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1 SpecialRelativity and flat spacetime

GeneralRelativity GR is a classical theory of gravity It identifiesgravityas
the curvature of spacetime Thespacetime means the space set ofpoints spanned

by temporal and spatialcoordinates tix y 2

In theabsence ofgravity thespacetime is called flat and GRreducestoSpecial
Relativity SR Let us briefly review SR and introduce basic cocepts ofdifferential

geometry which we need later in discussing GR

Even in theabsence ofgravity the flat spacetime has a specific non trivialstructure

In Newtonian physics there is a unique concept of time which is the same for all

inertial observers observerswith no acceleration FdL o This is not truein

the nature time and space transform into each other in thewaydescribed

by the SpecialRelativity

Newtonian laws of physics are invariant under Galilean transformations

Boosts tix It I Ft relates two frames K and K movingwith

Shifts It I t L f
constant velocity J wit each other

T 9 r n T t.tl timeand
constants is notaffected

Rolatrons HH It RI
k k

r
RTR l R is 3 3 rotation matrix



This invariance is realised in nature only in the limit of smallvelocities

V K C 3,00108m s

Inparticular Maxwellequations are notinvariantunderGalileanboosts

t t take a boostalong x axis for simplicity y 7,21 2
x x ut

but insteadunderthe Lorentz transformation boostalong x axis

HM t I If if tf t Ht Htt time space mix

This leadEinstein topostulate SpecialRelativity whichstate that

Inertialframes relatedbyLorentz transformations lawsofphysics lookthesamefor
all inertial observers laws ofphysicsmustbe Lorentz invariant
Speedof light same in all inertialframes mustbe apropertyof spacetime

1.1 Spacetime ofSpecialRelativity

Note that for the transformation 1.1 we have t t x thx This can be

taken as the defining property of SR

Consider a collection of inertialframes Kk HMM
t x y o

which may

move with a constant velocity I witeach other but for which dd dd dz o

z

Use fordefinitenes Cartesian coordinates
u y and define 1 by imagining

a stationary clock at each point vein

efinethe spacetime interval Is between any two events A and B as

1 2 As ccsttesxhsy.si At ta t
T DX XA xp etc
Constant event spacetimepoint



pecial Relativity state that Is is invariant under K 3K

1b As As kstyesx.by sz ksH5esxhesyhesz

This gives rise to Lorente transformations betweeninertialframes
as we will see below The constant c is the same c

that appears in Lorentz transformations i.e the speedof
light

The spacetime interval11.2 can be written more compactly as

Ss last sxIsy4sE
µ o

oyµSXMbY

where we introduced a 4x4 matrix calledmetric

couldalsochooseanotherconvention

d4 7m fong
Minkowskimetric 4in athisis

common

and introduced the notation Xo et X x I y 43 2

Wefurther use theEinstein sun convention which just means that repeatedupper and
lower indices are summed over

d 5 Ss qnusxMsxu qwsxmsxu

The spacetime interval Is actuallydefinesthe conceptofdistance in theGdspacetime

i.e set ofpoints tixyid Bystating that is isgivenby11.5 or equivalently

themetric by 14 we specify a certain geometryfor the spacetime Themetric

14 is calledMinkowskimetric and it defines a Minkowskispacetime The

geometry of theMinkowskispace is called flat and it is thespacetime in 512



Structure of theMinkowskispace

The invariance of s5 yµbXmsK between any spacetime points uniquely
classifies allpossible curves connecting differentpoints into threecategories

Ds Lo timelike curves paths travelledbymassiveparticles
1.6 DT O lightlikecurves pathstravelledby light and

masslessparticles

Ds o spacelike curves paths along which no information can travel

Consider motion of light along the x axis by sz o

Ss lost DX o c

standsince ss invariant under transformation to anotherinertialframe K 2k

Ss Lost't DX o I c
St

Hence slating that lighttravelsalong thelightlike or null carves Ss's0 directly

gives us the desiredproperly that the speed of light is the same
constant in any inertialframe

From now on we choose units such that

c 300.108m s L Is 300.108M

This is indeed a verynaturalchoice since temporaland spatial
coordinates transform into each other and are therefore on equal
grounds



The classification of curves 16 divides the spacetime intodifferent causal

regions with respect to any spacetimepoint P This is representedby
the light cone

silo future light cone setof points which can interact

at with P in thefuture

si o P S5 o

t past light cone set ofpointswhich can have exchanged
silo information with P

Points outside the lightcone are causallydisconnected

from P

The lighbone is invariantunder K K transformation btw differentinertialframes

This means thatthecausalstructure is thesame for all inertialobservers

Proper time

Theproper time Tag is the time measuredby an observer movingbetween two space
time events A and B

For an inertial observer in her nest frameK this is just thecoordinate time t
tk r

t

STz ta t Stz yµsxrsxT
t sinceSxi o is 1,2is

X
X



The benefit of the last expression is that this is manifestly invariant

Under inertial transformations Ingeneral we define theproper time as

17 DII sci yµs ns
u For timelike curvesonly

ST T7msxmsxu

Using thisexpression we can directlyexpress theproper time in terms of coordinates

of any inertial frame

ST Exit st ffxsx.si N
i sa EE seT St

restframe T
coordinates ofanotherinertial
frame K whichmoveswrt K

EI Twinparadox who ages more ABC or ABC

Thetime measuredby an observermovingalong any timelike
path is given by thepropertimealong thatpath

D µ j
STAB fast su fstfTy

w V

Last Fri
7A X STADE STABitSTBL St

DX STAR 0 At

STAR STABL ABC agesmore

A straightpathmaximisepropertime



Going to infinitesimal limit we can define the line element

1.8 di yµdxMdxu

and further for Is so thepropertimedifferential

4.9 die F dxT

Integrating this along a timelike curve x 1 is some curve parameter

we get

if dk 51.10 Ta f prudIDX DX
A

Time measuredby an observer
moving along XTH from A to B

For spacelike curves ds o we can define theproper length physicaldistance
XD

SariJdXt dx
A

diff

Lorente transformation

The defining property of Minkowski spacetime is that the line element

disqudxndxu
is invariant under transformations K K from one inertial frame to another

Let us now find how K K must act on the coordinatesXM in ordertomeet
this condition An infinitesimal coordinate transformation can be representedby a linear
matrix multiplication

µ µ up µ u is a 4 4 matrix



Under this transformation the line element changes as i

do quidxidx quit'adx N'sdef N'agent's dxdx's
stillthesame Minkowskimetric pain Ig

Requiring that ds'sds we get

AMpmNr dxddxB ymdxdd.is notethat we are freeto namethedamn
indicessummedover as we wish

qnudxr.dkyµdxddxB
Nay Nr yars N'agent's Mayuris

This is a condition for theform of A which generate the transformations btw
inertial frames

Written in matrix form this reads

µ.li ATy h y MayurNr yes

The matrices A which satisfy 4.11 are generators of Lorentz transformations They
form a group called Lorentz group

It is illustrative to compare 1.11 to rotations in 3D I RI
where the rotation matrices 12 satisfy PTR I I RTIR These matrices form a

group 063 and imposing anextra condition Iet R 1 to exclude parity transformation
I s I the group becomes SOLD

In the Lorentz group conditron ATMA y the unit matrix of SO3 I RTIR
is replaced bytheMinkowskimetric y diag 1,441 TheLorentzgroup is denoted

by 013,1 and it includes

3d rotation fixedt
4drotationscalledboosts transformations btw inertialframeswithdifferent velocity
time reversals t s t

paritytransformations I 5

We are not interested in the latter two transformations and exclude them by imposing

an additionalcondition def 1 1 No 1



The conditions

4.12 ATyA y Iet 1 1 No 31

specify Lorentz transformations which form the restricted Lorentz group SO it In
the following we refer to this group when talking about Lorentz transformations

In addition to the Lorentz transformations XMN'ux also constant

shifts f
constant 4degrees of freedom

Xr wear

leave the line kment ds yyudxtdx invariant Lorentz transformation shifts

together form the Poincaregroup which generates Poincare transformations

1.13 XM N'uXu at 6 4 10 parameters
T t
3rotations 4 translations
3 boosts

This is themostgeneral transformation K K which leaves di invariant

The Jacobian of the Poincaretransformation is thesameasforLorentz transformation since
they only differ by constants

Jv N

Finally we denote components of the inverse transformation A by Nui i

k K XM Nui
K k xn Nui xn NuN'oxo Man to Yo Io

3 s s o

Examples
Rotation by an angle 0 in Xyplan

i M Tx
N u 1 O O 0 Yr



Boost in X direction rotation in tx plane 100

AM coshof sinh4 O 0

finna come
o o x Nui iiit.I.info sIioYw

O O I 0 y y
0 O O 21 2

To seewhatthismeans considere.g thepoint x 0 in K frame

X 0 X tsinho tta.hu X 0 moveswithconstantvelocity v tanh4 wit K frame
oooh4 t

En Taxi

Using that tanh v weget cosh4 sink4 1
I tanh4 why 1 D

if

sinhosoo.LI1

rE i vr

t's Mt Vx Thisyieldsthefamiliartime
X Vt dilatation andlenghtcontraction

results

Boostsandspacetimediagrams

DrawtheboostedframeK'incrd'sof K t axis x'so x think t
X axis 4 0 t xtanh4 Xv

ht i
t

Notethat the lightcone is invariantf IV t
x'it X It x Hsinholtaoshy

t Hush sinha
Itt sinha cosh IX

TX sothat It mapsto X IttVX



1.2 Vectors in Minkowskispacetime

In the Euclidean space we are usedto thinking vectors as arrows pointing to some

direction This conceptneedsto be reformulated in a more precise geometricway to

define the concept of vectors in more generalspacetimes i e manifolds Westart

by discussing vectors in Minkowski space M thedefinitionsdirectlygeneralize to other

manifolds manifold is a spacetime which can bedivided inpatches which can be

mapped onto 12 and connected in a smooth differentiableway a moreprecise

definition will follow later

In MinkowskispaceM we define vectors as tangents of smooth curves c IR 2M

at et UN EM
t

IN apointofMwhichliesonthecnn.cc
veparamekrXElR

XMP od's in frameK
XMLP God's in frame K

X P is aphysicalpointXMP Xmlp are
its differentend representations
Want todefine vectors in acid invariant
manner

Define thetangentvector ofDX as thedirectionalderivativealong the curve

4.13 v d dx d Thevector v is an operator
DX DX W

Vrs

f Mr
components basis vectors

The vector v is an operatorwhich acts on functions f M IR
Utf M IR



1.14 VIf I M
n daff so VIff justgives thederivative of

120
f alongthe curve IN

The vector v is a geometric object which is invariantunder coordinate

transformations

V dd n dI I d Notion 7 32d

q
components basisvectors

Its components however change just like in theEuclideanspace

Consider a Lorentz transformation XM's µ X

v.vn
i vrjxIf recall His

wtf 2

2
Fx

ve viru

We thus find that the components VM transform as

d157 WEN r 1 v under WEN x

what about the basis vectors em

1114 em Ia 32,1M Nieu
We can now check that v is indeedinvariant

v Hey N'uh Veo s vMen Ok



Example 4 velocity

ddxfg.dz µ
propertime

worldline of anobserver thepathalong
whichshetravels

Apply u tothecoordinate function xerfect through the

a pointon
spacetime

ULI d Jg dx
qr

theworldline

µ component in this Crd system evaluated atXm

So this rather abstract approach indeedreproduces the concept
of vectors as we are used to thinking of them

Tangent space

The set of all vectors at some point PEM i.e tangents of allpossiblecurves
passing through P defines the tangentspaceTp

y

u've To ia.be R

atbluevl au ibu avtbvETp

The vector space TpM is the set of Tp's over theentire manifold M



13 Dualvectors inMinkowskispacetime 140

In addition to vectors we can define othergeometricalquantities on a spacetime

Dual vectors or one forms are defined through their action on vectors For

every vector space TpM there exists a dual vector space Tp M s t

W E Tp M vGTPM
co TpM 112 a map from thevector space to real numbers

co is linear in its arguments

W Wyden v Why L
T f i k
componentdhalbasisvectors components basis vetoes

war qVdxM did
this defines the dual basis vectors

1.17 wa warm v w

Here we have chosen the so calledcoordinate basis where w w Q
in

v une s t q µ
QM dx In general we are free to

choose the basis vectors in a different way but here we mostly stick to

this choice

An important one form is the gradient of a function f M IR

df ydx dftivJ.vn ddxIdgfziddIy vIf
9

Components of
a gradient



Like vectors the dual vectors are coordinate independentobjects 150

but their components change under cnd transformations

XM's µ x co qidxn ew de

qidx q adx justwrite the
differential DX

x N u in terms of d r

wereNice 4.18



1.4 Tensors in Minkowski spacetime 160

Sofar we have defined vectors VET M V Tp M 112 linear
V V r Vfw way
r N'uv

dual we TpCM w TpM 3112 linear
w winder war qvr
wa trim

functions i e scalars M IR 0 1 4 under r r

These are all examples of tensors scalar tensor of type Op 0indices

vector tensor of type lo 1upperinde

deal tensor of type Oil I lowerinde

A generaltensor of Min type is defined as a maltrlinear map from

M dual vectors and n vectors to real numbers

T Tp x xTp x Tpx xTp IR
times n times

Tbd wlm v y 112 i Min tensor is an operator which

eats onduals and n vectors and
results a number

To construct a basis for generaltensors we define the tensorproduct ox

Toxs comwlmtPvl ycn vcnt9l Tlw4 wlmvl vlnYxgf
wlmtIwlntMvlntY vlnt9

p p
Min pig

usualproduct



In generalthe tensorproductdoes not commute Tox SFS T

Using the coordinate basis for vectors and duals the basis of Cm n tensors is

given by
Ty YumaDX dx

and a mint tensor can be written as

1.19 T TMt.mu u.fi Yum did dx

Components basis

Using that dxM 23 2 die Sm we get

29 Tfw wH v int TMMu unwYwimivuY Yn

I Theaction of a tensor on dual vectors amounts to just
multiplying the components and summing over indices

The transformation of tensor components under Xt N'ex follows from the

invariance of T just like for vectors and duals

TM no vision Jim DX dx

Th tho under Yum DX dxon

TMtem d Lm Y un p p
4 on SI Yqi SfJaiox oxJamoxdxiox dxi

Thitimo u Ania Niamh vi Nuit r on 4.211

We can construct new lessons of T by acting with it on vectors dual



e g 180
TMu Ur Tru u

maps a vector h to another
vector Tmrw

TI V Thus di void Truro dxuts.ISan ptensor So
feednothinghere i e

Tr
u j 1,0 tensor

act on T only on T vector
part of itsarguments components

of thevector

Inner product and metric

The Minkowskimetric gyu is a 10,2 tensor It specifies the geometry

of theMinkowski space more on this later and defines the inner product

of vectors v u ETP M

1.22 v u p Yu guru ud invariantquantity

Using the innerproduct we can define the norm or length of a vector

4.231 v.v ycv.vt y.vn N'Alvy vs

Since 11.23 is a tensorproduct the norm is and invariant as it ofcows

should be The vectors are classifiedaccording to thesign of the norm

V.V Lo timelike vector tangent of a timelike curve
v.v so highlike vector tangent of a lightlike curve
v.v o spacelike vector tangent of a spacelike curve

Lorentz transformations and theMinkowskimetric

Recallthat in Minkowski spacetime y MyA where
y floin

gas Nat'spain
This is just the transformationrule of 0,2 tensor



Since Kayani f1oz g
we see that the components of

the Minkowski metric are unchangedunder Lorentz transformations This is

related to the fact that globalLorentz transformations are a symmetry of

the Minkowski spacetime

Inverse metric

We define the inverse metric of by yMys Sha i e thecomponents

ofyouare just the inverse of the matrix quo

Since the components yµ do not change under Lorentz transformation

also the components of pm remain unchanged

Manipulating lensors

Raising andloweringindices

From a tensor T we can construct new tensor by multiplying withyou or

gyu This appears so frequently that it is convenient to introduce a specif

notation

yMTHgg THg raising of the index
12,2 tensor 13,1 tendon

yµ T yg Trigg lowering of the index

raising lowering of indices multiply with yM y

in Cartesian coordinates



Yu cT.cmConsider the inner product of vectors

ylv.nl gyumri Yuur
Here

Vy gyuV is a dual vector constructed from v

Similarly WM YMWw is a vector constructedfrom a dual co CTp M

Also note that with this on

YMguy 2M 8M because Yt is the inverseofyou guys 8 a

contraction

A contraction means summing over a pair of indices It turns a Cmn tensor

into m l l l tensor

1 Bsg TN8848A sum over a pair ofindices to get
4 1 tensor a lower rank tensor12,2tensor

Division into symmetric and antisymmetricparts

A tensor is calledsymmetric if Ayu Ayu and antisymmetric if Apu Aw

A generic tensor is neither symmetric nor antisymmetric but it can be unigu

divided into symmetric and antisymmetricparts

Ayu 121AM AylaLatta Ayu

Ayu Aeros
symmetricpart antisymmetricpart
Agun Aum Arps



Trace

The trace of a lemon is a scalar which is obtainedby contracting over all

the indices
trace

1,1 tensor Arv A Afn
6,2 tensor Byu B YMByu BY note By

so this is not the
trace of thematrixByo

The trace of the Minkowskimetric is

yay yay Sme 4

Thanks to
Nole added duals and tensors in Euclidean space studentcomments

In theusual language of Id Euclidean space components of a vector

would form a column matrix
i
Ffg

vector

A dual would correspond to a row matrix

w Wx Wy wa dual

Tensor product of a 1,1 tensorTij and v and w would be

tiiviwi lwxw.am

I
di gijdxidxiThe metric is gijs toooo sanitdyndi

The innerproductis gijvivi Vivi VTV etc



Tensor fields 220

A tensor space Tpx xTpxTpx xTp is a product of dual and vector spaces
When we define tensor spaces over a set of spacetimepoints pEM inpractise

over theentire spacetime we obtain tensor fields

E.g TpM vector field

UETpM in four velocity

wide
Tdr xr
defined over the worldline of an observer

Partial derivatives

In Minkowski space and in the Cartesian coordinates partral derivatives

of tensor wet coordinates XM form new tendons

Eg gTM JoT is a 12,1 lensor

Check this explicitly by investigating how Scott transforms under xr N'n

o't 3 isfN'sNrTm
Monlant components for global Lorentztransformations

Noir pl IT
which isprecisely the transformation rule of a 2,1 tendon

In a curved spacetime where the metric is not Minkowski this is no longer

true and we need to define a covariantderivative to construct tensorial

derivatives of tensors i e and independent derivative This is so even

in the Minkowski s ace if we use other than Cartesian coordinates



1 5 Relativistic mechanics 230

In SpecialRelativity SR the laws of physics are formulated in terms of

tonsorialquantities 4 velocity 4 acceleration 4 force etc

4 velocity

1.24 UM dxr yµdxmd
u

proper time
g

dT T

9
tangent of an objects worldline XYT where the
curve parameter is theproper time i

Hey
pathof an object

p through thespacetime

The proper time differential IT can be expressed in terms of inertial

coordinates as

dt It

It where we have defined

Vi dxi 3 velocity
elf

and used thatr
in

notRecall 1

Using this we can recast 1.24 into

C 25 UM I 8 1 T
E

DI
dt

w



Note that the factor is necessary for uh e VDI to transform as
dt

a vector You can check by direct computation that dxI alone does
It

not transform as a vector under Xm N'oxo

The norm of the 4 velocity is by definition 1

war Yuuki ymadx d II 1
IT

una I 4.26

4 acceleration

4 26 ah ddu
t d this is a vector since uh is a vector
DT and T is a scalar

air qdu Lyday neut o anorthogonal tour

I

4 momentum ofmassive particle

The mass m of an object is the same in all inertial frames hence

m is a scalar

For an object with mto we define the 4 momentum

27 primum this is a rector

The energy and I momentum are not invariant butdepend on the

frame Wedefine E and F as components of the 4 momentum

4 28 E p f p not tensorial but frame dependent



Therefore the 4 momentum can be written as 250

pA mum mm1 T E mr
F mro

4.291

The norm of the four momentum is by definition invariant

Prp m uh ptp yµpMp E't p m

scalar 1 E p't m 4.30
The relativisticdispersion relation i e
therelation between the energy and
momentum

In the limit of smallvelocities Kel we recover the Newtonian results

V L
E f V'e

E Mr m Izmir e or equivalently E ftp.m tzmv't

Masscontributes to energy E mi

Relativistic version of E moi

A force acting on particles is definedby the relativistic counterpart ofNewton's
law

IIE i TK iarai
ru
yaidTElt dt

3 velocity 3 force

r

Massless particles m o

Photons and other massless particles move along null curves ds2 O These

cannotbe parameterised byproper time since It 0 photons experience no time

O



We can use some other parameter G along the photon path
rk

i Yo

and define the tangent vector
yds

dt4dx o 1 1
df

En de 11 d 1 ETuanions't Into p.sn
do do

Here we are free to do reparameterisabons O aot b i a b contents and

since It Is 0 thenormalisation also doesnot fix 0

Consider an inertialframe K where the source ofphotons is at rest In this

frame each photon has a definite energy

E too KII X photon wavelength

and momentum

p twice I unit 3 vector thatpoints in thedirection of
photon propagation

Now we can choose the curve parameter o s t It w and KIM
do

becomes the photon 4 momentum

4.31 pM tkh hw 1 I I I unit 3 vector

Here km is called the wave vector W 21,1 2117

The wave vector Kh is tangent to photon path and hence a nullvector

Kkk W 1 2 2 0 pnp tittle o



The components of ph give theenergy and 3 momentum

4.32 pm E.p Bydefinition of the 4 momentum

Using thatpMpµ 0 we get the dispersion relation ofmasslessparticles

4.33 E IFI Aw

Whatdoes an observermeasure

Consider an object A moving in the rest frame K of an observer

t n

y µft
path Mt oftheobjectA

TE
K

The energy and 3momentum of A measuredby K are given by the time
and space components of the 4 momentum in the observers restframe K

Eob p pm fourvelocity of A in theobserverrestframe K

Fob pi
Theenergy can be expressed in a manifestly coordinate invariant fcovariant form
in terms of the 4 velocity un of k In the rest frame we

have just uh DI 1,0 0,0 Ur C 1,0 0,0 so that
DT

1.34 Eob Po s pMuy PE 4 momentum of the object
uh 4 velocity of the observer



The point is that the RHS is a scalar which has the same value in any
Cnd system To answer what energy an observer K measures for an object if
we just write down the 4 momentum pm of A and the 4 velocity a of

IL and compute Eob according to 1 34

This holds also for mashersparticles neo

I 35 Eob twob s thru Yob 21 We objectwavevector
EMU U s observer 4 velocity

observedwavelength


