2. Differential geometry in curved spacetimes

In Newtonian physics, there are two a prion i different masses:

For a body falling with an acceleration \bar{a} in a gravitational field there two different ways of writing the gravitational force \bar{F} acting on the body yield:

$$
\bar{a}=\frac{-m_{I}}{m_{i}} \nabla \varnothing
$$

If $m_{g} \neq m_{\text {; }}$, we would see different objects falling at at different acceleration in the same field. This appears not to be the case in the nature and observations tell as that $m_{i}=m_{g}$. This is promed to a conjecture in $G R$.

Weak equivalence principle: All freely falling objects have the same acceleration -Di in a gravitational field

$$
\bar{a}=-\nabla \varnothing \Rightarrow m_{i}=m_{g}
$$

This says that gravity is uniform, it acts on the same way on all massive bodies.

This differs from egg. electromagnetism:

$$
\bar{a}=\frac{q}{m_{k}} \bar{E}
$$

K particles with a different chase 9 have different trajectories
The weak equivalence principe implies that uniform gravitational field cannot be distinguished from uniform acceleration,

Consider the famous example of a physicist in a freely filling elevator:

Observer feels no acceleration \Rightarrow feels herself marshes!
a lab at rest in grave, field

vs.

Motion of freely falling (no other forces then gravity) objects exactly the same in both cases. Uniform $\nabla \Phi$ indistinguisabbl from constant acceleration.

Promote this to a broader conjeckere:
Strong equivalence principle: All physics reduces to special Relativity in small enough regions.

Here small enough means locally, ie. in the limit $\Delta x \rightarrow 0$.
In larger regions we stat to see inhomogeneities of the gravitational field:

In $S R$ the inertial frames have a special role, laws of physic i manifestly inuerient under inertial trawformations. In the presence of gravity we also have special frames. Frames of freely falling observers are locally inertial and physics $\rightarrow S R$. However, these frames cannot be extended over larger spacetime region. Hence global Lorentz transformations will no longer be a symmetry but instead they will be replaced by local, space and time dependent, trow formations.

The strong equivalence principk predicts gravitational redshift:

Both A, B move with the same constant accaknation, their distance $X_{A B}$ remain constant. A sends a light ray to B.
No gravity and $v \ll C$, the photon travel time is $\Delta t=x_{A B}$
As B receives the signal, she mover with a velocity $\Delta v=a \Delta t$ with respect to the instantancow rest frame of A at the sending time to. This gives rise to the ordinary Doppler effect, e.g. from (1.35)

$$
\begin{aligned}
& k_{\text {Sail| }}^{\mu}=\frac{2 \pi}{\lambda_{0}}(1, \hat{v}) \\
& \lambda_{0 b_{0}}=\frac{-2 \pi}{\frac{2 \pi}{\lambda_{0}}(-1+\Delta t a)}=\frac{\lambda_{0}}{1-a \Delta t}=\lambda_{0}(1+a \Delta t), \Delta V=a \Delta t \ll 1 \\
& \lambda_{a b c}-\lambda_{0}=a \Delta t=a X_{A B} \quad D_{\text {doppler }} \text { shift }
\end{aligned}
$$

λ.
Strong equivalence principle: should sue the same redshift in a grave. field $\nabla \phi=\bar{a}_{p}$

Consider the spacetime diagram of the process:

The clock of B appease to tick slower than the clock of A_{1}, t-axis cannot have a linear real which' means that the spacetime is not Minkowsti.
\Rightarrow Gravity affects the geometry of the spacetime. The spacetion is no longer Minkowsta' but it becomes curved.
$\downarrow 22.1$
2.1 Manifolds

Curved spacetimes are represented by manifolds (suomi. = monists) equipped with a metric.

An n-dim. manifold is essentially a set M which can be locally mapped to \mathbb{R}^{n}. A singh mapping $\mathscr{M} \rightarrow \mathbb{R}^{n}$ may not extend over the fall manifold but the entire set M can be covered by smoothly patchingtogethe different maps*.

A chart $(U, \phi) \quad U C M$ a subset of M $\phi: U \rightarrow \mathbb{R}^{n}$ one to -one map which gives the coordinates of $p \in U$

$$
\phi(p)=X_{1}^{\mu}(p)
$$

μ coordinates of p in the chant $(0, \phi)$
*Cf. Strong equimence priciple: physics locally $\Leftrightarrow S R$ (Minhowish $=\mathbb{R}^{n}$ topologically) but $S R$ does not hole globally.

An atlas $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ is a collection of all charts sit.:

1) the union of U_{α} equals $M \quad \cup V=M$ (ieee. the atlas covers M and
2) transition from one chart to another is smooth: no extra point)
$D \in \bigcup_{\alpha} \cap \bigcup_{\alpha}^{\prime} \neq \varnothing \quad$ (the intersection is not an empty et)

$$
\phi^{\prime}(P)=\phi^{\prime}\left(\phi^{-1}\left(X^{\mu}(P)\right)\right)=X^{\mu}\left(X^{\mu}(D)\right)
$$

$$
\phi(P)=\phi\left(\phi^{\prime-1}\left(X^{\mu^{\prime}}(P)\right)\right)=X^{\mu}\left(X^{\mu^{\prime}}(P)\right)
$$

C^{∞} differentiable, all order derivatives funik.

Both $\phi^{\prime} \cdot \phi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\phi \circ \phi^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} C^{\infty}$ function in $U \cap U^{\prime}$.

We can now define a $<^{\infty}$ manifold M as a set of points equipped with a maximal atlas (all possible chart). In $G R$ we also define a metric for the spacetime. (See e.s. [M. Nakahara: Geometry, topology and physics] for more details.)

In practise, the smoothness of transitions btw. different ard functions means that the dacobians of $x^{\mu} \rightarrow x^{\mu^{\prime}}: \frac{\partial x^{\mu^{\prime}}}{\partial x^{\nu}} \quad$ (For goal Lorentz $\frac{\partial x^{\mu^{\prime}}}{\partial x^{\prime}}=\Lambda^{\mu^{\prime}}$)

$$
x^{\mu} \rightarrow x^{\mu}: \frac{\partial x^{\mu}}{\partial x^{\prime \prime}}
$$

have no singularities. The transition are also invertible (one-te-ave mars)

$$
\operatorname{det}\left[\frac{\partial x^{\mu}}{\partial x^{\nu}}\right] \neq 0, \operatorname{det}\left[\frac{\partial x^{\mu}}{\partial x^{\prime \prime}}\right] \neq 0 \quad \frac{\partial x^{\prime}}{\partial x^{\sigma}} \frac{\partial x^{\sigma}}{\partial x^{\prime \prime}}=\delta_{\mu^{\prime}}^{\mu^{\prime}}
$$

In particular, the smoothness guarsikes that the chain rake always holds:

$$
\frac{\partial}{\partial x^{\mu}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\mu}} \frac{\partial}{\partial x^{\prime \prime}}
$$

\uparrow
note that the Jacobian in general depends on x^{μ}, i.e. the matrix clements are not constants.
Example
2-din sphere S^{2} needs at least two charts (the topology of S^{2} different from \mathbb{R}^{2})

Stereographic projection

$U_{1}=S^{2} \backslash N P$
tangent of north poke never goer through the sphere
$U_{2}=S^{2} \backslash S P$
tangent of south pot never goer through the sphere
2.2 Vectors, duals and tensors

Definition of tensorial quantities on general C^{∞} manifolds (physically especially in curved spacetimes) is very similar to our previow discussion of Minkowiski space. (just replace $\Lambda_{\nu}^{\mu \prime} \rightarrow \frac{\partial x^{\prime \prime}}{\partial x^{\nu}}$)
Vectors
As before, we define vectors as directional derivatives along curves

$c: \mathbb{R} \rightarrow M$ cave
$f: M \rightarrow \mathbb{R}$ function
(2.1)

$$
V=\frac{d x^{\mu}(c(\lambda))}{d \lambda} \frac{\partial}{\partial x^{\mu}(c(\lambda))} \equiv \frac{d x^{\mu}}{d \lambda} \frac{\partial}{\partial x^{\mu}}
$$

$V^{\mu}=\frac{d x^{\mu}}{d s}$
basis vector
$e_{\mu}=\frac{\partial}{\partial x^{\mu}} \quad \begin{aligned} & \text { could also choose other than } \\ & \text { the ard basis } e_{\mu}=\partial \text { but in }\end{aligned}$ the cred basis $e_{p}=\partial_{\mu}$ but in this concre we will we the cid bass
A vector acting on function gives the derivative of the function along the carve:
$(2,2)$

$$
v[f]=\frac{d x^{\mu}(c(\lambda))}{d \lambda} \frac{\partial f(c(\lambda))}{\partial x^{\mu}(c(\lambda))}=\frac{d x^{\mu}}{d \lambda} \frac{\partial f}{\partial x^{\mu}}=\frac{d f}{d \lambda}
$$

Transformation properties under $x^{\mu \prime}=\frac{\partial x^{\mu \prime}}{\partial x^{\nu}} x^{\nu}$:

$$
\begin{align*}
& v=v^{\mu} \rho^{\prime}=v^{\mu} \partial \mu=v^{\mu} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\mu}} \partial_{\nu}^{\prime} \\
& \Rightarrow \quad v^{\mu^{\prime}}=\frac{\partial x^{\mu}}{\partial x^{\nu}} v^{\nu} \quad \text { (2.3) } \tag{2.3}
\end{align*}
$$

This is jut like in Miskowski where $\frac{\partial x^{\mu \prime}}{\partial x^{\nu}}=\Lambda^{\mu \prime}$, uncle global Lorentz transf.
However, in (2.3) $\frac{\partial x^{\mu}}{\partial x^{\nu}}$ is the Jacobian of any and transtornation which in general will be a nontrivial function of t and x^{\prime}.

Dual vectors
As before: $\omega: T_{p} \rightarrow \mathbb{R}$ a linear map from vectors to real numbers.
(2.4)

(2.5) $\quad \omega[\nu]=\omega_{\mu} d x^{\mu}\left[v^{\nu} \partial_{\nu}\right]=\omega_{\mu} v^{\nu} \underbrace{d x^{\mu}\left[\partial_{\nu}\right]}_{=\delta_{\nu}^{\mu}}=\omega_{\mu} \nu^{\mu} \quad, v \in T_{p}$

Transformation prepentias

$$
\begin{align*}
& \omega=\omega_{\mu} d x^{\mu^{\prime}}=\omega_{\mu} d x^{\mu}=\omega_{\mu} d x^{\nu^{\prime}} \frac{\partial x^{\mu}}{\partial x^{\prime \prime}} \\
& \Rightarrow \quad \omega_{\mu}^{\prime}=\frac{\partial x^{\nu}}{\partial x^{\prime}} \omega_{\nu} \quad(2.6) \tag{2.6}
\end{align*}
$$

General tensors

The definition is again exactly the sane as before. Consider an (m, n) tensor T $T: \underbrace{T_{p}^{*} \times \ldots \times T_{p}^{*}}_{m \text { copied }} \times \underbrace{T_{p} \times \ldots \times T_{p}}_{n \text { copies }} \rightarrow \mathbb{R}$ linear in all arguments.
$(2,7)$

$$
\begin{aligned}
& T\left[\omega^{(n)}, \ldots, \omega^{(n)}, v_{1}^{(1)}, \nu^{(n)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =T^{\mu_{1} \ldots \mu_{n}} \nu_{1} \ldots \nu_{n} \omega_{\mu_{1}}^{(1)} \ldots \omega_{\mu m}^{(m)} v_{(1)}^{\nu_{1}} \ldots v_{(n)}^{\nu_{n}}
\end{aligned}
$$

Transformation properties:

$$
\begin{aligned}
& =T^{\mu_{1} \ldots \mu_{n}} \nu_{1} \ldots \nu_{n} \partial_{\mu_{1}} \otimes \ldots \otimes \partial_{\mu_{m}} \otimes d x^{\nu^{\prime}} \otimes \ldots d x^{U_{n}} \\
& =T^{\mu_{1} \ldots \mu_{n}} \mu_{1} \ldots \nu_{n} \frac{\partial x^{\alpha_{1}^{\prime}}}{\partial x^{\mu_{1}}} \cdots \frac{\partial x^{\alpha_{n}^{\prime}}}{\partial x^{\mu_{n}}} \frac{\partial x^{\beta_{1}}}{\partial x^{\nu_{1}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial x^{\nu_{n}^{\prime \prime}}} \partial_{\alpha_{1}, \otimes} \ldots \otimes \partial_{\alpha_{m}^{\prime}} \otimes d x^{\beta_{1}^{\prime}} \otimes \ldots d x^{\beta_{n}^{\prime}} \\
& \Rightarrow \quad T^{\mu_{1}^{\prime} \cdots \mu_{n}^{\prime}} \mu_{1}^{\prime} \ldots \mu_{n}^{\prime}=\frac{\partial x^{\mu_{1}^{\prime}}}{\partial x^{\alpha_{1}} \cdots} \frac{\partial x^{\mu_{n}^{\prime}}}{\partial x^{\alpha_{m}}} \frac{\partial x^{\beta_{1}}}{\partial x^{\nu_{1}^{\prime}}} \cdots \frac{\partial x^{\beta_{n}}}{\partial x_{n}^{\nu_{n}^{\prime}}} T^{\alpha_{1} \ldots \alpha_{m}}{ }_{\beta_{1} \ldots \beta_{1}} \quad \text { (2.8) }
\end{aligned}
$$

So far everything has been exactly analogow to Mirkawshi space. An important difference concerns derivatives of tensors. In Mintoustei space e.g. Jav" form a $(1,1)$ tensor (in carksian cred's and under global Lorentz transformations) This is not true in general curved spacetime andes $x^{\mu \prime \prime}=\frac{\partial x^{\mu}}{\partial x^{\prime \prime}} x^{\nu}$

$$
\begin{aligned}
\partial_{\mu} v^{\nu^{\prime}} & =\frac{\partial x^{\alpha}}{\partial x^{\prime}} \frac{\partial}{\partial x^{\alpha}}\left(\frac{\partial x^{\prime \prime}}{\partial x^{\beta}} v^{\beta}\right) \\
& =\frac{\partial x^{\alpha}}{\partial x^{\prime}} \frac{\partial x^{u \prime}}{\partial x^{\beta}} \partial_{\alpha} v^{\beta}+\underbrace{\frac{\partial x^{\alpha}}{\partial x^{\prime \prime}} \frac{\partial^{2} x^{\prime \prime}}{\partial x^{\alpha} \partial x^{\beta}}}_{\text {non-tendorial part }} v^{\beta} \neq \partial_{\mu} v^{\nu}
\end{aligned}
$$

$\Rightarrow \partial_{\mu} V^{v}$ is not a tensor in general
Laker we will introduce a covariant derivative ire which gives a knsorial generalisation of the partial derivative dp. But before that we will need to discuss the metric in more detail.
2.3 The metric

Mathematically a manifold does not need to have a metric. The atlas defines the topology of the manibld M and the metric is an addikenal stricken which defines the geometry. In CR we will always be discussing marbles egnioped with the metric and the metric will be the physical object which describes gravity in the setup.

The metric is a symmetric $(0,2)$ tensor:
(2.9) $\quad g=g_{\mu \nu} d x^{\mu} d x^{\nu} \quad g_{\mu \nu}=g_{\nu \mu}$
which is non-vingular:

$$
\operatorname{det} g_{\mu \nu} \neq 0 \Rightarrow \exists g^{\mu \nu} \text { st. } g^{\mu \alpha} g_{\alpha \nu}=\delta^{\mu} \nu
$$

The $(2,0)$ tensor $g^{\mu \nu}$ is called the inverse metric
In General Reckuvily the metric plays a key rok. It gives:

1) notions of past and future \& causality (ijhtconces)
2) proper time and proper length
3) geodesics which are trajectories of fruelor falling postiches
4) gencrexiaction of Newtrimen gravitational portentue
5) local inctral frames
6) inner products

The line element
The metric gives the notion of distances in the spacetime. This is often expressed in terms of the line element:
(2.10)

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x_{\Gamma}^{\nu}
$$

d) ${ }^{2}<0$ time like $d s^{2}=0 \quad$ lightike $d s^{2}>0 \quad$ specelike
infinitesimal ard displacements

The infinitesimal displacement $x^{\mu} \rightarrow x^{\mu}+d x^{\mu}$ is generated by the vector $d x^{\mu} \frac{\partial}{\partial x^{\mu}}$, where the components are just the displacements. Now the line element (2.10) is just the action of g on two displacement vectors:

$$
g_{\alpha \beta} d x^{\alpha} \otimes d x^{\beta}\left(d x^{\mu} \frac{\partial}{\partial x^{\mu}}, d x^{\nu} \frac{\partial}{\partial x^{\nu}}\right)=g_{\alpha \beta} d x^{\mu} d x^{\nu} \delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}=g_{\mu} d x^{\mu} d_{x}^{\nu}=d^{2}
$$

We will often call (2.10) the metric although strictly speaking the metric is the $(0,2)$ tensor guudx ${ }^{\mu} d x^{v}$.

Example
Euclidean 2-dim space in Carksian coordinaks (x, y)

$$
\begin{aligned}
& g=d x \otimes d x+d y \otimes d y \\
& d_{1}^{2}=d x^{2}+d y^{2} \quad y \uparrow \quad \int_{4 x}^{y_{1} \sqrt{\left(x^{2}+y^{2}\right.}}
\end{aligned}
$$

The same in polar coordinate $(1, \phi)$

$$
\begin{aligned}
& g=d r \otimes d r+r^{2} d \phi \otimes d \phi \\
& d s^{2}=d r^{2}+r^{2} d \phi^{2}
\end{aligned}
$$

$$
\begin{aligned}
d x & =\cos \phi d r-r \sin \phi d \phi \\
d y & =\sin \phi d r+r \cos \phi d \psi \\
d x^{2}+d y^{2} & =\left(\cos \phi+\sin ^{2} \psi\right) r^{2}+r^{2}\left(\cos ^{2} \psi+\sin ^{2} \phi\right) d \psi^{2} \\
& =d r^{2}+r^{2} d \phi^{2}
\end{aligned}
$$

As the above example demonstrates, the same metric can look very differuat in different coordinate. Whether the spacetime is flat or not may therefore not be immediately obvious from the form of the metric given in some ard's. However, if the spacetime has flat geometry there exists a cid system where the components $g_{\mu v}=$ constant $\forall p \in M$. In curved spaceetimas it is not passible to find coordinaks which cover the entire manifold and where gro = constant. Later we will also define a tensorial quantity which directly measures the curvature and vanishes (in all and systems) if the spacetime is flat.

In the Euclidean space a distance between two points Band P1 is the length of the straight line which connects the points. In curved spacetime we have no uniquely defined distance between two points P and P ! We can only compute lengths of different curves which connect the points Pond P! The result obviously depends on the curve chosen.

Proper time (for $d \delta^{2}<0$)
Using the metric, or lime element, we can compar lengths of different carves on the manifold. For timelike curves we define the proper time as a straightforward generalisation of the Mirtonstic cate:
(2.11)

$$
\begin{aligned}
& d \tau \equiv \sqrt{-g \mu d x^{2} d x^{2}} \\
& \tau_{A B}=\int_{\lambda_{A}}^{\lambda_{B}} d \sqrt{-g \mu \frac{d x^{2} d x^{2}}{d \lambda} d x}
\end{aligned}
$$

$T_{A B}$ gives the physical time elapsed along $x^{m}(\lambda)$ between λ_{A} and λ_{B}.

Proper length (for $d_{s}{ }^{2}>0$)
For spacelite curves $x^{t}(\lambda)$, the phywidl length between λ_{A} and λ_{B} is given by
(2.12)

$$
S_{A B}=\int_{\lambda_{A}}^{\lambda_{B}} d \lambda \sqrt{g_{\mu} \frac{d x^{2} d x^{2}}{d \lambda} \frac{d x}{d \lambda}}
$$

Lightilie carves $\left(d_{s}{ }^{2}=0\right)$
As in Minkowsti, light and any other massless particles move along null carves
$d s^{2}=0$ for masses perciccles
There curves have zero length.
Raising and lowering of indices with the metric
As in the Mintowsth' space we define:

$$
\begin{array}{ll}
\omega^{\mu}=g^{\mu \nu} \omega_{\nu}, \text { maps the dual } \omega_{\mu} \text { to a vector } \omega^{\mu} \\
v_{\mu}=g_{\mu} \nu^{\nu}, \text { maps the vector } v^{\mu} \text { to a dad }
\end{array}
$$

And similarly for tensors of any rank, e.j. $A^{\mu}{ }_{\nu \rho}=j^{\mu \sigma} A_{\text {org }}$. Given that we will always discuss metric spaces, why don't we just map all duals to vectors and avoid defining the dust altogether? The point is that the metric is a dynamical degree of freedom in $G R$ and wa need to solve for its equations of motion before we know it. Therefore we ali need to be careful in deferring vectors and dual seperectly.
Inner product

$$
u \cdot v \equiv g(u, v)_{\mu}=g(v, u)=g_{\mu} u^{\mu} v^{\nu}=u_{\mu} v^{r}
$$

metric is symactric

Using the ines product we define the norm (or its sane) as before: (44)

$$
u \cdot u=g_{\mu \nu} u^{\mu} u^{\nu}=u_{\mu} u r
$$

$u_{\mu} u^{\mu}<0$ timelike vector, tangent to a curve $d_{s}{ }^{2}<0$
$u_{\mu} u^{\mu}=0 \quad$ lightilik vector, $\quad "-\quad d^{2}=0$
$u_{\mu} u^{\mu}>0$ spacelite vector, —"— $d s^{2}>0$
Example
An expanding homogeneous and istrispic spacetime is clescrited by the Robertion-waller (RW) metric:

$$
\begin{array}{r}
d s^{2}=g_{\mu \nu} d x^{2} d x^{2}=-d t^{2}+a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right) \\
\prod_{\text {sauk focbr }}
\end{array}
$$

The coordincks (t, x, y, z) are the so called comoving coordincks where the symmetries of the spacetime is monifut.

In the commoving coordinates:

$$
g_{\mu \nu}=\left(\begin{array}{ccc}
-1 & & \\
& a^{2}(t) & 0 \\
0 & a^{2}(t) & \\
& & \\
a^{2}(t)
\end{array}\right), g^{\mu \nu}=\left(\begin{array}{ccc}
-1 & & 0 \\
& a^{-2}(t) & 0 \\
0 & a^{-2}(t) & a^{-1}(t)
\end{array}\right)
$$

Freely falling observers are at rest in the comosuing frame x^{i} =cont., hence also called commoving observers. Consider two comoving observes
A: $\quad x_{A}^{\mu}=\left(t, x_{A}, 0,0\right)$ rotek the cred's sit. $y_{A}=Y_{B}=z_{A}=z_{B}=0$
B: $\quad x_{g}^{\mu}=\left(t, x_{g}, 0,0\right)$
The comoving coordincks X_{A}, X_{B} are constants and hence $X_{B}-X_{A}=L_{W}$. However, the physical distance between A and B grows as the spacetime expands, ie. $a(t)$ evolves.

At any constant time event, the $3 d$ surface $t=$ const. ha the geometry of \mathbb{R}^{3} and we have a unique concept of a straight line connecting A and $B: x(\lambda)=X_{A}+\left(X_{B}-x_{A}\right) \lambda$

Whet is the physical distance along this curve firm A to B? This is the proper length of the curie

$$
d_{A B}(t)=\int_{0}^{1} d \lambda \sqrt{g \mu \nu \frac{d x^{2} d x^{\prime}}{d \lambda} \frac{1 \lambda}{d \lambda}}=\int_{0}^{1} d \lambda \sqrt{a^{2}(t)\left(x_{B}-x_{A}\right)^{2}}=a(t)\left|x_{B}-x_{A}\right|
$$

\Rightarrow The physical deviance of two comoving observes change due to the expansion of spacetime.

The RW metric describes ow observable universe on large sack es $d\left(t_{0}\right) \gtrsim 100 \mathrm{Mpc}\left(t_{0}=\right.$ today $)$ where the universes is approximatiefs hom.genow and isotopic. For most of the history of the universe, the scale factor $a(t)$ is described by a power lam:
$a(t)=t^{\prime}, 0<p<1, a(t) \rightarrow 0$ as $t \rightarrow 0 \quad$ singularity at $t=0$, the manifold end at ${ }^{\prime}=0$ ("Bia bang")

Consider the causal structure determined by the light cone. Light travels along null curves $d s^{2}=0$:

$$
\begin{aligned}
& d t^{2}=\underbrace{a^{2}(t)}_{=t^{2 p}} d x^{2} \quad \text { (again rotate cid's set. } d y=d z=0 \text {) } \\
& \int_{x,}^{x} d x= \pm \int_{0}^{t} \frac{d t}{t^{p}} \quad \begin{array}{l}
\text { light ray sent at } t=0 \text { from } x=x_{0} \text { along } \\
\text { the } x-a x i s
\end{array} \\
& x-x_{0}= \pm\left.\frac{1}{1-p}\right|_{0} ^{1} t^{1-p} \\
& x-x_{0}= \pm \frac{1}{1-p} t^{1-p} \Rightarrow t=(1-p)^{\frac{1}{1-p}}\left(F\left(x-x_{0}\right)\right)^{\frac{1}{1-r}}
\end{aligned}
$$

By the time t, light has travelled the coordinate distance $\Delta x(t)=\frac{1}{1-p} t^{1-p}$. Points with a greater separation $\left|x_{A}-x_{B}\right|>\Delta x$ cannot have exchanged any information by the time t.

2.4 Local inctial frame

As already mentioned, in curved spacetime it is not possible to find coondinats where $g_{\mu \nu}=$ coast. for all $p \in M$. However, it is always possible to choose coordinates $x^{\hat{\mu}}$ such that:
(2.14) $\quad g_{\mu \nu}(P)=\eta_{\mu \nu}, \partial_{\hat{\sigma}} g_{\hat{\nu}}(P)=0$ at any single point P

These coordinates are called local inertial coordinates or local Lorentz frame. In general:

$$
\partial_{\hat{\sigma}} \partial_{\rho} g_{\mu} \hat{\nu}(P) \neq 0 \Rightarrow g \hat{\mu}_{\hat{c}}\left(P^{\prime}\right) \neq \eta \hat{r}_{\hat{\nu}} \text { for } P^{\prime} \neq P
$$

meaning that as soon as we deviant from $P_{w e}$ see deviation from the Misturdt: form of the metric. This is all just saying that by going to the local inactive frame we can locally (at a point) remove all effect of curveckere in accordance to the quiraknce principle.
Let us now shew that the local Lorentz from where (2.14) holes indeed exist.
Choose ans $P_{0} \in M$ and perform a content shift $x^{\mu} \rightarrow \tilde{x}^{\mu}=x^{\mu}+a^{\mu}, a^{\mu}$ sans? to $\operatorname{set} \tilde{x}^{\mu}\left(P_{0}\right)=0$:

$$
\begin{aligned}
& \tilde{x}^{r}\left(D_{0}\right)=x^{r}\left(P_{0}\right)+a^{\mu}=0 \Rightarrow a^{r}=-x^{r}\left(P_{0}\right) \\
& \tilde{x}^{\mu}(P)=x^{\mu}(P)-x^{r}\left(P_{0}\right)
\end{aligned}
$$

The metric compareat are unaffected by this:

$$
g_{\tilde{\sim}} \tilde{\nu}=\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\sim}} g_{\alpha \beta}=J_{\mu \nu}
$$

Then perform ouncthe (lon-tivial) change of coordinates: $\tilde{x}^{\mu} \rightarrow \hat{x}^{\mu}\left(\tilde{x}^{r}\right)$ s.t. $\hat{x}\left(P_{0}\right)=0$ and expand $\tilde{x}^{M}(\hat{X} r)$ around P_{0} :
$4.4=16$ do
ssm. $\alpha \beta$

$$
4 \cdot\left(4+\frac{4.3}{2!}\right)=40 d_{d} f
$$

sym $\alpha \beta \gamma$

$$
4 \cdot\left(4_{x \times x}^{4}+4.3+\frac{4.3 \cdot 2}{3!}\right)=80 d a f
$$

The metric components in the new coordincks \hat{x}^{μ} are just functions of the cosrdincks and can also be expanded around P_{0} :

$$
\begin{aligned}
& g_{\hat{\mu} \hat{\nu}}(p)=g_{\hat{\mu} \hat{\nu}}\left(P_{0}\right)+\partial_{\hat{\sigma}} g_{\hat{\mu}}\left|\hat{x}^{\sigma}+\frac{1}{2} \partial_{\hat{\sigma}} \partial_{\hat{\rho}} g_{\hat{\nu}}\right| \hat{x}^{\sigma} \hat{x}^{\rho}+\ldots \\
& =\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} g_{\alpha \beta}+\left(\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\sigma} \partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} g_{\alpha \beta}+\left(\mu(-2)+\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \hat{x}^{\sigma}} \partial_{\gamma} g_{\alpha \beta}\right) \hat{x}^{\sigma}\right. \\
& +\frac{1}{2}\left[\left(\frac{\partial^{3} x^{\alpha}}{\partial \hat{x}^{\sigma} \partial \hat{x}^{\rho} \delta \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} g_{\alpha \beta}+\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\sigma} \dot{x}^{\mu}} \frac{\partial^{2} x^{\beta}}{\partial \hat{x}^{\beta} \hat{x}^{\nu}} g_{\alpha \beta}+(\mu(-\nu))+\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\sigma} \partial \dot{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \partial_{\hat{\rho}} g_{\alpha \beta}\right.\right. \\
& +\left(\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\gamma} \partial \hat{x}^{\beta}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \hat{x}^{\sigma}} \partial_{\gamma} g_{\alpha \beta}+(\mu \leftrightarrow \nu)\right)+\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \frac{\partial x^{2} \gamma}{\partial \hat{x}^{\sigma} \partial \hat{x}^{\beta}} \partial_{\gamma} g_{\alpha \beta} \\
& \left.+\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \hat{x}^{\sigma}} \frac{\partial x^{\delta}}{\partial \hat{x}^{s}} \partial_{\gamma} \partial_{\delta} g_{\alpha \beta}\right] \hat{x}^{\sigma} x^{\beta}{ }^{s} \ldots
\end{aligned}
$$

This yields:

$$
\begin{aligned}
& g_{\mu \hat{\mu}}\left(P_{0}\right)=\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{2}} g_{\alpha \beta} \quad 10 \text { es } \\
& \left.\partial \hat{\sigma} g \mu^{\nu}\right|_{p}=\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\alpha} \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} g_{\alpha \beta}+(\mu(s))+\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \hat{x}^{\sigma}} \partial_{\gamma} g_{\alpha \beta} \quad 40 \text { es } \\
& \text { Pf } \\
& \left.\partial_{\hat{\sigma}} \partial_{\hat{\rho}} g_{\hat{F}} \hat{\nu}\right|_{p}=\left(\frac{\partial^{3} x^{\alpha}}{\partial \hat{x}^{\sigma} \partial \hat{x}^{\rho} \hat{x}^{r}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} g_{\alpha \beta}+\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\sigma} \partial \hat{x}^{\mu}} \frac{\partial^{2} x^{\beta}}{\partial x^{j} \partial \hat{x}^{\omega}} g_{\alpha \beta}+\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{r} \partial \hat{x}^{3}} \frac{\partial x^{\beta}}{\partial \hat{x}^{2}} \frac{\partial x^{\gamma}}{\partial \hat{x}^{\sigma}} \partial_{\gamma g_{\alpha \beta}}+(\mu \in \nu)\right. \\
& \text { Pf }
\end{aligned}
$$

Now showing that we can set (2.14) amount to compering the ausikble dot to number of gs. 1)

$$
g_{\mu \hat{\nu}}\left(P_{0}\right)=\underbrace{\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{2}}} g_{\alpha \beta}=\eta \hat{r}^{\hat{\nu}} \quad 10 \text { eggs } \quad \Rightarrow 16-10=6 \text { def left in } \frac{\partial x}{\partial \hat{x}}
$$

The remaining 6 parameters in $\frac{\partial x}{\partial \hat{x}}$
are the 6 parameters of the horatio gray which leave y^{2} inverient.
2)

$$
\partial \hat{\sigma} g \hat{\mu}^{\nu} \hat{P_{0}} \left\lvert\,=\underbrace{\frac{\partial^{2} x^{\alpha}}{\partial \hat{x}^{\prime} \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\prime}}} g_{\alpha \beta}+\left(\mu(-\nu)+\frac{\partial x^{\alpha}}{\partial \hat{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \hat{x}^{\nu}} \frac{\partial x^{\gamma}}{\partial \hat{x}^{\sigma}} \partial_{\gamma^{\prime}} g_{\alpha \beta}=0 \quad 40\right. \text { eq }\right.
$$

40 dof after imposing 1) and removing the 6 dot of Lorentz group
So we have 40 egg and 40 dot which is just enough to set $d_{\sigma} g \hat{y}^{\circ} \int_{0}=0$
3)

80 doff after 1) and 2)
After 1) and 2) we are left with 20 components of $\partial_{\hat{\sigma}} \partial_{\hat{j}}$ g $\mu \mu$ which in general cannot be set to zero. These 20 components encode information of the curveker of spacetime and the same 20 dot will appear in the Riemann curvature kor which we define later.

The local Lorentz frame is the rest frame of a freely falling observer where physics is locally (at the point where $9 \hat{\mu} \hat{\nu}=\eta \mu^{0} \hat{0}$) described by $S R$. Therefore it is often convenient to compute things in the leal Lorente frame using $J R$ results and then recast the results into covariant cred independendent form.
2.5 Integration on manifolds

Using the local inertial frame at any paint P_{0}, the geometry around that point redrew to Miskowsti up to linear level in $\Delta \hat{x}^{\mu}=\hat{x}^{\prime}(p)-\hat{x}^{r}\left(P_{0}\right)$. In particular, the infiritusmal volume element at P_{0} is just:

$$
d^{4} V=d^{4} \hat{x} \quad \text { at } P=P_{0}
$$

A transformation to other coordinate $x^{\mu}\left(\hat{x}^{\mu}\right)$ yields the usual Jacobian determinant:

$$
d^{4} V=d^{4} \hat{x}=\operatorname{det}\left(\frac{\partial \hat{x}^{\mu}}{\partial x^{2}}\right) d^{4} x \quad \text { at } P_{0} P_{0}
$$

The Jacobian determinant can be related to the determinant of the metric:

$$
\begin{aligned}
& g_{\mu \nu}=\frac{\partial \hat{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial \hat{x}^{\beta}}{\partial x^{\nu}} g_{\hat{\alpha} \hat{\beta}}=\frac{\partial \hat{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial \hat{x}^{\beta}}{\partial x^{\nu}} \eta_{\alpha \beta} \text { at } P=P_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { tensor } \\
& j=q_{j} d x=\Delta d x^{2} \\
& g=\left(\operatorname{det}\left(\frac{\partial \hat{x}^{\mu}}{\partial x^{\nu}}\right)\right)^{2}(-1)
\end{aligned}
$$

T the index names irrelevent here, this denotes the dacobian matrix

$$
\Rightarrow \operatorname{det}\left(\frac{\partial \hat{x}^{\mu}}{\partial x^{\nu}}\right)=\sqrt{-g}=\sqrt{|g|} \quad \text { at } P=P_{0}
$$

Therefore we gets the result:

$$
d^{4} V=\sqrt{-g} d^{4} x \quad \text { at } \quad P=P
$$

Now since this holds for any P_{0} (the cred's $x^{r}\left(P_{0}\right)$ of course differ for differ. but for any P_{0} we can go to the local Lorentz coordinate) and the RHS is expected in general coordinate, we can tate this as the definition of the volume elemat over the entire manifell (bee below for a more formal treatment)
(2.13) $\quad d^{4} V=\sqrt{-g} d^{4} x \quad \forall P \in M$

Integration of scalier functions $f: M \rightarrow \mathbb{R}$ our curved spacetime region is then defined by

$$
\text { (2.14) } \int_{\Sigma} f(x) d^{4} V=\int_{\Sigma} d^{4} x \sqrt{-j} f(x) \quad \sum \subset M
$$

More mathematically, we date the volume event as the (0,4) tenor (4-fin)
 $\equiv d x^{0} \otimes d x^{1} \oplus d x^{2} d x^{3}-d x^{1} d x^{0} d x^{2} d x^{3}+\ldots$ andiymmetried sum over all percmimetions, the operator 1 defined this ways is called wedge product.
Change coordinates $x^{\mu} \rightarrow \tilde{x}^{\mu}$;

$$
\begin{aligned}
& g_{\mu^{\prime} \nu^{\prime}}=\frac{\partial x^{\alpha}}{\partial x^{\prime}} \cdot \frac{\partial x^{\beta}}{\partial x^{\prime \prime}} g_{\alpha \beta} \Rightarrow g^{\prime}=\left(\frac{\partial t}{\partial x^{\nu}} \frac{\partial r^{\prime}}{\partial r^{\prime}}\right)^{2} g \equiv\left|\frac{\partial x^{\nu}}{\partial x^{\prime}} \cdot\right| g \text {, assume }\left|\frac{\partial x^{\nu}}{\partial x^{\prime}}\right|>0 \\
& \Omega_{\mu}=\sqrt{g^{\prime \prime}} d x^{\circ} \wedge d x^{\prime} \wedge d x^{2} \wedge d x^{3^{\prime}} \\
& =\left|\frac{\partial x^{\nu}}{\partial x^{\prime}}\right| \sqrt{\lg \prime} \underbrace{\frac{\partial x^{0^{\prime}}}{\partial x_{0}} \frac{\partial x^{\prime \prime}}{\partial x^{\mu_{1}}} \frac{\partial x^{2^{\prime}}}{\partial x^{\mu_{2}}} \frac{\partial x^{3^{\prime}}}{\partial x^{\mu_{s}}} d x^{\mu_{1}} \wedge d x^{\mu_{n}} \wedge x^{\mu_{2}} \wedge d x^{\mu_{3}}}_{=\left|\frac{\partial \mu^{\mu^{\prime}}}{\partial x^{\nu}}\right| d x^{0} \wedge d x^{\prime} \wedge d x^{2} \wedge d x^{3}} \\
& \text { A the determines is by dafniten the andugmatriced sum } \\
& =\sqrt{\lg \mid} d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}
\end{aligned}
$$

So that Ω_{M} is invariant under cred frausfirmedions. Consider the action of Ω_{μ} o infinituinal displacement vector $v=d x^{\mu}{ }^{\mu}$,

$$
\begin{aligned}
& \Omega_{\mu}\left(d x^{\nu} \partial_{\nu_{0}}, d x^{\nu_{1}} \partial_{\nu_{1}}, d x^{\nu_{2}} \partial_{\nu_{\nu}}, d x^{\nu \nu_{\nu}} \partial_{\nu_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { perm } \\
& =\sqrt{\text { permithon }}{ }^{1} d x^{0} d x^{\prime} d x^{2} d x^{3} \\
& =\sqrt{\lg 1} d^{4} x
\end{aligned}
$$

Then we define the integral \int_{\sum} over a volume $\sum C M$ as the map:

$$
\int_{\sum}: \Omega_{n} \rightarrow \mathbb{R} \quad, \int_{\sum} \Omega_{\mu}=\underbrace{\sum_{\sum} \sqrt{|g|} d^{4} x}_{\text {assad } 4-\text { integral of } \sqrt{|g|}}
$$

The integral of a function $f: M \rightarrow \mathbb{R}$ is defined by:

$$
\int_{\Sigma} f \Omega_{M} \equiv \underbrace{\int_{\sum} \sqrt{1 g 1} d^{y} x f}_{\text {usual } 4-d \text { integral of } \sqrt{1 g 1} f}
$$

