Return by 12.00, Monday 20.9.2021, (electronically to olli.a.koskivaara@student.jyu.fi or in paper to a box outside Fys.1.)

Excercise 1. Consider a plasma with 4 -velocity u^{μ} and energy momentum tensor $T^{\mu \nu}$. We can then write a relativistic generalization of the Gibbs relation as follows:

$$
\begin{equation*}
\mathrm{d} s^{\mu}=\beta u_{\nu} \mathrm{d} T^{\nu \mu}-\sum_{a} \xi_{a} \mathrm{~d} j_{a}^{\mu} \tag{1}
\end{equation*}
$$

where $\beta \equiv 1 / T$ and s^{μ} is the entropy flux, j_{a}^{μ} a set of conserved currents and $\xi_{a} \equiv \mu_{a} / T$ where μ_{a} are chemical potentials. For a perfect fluid there is only one 4 -vector available, u^{μ}, so that $s^{\mu}=s u^{\mu}$ and $j_{a}^{\mu}=n_{a} u^{\mu}$ and $T^{\mu \nu}=(\rho+P) u^{\mu} u^{\nu}-p \eta^{\mu \nu}$, where $\eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$ is the Minkowski metric. Using these definintion show that (1) gives both the differential Gibbs relation: $\mathrm{d} s=\beta \mathrm{d} \rho-\sum_{a} \xi_{a} \mathrm{~d} n_{a}$ and thermal potential relation $s=\beta(\rho+P)-\sum \xi_{a} n_{a}$.

Excercise 2. Show that the generating funcction $Z(\beta, j)$ for the simple harmonic oscillator can be expressed in the form

$$
\mathcal{Z}[\beta, j]=\mathcal{Z}(\beta) e^{-\frac{1}{2} \int_{0}^{\beta} \mathrm{d} \tau \mathrm{~d} \tau^{\prime} j(\tau) \Delta_{0}\left(\tau, \tau^{\prime}\right) j\left(\tau^{\prime}\right)}
$$

(peform the Gaussian integral using periodicity). Show also that $\mathcal{Z}(\beta, j)$ can be expressed in the form

$$
\mathcal{Z}(\beta, j)=\operatorname{Tr}\left[e^{-\beta \hat{H}} \mathcal{T}\left(e^{\int_{0}^{\beta} \mathrm{d} \tau j(\tau) \hat{q}(\tau)}\right)\right]
$$

Excercise 3. Show by direct evaluation in the τ-representation, that the solution to equation

$$
\left(-\partial_{\tau}^{2}+\omega^{2}\right) \Delta_{0}(\tau)=\delta(\tau)
$$

is the propagator

$$
\Delta_{0}(\tau, \omega)=\frac{1}{2 \omega}\left(\left(1+n_{\mathrm{BE}}(\omega)\right) e^{-\omega|\tau|}+n_{\mathrm{BE}}(\omega) e^{\omega|\tau|}\right) .
$$

Start by making exponential ansaz and then require that result obeys the KMS-condition and you get the correctly normalized $\delta(\tau)$-distribution from the derivative terms.

Excercise 4. Show by direct discretization of the path integral that the partition function is exactly given by

$$
\mathcal{Z}(\beta)=\int_{\beta} \mathcal{D} q e^{-\int_{0}^{\beta} \mathrm{d} \tau\left(\frac{1}{2} \dot{q}^{2}+\frac{1}{2} \omega^{2} q^{2}\right)}=\frac{e^{-\frac{1}{2} \beta \omega}}{1-e^{-\beta \omega}} .
$$

Start by dividing the quantum path into a classical parth and a perturbation $q=q_{\mathrm{cl}}+h$ and show that partition function separates $\mathcal{Z}=\mathcal{Z}_{\mathrm{cl}} \mathcal{Z}_{h}$. Find classical part evaluating $S_{E, \mathrm{cl}}$ by using the propagator derived in excercise 3. Then show that the fluctuation part can be written as:

$$
\begin{equation*}
\mathcal{Z}_{h}=\lim _{N \rightarrow \infty} \kappa_{N}^{N+1} \int \prod_{i=1}^{N} \mathrm{~d} h_{i} \exp \left[-\sum_{i j} h_{i} A_{i j} h_{j}\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j}=\frac{1}{2 a_{N} \Delta \tau_{N}}\left(\delta_{i j}-a_{N}\left(\delta_{i+1, j}+\delta_{i-1, j}\right)\right) \tag{3}
\end{equation*}
$$

with $a_{N} \equiv\left(2+(\Delta \tau \omega)^{2}\right)^{-1}$ and $\Delta \tau=\beta /(N+1)$. Evaluate the determinant and finally show that $\kappa_{N}=1 / \sqrt{2 \pi \Delta \tau}$, requiring that the path integral for transition amplitude obeys

$$
F(h,-i \beta ; h, 0)=\sum_{h^{\prime}} F\left(h,-i \beta ; h^{\prime},-i(\beta-\Delta \tau)\right) F\left(h^{\prime},-i(\beta-\Delta \tau) ; h, 0\right)
$$

Excercise 5. Prove the identity

$$
\frac{\sinh \pi x}{\pi x}=\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)
$$

Note: excercise 4 is probably the most demanding, maybe equivalent to in workload to all others combined.

