



































































































































2 Differentialgeometry in curvedspacetimes

In Newtonianphysics there are two a prioridifferent masses

F Mia I mgr
gravitationalpotential

q t
inertialmass gravitationalmass

For a body falling with an acceleration I in a gravitational field these

two different ways of writing the gravitationalforce F aching on thebody

yield in mail
mi

IA mgt mi we would see different objects falling at at differentacceleration

in the same field This appears not to be the case in the nature and

observations tell us that Mi Mg This is promted to a conjecture in

LR

Weak equivalenceprinciple Allfreelyfalling objectshavethe same acceleration 04
in a gravitational field

as 04 mi mg
This says thatgravity is uniform it acts on the
same way on a massive bodies

This differs from eg electromagnetism

I g t

particleswith a different chargeqhavedifferent trajectories

The weakequivalenceprinciple implies that uniform gravitational field cannotbe
distinguished from uniform acceleration






































































































































Consider the famous example of a physicist in a freely falling elevator 320

Observer feelsnoacceleration feelsherselfmassless

A

04

a lab at rest in grav field an acceleratedlab no gravity

p a ball vs dropa ball
t i

Motion of freelyfalling nootherforce thengravity objects
exactly the same in both cases Uniform TOI
indistinguishablefrom constantacceleration

Promote this to a broader conjecture

strong equivalenceprinciple AAphysics reducesto specialRelativity in small
enough regions

Here smallenoughmeans locally ie inthe limit sx 0

In larger regions we startto see inhomogeneities of thegravitationalfield

a
g fo I

see tidal forces within the box

f f
EarthU

It






































































































































330
In SR the inertial frames have a specialrole laws ofphysicsmanifestly invarian

under inertialtransformations In the presence of gravity wealso have special
frames Frames of freely falling observers are locally inertral and physics SR

However these frames cannot be extended over larger spacetime regions Hence

global Lorentz transformations will no longer be a symmetry but instead they
will be replaced by local space and time dependent transformations

The strongequivalenceprinciple predicts gravitational redshift

µ Toi Both A Bmove withthe same constantacceleration theirdistance

g
XAB remains constant A sends a light ray to B

photons Nogravity and Vac the photon traveltime is at x

n As B receives thesignal she moves with a velocity su as

µ Toi with respect to the instantaneous restframeof A at thesending
time to This gives rise to theordinaryDopplereffect e.g fromTig 4.35
dobs 211 in A'sinst rest frame at to

blur Uk Kiev 4,71 11 astr
ksfaio2LT 1 f

t unitvector

s aj
holltast su aster

kobs.jo ast aXAB Dopplershift

Strongequivalenceprinciple shouldsee the same redshiftin a gear field 04 Egg
lab ace of a ref

framewetfreely

D X AgXAB Ag fallingbody
Xo Xo c 2

anti ftp.ngefea.aino.mae
photons gravitationalfields distances

observable in cosmicscales






































































































































Consider the spacetime diagram of the process 340
t n l

YA stobs kissy hot st
C

I
µ theclock of Bappears to ach slower than

the awe of a a an na a
linear scale which means that thespacetime
is not Minkowski

i
c i

x
AB

Gravityaffects thegeometry of the spacetime The spacetime is no longer

Minkowski but it becomes curved

221

2.1 Manifolds

curved spacetime are represented by manifold suon monist equippedwith

a metric

An n dim manifold is essentially a set µ which can belocallymapped to112

A single mapping B 12 may not extend over the fullmanifold but theentire

set M can be covered by smoothlypatchingtogethedifferentmaps

Unu

f µ
A chart 0,4 UCM a subsetof M

4 O R iii it the
coordinates of pe

i µ Hp Xflp

µ

coordinatesof p in
hn qy ftp.t.xntp thechart 10,4

fstrongequivalencepriciplephysicslocally srcminkowskiRnlopologically butSRdoesnotholdglobally






































































































































An atlas Ua 413 is a collection of allcharts s t
350

1 the union of G equalsM L U M i.e theatlas cover Mand
no extra points

2 transition from one chart toanother is smooth

DE VanUy t theintersection is not an emptyset

01419 4 0 4 710 XM MP

P ryp yr xrypy
C differentiable allover
derivatives finite

Unu

Rn
spy4117 P

Goi i
1112

Both og t IR IR and o 12 712 Ca functions in Uno

We can now define a Cd manifold µ as a set ofpoints equipped

with a maximalatlas allpossiblecharts In GR we also define a metric

for the spacetime See e g MNakahara Geometry topologyandphysics formore

details

In practise the smoothness of transition btw different crd functions means that

the Jacobians of Xr Xt n Forglobal Lorentz Syfy N'uSX

XM n JI
jXu

have no singularities The transitions are also inverbble one to one maps

deeIHIT.to let II to 351331 S1
Oxo oxo






































































































































In particular the smoothness guarantees that thechain rule always holds
ul2 Sx

text In

q
notethattheJacobian in generaldepends on XM i.e
the matrixelements are not constants

Example

2 dim sphere 52needs at least twocharts thetopology of S differentfrom112

NPnorthpole rypi IR
n

µ

get
02

stereographicprojection p
am

IRXMP sp southpole

Up 5 NP tangent ofnorthpole nevergoesthrough thesphere
U 5 SP tangent of southpole never goesthrough thesphere






































































































































2 2 Vectorsduals and tensors

Definition of lensorialquantities on general Ca manifolds physicallyespecially

in curvedspacetimes is very similar to our previousdiscussion ofMinkowskispace

justreplace Mu 8

Vectors

As before we define vectors as directionalderivativesalong curved

c IR M curve
TX f M 112 funchar

t
pectin

r

12.1 V dxY Feed daffFa
r t

components basisvector

VM dxI qn Z couldalso choose other than
DX the crd basis er 7 but in

thiscourse we will use theCrd
basis

A vectoraching on function gives the derivative of thefunction along the curve

G2 vtfT dxhkdfff.gg ddxyIdfzi dIDX d

Transformation properties under XM dyxnXu

V Mdy s VY vrdx Sui
Jin

vM Yv 2B






































































































































This is just likein Minkowski where 1 N'u under global Lorentztransf 380
However in 2.3 is the Jacobian of any cnd transformation which

J r

in general will be a non trivial fanchon of f and Xi

Dual vectors

Asbefore co Tp 112 a linear map from vectors to realnumbers

A dualbasis vector G dxr in the ad basis
2.4 we qdxm

q
Note that dxn d xD 210 810 is just

component a gradient of thecredfunction E

2.5 w v qdxr Vdu weirdo wait vETp
f

Transformation properties
chainrule for thedifferential

weapidxt qdx qdx 8k

qi 21
Jxn

2 6

General tenors

The definition is again exactlythe same as befre Consider an man tensor T

T Tp x xTp xTpx xTp IR linear in allarguments
re

m copies n copies

12.71 TV wH v vn
TM tho on Ox Oxfamox DX ox dx IN'dx usdxYva9ts vcnFIsn

TMtho u WI 14,9 Vin I Idx Jentidx'mdxftp.T.ndxuntm

TM muonq4wYLyj viiT Ft

i






































































































































Transformation properties 390

TMMoiunyiox oxfimoxdx ox dx
TMtho unfrox OxfamoxDX ox dx

TM A d dm B B B B1 31,41 is saiox oxHmoxdxiox dxi

trivia 1 M 1 is T s 12.8

so far everything has been exactly analogous to Mikowski space An important
difference concern derivatives of tensors In Mikowski space e g fav form
a 1,1 tensor in Cartesian ad's and under global Lorentz transformations

This is not true in generalcarvedspacetimeunder s 1 1 x
JK

sir l
i in v t.su

non tensorialpart

fv is not a tensor ingeneral

Later we willintroduce a covariant derivative which gives a tensorial

generalisation of thepartialderivative But before that we willneedto

discuss the metric in more detail






































































































































2.3 The metric 400

Mathematically a manifolddoes not need to have a metric The atlas definesthe

topology of the manifold M and the metric is an additional structure

which defines the geometry In LR we willalways be discussingmanifold

equipped with themetric and the metric willbe thephysicalobject which

describes gravity in the setup

The metric is a symmetric 10,21 tensor

2.9 g gµdxMoxdxu gin gun

which is non singular

det gm to F g s t g ga s

The 12,0 tensor gM is calledthe inverse metric

In GeneralRelativity themetricplays a key role It gives
1 notions ofpast and future causality lightcones

2 propertime andproperlength

3 geodesics which are trajectories of freelyfalling particles

4 generalisation of Newtonian gravitationalpotential

5 localinertialframes

6 innerproducts






































































































































410
The lineelement

The metric gives thenotion ofdistances in the spacetime This is often expressed

in terms of the line element

dico timelihe

di o lightlike
2 10 ds'sgµdxrdx di o spacelike

infinitesimal aid displacement
components ofthemetric

The infinitesimaldisplacement XM x7dxr is generatedby the vector
DX

µ
where the components are just the druplacements Now the line

element 2.10 is just the action of g on two displacementvectors

gasdxdoxdxbfdxmdzm.dk z gasdxrdxo8rd8f gydxMdxu ds2

We will often call 210 the metric although strictlyspeaking the metric

is the 6,2 tensor gpudxrodxu

Example

Euclidean 2 dim space in Cartesian coordinates x y

g dxxodx dyoxdy
Y A gdsiddytdie dx'tdY

x

The same in polar coordinates rio

g droids r'd do x ray
DX coopdr rsinoidy

y rsiny dy s sinoldr roosoldy
die die fdy daily Koichi.ioditrYai4tsii47dy

dr r DX






































































































































420
As the above example demonstrates the same metric can lookvery different

in different coordinates Whether the spacetime is flat or not may therefore

not be immediately obvious from the form of themetricgiven in someoral's
However if the spacetime has flat geometry there exists a ccd system where the

components gµ constant Y p EM In curvedspacetime it is notpossible to

find coordinates which cover theentiremanifold and where gpu constant

Later we willalso define a lensorialquantity whichdirectlymeasure thecurvature

and vanishes in all ad systems if the spacetime is flat

In the Euclidean space a distance between twopoints Pand P is the length

of the straight line which connects thepoints In curved spacetime we have

no uniquely defineddistancebetween twopoints P and P We can only
compute lengths ofdifferent curves which connect thepoints Pand P The

resultobviously depends on the curve chosen

Proper time for dico

Using the metric or lineelement we can compute lengths of differentcurves on

the manifold For timelike curves we define theproper time as a straightforward

generalisation of the Mikowski case

12.11 DT Fda
XB

µTAB µ f dxI Tap gives thephysical
DX timeelapsedalongXYD

YA t betweenYa and Xp






































































































































Properlength for di o

For spacelike curves X thephysicallength between YAandXp is given by
XD

12.12 sais Jd f d

AhA

Lightlike curves di o

As in Minkowski light andany othermasslessparticles move along nullcarve

ds O for massless particles

These curves have zero length

Raising and lowering of indices withthemetric

As in the Minkowski space we define

who GMWu maps thedual up to a vector w

V gpuV maps thevector M to a dual

Andsimilarly for lemons of any rank e g Ah g of A us

Given that we willalwaysdiscussmetric spaces why don't we just map all

duals to vectors and avoid defining thedualsaltogether The point is that

the metric is a dynamical degree of freedom in HR and we need

to solve for its equations ofmotion before we know it Therefore we also

need to be careful in defining vectors and drabseparately

Innerproduct

u r glum glum grunt quiq
metric is symmetric






































































































































Using the inner product we define the norm or its square as before 440
u u g uri sugar
Uput L o timelike vector a tangent to a curve Is co

Ugh to lightlike vector n di o

qum so spacelike vector u ds o

Example

Anexpanding homogeneous and isotopic spacetime is describedby the
Robertson Walker RW metric

ds's gµdxrdx alt tact ldx4dy'told
qscale factor

The coordinates fix y are the so called comoving coordinates where the

symmetries of thespacetime is manifest

In the comoving coordinates

aft act aft outta

Freely falling observers are at rest in the comouing frame Xi const

hence also calledcomoving observers Consider two comoving observers

A XI f Xa O OTrotate
the ad's s t yay 2 2,3 0

B XM t Xp 0,0

The comoving coordinates XA Xp are constants and hence Xp XA const

However thephysicaldistance between A and B grows as the spacetime

expands i e alt evolves






































































































































At any constant time event the Id surface to const ha
450

thegeometry of R and we have a unique concept of a straight line

connecting A and B Xi Xat XB Xa X
th

µ
A

x

YA XB

What is thephysicaldistance along this curve from A to B This is

theproper length of the curve

daistt µ µ ftp.alttlxa xal

Thephysicaldistance of two comoving observers changes due to
theexpansion of spacetime

The RWmetric describes our observable universe on large scales

d to 2100Mpc to today where theuniverse is approximatinghomogenous

and isotropic For most of the history of the universe the scale factor

alt is described by a power law

alt TP o c p c 1 alt 0 as t o singularity at t o
themanifoldends at t O
Bigbans






































































































































460
Consider thecausal structure determinedby the light cone high travels
along null curve ds 0

It s alt d again rotate ced's s t dy.dz o

t
t

If dt light ray sent at t 0 from x x along
P the x axis

O
t

X X I l
p

t
P

o
1 p

X Xo 1 t t I p x x

I p

Bythe time t light hastracked the coordinatedistance

DXA ftp Points with a greater separation lxa xBl sx
cannot have exchanged any information by the time t

B

re i

µ µ Air ae it

yto 7

horizon of A i e
horizon of B

pointsMa Hc the
which canhaveexchangedinformation
with A






































































































































470
2.4 Localinertialframe

Asalreadymentored in curvedspacetime it is notpossible to findcoordinates

where gpu const for all p EM However it is alwayspossible to

choose coordinates XF such that

2.14 gpi P qiu SegpilP so at any singlepoint P

These coordinates are called localinertial coordinates or localLorentzframe

In general

Jaygpi P o gpi P ypi for P P

meaning that as soon as we deviate from P we see deviations fromtheMikowski

form of themetric This is alljust saying thatbygoing to the localinertial
frame we can locally at a point remove alleffects of curvature in accordance

to theequivalence principles

Let us now show that the localLorentz frame where 214 holds indeedexists
Choose any POEM and perform a constant shift XM IM Year Is const

to set xMPd o

IMP ECB amso are hypo
IMP XMP XM

The metric components are unaffected by this

grit Pju9ns quo
Then perform anothernontrivial change of coordinates IM V It s t I Po O

and expand INTO aroundPo






































































































































IT x t

Ifx7 t.toI.y.xnwets
x

f.xndxnxnr
i

q p f f
4 dof Symon LB symm LBT

4 4 424 40 4 1 4 43 t
4j

8

Themetric components in the new coordinates 5thare justfunctions of thecoordinates and

can also be expandedaround Po

9film grill 2og.fip.xo f 2irdjgiip.xoxse

3xIYIugas43157,3 gas item 14,7 has xno

I III9am gas teens xnI degas

74,7dosa craft
4
IE I sdrsa

3144,73773 hissar t

This yields

grill dfugas Negi

dogie 3 a I ugm 31 7 dosa 40

2
Geoff 134 375.92 gas I dosa H

degas 141 dosa 314,734,7 f drdsgm woes






































































































































Now showing that we can set 2.14 amounts to comparing the availabledofto number ofego

D
grill qpg gas Yiu Negi 1610 6 dof left in

Theremaining 6 parameters in 3

are the 6parametersof theLorentzgroup
which leavegyuinvariant

signify 31 37,19 4 s syfjpgfpyy.bg O 4092

after imposing 1 and
removing the 6 Dofof Lorentzgroup

So we have 40ego and 40 dot which is just enough to set Soignee o
o

3 aigrit gust 3 gmt5 E Sosa crew

Po

III Segars s i i sham Yigpf x Hsgm 1002

8Odofafterand2

After 1 and 2 we are left with 20 components of 88259ft which ingeneral

cannotbe sat to zero These 20 components encode information of thecanceler

of spacetime and the same 20 Iof willappear in theRiemann curvature know

which we define later

ThelocalLorentz frame is the restframe of a freelyfalling observer wherephysics is

locally at thepointwhere gp.vnyes described by SR Therefore it is often

convenient to compute things in the localLorentz from using SR results and the

recast the results into covariant crd independendent form












































































































2 5 Integration on manifolds

Using the local inertialframe at anypoint Po thegeometryaroundthatpointreduces
r n

to Minkowski up to linear level in SW HP XTPo In particular theinfinitesimal

volume element at Po is just
d V d E at ADo

A transformation to other coordinates XM It yieldsthe usual Jacobiandeterminant

d4V d I detpjx d x at P P

The Jacobian determinant can be relatedto the determinant of themetric

gru 55,437,7giri gas at P Po

det gm g det det Iet Cigars at P P

f t
determinantof donot Ietf g

2
thecomponent confuse

matrix withthe
tensor

ggrudxrodt

g feet It
T the indexnames irrelevanthere thisdenotes
the Jacobian matrix

det Ej Fg rig at P P

Therefore we get the result

d V Fgd4x at P P



Nowsince this hold for any Po theend's 54 1 of coursediffer fordiffer1

but for any Po we can goto thelocalLorentz coordinates and the RHI is expressed

in general coordinates we can takethis as the definition of the volumeelement

over the entire manifold seebelow for a more formal treatment

G B d V Fgd x tf PEM

Integration of scalar functions f M 712 over curvedspacetime regions isthendefinedby

2.14 fCx d V d xFg f x E c M

Yore
mathematically we define thevolumeelement as the CO4 lemon 4 form

Rµ fTg1dx ndx rdx Adx Seealso Nakahara Chapter7.9 CarrollChapter2.10

dxoxodxbxdxidxs dxloxdxoxodxloxdxs.ie
antisymmetrisedsum over allpermutations the operator r defr d thisway

is calledwedgeprodinot

Change coordinates xM It n

L B v u l

gain 3 gas g feet g 13 1g assume12 o

Am Fg'Tdxokdx rdx ndx3
v r

13 li x Lxx'm3xIn 3xxIn.dxmndxMndxmndxm

p Y dxhdxhdxhdx

k thedeterminant is bydefinition theanhsymutated sum

Tgidx rd 1nd rrd s
over allproducts of elements

mania



Am dx duo dx du dx due dx 2

FgT sgn P dxhodxUP.deRdx 89po8upb'up Pup

a
permutation

MgdX0dx'd 2d

rigid x
Then we define the integral over a volume ECM as themap

an R dm frigid x
E

usual 4 dintegral of Fgl

The integral of a function f M 3112 is definedby

µ frm frigid'xf
E

usual 4 dintegral ofTgif


