Contents (preliminary)

1. Special relativity and flat spacetime

11 Spacetime of Special Relativity
1.2 Vectors in Minkowski spacetime
1.3 Dual vectors in Mishowsti spacetime
1.4 Tensors in Minkousks spacetime
1.5 Relativistic mechanics
2. Differential geometry on curved spacetime
2.1 Manifolds
2.2 Vectors, duals and tensors
2.3 Metric Henson
2.4 Integration on manifold,
3. Curvature
3.1 Covariant derivatives and connection coefficients
3.2 Parallel transports
3.3 Geodesics
3.4 Geodesics and test particles
3.5 The Riemann tensor
4. Gravitation
4.1 Energy momentum tenor
4.2 Newtonian limit
4.3 Einstein equations
4.4 Classical field theory in curved spacetime
4.5 Einstein-Hilbent action
5. The Schwarzschild solution
5.1 The Schwarzechild metric
5.2 The Birkhoff'' theorem
5.3 Distances, time intervals, red-and blueshiffs
5.4 Geodesics
5.5 Motion in the Schmarzrchild space
6. Schwarzschild black holes
6.1 Extending the Schwaszchild spacetime beyond $r=26 M$
6.2 Maximal extension of the Schwarzschild Solution
7. Gravitational waves
7.1 Linear perturbations around the Minkowsti space 7.2 Linearised field equations
8. Maximally symmetric solutions and RW metric

Notations
Natural units: $\quad c=\hbar=1 \quad 1 \mathrm{eV}=5.07 \cdot 10^{6} \mathrm{~m}^{-1}=1.52 \cdot 10^{15} \mathrm{~s}^{-1}$
Sum convention: $\quad \sum_{\nu=0}^{3} A_{\nu}^{\mu} u^{\nu} \equiv A_{\nu}^{\mu} u^{\nu} \quad$ Great indices $\alpha, \beta, \gamma \ldots=0,1,2,3$

$$
\sum_{i=1}^{3} A^{\mu}, u^{i}=A^{\mu}, u^{i} \quad \text { Latin indices } a, b, c \ldots=1,2,3
$$

Signature: $\quad d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}$

1. Special Relativity and flat spacetime

General Relativity (GR) is a classical theory of gravity. It identifies gravity as the curvature of spacetime. The spacetime means the space (sect of print) spanned by temporal and spectral coordinates (t, x, y, z).

In the absence of gravity the spacetime is called flat and GR reduces to Social Relativity (SR). Let as briefly review S and introduce basic cocupts of diffeadrl geometry which we need later in discussing $G R$.

Even in the absence of gravity, the flat spacetime has a specific nontrivial structure. In Newtonian physics there is a unique concert of time which is the same for all inertial observers (= observers with no acceleration $\left.\bar{F}=\frac{d x}{d t^{2}}=0\right)$. This is not trace in the nature: time and space tromitomen into each other in the way described by the Special Relativity.

Newborion laws of physics are invariant under Galilean trianfomations:

- Boats: $\left(t_{1}^{\prime} \bar{x}^{\prime}\right)=(t, \bar{x}-\bar{v} t) \quad$ relates two frames K and K^{\prime} moving with
- Shift: $\left(t_{1}^{\prime} \bar{x}^{\prime}\right)=(t+\alpha, \bar{x}+\bar{\beta})$ constant velocities \bar{v} with each other

$$
\begin{aligned}
& \begin{array}{c}
\uparrow \\
\text { convent }
\end{array}
\end{aligned}
$$

- Rotations $\left(t_{1}^{\prime} \bar{x}^{\prime}\right)=(t, R \bar{x})$

$$
R^{\top} R=1, R \text { is } 3 \times 3 \text { rotation matrix }
$$

This invariance is realised in nature only in the limit of small velocities $v \ll C=3,00 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.
In particular, Maxwell equations are not invariant under Galilean boasts:

$$
\left\{\begin{array}{l}
t^{\prime}=t \\
x^{\prime}=x-v t
\end{array} \quad \text { (take a boat along } x \text {-axis for slinglicity, } y^{\prime}=y, z^{\prime}=2\right. \text {) }
$$

but instead under the Lorentz transformation (boot along x-axis):
(1.1) $\left\{\begin{array}{l}t^{\prime}=\gamma(t-v x) \\ x^{\prime}=\gamma(x-v t)\end{array} \quad, \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad \quad t^{\prime}=f^{\prime}(t, x) \neq t\right.$ time \& space mix .

This lead Einstein to postulate Special Rechivity which stales that:

- Inertial frames related by Lorentz transformations, laws of physics look the same for all inertial observers \Rightarrow laws of physics must be Lorentz invariant
- Speed of light same in all inertial frames \Rightarrow must be a property of spacetime
1.1 Spacetime of Special Relativity

Note that for the transformation (1,1) we have $-t^{\prime 2}+x^{\prime 2}=-t^{2}+x^{2}$. This can be taken as the defining property of $S R$.

Consider a collection of inertial frames $\left\{\begin{array}{l}K,(t, x, y, z) \\ K^{\prime},\left(t_{1}^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)\end{array}\right.$ which may move with a constant velocity \bar{v} wot each other but for which $\frac{d^{2} x}{d t^{2}}=\frac{d^{2}}{d t^{2}}=\frac{d^{2}}{d t^{2}}=0$. Use for definitenes cartesian coordinates a stationary clock at each point (x, y, z).

Define the spacetime interval ΔS between any two events A and B as:
(1.2)

$$
\Delta S^{2} \equiv-(c \Delta t)^{2}+\Delta x^{2}+\Delta y^{2}+\Delta 2^{2} \quad \begin{array}{ll}
\lambda & \Delta t=f_{A}-t_{B} \\
\text { constant } & \Delta x=x_{A}-x_{B} \text { etc. }
\end{array}
$$

* event $=$ spacetime print

Special Rectrivity states that ΔS is invariant under $K \rightarrow K^{\prime}$
(1.3) $\Delta s^{2}=\Delta s^{\prime 2} \Longleftrightarrow-(c \Delta t)^{2}+\Delta x^{2}+\Delta y^{2}+\Delta z^{2}=-\left(\Delta \Delta t^{\prime}\right)^{2}+\Delta x^{\prime 2}+\Delta y^{\prime 2}+\Delta z^{\prime 2}$

This gives civ to Lorene transformations between inertial frames as we will see below. The constant c is the see c that appears in Lorentz trensfornolion, ie. the sped of light.

The spacetime interval (1.2) can be written more compactly as:

$$
\Delta s^{2}=-\left(c \Delta t^{2}\right)+\Delta x^{2}+\Delta y^{2}+\Delta z^{2} \equiv \sum_{\mu=0}^{3} \sum_{v=0}^{3} y_{\mu \nu} \Delta x^{\mu} \Delta x^{\nu},
$$

where we introduced a 4×4 matrix called metric,
 and introduced the notation: $x^{0}=c t, x^{\prime}=x, x^{2}=y, x^{3}=z$

We further use the Einstein sum convention which jut means that repeated upper and lower indices are summed over
(1.5) $\quad \Delta s^{L}=\sum_{\mu=\nu} \eta_{\mu \nu} \Delta x^{\mu} \Delta x^{\nu} \equiv \eta_{\mu} \Delta x^{\mu} \Delta x^{\nu}$

The spacetime interval Δs° actually defies the concept of distance in the 4elspectine, ie. set of points (t, x, y, z). By stating that 15^{2} is given by (1.5), or equarevently the metric by (1,Y), we specirisy a certain geometry tor the spacetime. The metic (1.4) is called, lintowsti metric and it Refines a Mistomulei spacetime. The geometry of the Miribowsti space is called flat and it is the spacetime in SR.

Structure of the Mirkouster space

The invariance of $\Delta S^{2}=\eta_{\mu} \Delta x^{\mu} \Delta x^{\nu}$ between any spacetione points uniquely classifies all passible curves connecting different points into three categories:
$\Delta S^{2}<0$ timeline curves, paths travelled by massive particles
(1.6) $\Delta s^{2}=0$ lightlike curves, paths travelled by light and masters particles $\Delta S^{2}>0$ spacelike curves, paths along which no information can travel

Consider motion of light along the x-axis $(\Delta y=\Delta z=0)$

$$
\Delta s^{2}=-(c \Delta t)^{2}+\Delta x^{2}=0 \Rightarrow \frac{\Delta x}{\Delta t}=c
$$

and since ΔS^{2} invariant under transformation to another inertial frame $k \rightarrow k^{\prime}$:

$$
\Delta s^{2}=-\left(c \Delta t^{\prime}\right)^{2}+\Delta x^{\prime 2}=0 \Rightarrow \frac{\Delta x^{\prime}}{\Delta t^{\prime}}=c
$$

Hence, stating that light travels along the lightlike, or null, curves $\Delta s^{2}=0$ directly gives us the desired property that the speed of light is the same constant in any inertial frame.

From now on we choose units such that:

$$
c=3.00 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \equiv 1 \Longleftrightarrow 1 \mathrm{~s}=3.00 \cdot 10^{8} \mathrm{~m}
$$

This is indeed a very nstansl choice since temporal and spatial coordinates transform into each other and are therefore on equal grounds.

The classification of curves (1.6) divides the spacetime int different causal regions with respect to any spacetime point P. This is represented by the light cone:

future light cone, set of points which can infract with P in the future
light cone, set of point which can have exchanged information with P

Points outside the lightcone are cawaly disconnected from P.

The lightsome is invariant under $K \rightarrow K^{\prime}$, tranwormation btw different inertial frame, This means that the causal structure is the same for all inertial observers

Proper time

The proper time tie is the bine measured by an observer moving between two seetime events A and B.

For an inertial observer in her rest frame K this is just the coordinate time t :

$$
\Delta T_{12}=t_{2}-t_{1}=\Delta t_{12}=\sqrt{-\operatorname{tpr}^{\mu} \Delta x^{n} \Delta x^{\nu}} \begin{aligned}
& \text { since } \Delta x^{i}=0 \quad, i=1,2,3
\end{aligned}
$$

The benefit of the last expression is that this is manifestly invariant under inertial transformations. In general, we clefine the proper time as
(1.7) $\quad(D \pi)^{2} \equiv-\left(\Delta s^{2}\right)=-\eta_{\mu \nu} \Delta x^{\mu} \Delta x^{\nu} \quad$ For timeline curves only!

$$
\Rightarrow \Delta \tau=\sqrt{-\eta_{\mu} \Delta x^{\mu} \Delta x^{\nu}}
$$

Using this expression we can directly expend the proper time in terms of cosphinks of any inertial frame:
coordinates of another inertial from K^{\prime} which moves wit K.
Ex. Twin paradox, who ages more $A B C$ or $A B^{\prime} C$?

The time meauread by an observer moving along any timelik path is given by the proper time along that path.

$$
\begin{aligned}
\Delta T_{A B^{\prime}}=\sqrt{\left(\frac{1}{2} \Delta t\right)^{2}-\Delta x^{2}} & =\frac{1}{2} \Delta t \sqrt{1-\underbrace{\left(\frac{\Delta x}{2} \Delta t\right.})^{2}} \\
& =\frac{1}{2} \Delta t \sqrt{1-V^{\prime}}
\end{aligned} \quad \begin{aligned}
\Delta T_{A B^{\prime} C}=\Delta T_{A B^{\prime}}+\Delta T_{B^{\prime} C}=\Delta t \sqrt{1-V^{2}} \\
\Delta T_{A B C}=\sqrt{\Delta t^{2}-0}=\Delta t
\end{aligned}
$$

$\Rightarrow \Delta T_{A B C}>\Delta T_{A B C}$, ABC ages more!
A straight path maximises proper time.

Going to infinitesimal limit, we can define the line cement
(1.8) $\quad d s^{2} \equiv \eta_{\mu} d x^{\mu} d x^{\nu}$
and further for $d s^{2}<0$ the proper time differential
(1.9) $\quad d \pi \equiv \sqrt{- \text { Prude }}$ d $d x$

Integrating this along a bimelite curve $x^{\prime}(\lambda)$ (λ is som curve percomber) we get:
(1.10)

$$
\tau_{A 8}=\int_{\lambda_{A}}^{\lambda_{g}} d \lambda \sqrt{-\eta_{\mu} \frac{d x^{\mu} d x^{\nu}}{d \lambda} \frac{d x}{d x}}
$$

Time measured by an observer
moving along $x^{\prime}(x)$ from A to B.
for spacelike carvel dos ${ }^{2}>0$ we can define the proper length (physical distance)

$$
\delta_{A B}=\int_{\lambda_{A}}^{\lambda_{B}} d \lambda \sqrt{+\eta_{\mu} \frac{d x^{\mu} d x^{2}}{d \lambda} \frac{d x}{d \lambda}}
$$

Lorente transformation
The defining property of Miskouster spacetime is that the line element

$$
d s^{2}=\eta_{\mu} d x^{2} d x^{N}
$$

is invariant under transformation $K \rightarrow K^{\prime}$ from ane inertial frame to another.
Let us now find how $K \rightarrow K^{\prime}$ mont aet on the coordisctes x^{μ} in order to meet this condition. An inflikesimal coordinate tmanformation can be ceprevented by a incan matrix multiplication:

$$
x^{\mu^{\prime}}=\Lambda_{\nu}^{\mu^{\prime}} x^{\nu}, \Lambda_{\nu}^{\mu^{\prime}} \text { is a } 4 \times 4 \text { matrix. }
$$

Under this trawtormation the line element changes as:

$$
\begin{aligned}
& d s^{\prime 2}=\eta_{\uparrow}^{\prime \prime \prime} d x^{\mu^{\prime}} x_{x}^{\nu^{\prime}}=\eta_{\mu^{\prime}} \Lambda_{\alpha}^{\mu^{\prime}} d x^{\alpha} \Lambda_{\beta}^{\nu^{\prime}} d x^{\beta}=\Lambda_{\alpha}^{\mu^{\prime}} \eta_{\mu_{1}^{\prime \prime}}^{\nu_{\beta}^{\prime}} d x^{\alpha} d x^{\beta} \\
& \text { still the same Minkombaimatric } \operatorname{priv}^{\prime \prime}=\left(\begin{array}{cc}
-1_{1} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Requiring that $d s^{l}=d s^{\prime 2}$ we get:

This is a condition for the form of 1 which generate the transformations btw. inertial frames.

Written in matrix form this reads
(1.14) $\quad \Lambda^{\top} \eta \Lambda=\eta \quad \Leftrightarrow \quad \Lambda_{\alpha \eta_{\mu \nu}}^{\mu} \Lambda_{\beta}^{\nu}=\eta_{\alpha \beta}$

The matrices 1 which satisfy (1.11) ate generations of Lorentz trisulformetions. They form a group called Lorentz grape.
It is illustrative to compare (111) to rotations in $3 d$: $\bar{x}^{\prime}=R \bar{x}$, where the rotation matrices R satisfy $R^{\top} R=1 \Rightarrow 1=R^{\top} \mathbb{1} R$. These matrices for a group $O(3)$, and imposing am extra condition et $R=1$ to exclude parity, hrensformatao $(\bar{x}-1-\bar{x})$, the grape becomes $S O(3)$.

In the Lorentz group condition $\Lambda^{\top} \eta \Lambda=\eta$, the unit matrix of $S O(3) \mathbb{1}=R^{\top} \mathbb{D} R$ is replaced by the Minkowsti metric $y=$ diag $(-1,1,1,1)$. The Lorentz group is denote by $O(3,1)$ and it includes:

- Sd rotations (fixed t)
- Hd rotations called boosts (tranformations btw inertial frames with different velocity)
- time reversals $t \rightarrow-t$
- parity transforncitions $\bar{x} \rightarrow-\bar{x}$

We are not inkrested in the latter two transformations and exclude them by impaing an additional condition: $\operatorname{det} \Lambda=1, \Lambda_{0}^{0} \geqslant 1$

The condition:
(1.12) $\quad \Lambda_{\eta}^{\top} \Lambda=\eta \quad, \operatorname{det} \Lambda=1, \Lambda_{0}^{0} \geqslant 1$
specify Lorentz transformations which form the restricted Lorentz grape $S O(3,1)$. In the following wi refer to this group when talking about Lorentz transformations.

In addition to the Lorentz fran formations: $x^{\mu^{\prime}}=\Lambda_{\nu}^{\mu_{\nu}^{\prime}} x^{\nu}$, also constant shifts

$$
x^{\mu} \rightarrow x^{\mu}+a^{\mu} \text { constant, } 4 \text { degrees of freedom. }
$$

leave the line kent $d s^{2}=$ gpu $d x^{\prime} d x^{\nu}$ invariant. Lorentz transformations + shifts together form the Poincare group which generates Poincare transformations

$$
\begin{align*}
& X^{\mu^{\prime}}= \Lambda^{\mu^{\prime}} \nu X^{\nu}+a^{\mu^{\prime}} \quad 6+4=10 \text { parameters } \tag{1.13}\\
& \uparrow \\
& 3 \text { rotations } 4 \text { translations } \\
& 3 \text { boosts }
\end{align*}
$$

This is the most general transformation $K \rightarrow K^{\prime}$ which leaver $d s{ }^{l}$ invariant.
The Jacobian of the Poincare transformation is the same as for Lorentz transformation since they only differ by constants:

$$
\frac{\partial x^{\mu^{\prime}}}{\partial x^{\nu}}=\Lambda_{\nu}^{\mu^{\prime}}
$$

Finally, we denote components of the inverse transformation Λ^{-1} by $\Lambda^{\mu}{ }_{\nu^{\prime}}$:

$$
\begin{aligned}
& K \rightarrow K^{\prime}: x^{\mu^{\prime}}=\Lambda_{\nu}^{\prime} x^{\nu} \\
& K^{\prime} \rightarrow K: x^{\mu}=\Lambda^{\mu} \nu^{\prime} x^{\nu \prime} \Rightarrow x^{\mu}=\Lambda^{\mu} \nu_{\nu^{\prime}} \Lambda_{\sigma}^{\nu^{\prime}} x^{\sigma} \Leftrightarrow \underbrace{\Lambda_{\nu \nu^{\prime}}^{\mu} \Lambda_{\sigma}^{\prime \prime}}=\delta_{\sigma}^{\mu}=\left\{\begin{array}{l}
1, \mu=\sigma \\
0, \mu \neq \sigma
\end{array}\right. \\
& =\frac{\partial x^{\mu}}{\partial x^{\prime \prime}} \frac{\partial x^{\nu 1}}{\partial x^{\sigma}}=\frac{\partial x^{\mu}}{\partial x^{\sigma}}=\delta^{\mu} \sigma
\end{aligned}
$$

Examples:
Rotation by an angle θ in xy-plene:

$$
\Lambda_{\nu}^{\mu^{\prime}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Boost in x-direction $=$ rotation in tx-rlane:

$$
\Lambda_{\nu}^{\mu^{\prime}}=\left(\begin{array}{cccc}
\cosh \phi & -\sinh \phi & 0 & 0 \\
-\sinh \phi & \cosh \psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

To see what this means, consider eg. the point $x^{\prime}=0$ in K-frame:
$x^{\prime}=0 \Rightarrow x=\frac{d \sinh \phi}{\cosh \phi}=+\tanh \phi, x^{\prime}=0$ mover with constant velocity $v=\tanh \phi$ wit. K frame:

Using that tanh $\phi=v$ we get: $\cosh ^{2} \phi-\sinh ^{2} \phi=1$

$$
\begin{aligned}
1-\tanh ^{2} \phi=\frac{1}{\cosh ^{2} \phi} \Rightarrow \cosh \phi & =\frac{1}{\sqrt{1-v^{2}}} \equiv \gamma \\
\sinh \phi & =\sqrt{\cosh ^{2} \phi-1} \\
& =\sqrt{\frac{1}{1-v^{2}}-\frac{1-v^{2}}{1-v^{2}}}=v \gamma
\end{aligned}
$$

$\Rightarrow \quad t^{\prime}=\gamma(t-v x)$
$x^{\prime}=\gamma(x-v t)$
This yields the fumilics time dilatation and lerght contraction. results.

Boosts and spacetime diagrams
Draw the hauled frame K^{\prime} in cord's of K :

$$
\begin{array}{lll}
t^{\prime} \text {-axis } & x^{\prime}=0: & x=t \tanh \phi=v t \\
x^{\prime} \text {-axis } & t^{\prime}=0: & t=x \tanh \phi=x v
\end{array}
$$

Note that the light cone is invarisat:

$$
\begin{aligned}
x= \pm t \quad & x^{\prime} \\
& =t(-\sinh \phi \pm \cosh \phi) \\
& t^{\prime} \\
& =t(\cosh \phi=\sinh \phi) \\
& = \pm t(-\sinh \phi \pm \cosh \phi)= \pm x^{\prime}
\end{aligned}
$$

so that $x= \pm t$ mops to $x^{\prime}= \pm t^{\prime}$
1.2 Vectors in Minkowshi spacetime

In the Euclidean space we are used to thinking vectors as arrows pointing 6 some direction. This concept needs to be reformulated in a more precise, geometric way to define the concept of vectors in more general spaceetimes, ie e manifolds. We skat by discussing vectors in Minkowsh'i space M, the definitions directly generalize to other manifolds (manifold is a spacetime which can be divided in patches which can be mapped onto \mathbb{R}^{n} and connected in a smooth differentiable way, a more precise definition will follow lake).

In Mintowsh'space M we define vectors as tangents of smooth curved $C: \mathbb{R} \rightarrow M$.

$$
c(\lambda) \in M
$$

$$
\uparrow
$$

curve parameks $\lambda \in \mathbb{R}$
$P=c(\lambda)$ a point of M which lies on the curve c.
$x^{\mu}(P)$ cid's in frame K
$x^{\prime \prime}(p)<r d s$ in frame K^{\prime}
P is a physical point, $x^{\mu}(p) \neq x^{\mu^{\prime}}(p)$ are its different and representations.
Want to define vectors in a cid invariant manner!

Define the tangent vector of $c(\lambda)$ as the directional derivative along the curve
(1.13) $\quad v=\frac{d}{d \lambda}=\frac{d x^{\mu}(c(\lambda))}{d \lambda} \frac{\partial}{\partial x^{\mu}} \quad$ The vector v is an operates!

The vector v is an operator which acts on functions $f: M \rightarrow \mathbb{R}$

$$
V[f]: M \rightarrow \mathbb{R}
$$

(1.14) $\quad V[f] \equiv \frac{d x^{\mu}}{d \lambda} \frac{\partial f}{\partial x^{\mu}}=\frac{d f}{d \lambda}$
so VLf] just gives the derivative of f along the curve $<(\lambda)$.

The rector r is a geometric object which is invariant under coordiiak transformations.

$$
\begin{aligned}
& V=\underbrace{\frac{d x^{\mu}}{d \lambda}}_{\equiv V^{\mu}} \underbrace{\frac{\partial}{\partial x^{\mu}}}_{\equiv e_{\mu}}=\underbrace{\frac{d x^{\prime}}{d \lambda}}_{\equiv V^{\mu^{\prime}}} \underbrace{\frac{\partial}{x^{\prime}}}_{\equiv e_{\mu}^{\prime}}=\frac{d}{d \lambda} \quad \text { Notation: } \partial_{\mu}=\frac{\partial}{\partial x^{\mu}} \\
& \prod_{\text {components }} \tau_{\text {basis vectoses }}
\end{aligned}
$$

Its components however change, just like in the Euclidean space.
Consider a Lorentz transformation: $\quad x^{\mu}=\Lambda^{\mu}{ }_{\nu}^{\prime} x^{\nu}$

$$
\begin{aligned}
v^{\prime}=v^{\mu} \frac{\partial}{\partial x^{\mu}} & =v^{\mu} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\prime}} \frac{\partial}{\partial x^{\nu^{\prime}}} \quad \text { real } \Lambda_{\mu}^{\nu^{\prime}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\mu}} \\
& =v^{r} \Lambda_{\mu}^{\nu^{\prime}} \frac{\partial}{\partial x^{\nu^{\prime}}} \\
& =v^{\nu^{\prime}} \frac{\partial}{\partial x^{\prime \prime}} \Rightarrow v^{\prime}=\Lambda_{\mu}^{\prime} v^{\nu}
\end{aligned}
$$

We thus find that the components v^{μ} trisworm as:
(1.15) $\quad V^{\mu \prime}=\Lambda_{\nu}^{\mu \prime} V^{\nu}=\frac{\partial x^{\mu \prime}}{\partial x^{\prime}} V^{\nu} \quad$ under $x^{\mu}=\Lambda_{\nu}^{\mu \prime} x^{\nu}$

What about the basis vectors $e_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}$?
$(1.16) \quad e_{\mu^{\prime}}=\frac{\partial}{\partial x^{\prime \prime}}=\frac{\partial x^{\nu}}{\partial x^{\prime \prime}} \frac{\partial}{\partial x^{\nu}}=\Lambda^{\nu} \mu_{\nu}$
We can now check that v is indeed invariant:

$$
v=v^{\mu} e_{\mu}^{\prime}=\underbrace{\Lambda_{\nu}^{\mu \prime} \Lambda_{\mu^{\prime}}^{\sigma}}_{=\delta_{\nu}^{\sigma}} v^{\nu} e_{\sigma}=v^{\mu} e_{\mu} \quad o k .
$$

Example: 4-velocity

$$
u \equiv \frac{d}{d r}=\frac{d x^{\mu}}{d r} \frac{\partial}{\partial x^{\mu}}
$$

worldaine of an observer= the perth along which she travel
Apply a to the coordinate function $x^{\mu}(C(T))$

$$
u\left[x^{\mu}\right]=\frac{d x^{\nu}}{d \tau} \frac{\partial x^{\mu}}{\partial x^{\nu}}=\frac{d x^{\mu}}{d \tau}=u^{\mu}
$$

$<$ a point on through the sone dime.
μ-component in this cid system evaluckd at x^{μ}.
So this rather abstract approach indeed reproduces the concept of vectors as we are used to thinking of them.

Tangent space:
The set of all rectors at same point $P \in M$ (ie. tangents of all possible curves passing through P) defines the tangent space T_{p}

$$
\begin{aligned}
& u, v \in T_{p} ; a, b \in \mathbb{R} \\
& (a+b)(u+v)=a u+b u+a v+b v \in T_{p}
\end{aligned}
$$

The rector space $T_{p}(M)$ is the set of $T_{p} ' J$ over the entire manifold M.
1.9 Dual vectors in Mintoonsti paccelime

In addition to vector, we can define other geometrical quanbitiew on a spacetime, Dual vectors, or one forms, are defined through their action on vectors. For every vector space $T_{p}(M)$ there exits a dual vector space $T_{p}(M)$ st.

$$
\omega \in \Gamma_{p}^{x}(M), r \in \Gamma_{p}(M)
$$

$\omega=T_{p}(M) \rightarrow \mathbb{R}$ a mas fin the vector space to real numbers, ω is linear in its argument

$$
\omega[v]=\omega_{\mu} V^{\nu} \underbrace{d x^{\mu}\left[\partial_{\nu}\right]}
$$

$=\delta^{\mu}{ }_{\nu}$ this defines the deal basis vectors

$$
\text { (1.17) } \quad \omega[v]=\omega_{\mu} v^{\mu} \equiv v[\omega]
$$

Here we have chosen the so called coordinck basis where $\omega=\omega, \theta^{r}$, $v=v^{\mu} e_{\mu}$ s.t. $e_{\mu}=\frac{\partial}{\partial x^{\mu}}, \theta^{\mu}=d x^{\mu}$. In general we are free to chook the basis vectors in a different way but here we mouthy stich to this choice.

An important one-form is the gradient of a function $f: M \rightarrow \mathbb{R}$

$$
d f \equiv \frac{\partial f}{\partial x^{\mu}} d x^{\mu} \quad d f[v]=v^{\mu} \frac{\partial f}{\partial x^{\mu}}=\frac{d x^{\mu}}{d \lambda} \frac{\partial f}{\partial x^{\mu}}=\frac{d f}{d \lambda}=v[f]
$$

component of
a gradient

Like vectors, the dual vectors are coordinate independent object (15) but their components change under cred transformations:

$$
\begin{aligned}
& x^{\mu^{\prime}}=\Lambda_{\mu}^{\mu_{\nu}^{\prime}} x^{\nu} \quad \omega=\omega_{\mu}^{\prime} d x^{\mu^{\prime}}=\omega_{\mu} d x^{\mu} \\
& \omega_{\mu} \cdot d x^{\mu^{\prime}}=\omega_{\underbrace{}_{=\Lambda^{\prime}} \frac{\partial x^{\prime}}{\partial x^{\prime \prime}} d x^{\nu^{\prime}}}^{\mu^{\mu}} \\
& \text { (just writ the } \\
& \begin{array}{l}
\text { differatial } d x^{\prime} \\
\text { in terms of } d x^{\prime}
\end{array} \\
& \Rightarrow \quad \omega_{\mu}^{\prime}=\Lambda^{v} \mu^{\prime} \omega_{\nu} \quad(1.18)
\end{aligned}
$$

1.4 Tensors in Mirkowski spacetime

So far we have defined: vectors $V \in T_{r}(M) \quad V: T_{r}^{*}(M) \rightarrow \mathbb{R}$ linear

$$
\begin{aligned}
& v=v^{\mu} \partial_{\mu} \\
& v^{\mu^{\prime}}=\Lambda^{\mu} \nu v^{\nu}
\end{aligned} \quad v[\omega]=v^{r} \omega_{\mu}
$$

duals $\omega \in T_{p}^{*}(M) \quad \omega: T_{r}(M) \rightarrow \mathbb{R}$ limes

$$
\omega=\omega_{\mu} d x^{\mu} \quad \omega[v]=\omega_{\mu} v^{\mu}
$$

$\omega_{\mu^{\prime}}=\Lambda_{\mu^{\prime}}^{\nu} \omega_{\nu}$
functions, ie, scalars $\phi: M \rightarrow \mathbb{R}, \phi^{\prime}=\phi \quad$ under $x^{\mu} \rightarrow x^{\mu}$
These are all examples of tensors: $s c a l a r=$ tensor of type $(0,0)$, 0 indices
vector $=$ tensor of tape $(1,0), 1$ upper index
dual $=$ tensor of type $(0,1), 1$ lower index
A general tensor of (m, n) type is define as a multilincar map from m dual vectors and n vectors to real numbers

$$
T: \underbrace{T_{p}^{*} \times \ldots \times T_{p}^{x}}_{m \text { times }} \times \underbrace{T_{p} \times \ldots \times T_{p}}_{n \text { dimes }} \rightarrow \mathbb{R}
$$

$T\left(\omega^{(1)}, \ldots, \omega^{(m)}, v^{(n)}, \ldots, v^{(n)}\right) \in \mathbb{R} ;(m, n)$ tensor is an operator which eats m duals and n vectors, and results a number

To construct a basis for genoa tension, we define the tension prochect Q

In general the terser product doer not commit $T \otimes S \neq S \otimes T$
Using the coordinate basie for vectors and dale, the basis of (m, n) tensors is given by:

$$
\partial_{\mu_{1}} \otimes \ldots \otimes \partial_{\mu_{n}} \otimes d x^{\nu^{\prime} \otimes \ldots d x^{u_{n}}}
$$

and a (m, n) tensor can be written as:
(1.19) $T=\underbrace{T^{\mu} \cdots \mu_{n}}_{\text {Components }} \underbrace{v_{n} \partial_{\mu} \otimes \ldots \otimes \partial_{\mu} \otimes d x^{\nu_{0}} \otimes \ldots d x_{n}^{U_{n}}}_{\text {basis }}$

Using that $d x^{\mu}\left[\partial_{\nu}\right]=\partial_{\nu}\left[d x^{\mu}\right]=\delta^{\mu}{ }_{\nu}$ we get:
(1.20)
\therefore The action of a tension on duals \& vectors amounts to just multiplying the components and summing over indices.

The trawbrmation of tenser components under $x^{\prime \prime}=\Lambda^{\prime} \nu x^{\prime}$ follows from the invariance of T jut like for vectors and duals:

$$
\begin{aligned}
& =T^{\mu} \mu_{n}^{\mu_{1}} \ldots \operatorname{coj}_{n} \otimes \ldots \otimes \partial_{\mu_{n}} \otimes d x^{\nu_{1}} \otimes \ldots d x^{U_{n}}
\end{aligned}
$$

We can construct men tensors of T by acting with it on vector \& duals
egg. $\quad T_{\nu}^{\mu}: \nu^{\mu} \rightarrow T_{\nu}^{\mu} V^{\nu} \quad \begin{gathered}\text { maps a vector } \\ \text { vector } T^{\mu} \nu_{\nu}\end{gathered} V^{\mu}$ to another
$(\begin{array}{c}1,1) \\ \text { tensor }\end{array} \rightarrow T\left({ }_{\mu}, v\right)=T^{\mu}{ }_{\nu} \partial_{\mu} \otimes d x^{\nu}\left[V^{\sigma} \partial_{\sigma}\right]=T^{\mu}{ }_{\nu} V^{\sigma} \underbrace{d x^{\nu}\left[\partial_{\sigma}\right]}_{=\delta_{\sigma}^{\sigma}} \partial_{\mu}$
feed nothing here, ie.
act on T oils on
pact of its armaments

Inner product and metric
The Minkowsti metric Ip w is a $(0,2)$ tensor. It specifics the geometry of the Minkousth space e (more on this $1-k r$) and defines the inner product of vectors $v, u \in T_{r}(M)$
(1.22) $\quad v \cdot u \equiv \eta(v, u)=\eta_{\mu} v^{2} u^{2} \quad$ cod invariant quantity Using the inner product we can define the norm, or length, of a vector
(1.23) $\quad V \cdot v=\eta(v, V)=\eta \mu \nu v^{r} v^{2}=-\left(V^{0}\right)^{2}+\left(V^{1}\right)^{2}+\left(V^{2}\right)^{2}+\left(V^{3}\right)^{2}$

Since (1.23) is a kisser product, the norm is and invariant as it of curse should be. The rectors ane clasitide according to the sign of the norm:
V.V <0 timetike vector \Leftrightarrow tangent of a timelike carve

$V \cdot V>0$ spacelike vector \Leftrightarrow tangent of a spacelti cure
Lorentz frantormations and the Mintonsti metric
Recall that in Mintowisk space dime $\eta=\Lambda^{\top} \eta \Lambda$ where $\eta=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right)$
$\Leftrightarrow \eta_{\alpha \beta}=\Lambda^{\mu_{\alpha}^{\prime}} \Lambda_{\beta}^{\prime \prime} \eta_{\mu^{\prime} \nu}$
This is just the trantormadion meal of $(0,2)$ keno..

Since $\eta_{\alpha \beta}=\eta_{\alpha \beta} \beta_{1}=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}, 0\right)$ we see that the components of the Minbousthi metric ane unchanged under Lorentz tmonfornations." This is related to the fact that global Lorentz transformations are a symmetry of the Miskowsts space dime.

Inverse metric
We define the inverse metric $\eta^{\mu r}$ by $\eta^{\mu \nu} \eta \nu \alpha=\delta^{\mu} \alpha$, ie. the corpmacto of $\eta^{\mu \nu}$ are just the inverse of the matrix $\eta \mu$.

Since the component Dp do not change under Lorentz trousformatron, also the components of $\mu^{\mu \nu}$ remain unchanged.

Manipulating tEnsors
Raising and lowering indices
From a tensor T we can construct new tewow by matiflying with $y^{\text {pe }}$ or Ire. This appears so frequently that it is convenient to introduce a specify notation:

$$
\begin{aligned}
& \eta^{\mu \delta} T_{\gamma \delta}^{\alpha \beta \beta} \equiv T_{(3,1)}^{\alpha \beta \mu}{ }_{\delta}^{\alpha, 2)} \text { tenor on } \\
& \eta_{\mu \alpha} T_{\gamma \delta}^{\alpha \beta} \equiv T_{\mu}^{\beta}{ }_{\gamma \delta} \text { ling of the indexing of the index }
\end{aligned}
$$

So raiing/lowening of indices \Leftrightarrow multiply with $\eta^{\mu} / \not / r^{\nu}$

* in Cartesian corcdinctes.

Consider the inner product of vectors: $v, u \in T_{\mu}(M)$

$$
\eta(v, u)=\eta_{\mu} v r^{\mu} u^{\nu}=v_{\mu} u^{\mu}
$$

Here: $v_{\mu}=\operatorname{lpr}^{\mu} V^{\nu}$ is a dual vector constructed from v Similuly: $\omega^{\mu}=\eta^{\mu \nu} \omega_{\nu}$ is a vector constructed from a dual $\omega \in J^{*}(M)$ Also not that with this notation:
$\eta^{\mu \nu} \eta_{\nu \alpha}=\eta^{\mu}=\delta_{\alpha}^{\mu}$ because $\eta^{\mu-}$ is the hovers of $\eta_{\mu \nu} \quad \eta^{\mu \nu \eta_{\alpha \alpha}=\delta^{\mu}}$
Contraction

A contraction means summing over a pair of indices. It turns a (m, n) Ensor into ($m-1, l-1$) tensor:

$$
T_{(1,1) \text { tensor }}^{\alpha \beta}=\underbrace{T^{\alpha \beta}}_{(2,2) \text { tensor }} \eta^{\gamma} \quad \text { sam over a power rank teston indices to get }
$$

Division into symmetric and antisymmetric parts
A tensor is called symmetric if $A_{p u}=A_{u p}$ and antisymatire if $A_{p}=-A_{v p}$ A generic tensor is neither symmetric nor antiosmanetric but it can be unique divided into symmetric and antrymnctric pants.

$$
\begin{aligned}
& A_{\mu \nu}=\underbrace{\frac{1}{2}\left(A_{\mu \nu}+A_{\nu \mu}\right)}_{\equiv A_{(\mu \nu)}}+\underbrace{\frac{1}{2}\left(A_{\mu \nu}-A_{\nu \mu}\right)}_{\equiv A_{[\mu \nu]}} \\
& \text { symmetric rant } \\
& A_{y, \nu}=A_{\left(y_{p}\right)} \\
& \text { antisymmetric post } \\
& \left.A_{\text {qu }}\right]
\end{aligned}
$$

Trace
The trace of a tenor is a saks which is obtinind by contracting over the indices.
(1,1) tenor $A^{\mu_{\nu}}, A^{{ }^{\text {trace }}}$
$(0,2)$ tensor $B_{\mu \nu}, \quad B \equiv \eta^{\mu^{2}} B_{\mu \nu}=B_{\nu}^{\nu} \quad$ (not $\neq \sum_{\mu} B_{\mu \mu}$ so this is wit the trace of the matrix β_{10})
The trace of the Misowith metric is:
$\eta^{\mu \nu} \eta_{\nu \mu}=\eta_{\mu}^{\mu}=\delta_{\mu}^{\mu}=4$
Note added, duals and tensors in Euclidean space (Thanks to strident comment!)

In the usual language of 3 E Euclidean space, components of a vector would form a column matrix

$$
V^{\prime}=\left(\begin{array}{l}
V_{x} \\
V_{y} \\
V_{2}
\end{array}\right) \quad \text { vector }
$$

A dual would correspond to a row matrix
$\omega_{1}=\left(\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right)$ dual
Tensor product of a $(1,1)$ tensor T_{j} and v and a would be

The metric is $g_{i j}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad d^{2}=g_{j} d x^{i} d x^{j}$ $=d x^{2}+d y^{2}+d z^{2}$
The inner porches is $g_{i j} v^{i} v^{j}=V_{i} V^{\prime}=V^{\top} V$ etc.

Tensor fields

A tensor space $T_{p}{ }^{*} \ldots \times T_{p}^{*} \times T_{\rho} \times \ldots \times T_{p}$ is a product of dual and vector spaces. When we define Ensor spaces over a set of spacetime points $p \in M$ lin prectrie over the entire spacetime), we obtain tensor fields.

Egg. $T_{p}(M)$ vector field
$u \in T_{p}(M), u=$ for velocity

$$
u=\frac{d x^{\mu}}{d \tau} \frac{\partial}{\partial x^{\mu}}
$$

\uparrow defined our the worldline of an observer.

Partial derivatives

In Mintowsti space and in the Cartesian coordinates partial derivatives of tensors wit coordinates x^{μ} form new tensors:

Egg. $\quad \frac{\partial}{\partial x^{\sigma}} T^{\mu \nu} \equiv \partial_{\sigma} T^{\mu \nu}$ is a $(2,1)$ tensor
Check this explicitly by investigating how $\partial_{\sigma} T T^{\mu}$ transforms under $x^{\mu} \leq \Lambda^{\mu \prime \prime} x^{\prime \prime}$

$$
\partial_{\sigma^{\prime}} T^{\mu^{\prime \prime \prime}}=\frac{\partial x^{\alpha}}{\partial x^{\prime}} \frac{\partial}{\partial x^{\alpha}}\left(\Lambda_{\beta}^{\mu} \Lambda_{\gamma}^{\nu^{\prime}} T^{\beta \gamma}\right)
$$

content components for global Lorentz transforncivos

$$
=\Lambda_{\sigma^{\prime}}^{\alpha} \Lambda_{\beta}^{\mu \prime} \Lambda_{\gamma}^{\nu 1} \partial_{\alpha} T^{\beta \gamma}
$$

which is precincts the transformation rale of a $(2,1)$ tendon In a curved spacetime where the metric is not Minkowski this is no longer true and we need to define a covariant derivative to construct tensorial derivatives of tensors (ie. and independent derivative). This is so even in the Minkowgk ace if we wee other than Cartesian coordinates.
1.5 Relativistic mechanics

In Special Relativity (SR) the laws of physics are formulated in kens of tensorial guanine: 4-velocily, 4-acelershon, 4-force etc.

4-velaily
(1.24) $\frac{u^{\mu} \equiv \frac{d x^{\mu}}{d \tau}}{\tau} \quad d r=\sqrt{-\eta_{\mu \nu} d x^{\mu} d x^{\nu}} \quad$ proper time
tangent of an objects worldling $x^{M}(\tau)$ where the curve parameter is the proper dime τ

The proper time differential dr e can be expressed in terns of inactive coordinates as:

$$
\begin{aligned}
& d r=\sqrt{-\eta \mu^{\nu} \frac{d x^{2} d d d^{\prime}}{d t} d t} d t \\
&=\sqrt{-(-1)\left(\frac{d t}{d t}\right)^{2}-\delta_{j} V^{\prime} V^{j}} d t \\
&=\sqrt{1-V^{2}} d t \\
& \uparrow_{V^{2} \equiv V_{i} V^{\prime}}
\end{aligned}
$$

(Recall $c \equiv 1$)
Using this we can recent (1.24) into:
(1.26) $\quad u^{\mu}=\underbrace{\frac{1}{\sqrt{1-v^{2}}}}_{\equiv \gamma} \frac{d x^{\mu}}{d t}=\gamma(1, \bar{V})$

Note that the γ factor is necessary for $a^{\mu}=\frac{\gamma d x^{\mu}}{d t}$ to transform as 24 a vector. You can check by direct curputidion that $\frac{d x^{\mu}}{d t}$ alone div not transform as a vector under $x^{\mu^{\prime}}=\Lambda^{\mu} \nu x^{\prime \prime}$.

The norm of the 4-velocitr is by definition -1:

$$
\begin{aligned}
u^{\mu} u_{\mu} & =\eta_{\mu} u^{\prime} u^{\nu}=\eta_{\mu} \frac{d x}{d \tau} \frac{d x^{v}}{d \tau}=-\frac{d \tau^{2}}{d \tau^{2}}=-1 \\
& \Rightarrow u^{\mu} u_{\mu}=-1 \quad(1.26)
\end{aligned}
$$

4-accelenction

$$
\begin{aligned}
& \text { (1.26) } \quad a^{\mu} \equiv \frac{d u^{\mu}}{d \tau}=\frac{d^{2} x^{\mu}}{d \sigma^{2}} \quad \text { this is a vector since } u^{\mu} \text { is a recto } \\
& a^{r} u_{1}=u_{1} \frac{d u^{r}}{d \tau}=\frac{1}{2 d r}(\underbrace{u_{\mu} u^{\mu}}_{=-1})=0 \Rightarrow a^{r} \text { orthogonal to ar }
\end{aligned}
$$

4 -momentins of massive partides
The mass m of an object is the same in all inertial framer, hence m is a scalar.
For an deject with $m \neq 0$ we define the 4-momentum:
(1.27) $p^{\mu} \equiv m u^{\mu}$ this is a vector

The energies and 3-momentum are not inceriant but depend on the frame. We define E and \bar{p} as components of the 4-monentum (1.28) $E \equiv p^{0}, \bar{p} \equiv p^{i}$ not tensocial but frame dependent

Therefore, the 4 -monentinn can be written as:

$$
p^{\mu}=m u^{\mu}=m \gamma(1, \bar{V}) \Rightarrow \begin{gathered}
E=m \gamma \\
\bar{p}=m \gamma \bar{V} \quad(1,29))
\end{gathered}
$$

The norm of the forrmonentum is by definition invariant

The relabivitie dispersion relation, ie. the relation between the energy and momentum.

In the limit of small velocities vel, we recover the Newtonian results:

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-v^{2}}}=1+\frac{1}{2} r^{2}+\ldots \\
& E=m \gamma=m+\frac{1}{2} m v^{2}+\ldots \quad \text { or equivalently } E=\sqrt{|p|^{2}+m^{2}}=m+\frac{1}{2} m v^{2}+\ldots
\end{aligned}
$$

$$
\uparrow
$$

mass contributes to eneresy ($E=\mathrm{ma}^{2}$)
Relativistic version of $\bar{E}=m \bar{a}$
A force acting on particle is detained by the relestribici counterpart of Newton's law:

Masses panticks $m=0$
Photons and other massless particles move along null curves $d_{s}{ }^{2}=0$. These cannot be paremetericel by proper time since $d r=0$ (photons experience no time!).

$$
\begin{aligned}
& f^{\mu}=\frac{d p \mu}{d T}=m a^{\mu}=\frac{d t}{d T} \frac{d p^{\mu}}{d t}=\gamma\left(\frac{d E}{d t}, \frac{d \bar{p}}{d t}\right)=\gamma(\bar{F} \cdot \overline{\bar{V}}, \bar{F}) \\
& 4 \text {-force } \\
& d \tau=\sqrt{1-v^{2}} d t=\frac{d t}{\gamma} \quad 3 \text {-veleib, } 3 \text {-face }
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{p^{1} p_{p}}_{=\text {scalar }}=\underbrace{m^{2} u^{2} u_{\mu}}_{=-1} \quad \Rightarrow p^{\mu} p_{\mu}=\eta_{\mu \nu} p^{\mu_{p}}=-E^{2}+\bar{p}^{2}=-m^{2} \\
& E^{2}=\bar{\rho}^{2}+m^{2} \quad(1.30)
\end{aligned}
$$

We can we some other parameter of along the photo path:

and defile the target vector

$$
\begin{aligned}
& \text { the tangent vector } \quad d s^{2}=-d t^{2}+d x^{2}=0 \Rightarrow\left(\left.\frac{d x}{d t} \right\rvert\,=1\right. \\
& \tilde{k}^{\mu}=\frac{d x^{\mu}}{d \sigma}=\frac{d t}{d \sigma}\left(1, \frac{d \bar{x}}{d t}\right)=\frac{d t}{d \sigma}(1, \hat{x}) \quad \begin{array}{l}
\text { unit } \\
\text { along the photon }
\end{array}
\end{aligned}
$$

Hern we are free to do reparameterijudems $\sigma \rightarrow a \sigma+b ; a, b=c$ intents and since $\tilde{k}^{\mu} \tilde{k}=0$ the normalisation alto dar not fix σ.
Consider an inertial frame K where the source of photons is at fut. In this frame each photon has a definite energy:
$E=\hbar \omega=\frac{\hbar 2 \pi}{\lambda}, \lambda=$ photon wavelength
and momentum
$\bar{p}=\hbar \omega \hat{k} \quad, \hat{k}=\underset{\substack{\text { unit } \\ \text { photon propagation }}}{3-v e c t o r}$ that points in the direction of
Now we can choose the curve parcancter σ sit. $\frac{d t}{d \sigma}=\omega$ and $\hbar \widetilde{k}^{\mu}$ becomes the photon 4-mementam:

$$
\text { (1.31) } \quad p^{\mu}=\hbar k^{\mu}=\hbar \omega(1, \hat{k}) \quad(\hat{k} \cdot \hat{k}=1 \text {, unit 3-vector })
$$

Here k^{μ} is called the wave vector. $\quad\left(\omega=\frac{2 \pi}{\lambda}=2 \pi f\right)$
The wave vector k^{μ} is tangent to photon path and hence a mull rector:

$$
k^{r} k_{\mu}=\omega^{2}(-1+\hat{k} \cdot \hat{k})=0 \Rightarrow p^{\mu} p_{\mu}=\hbar^{2} k^{r} k_{\mu}=0
$$

The components of p^{μ} give the energy and 3-momentun
(1.32) $\quad p^{\mu}=(E, \bar{p}) \quad$ (By definition of the 4-monention)

Using that $p^{\mu} p_{\mu}=0$ we get the dispersion relation of massless particles
$(1.33) \quad E=|\bar{p}|=\hbar \omega$

What does an observer measure?
Consider an object A moving in the rest frame K of an observer

The energy and 3 -momention of A mesurured by K are given by the biro and space components of the 4 -momentum in the observers rest frame \mathcal{K}.
$E_{o b_{1}}=p^{0} \quad p^{\mu}=$ four velocity of A in the observer rest frame K

$$
\bar{p}_{o b j}=p^{\prime}
$$

The encrust can be expected ed in a manifestly coordinate invariant (ccoverrent) form in terms of the 4 -velocity u^{μ} of K. In the rest frame we have just $u^{\mu}=\frac{d x^{\mu}}{d \tau}=(1,0,0,0), u_{\mu}=(-1,0,0,0)$ so that:
(1.34) E ob, $-p^{0}=-p^{\mu} u_{\mu} \quad p^{\mu}=4$-momention of the object $u^{\mu}=4$-velocity of the obreveren

The point is that the RHS is a scales which has the sesame value in ens ard systems. To answer what energy an observer K messias for an object A we just write down the 4 -momention p^{μ} of A and the 4 -velocity ar of K and compute Ebbs according to (1.34).
This holes also for masses particles $m=0$:

