(3.23) $\quad G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R$

From (3.22) we then get:
(3.24) $\quad \nabla^{\mu} a_{\mu \nu}=0$ (as $\nabla_{\alpha} g_{\mu \nu}=0$)

The trace of the Einstein tensor is:

$$
G_{\mu}^{\mu}=R-\frac{4}{2} R=R
$$

We will soon see that the Einsteri tensor enters directly in the Einstein equation.

