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Abstract: These lectures cover some basic topics in the finite temperature field the-

ory. We start from quantum statistical physics for boson and fermion systems. Then we

quantize the free bosonic, fermionic and gauge-field theories and derive their basic thermal

properties using path integral methods and imaginary time formalism. Phenomena studied

include Bose condensation and black body radiation. We move to interacting field theories

again starting from Bosonic systems. We study renormalization in finite temperature and

compute the pressure up to one-loop and introduce resummation techniques to overcome

infrared singularities. After this we study the effective action and in particular the effective

potential and its applications in first order phase transitions, including evaluation of the

transition strength, thermodynamical quantitites and bubble nucleation rate and growth.

We then introduce the real-time formulation of the finite temperature field theory. To be

continued.
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Most of this course is concerned with equilibrium thermal field theory. More generally

thermal field theory can be understood to encompass also the out-of-equilibrium systems,

although the latter case perhaps is better refererred as quantum transport theory. The

difference between the two is that in equilibrium systems the quantum density operator

of the system is known, so that one can compute all quantum correlation functions as

expectation values of this operator at a finite amount of labour.

-quantum statistics

-loop corrections

-infrared singularities and resummations

Our notations and convensions are summarized in the appendix A Relevant literature:

[1–3]
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1 Quantum statistical physics

Thermal field theories are essentially quantum statistical systems. The key object is the

quantum density operator ρ̂, whose form depends on the nature of the system: whether it is

isolated (microcanonical ensemble), closed (canonical ensemble) or open (grand canonical

ensemble). Quantum density operator allows computing the partitition function and all

correlation functions. In this section we review some basic results on quanum statistical

mechanics. These results will be re-derived in subsequent sections in the relativistic quan-

tum field thery language and then extended to interacting field theories.

Keywords: Quantum density operator, partition function, harmonic oscillator, path inte-

gral, Matsubara frequencies.

In relativistic theory, where particle number is not conserved and system may be in

thermal exchange with the surroundings, it is natural to use grand canonical ensemble. If

the system is described by a Hamiltonian operator Ĥ and a set of conserved quantum nu-

bers, corresponding to number operators N̂i, then the quantum statistical density operator

for the system is given by

ρ̂ = e−β(Ĥ−
∑

i µiN̂i). (1.1)

In the canoncial ensemble, with no particle exchange, or with no conserved particle num-

bers, one can use canonical density operator ρ̂ = e−βĤ . At any rate, using ρ̂, we can

compute the statistical expectation value of any quantum operator as

⟨A⟩ = Tr[ρ̂Â]

Tr[ρ̂]
. (1.2)

Normalization factor in this expectation value corresponds to the grand canonical partition

function

Z(V, T ; {µi}) = Tr[ρ̂]. (1.3)

Partition function is the central quantity quantum statistics. It allows us to write down

the central thermodynamical quantities. In grand-canonical ensemble partition functin is

related to grand potential Ω:

Ω(V, T ; {µi}) = −T logZ(V, T ; {µi}). (1.4)

Ω = −PV is a function of extensive variable V and intensive variables T and µ:

dΩ = −PdV − SdT −
∑
i

Nidµi. (1.5)

We can then write (everywhere in these notes log refers to the natural logarithm):

P = −
(∂Ω
∂V

)
µ,T

= T
∂ logZ
∂V

(1.6)

N = −
(∂µi
∂µ

)
T,V

= T
∂ logZ
∂µi

(1.7)

S = −
(∂Ω
∂T

)
V,µ

= logZ + T
∂ logZ
∂T

. (1.8)
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U(V, S;N) = TS − PV + µN → H(P, S;N) = U + PV

↓ ↓
F (V, T ;N) = U − TS → G(P, T ;N) = H − TS = F + PV = µN

↓ ↓
Ω(V, T ;µ) = F − µN = −PV → 0

Table 1: Reminder: change of thermodynamical potentials under Legendre transforma-

tions. The transform to the left is always done by adding PV. Going down in first step one

adds −ST and in second −µN .

Backward compatibility of thermal systems Grand potential can be related to other

thermodynamical potentials and the internal energy U(V, S,N) via a series of Legendre

transformations (see table 1). The internal energy U is relevant for the isolated systems or

a microcanonical ensemble1, and it obeys the Gibbs relation: dU = TdS − PdV + µdN .

Canonical ensemble is relevant for systems which are thermally connected to their sur-

roundings, but are closed wrt particle exchanges. Such systems are described by Helmholtz

free energy F = U − TS (see table 1. Finally, if system is both in thermal contact and

open for particle exchanges, it is described by a grand canonical ensemble and the relevant

thermodynamical potential is the grand potential.

In a grand canonical system energy and particle number fluctuate and are replaced by

expectation values. For example:

U → ⟨E⟩ = 1

Z
Tr[Ĥe−β(Ĥ−µN̂)]. (1.9)

Now use dΩ = −SdT −PdV −Ndµ so that S = −(∂Ω/∂T )V,µ. From and the fundamental

relation Ω = −T logZ (here µ = 0 so that Ω = F ), so that we get

S = −∂Ω
∂T

= logZ +
T

Z
∂Z
∂T

= −Ω

T
+

⟨E⟩ − µ⟨N⟩
T

⇒ Ω = ⟨E⟩ − TS − µ⟨N⟩. (1.10)

The fixed internal energy U has been replaced by ⟨E⟩ and fixed particle number N by ⟨N⟩.

Gibbs enropy Let us note that if we use normalized density operator ρ̃ ≡ ρ̂/Tr[ρ̂], the

Gibbs entropy is also consistent with our system:

S ≡ −Tr[
ρ̂

Z
log

ρ̂

Z
] = − 1

Z
Tr[ρ̂(log ρ̂− logZ)]

=
1

TZ
Tr[Ĥe−β(Ĥ−µN̂)]− logZ =

1

T
(⟨E⟩ − µ⟨N⟩ − F ). (1.11)

We clearly reproduce the standard thermodynamical relation with Gibbs entropy.

1Actually, it would be more consistent to identify entropy as the thermodynamical potential for micro-

canonical system instead of the internal energy. Indeed, in microcanonical system entropy is related to

number of microscopic states W similarly that Helmoholz free energy and grand potential are related to

partition functions: S = logW and −βF = logZc or −βΩ = logZgc.
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1.1 Harmonic oscillator in thermal bath

Let us start by studying a simple harmonic oscillator (SHO) in a heat bath. This is useful,

because the leading quantum statistcial properties of more complicated systems can be

computed summing the contribution from an infinite number of SHOs arising from second

quantization of the field. The Hamiltonian operator of a simple harmonic oscillator is

ĤSHO =
1

2m
p̂2 +

1

2
mω2q̂2 (1.12)

where the momentum operator p̂ and the position operator q̂ obey the commuation relation

[p̂, q̂] = i and [p̂, p̂] = [q̂, q̂] = 0. (1.13)

(we are using ℏ ≡ 1). We can express p̂ and q̂ in terms of the raising- and lowering operators

â† and â:

q̂ ≡ 1√
2mω

(
â+ â†

)
, p̂ ≡ −i

√
mω

2

(
â− â†

)
(1.14)

As a result of (1.13) â and â† satisfy the commuation relations

[â, â†] = 1 and [â, â] = [â†, â†] = 0. (1.15)

Because these are commutation relations, we understand that we are studying a bosonic

system here. Using the raising and lowering operators we can write the SHO-Hamiltonian

in the form:

ĤSHO = ω2
(
â†â+

1

2

)
= ω2

(
N̂ +

1

2

)
, (1.16)

where we also introduced the number operator N̂ ≡ a†â.

Now consider a system of SHO:s in a thermal bath of temperature T . Let us also

imagine that the number of oscillators is not fixed, so that we are studying a grand canonical

ensemble of SHO:s. The partition function for this system can now be easily computed

using a complete set of eigenfunctions |n⟩ of the number operator (or the Hamiltonian)

which satisfy: N̂ |n⟩ = n|n⟩. One finds:

ZSHO = Tr[e−β(ĤSHO−µN̂SHO)] = Tr[e−β(ω−µ)N̂SHO− 1
2
βω] (1.17)

= e−
1
2
βω

∞∑
n=0

⟨n|e−β(ω−µ)N̂SHO | n⟩ = e−
1
2
βω

∞∑
n=0

e−β(ω−µ)n

=
e−

1
2
βω

1− e−β(ω−µ)
=

e
1
2
βµ

2 sinh(12β(ω − µ))
. (1.18)

To be precise, the properly normalized bosonic number-operator eigenstate is a Fock state2:

|n⟩ = (n!)−1/2(a†)n|0⟩, where |0⟩ is the vacuum state of the system. We can now connect

2A Fock state is any state that can be created from the vacuum using a finite number of creation

operators.
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the particle number, defined as the expectation value of the particle number operator N̂ ,

with the chemical potential:

NSHO(µ) ≡ ⟨N̂SHO⟩ =
Tr[ρ̂SHON̂SHO]

Tr[ρ̂SHO]
= T

∂ logZSHO

∂µ
=

1

eβ(ω−µ) − 1
. (1.19)

We can understand NSHO(µ) as the occupation number in the state defined by the energy ω

and chemical potential µ. It clearly satisfies N(µ) ∈ [0,∞[. Similarly the expected energy

of the simple harmonic oscillator is:

ESHO(µ) ≡ ⟨ĤSHO⟩ =
Tr[ρ̂SHOĤSHO]

Tr[ρ̂SHO]
= ω

(
NSHO(µ) +

1

2

)
. (1.20)

1.1.1 Fermions

We can extend the original bosonic system to fermionic SHO, by introducing raising and

lowering operators obeying anticommutation rules.

{α̂, α̂†} = 1 and {â, â} = {â†, â†} = 0. (1.21)

The essential difference introducd by the anticommutation rules is that a fermionic SHO

has only two different states: the vacuum |0⟩ and the occupied state |1⟩, such that:

α̂†|0⟩ = |1⟩ and α̂|1⟩ = |0⟩. (1.22)

We might call an object obeying these rules a simple fermionic oscillator (SFO). The

appropriate Hamiltonian for this system is:

ĤSFO ≡ ω2
(
α̂†α̂− 1

2

)
= ω2

(
N̂SFO − 1

2

)
, (1.23)

This form becomes clear below when we quantize the fermionic quantum field, but for now

we can take this as a definition for the fermionic non-interacting quantum system. The

partition function for a thermal bath of these objects is

ZSFO = Tr[e−β(ĤSFO−µN̂SFO)] = e
1
2
βω

1∑
n=0

⟨n|e−β(ω−µ)N̂SFO | n⟩

= e
1
2
βω(1 + e−β(ω−µ)n) = 2e

1
2
βµ cosh(12β(ω − µ)). (1.24)

Moreover,

NSFO(µ) ≡ ⟨N̂SFO⟩ =
Tr[ρ̂SFON̂SFO]

Tr[ρ̂SFO]
= T

∂ logZSFO

∂µ
=

1

eβ(ω−µ) + 1
. (1.25)

We can again understand NSFO(µ) as the occupation number in the state defined by the

energy ω and chemical potential µ. A striking difference to the bosonic system is that this

time NSFO(µ) ∈ [0, 1]. Similarly the expected energy in the SFO heat bath is

ESFO(µ) ≡ ⟨ĤSFO⟩ =
Tr[ρ̂SFOĤSFO]

Tr[ρ̂]
SFO

= ω
(
NSFO(µ)−

1

2

)
. (1.26)
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1.2 Interacting particles in a box

In the above example the simple oscillators had only a single energy state. In reality

particles come with a spectrum of states coming with some dispersion relation. We can

see how this structure emerges by quantizing the field within a box. Consider a field ψ

constrained in a 3D-box where each side has a length L. Boundary condition (illustrated

in figure 15 implies quantization

ψ(xi = 0) = ψ(xi = L) = 0, ⇒ L =
niλi
2

(1.27)

Figure 1: Particle wave solutions in

a box with sides of length L.

where ni ∈ N. This implies a momentum discreta-

tion

|pi| =
2π

λi
=
π

L
ni, (1.28)

Each mode is equivalent with a SHO or SFO with

energy given by ω = ω(p), so we can construct the

Hamiltonian and number operators as simple sums

Ĥ =
∑
i

Ĥi (1.29)

N̂ =
∑
i

N̂i (1.30)

where i runs over all lattice sites (represents 3 dif-

ferent sums) along different axis. The partition

function then turns out to be a product of SHO

and SFO partition functions:

Z = Tr[e−β
∑

i(Ĥi−µN̂i)] =
∏
i

Zi (1.31)

We can now compute the pressure in the system from the grand potential

P = −Ω

V
=
T

V
logZ, (1.32)

where

T logZ = T
∑
i

logZi
L→∞−→

(L
π

)3
T

∫∫∫ ∞

0

(∏
i

d|pi|
)
logZp

= V T

∫
d3p

(2π)3
logZp (1.33)

Then, using (1.18) and (1.24) mode by mode, we get:

P =

∫
d3p

(2π)3

(
∓ ωp

2
∓ T log

(
1∓ e−β(ωp−µ))). (1.34)

Here on the last line we combined results from (1.18) and (1.24), such that with upper

signs (1.34) returns the bosonic and with lower signs the fermionic partition function for
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a free quantum gas in a box. For massive excitations one can simply take ω =
√
p2 +m2.

From the partition function we can compute

n ≡ ⟨N̂⟩
V

=

∫
d3p

(2π)3
1

eβ(ωp−µ) ± 1
(1.35)

E ≡ ⟨Ĥ⟩
V

=

∫
d3p

(2π)3

(
± ωp

2
+

ωp

eβ(ωp−µ) ∓ 1

)
= ±E0 + E∓

T , (1.36)

where upper signs again refer to bosons and lower signs to fermions.

Antiparticles In the above considerations we only accounted for particle solutions. In

field theory approach we will naturally also get the antiparticle solutions. Here we can put

them in by hand using Dirac’s hole theory interpretation of the antistates. If we describe

a state with antiparticle by |n̄⟩ and intepret this state as a positive energy state (ω > 0)

of a missing particle n < 0, then:

⟨n̄|ρ̂|n̄⟩ = ⟨n̄|eβ(Ĥ−µN̂)|n̄⟩ ≡ e−β(ω−µ(−1))n∓ 1
2
βω = e∓

1
2
βωe−β(ω+µ)n. (1.37)

Then the total thermal energy of a system with both particles and antiparticles (we drop

the vacuum energy parts here) then is

E±
T = V

∫
d3p

(2π)3

(
ωp

eβ(ωp−µ) ± 1
+

ωp

eβ(ωp+µ) ± 1

)
. (1.38)

If our particles have a charge −e, then antiparticles have a charge e and the total charge

in the system is

Q± = −eV
∫

d3p

(2π)3

(
1

eβ(ωp−µ) ± 1
− 1

eβ(ωp+µ) ± 1

)
. (1.39)

1.3 Thermal integral JT .

The expression (1.34) contains an important thermal integral function, which will turn up

continuously in these lectures. Combining (1.32) and (1.34) we can write the pressures of

the free bosonic and fermionic gases as3

P± = ∓J0 + J±
T , (1.40)

where upper signs refer to fermions and lower signs to bosons. The divergent vacuum

pressure term J0(m) can be evaluated using the dimensional regularization:

J0(m) = → µϵ

2

∫
ddp

(2π)d
1

(p2 +m2)−1/2
= µϵΦ(m, 3− ϵ,−1

2), (1.41)

where the function Φ(m, d, α) is defined in the appendix D. The thermal integrals J∓
T then

are

J±
T (m,T ) = ± T 4

2π2

∫ ∞

0
dy y2 log

(
1± e−

√
y2+x2

)
, (1.42)

3We consider only the case µ = 0 here, since this is the form in which we will encounter these integrals

in typical cosmology and particle physics applications.
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where x ≡ m/T . The vacuum can often be ignored be, since it does not affect thermal

properties of the system. Sometimes it is relevant however, (for example the effective

potential) and in this case it needs to be renormalized. The thermal part on the other

hand is finite and we can rewrite it using a partial integration to give a more familiar form

for the thermal pressure:

P±
T = J±

T =
T 4

2π2

∫ ∞

0
dy y2

y2

3
√
y2 + x2

1

e
√
y2+x2 ± 1

. (1.43)

We list several mathematical properties of integrals J0 and J∓
T in the appendix D.

1.4 Path integral for SHO

We return to study the bosonic oscillator, but compute its partition function using path

integral methods. To this order we note that the transition amplitude

Figure 2: Examples of possible paths

that quantum system can take (dashed).

The thick solid line is the classical path.

K(q′, t′; q, t) ≡ ⟨q′|e−iĤ(t′−t)|q⟩, (1.44)

where

Ĥ =
p̂2

2m
+ V (q̂) (1.45)

can be expressed as a path integral

K(q′, t′; q, t) ≡
∫
[Dq] q(ti)=q

q(ti)=q′
eiS[q], (1.46)

where the classical action is given by

SM [q] =

∫ tf

ti

dt
(1
2
mq̇2 − V (q)

)
, (1.47)

where q(t) and q̇ = ∂q/∂t now are ordinary c-

numbers. The index M refers to the fact that

the time t is the usual Minkowski space time. In fact, for the path integral to be well

defined, the time has to be deformed to move along a complex contour which tilts down as

the real time increases. This tilt is connected to the Feynman prescription which ensures

that the ordered propagator has the correct boundary conditon.

However, here we are (currently) not interested in time-dependent quantities. Instead,

we want to compute expectation values of the known thermal equilibrium density operator

ρ̂ = e−βĤ . To this end first note that a transition matrix element (1.46) over imaginay

time interval can be written as a path integral over the Euclidean time

K(q′,−iτ ′; q,−iτ) = ⟨q′|e−Ĥ(τ ′−τ)|q ⟩ =
∫
[Dq] q(τi)=q

q(τf )=q′
e−SE [q]. (1.48)

where the Euclidean action is

SE [q] =

∫ τf

τi

dt
(1
2
mq̇2 + V (q)

)
. (1.49)

– 8 –



Figure 3: Complex time paths. Blue:

the tilted real-time path. Red: the imag-

inary time contour.

In this expression q̇ ≡ ∂q/∂τ . So far we have

formally computed the partition function over a

complete set of eigenstates of the number oper-

ator:

Z = Tr[e−βĤ ] =
∑
n

e−βEn , (1.50)

but we can equally well perform the trace over

the eigenstates of the position operator q̂:

Z =

∫
dq⟨q|e−βĤ |q⟩ =

∫
dqK(q,−iβ; q, 0)

=

∫
[Dq]q(ti)=q(tf )=q e

−SE [q] , (1.51)

where on first equality we used (1.48) with τ = 0 and τ ′ = β. That is, because we are com-

puting a statistical expectation value over the thermal density operator, the result emerges

as a path integral weighted by Euclidean action over configurations that are periodic in

imaginary time with period β = 1/T . More detailed calculation connecting path integral

to transition amplitude is given in appendix B.

1.5 Thermal generating functional and propagator

We now generalize the partition function into a generating function by introducing a source

j(q):

Z(β, j) =

∫
[Dq]β e−SE [q]+

∫ β
0 j(τ)q(τ)dτ . (1.52)

where the index β is a shorthand reminder that the integral is taken over configurations

that are periodic in τ with a period β. We can now compute the complex time-ordered

propagator for our theory4

1

Z
δZ

δj(τ1)δj(τ2)
=

1

Z

∫
[Dq]β q(τ1)q(τ2) e−SE [q]

= Tr
[
e−βĤT

(
q̂(τ1)q̂(τ2)

)]
= ⟨T

(
q̂(τ1)q̂(τ2)

)
⟩β, (1.53)

where τ1, τ1 ∈ [0, β] and T refers to time ordering in τ . Because of the periodicity it suffices

to define only the propagator

∆(τ) = ⟨T
(
q̂(τ)q̂(0)

)
⟩β, (1.54)

4To keep the notation simple, we use label our states and operators with a real valued time argument:

q̂(τ)|q⟩ ≡ q(τ)|q⟩. This is consistent when we also assume a real frequency variable p0 = ωn, since indeed

−iτ(ip0) = τp0. The imaginary time concept was used merely to provide a connection to the presumably

more familiar real time path integral for the transition amplitude. In fact our representation of the statistical

expectation value as a path integral is better defined than the one for the transition amplitude; it has a

well defined (Wiener) measure from outset and it convergers to unique answer, whereas the path integral

for transition amplitude indeed requires an extension to a complex time to be well defined.
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Indeed, using q̂(τ) = eĤτ q̂(0)e−Ĥτ one can show that for any τ1, τ1 ∈ [0, β]

⟨T
(
q̂(τ1)q̂(τ2)

)
⟩β = ⟨T

(
q̂(τ1 − τ2)q̂(0)

)
⟩β. (1.55)

Moreover periodicity implies that

∆(τ) = ⟨T
(
q̂(τ)q̂(0)

)
⟩β = ⟨T

(
q̂(τ)q̂(β)

)
⟩β

= ⟨T
(
q̂(τ − β)q̂(0)

)
⟩β

= ∆(τ − β). (1.56)

This can obviously be extended to points outside the periodicity interval ∆(τ) = ∆(τ+nβ)

for any n ∈ Z. The periodicity property is called the Kubo-Martin-Schwinger (KMS)

condition.

Propagator for a simple harmonic oscillator Let us now assume the harmonic po-

tential that we studied above with usual quantum statistical methods:

V0(q) =
1

2
mω2q2. (1.57)

We now absorb the mass m into q redefining mq2 → q2 (that is we are measuring q in units

of mass). The generating function is a Gaussian functional integral that can in this case

be computed in a closed form:

Z[β, j] =

∫
[Dq]β e−

∫ β
0 dτ [ 1

2
q̇2+ 1

2
ω2q2−jq]

=

∫
[Dq]β e−

∫ β
0 dτ [ 1

2
q(−∂2τ+ω2)q−jq]. (1.58)

Here we left out the surface term in the action ∼
∫
0 βdτ

d
dτ qq̇ = |β0qq̇, which in fact does not

vanish based on general arguments: all we can say without a detailed calculation is that

q(0) = q(β), but we cannot argue that q̇(0) = q̇(β). However, performing the calculation

exactly shows that dropping this term is still legitimate (excercise 4).

Now denote by ∆0(τ, τ
′) the Greens function which is the inverse of the differential

operator appearing in the integral in (1.58), e.g. is a solution to the equation(
− ∂2τ + ω2

)
∆0(τ, τ

′) = δ(τ − τ ′). (1.59)

Given this Greens function, we can easily perform the Gaussian integral in (1.58) to get

Z[β, j] = Z(β)e
1
2

∫ β
0 dτdτ ′j(τ)∆0(τ,τ ′)j(τ ′), (1.60)

where Z(β) is the partition function, e.g. the generating function with zero external

sources. Using the solution (1.60) in (1.53) we can see that ∆0(τ, τ
′) = ∆0(τ − τ ′) is the

propagator for the simple harmonic oscillator. We can work out the explicit form of the

propagator going to the Fourier space:

∆0(τ) = T
∑
n

∆0(ωn)e
−iωnτ . (1.61)

∆0(ωn) =

∫
dτ∆0(τ)e

iωnτ (1.62)
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Using the periodicity condition (1.56) on equation (1.61) imposes the condition e−iβωn = 1,

which implies:

ωn = 2πnT. (1.63)

These energy levels are called bosonicMatsubara frequences. Inserting (1.61) back into (1.59),

we easily find the propagator in the Fourier space:

∆0(ωn, ω) =
1

ω2
n + ω2

. (1.64)

1.6 Matsubara sums and the partition function

Finding the propagator ∆0(τ, ω) is a good excercise in performing sums over Matsubara

frequencies. The common trick is to express the Matsubara sum as a complex integral

with a suitable function such that the original Matsubara sum emerges as a sum over the

residues encompassed by the contour.

Figure 4: Complex integration contour

C1 that encompasses the Matsubara fre-

quencies as positive sign residues or the

poles at ±ω as negative sign residues.

We shall use the contour shown in figure 4, as

follows:

∆0(τ, ω) = T

∞∑
n=−∞

∆0(ωn, ω)e
−iωnτ

= T
∞∑

n=−∞

1

ω2 + ω2
n

e−iωnτ

=
T

2πi

∮
C1

e−τz

ω2 − z2
βeβz

eβz − 1
(1.65)

At this point one simply reinterprets the con-

tous C1 as encompassing the poles of the com-

plex function ∆0(z, ω), which allows us to com-

pute it as a sum of its two residues only. In this

interpretation the contour C1 runs clockwise so

there is an additional minus sign. We find:

∆0(τ, ω) =
1

2ω

( eω(β−τ)
eβω − 1

+
e−ω(β−τ)

e−βω − 1

)
(1.66)

where τ ∈ [0, β]. Defining the Bose-Einstein distribution function (this is just our old NSHO

with zero chemical potential):

nBE(ω) =
1

eβω − 1
, (1.67)

and finally noting that clearly ∆0(τ, ω) = ∆0(−τ, ω), we can write (1.66) as

∆0(τ, ω) =
1

2ω

(
(1 + nBE(ω))e

−ω|τ | + nBE(ω)e
ω|τ |
)
. (1.68)

One can also easily check that (1.68) satisfies the KMS-condition (1.56). This result can

also be obtained directly from (1.59) (see excercise 1.4). Note that the absolute value of τ

in exponentials in (1.68) give rise to the delta-function in (1.59).
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Partition function Our second example is the partition function Z(β). We first perform

the calcluation in the usual field-theory fashion leaving out the overall constants, but still

paying attention to not throwing out any T -dependent terms:

Z(β) =

∫
[Dq]βe−

∫ β
0 dτ 1

2
q(τ)∆−1

0 (τ,ω)q(τ) = C(det ∆̃0)
1/2 = Ce

1
2
Tr[log ∆̃0], (1.69)

where we introduced scalings τ → βτ and q → β1/2q to get the dimensionless propagator

∆̃0 ≡ β−2∆0. Note also that the path-integral measure does not change in this scaling,

since kN ∝ β−1/2 (see appendix B). Taking logarithm and dropping the constant terms we

get

logZ(β) =
1

2
Tr[log ∆̃0] = −1

2

∑
n

log
[
β2(ω2 + ω2

n)
]

= −
∫ βω

1
dθ
∑
n

θ

θ2 + (2πn)2
− 1

2

∑
n

log(1 + (2πn)2). (1.70)

The last term is again a T -independent constant which we must drop in this calculation.

We then get

logZ(β) = −
∫ ω

1
dω′

∑
n

ω′

ω′2 + ω2
n

= −
∫ ω

0
dω′ω′β∆0(τ = 0, ω′)

= −1

2

∫ βω

0
dθ
(
1 + 2nBE(θ)

)
= −βω

2
− log

(
1− e−βω

)
. (1.71)

To get to second line we used the middle line of equation (1.65) and to get to third line

we used equation (1.68). This result agrees with (1.18), suggesting that the constants we

dropped should actually vanish. Because −T logZ can be related to a physical quantity,

the pressure (up to the vacuum contribution, which need to be removed otherwise), one

would indeed expect that (1.71) emerges exactly in a more rigorous calcluation. We shall

now show that this is indeed so.

Proof that (1.71) is exact including constant terms A brute force proof, where

one evaluates the path integral more carefully will be done in excercise: 1.6. However,

Laine and Vuorinen [1] introduce a nice trick to get the same result studying the ω → 0

limit, whch we reproduce here. We start by writing again the Fourier-decomposition of

q(τ) separating out the zero mode:

q(τ) =
q̂0
β

+
1

β

∑
n̸=0

q̂ne
−iωnτ . (1.72)

Using (∂2τ + ω2)q(τ) = ω2q̂0 +
∑

n̸=0(ω
2
n + ω2)q̂ne

−iωnτ we can write the Euclidean action

in the Fourier represenatation as follows:

SE =
1

2β
ω2q̂20 +

1

2β

∑
n̸=0

(ω2
n + ω2)q̂2n. (1.73)
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Performing the gaussian integrals over q̂n’s one then finds

Z(β) = C(β)

√
2πβ

ω

∞∏
n=1

1

ω2
n + ω2

, (1.74)

were the contribution
√
2πβ/ω came from the zero mode. For other modes, we displayed

only the ω-dependent terms and combined all other factors into the ω-independent constant

C(β). The idea is now to determine C(β) in the limit ω → 0. The zero-mode contribution

is problematic however, because it blows up when ω = 0 due to the infinite integration

range in q̂0. However, one observes that
∫ β
0 dτq(τ) = q̂0, so that q̂0/β is the average value

of q(τ). Zero mode is then regulated in systems where the average variation of q(τ) is

restricted to within some range ∆q. In such regulated system zero mode contributes a

factor β∆q to partition function, and we find at ω = 0:

Zreg(β, ω = 0) = C(β)β∆q
∞∏
n=1

1

ω2
n

. (1.75)

This partitition function can be computed also directly however (we still measure everything

in units m):

Zreg(β, ω = 0) =

∫
∆q

dq⟨q|e−
1
2
βq̇2 |q⟩ =

∫
∆q

dq⟨q|e−
1
2
βp2 |q⟩

=

∫
∆q

dq

∫ ∞

−∞

dp

2π
⟨q|e−

1
2
βp̂2 |p⟩⟨p|q⟩

=

∫
∆q

dq

∫ ∞

−∞

dp

2π
e−

1
2
βp2 |⟨p|q⟩|2 = ∆q√

2πβ
, (1.76)

where we used |⟨p|q⟩|2 = 1 before performing the gaussian integral over p. Equations (1.75)

and (1.76) have the same dependence on arbitrary interval ∆q, which allows solving C(β)

independently from the regulator:

C(β) =
1√
2πβ3

∞∏
n=1

ω2
n (1.77)

Inserting this result back to (1.78) now gives

Z(β) =
1

βω

∞∏
n=1

ω2
n

ω2
n + ω2

=
1

βω

1∏∞
n=1

[
1 + ( βω2πn)

2
] =

1

2sinh1
2βω

. (1.78)

where at last one used the identity sinhπx
πx =

∏∞
n=1(1+

x2

n2 ). This is a very important result,

since all bosonic free theory partition functions return to this same form. In what follows

we can then write down the partition function after reducing logZ(β) into the form on the

first line of (1.70).
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Excercises to section 1

1.1 Show that (1.35) and (1.36) also follow from the thermodynamical relations

n ≡ − 1

V

(∂Ω
∂µ

)
V,T

E ≡ Ω+ ST + µN = Ω− T
(∂Ω
∂T

)
V,µ

− µ
(∂Ω
∂µ

)
V,T

.

1.2 Consider a plasma with 4-velocity uµ and energy momentum tensor Tµν . We can

then write a relativistic generalization of the Gibbs relation as follows:

dsµ = βuνdT
νµ −

∑
a

ξadj
µ
a , (1.79)

where β ≡ 1/T and sµ is the entropy flux, jµa a set of conserved currents and ξa ≡
µa/T where µa are chemical potentials. For a perfect fluid there is only one 4-vector

available, uµ, so that sµ = suµ and jµa = nau
µ and Tµν = (ρ + P )uµuν − pηµν ,

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric. Using these definintion

show that (1.79) gives both the differential Gibbs relation: ds = βdρ−
∑

a ξadna and

thermal potential relation s = β(ρ+ P )−
∑
ξana.

1.3 Show that the generating funcction Z(β, j) for the simple harmonic oscillator can be

expressed in the form (1.60) (peform the Gaussian integral using periodicity). Show

also that Z(β, j) can be expressed in the form

Z(β, j) = Tr
[
e−βĤT

(
e
∫ β
0 dτj(τ)q̂(τ)

)]
.

1.4 Show by direct evaluation in the τ -representation, that the solution to equation

(−∂2τ + ω2)∆0(τ) = δ(τ)

is the propagator (1.68). Start by making exponential ansaz and then require that re-

sult obeys the KMS-condition and you get the correctly normalized δ(τ)-distribution

from the derivative terms.

1.5 Using canonical commuation rules and the expression for the Hamiltonian: Ĥ =

p̂ ˙̂q − L̂, show that q̂(τ) = eĤτ q̂(0)e−Ĥτ .

1.6 Show by direct discretization of the path integral that the partition function is exactly

given by

Z(β) =

∫
β
Dqe−

∫ β
0 dτ( 1

2
q̇2+ 1

2
ω2q2) =

e−
1
2
βω

1− e−βω
.

Start by dividing the quantum path into a classical parth and a perturbation q =

qcl + h and show that partition function separates Z = ZclZh. Find classical part
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evaluating SE,cl by use of (1.68). Then show that the fluctuation part can be written

as:

Zh = limN→∞κ
N+1
N

∫ N∏
i=1

dhi exp
[
−
∑
ij

hiAijhj

]
(1.80)

where

Aij =
1

2aN∆τN

(
δij − aN (δi+1,j + δi−1,j)

)
, (1.81)

with aN ≡ (2 + (∆τω)2)−1 and ∆τN = β/(N + 1). Evaluate the determinant and

finally show that κN = 1/
√
2π∆τN , requiring that the path integral for transition

amplitude obeys

F (h,−iβ;h, 0) =
∑
h′

F (h,−iβ;h′,−i(β −∆τN ))F (h
′,−i(β −∆τN );h, 0)

.

1.7 Prove the identity sinhπx
πx =

∏∞
n=1(1 +

x2

n2 ).

1.8 We observed that the finite-temperature part of the pressure P = (T/V ) logZ can

be written as:

P =

∫
d3p

(2π)3
p2

3Tωp

1

eβωp − 1
.

Show that this form is consistent with the kinetic pressure exerted by a gas of particles

on a (imaginary) partitition wall embedded into the system.
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2 Bosonic Field theory

Clearly computing the partition function for the simple harmonic oscillator from path in-

tegral was harder than the statistical approach. The PI method shows its power when

we consider field theories and compute quantum (loop) corrections. We will now move

to the field theory applications. We start by studying the simple non-interacting scalar

field. Then we move to a complex scalar field, which can also carry a conserved charge and

manifest the phenomenon of Bose condensation. After this we move to consider interacting

bosonic field theories in section 4.

Keywords: Quantization, partition function, generating function, chemical potential,

KMS-relation, condensate.

2.1 Non-interacting singlet scalar field

We first consider a free singlet scalar field (Klein-Gordon field) theory, which is defined by

the Lagrangian

Lϕ =
1

2
(∂µϕ)

2 − m2

2
ϕ2. (2.1)

We quantize this theory by the usual canonical quantization rules

[ϕ̂(x, t), π̂(x′, t)] = iδ3(x− x′)

[ϕ̂(x, t), ϕ̂(x′, t)] = [π̂(x, t), π̂(x′, t)] = 0. (2.2)

We now introduce the field operators (π ≡ δLϕ/δϕ̇ = ϕ̇):

ϕ̂(x, t) =

∫
d3p

(2π)3
Dp

(
âpe

−ip·x + â†pe
ip·x)

π̂(x, t) =

∫
d3p

(2π)3
Dp

[
− iωp

(
âpe

−ip·x − â†pe
ip·x)], (2.3)

where ωp =
√
p2 +m2 and Dp is some still unspecified normalization of the density of the

phase space. Canonical commutation relations (2.53) imply that

[âp, â
†
p′ ] = Cpδ

3(p− p′) (2.4)

and [âp, âp′ ] = [â†p, â
†
p′ ] = 0, but the normalization factor Cp is only defined with respect

to Dp:

D2
pCp =

(2π)3

2ωp
. (2.5)

We can now write the Hamiltonian operator for the system, introducing Hamiltonian den-

sity Hϕ = π̂
ˆ̇
ϕ− Lϕ and raising all fields to operators. After a little algebra we find the

Hamiltonian operator normalized to unit volume:

Ĥ

V
=

1

V

∫
d3x

(
π̂
ˆ̇
ϕ− L̂

)
=

∫
d3p

(2π)3
2ω2

pD
2
p

V

(
â†pâp +

1

2
[âp, â

†
p]
)
. (2.6)
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In the box-normalization the momentum space delta-function is δ3(0) = V/(2π)3, so the

vacuum energy density appearing in (2.6) becomes, indepdent of the normalization choices:

Hvac

V
=

∫
d3p

(2π)3
2ω2

pD
2
p

V

1

2
Cp

V

(2π)3
=

∫
d3p

(2π)3
ωp

2
. (2.7)

Of course the trace over the full Hamiltonian Ĥ/V is similarly independent of the normal-

izations. The operator form however, does show normalization dependece. If one wants

to keep the simple realation between the Hamiltonian mode-function and the number op-

erator (this also implies that 1-particle states are simply normalized: ⟨p|p⟩ = 1), setting

Ĥp ≡ ωpâ
†
pâp, one has to set in addition:

2ω2
pD

2
p

V
≡ ωp ⇒ Dp =

√
V

2ωp
, Cp =

(2π)3

V
. (2.8)

With this normalization then

Ĥ

V
=

∫
d3p

(2π)3
ωp

(
â†pâp +

1

2

)
. (2.9)

In field theory one often adopts, as we are doing here, the covariant normalization, setting

Cp ≡ (2π)32ωp:

[ap, a
†
p′ ] ≡ (2π)2(2ωp)δ

3(p− p′). (2.10)

This then implies that Dp = 1/(2ωp) and the Hamiltonian operator becomes:

Ĥ =

∫
d3p

(2π)32ωp

(
ωpâ

†
pâp + n0p

ωp

2

)
, (2.11)

where we wrote n0p = 2ωpV , which corresponds to number of states in vacuum in volume

V in continuous normalization. Obviously the two Hamiltonians are physically equivalent.

At any rate, the expression (2.9) is clearly the same that we obtained for a collection of

simple harmonic oscillators confined into a box, except for the generalization to a massive

field. This proves that quantized free field really is made out of simple quantum oscillators.

From now on, we again switch our treatment to the path integral language.

Partition function Extending the previous path-integral results for the SHO to the case

of an non-interacting scalar field is straightforward. We again remind the path-integral form

of the real time transition amplitude:

⟨ϕb(x)|e−iĤ(t−t′)|ϕa(x)⟩ =
∫
[Dϕ]ϕ(x,t′)=ϕb(x)

ϕ(x,t)=ϕa(x)

exp
[ ∫ t′

t
dtLM [ϕ, ∂µϕ]

]
, (2.12)

where the Minkowski space action is

LM [ϕ, ∂µϕ] =

∫
d3x

(1
2
(∂µϕ)

2 − m2

2
ϕ2
)
. (2.13)
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Here the position of the particle has been replaced by a three dimensional field configuration

q → ϕ(x). This is a major complication in principle, which in practice can be handled by

merely interpreting x as a label for a large (infninite) number of independent variables. As

before the partition function can be computed as a path integral in Euclidean time:

Z(β) = Tr[e−βĤ ]

=

∫
[Dϕa]⟨ϕa(x)|e−βĤ |ϕa(x)⟩

=

∫
[Dϕ]ϕ(x,0)=ϕ(x,β)=ϕa(x) exp

[
−
∫ β

0
dτ

∫
d3xLE(ϕ, ∂µϕ)

]
. (2.14)

The partition function is still a trace, now computed over a complete set of eigenstates of

the field operator ϕ̂(τ,x)|ϕ⟩ = ϕ(τ,x)|ϕ⟩, so the result is a path integral over all 3D-field

configurations periodic in τ with a period β. The Euclidean space Lagrangian density is

LE[ϕ, ∂µϕ] =
1

2

∫
d3x

(
ϕ̇2 + (∇ϕ)2 +m2ϕ2

)
(2.15)

where the derivative is again with respect to the complex time: ϕ̇ = ∂τϕ.

An alternative form for the partition function can be written in terms of the (Euclidean)

Hamiltonian, which is understood to be a function of π:

Z(β) =

∫
[Dπ][Dϕ]β exp

[ ∫ β

0
dτ

∫
d3x

(
iπϕ̇−H[ϕ, π]

)]
. (2.16)

where the free Hamiltonian density is the same as Euclidean lagrangian with ϕ̇→ π:

H[ϕ, π] =
1

2
π2 + (∇ϕ)2 +m2ϕ2. (2.17)

Note that here the π-integration is not constrained by the periodicity requirement. This

integration is Gaussian and integrating over π, using relation (B.12) equation (2.16) reduces

to (2.14) up to an irrelevant constant.

Generating functional and propagator We can again define a generating functional

by introducing external sources, which now are field configurations j(τ,x):

Z[β, j] =

∫
[Dϕ]β exp

[
− SE [ϕ] +

∫
XE

j(τ,x)ϕ(τ,x)
]
. (2.18)

where we introduced a shorthand notation∫
Xβ

E

≡
∫ β

0
dτ

∫
d3x. (2.19)

In the case of free theory action with the Euclidian Lagrangian density (2.15) this can be

integrated, now already in an obvious way, to give

Z[β, j] = Z(β) exp
[
− 1

2

∫
Xβ

E ,X
β′
E

j(τ,x)∆0(τ − τ ′,x− x′)j(τ ′,x′)
]
. (2.20)
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We identify ∆0(τ,x) as the propagator, because it clearly satisfies

∆0(τ,x) =
1

Z(β)

δ2Z[β, j]

δj(0)δj(τ,x)

∣∣∣
j=0

= ⟨T
[
ϕ̂(τ,x)ϕ̂(0)

]
⟩β. (2.21)

The Gaussien integral was done formally in going from (2.18) to(2.20). It is consistent with

the requirement that the propagator ∆0(τ,x) satisfies the equation(
− ∂2τ −∇2 +m2

)
∆0(τ,x) = δ(τ)δ3(x). (2.22)

Going to the momentum space, by Fourier transforming with respect to x one easily gets:(
− ∂2τ + ω2

p

)
∆0(τ,x) = δ(τ). (2.23)

This is the same equation as (1.59), now with an energy corresponding to a massive particle

and momentum p: ω → ωp =
√
p2 +m2. The explicit solution for the propagator in the

Fourier representation5 then is

∆0(ωn,p) =
1

ω2
n + ω2

p

, (2.24)

where ωn = 2πnT . One can again solve the τ -dependent propagator by performing the

complex integration. The calculation does not depend on the dispersion relation and we

can directly write:

∆0(τ,p) =
1

2ωp

(
(1 + nBE(ωp))e

−ωp|τ | + nBE(ωp)e
ωp|τ |

)
. (2.25)

which generalized the old result (1.68) to a massive field.

Evaluating Klein-Gordon partitition function. To compute the partition function

we write the Euclidean action in the Fourier representation:

SE [ϕ] =
1

2

∫
Xβ

E

ϕ(x)
(
− ∂2τ −∇2 +m2

)
ϕ(x)

= β

∫
B

∑ 1

2
ϕ∗npβ

2
[(
ω2
n + ω2

p

)]
ϕnp, (2.26)

where ϕnp is the Fourier transform of ϕ(τ,x) (see appendix A) suitably scaled by β and

we defined the shorthand notation, which we will be using throughout:∫
B

∑
≡ T

∑
n

∫
d3p

(2π)3
. (2.27)

5The Fourier transform is discrete with respect to frequency, which is conjugate to τ ∈ S1 and continuous

with respect to momentum, which is conjugate to x ∈ R3. That is, ϕ(τ,x) is defined in Euclidean space6

S1 ⊗ R3.
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We can then write (dropping constants on the way)

logZ(β) = log
{∫

[Dϕ]β exp
[
− 1

2
β

∫∑
β2(ω2

n + ω2
p))|ϕnp|2

]}
= log

{∏
n,p

∫
dϕinp exp

[
− 1

2
β2(ω2

n + ω2
p)|ϕnp|2

]}
=

1

2
log
{∏
n,p

2π

β2(ω2
n + ω2

p)

}
= −1

2

∑
n,p

log β2(ω2
n + ω2

p). (2.28)

So we see that up to a constant logZ(β) = 1
2Tr(log∆0) = 1

2 log det(∆0). We can first

discretize p within a box so that the continuous product of determinants gives a discrete

sum over logarithms, and then take the box size to infinity to regain the integral over

momenta (but leave the infinite volume factor in front just as we did in (1.34)). For each

p mode, the calculation is identical to that performed in section 1.5, and we immediately

get:

P =
T

V
logZ(β) =

∫
d3p

(2π)3

(
− ωp

2
− T log

(
1− e−βωp

))
. (2.29)

That is: P = J0(m) + J−
T (m,T ), with thermal integrals defined in (1.41) and (1.42). Let

us remind, that while we derived (2.29) schematically, not keeping track of constant terms,

the results of 1.5 show that this is an exact result.

2.2 Noninteracting complex scalar field

Let us now consider a sligthly more complicated structure, which also can support con-

served charges and hence nonzero chemical potentials. The simplest QFT-system with this

property is the free complex scalar field theory with the Lagrangian:

L = |∂µϕ|2 −m2|ϕ2|. (2.30)

Decomposing the complex field as ϕ = (ϕ1 + iϕ2)/
√
2 where ϕ1,2 are real scalar fields,

we can write the Lagrangian as L =
∑

i(
1
2(∂µϕi)

2 − m2

2 ϕ
2
i ). Thus the free complex field

can be seen as a combination of two scalar fields. Its partition function then is just the

square of the one for the real scalar field and the pressure just twice that of the real scalar

field. What makes this model a little more interesting is that it is invariant under global

U(1)-transofmations ϕ → eiαϕ. Noether’s theorem then implies that there is a conserved

current and a conserve charge. They can be easily worked out from the Lagrangian:

jµ(x) ≡ δL
δ(∂µϕ)

iϕ+ h.c. = i(ϕ∗∂µϕ− ϕ∂µϕ∗)

Q =

∫
d3xj0(x) =

∫
d3x i(ϕπ − ϕ∗π∗) ≡

∫
d3xQ(π, ϕ). (2.31)

where we used π = δLM/δ(∂tϕ) = ∂tϕ∗ = ∂tϕ
∗ = −i∂τϕ∗. Note that in the component

notation, where πi = ∂tϕ
∗
i one has π = πi − iπ2. You can find the calculations in the

following section performed fully, or partially using component basis in [2] and [1]. We

shall stick to the complex representation however.
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Partition function with chemical potential Writing down the partition function of

a system with a conserved charge requires some additional structure. We already know

from (1.1) that in a system with a conserved particle number, the quantum density operator

contains the number operator N̂ multiplied by the chemical potential: ρ̂ = e−β(Ĥ−µN̂) =

e−βF̂ . Here we are not interested in conserved number density, but of a conserved charge,

so to get the relevant free energy we have to replace N̂ → Q̂ in our phase space density

operator, which then becomes ρ̂ = e−β(Ĥ−µQ̂). It is easiest to write the path integral for

this partition function using the Hamiltonian form (2.16):

Z(β, µ) = Tr[e−β(Ĥ−µQ̂)]

=

∫
DπDπ∗[DϕDϕ∗]β exp

[ ∫
Xβ

E

(
πϕ̇+ π∗ϕ̇∗ −H+ µQ

)]
. (2.32)

where we still kept the notation ϕ̇ ≡ ∂tϕ in terms of real time for the moment. The charge

density Q was defined in (2.31) and

H = |π|2 + [∇ϕ|2 +m2|ϕ|2. (2.33)

To perform the π-integrations in (2.32), we first manipulate all terms containing conjugate

momenta in the integrand in (2.32) as follows:

− ππ∗ + πϕ̇+ π∗ϕ̇ ∗+iµ(ϕπ − ϕ∗π∗)

− ππ∗ + π(ϕ̇+ iµϕ) + π∗(ϕ̇∗ − iµϕ∗)

− (π − ϕ̇∗ + iµϕ∗)(π∗ − ϕ̇− iµϕ) + (ϕ̇+ iµϕ)(ϕ̇∗ − iµϕ∗). (2.34)

we can now shift π → π + ϕ̇∗ − iµϕ∗ and π∗ → π + ϕ̇ + iµϕ, after which the π-integrals

decouple and can be peformed to give an overall constant. Then noting that ϕ̇ = i∂τϕ, we

get, up to an irrelevant constant:

Z(β, µ) =

∫
[Dϕ]β exp

[
−
∫
Xβ

E

(
[(∂τ+µ)ϕ][(∂τ−µ)ϕ∗] + |∇ϕ|2 +m2|ϕ|2

)]
. (2.35)

Moving to Fourier space we write:

ϕ(τ,x) =

∫∑
ϕn(p)e

−iωnτ+ip·x. (2.36)

Periodicity of configurations ϕ(0,x) = ϕ(β,x) requires that ωn = 2πnT . In Fourier space

space we essentially replace: ∂τϕ→ −iωnϕn, ∂τϕ∗ → iωnϕ
∗
n and ∇ϕ→ −ipϕn, so that

Z(β, µ) =

∫
[Dϕn] exp

[
−
∫∑(

ϕ∗n(p)
(
(ωn + iµ)2 +m2 + p2

)
ϕn(p)

)]
. (2.37)

Note that here We can now simply read off the propagator in the complex representation

∆ϕ(ωn,p;µ) =
1

(ωn + iµ)2 + ω2
p

. (2.38)

So, the chemical potential appears as a complex shift in frequency ωn → ωn + iµ.

– 21 –



KMS-relation for the complex scalar field. We digress from evaluating Z to prove

the KMS-relation for the complex scalar field with chemical potential using the operator

formalism. We denote Ĥ − µQ̂ ≡ K̂ so that ρ̂ = e−βK̂ and assume 0 < τ < β. We then

get:

∆ϕ(τ,x) =
1

Tr[ρ̂]
Tr
[
ρ̂T
(
ϕ̂(τ,x)ϕ̂∗(0)

)]
=

1

Tr[ρ̂]
Tr
[
e−βK̂ ϕ̂(τ,x)eβK̂eβK̂ ϕ̂∗(0)

]
=

eβµ

Tr[ρ̂]
Tr
[
ϕ̂(τ − β,x)e−βK̂ ϕ̂∗(0)

]
=

eβµ

Tr[ρ̂]
Tr
[
ρ̂T
(
ϕ̂(τ − β,x)ϕ̂∗(0)

)]
= eµβ∆ϕ(τ − β,x). (2.39)

In the second equality we used the cyclicity of the trace and introduced a unity operator,

and in third e−βĤ ϕ̂(τ,x)eβĤ = ϕ̂(τ − β,x) and again eβµQ̂ϕ̂e−βµQ̂ = eβµϕ̂ (see excer-

cise 2.5). Fourier transforming the propagator

∆(τ,x) =

∫∑
∆(ωn,p)e

−ip0τ+ip·x. (2.40)

and imposing the KMS-relation (2.39) to (2.40) we get the condition

eµβeiβp0 = 1 ⇒ p0 = 2nπT + iµ ≡ ωn + iµ. (2.41)

This is the same result that we obtained above from the path integral expression using the

periodicty of the configuration ϕ(τ,x).

Figure 5: Integration contour C1 for

complex scalar field Matsubara sums.

Evaluating the partition function. Despite

the chemical potential, we can proceed with (2.46)

in similar fashion as with equation (2.28), except

that here ϕn(p) and ϕn(p)
∗ are independent vari-

ables. This means we have a product of two iden-

tical partition functions in Z or twice the scalar

term for logZ:

logZ(β, µ) = Tr[log∆0] (2.42)

= −
∑
n,p

log((ωn+iµ)
2 + ω2

p)

= −V
∫
p

∫ ωp

0
dω′

∞∑
n=−∞

2ω′

(ωn+iµ)2+ω′2 .

The last form has been written to resemble the Matsubara sum over the propagator in

equation (1.65) and we can use the same contour integral trick as there, with the modified
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scontour shown in figure 5. We get:

∞∑
n=−∞

1

(ωn+ iµ)2+ω′2 =
1

2πi

∮
C1

1

ω′2 − z2
β

eβ(z+µ) − 1

=
1

2ω′

( 1

eβ(ω′+µ) − 1
+

1

e−β(ω′+µ) − 1

)
. (2.43)

Inserting this back to (2.42) and integrating over ω′ one finds the expected result:

P (β, µ) =
1

βV
logZ(β, µ)

= −
∫
p

∫ ωp

dω′
(
1 +

∑
±

1

eβ(ω′±µ) − 1

)
= −

∑
±

∫
d3p

(2π)3

(ωp

2
+

1

β
log
(
1− e−β(ωp±µ))). (2.44)

This agrees with the result (1.34) obtained by simple quantum statistical analysis in sec-

tion 1.2, except that there we only included the particle branch solution, proportional

to +µ, whereas here we find also the antiparticle solutoin corresponding to −µ in the

exponent.

2.2.1 Bose condensation

The free complex scalar field is the simplest QFT that displays Bose condensation. The

physical cause for Bose condensation is that in a system with a conserved chage, all particles

may not fit into the available phase space at very low temperatures. Charge then begins

to accumulate to ground state and a collective state of zero modes is formed. We clearly

missed this phenomenon in our calculation of the partition function above, but how? The

problem is that ground state is not correctly represented in the transition from a discrete

system to a continuous variables, where it is a state of zero measure. We can fix the issue

by adding a condensate by hand into the Fourier decomposition of the field:

ϕ(τ,x) = ϕc +

∫∑
ϕn(p)e

−iωnτ+ip·x, (2.45)

where ϕc ≡ ξeiθ represents the condensate with ωn = 0. Even though the condensate has

zero energy, it does carry a charge, which will allow to preserve the charge conservation

at low temperatures. In momentum space we again get rid of time and space gradients:

ϕ̇i(x) → −iωnϕi,n(p) and ∇ϕi(x) → ipϕinp. The partition function then becomes

Z(β, µ, ξ) =

∫
[Dϕinp] exp

[
βV (µ2 −m2)ξ2

−
∫∑(

ϕ∗n(p)
(
(ωn + iµ)2 +m2 + p2

)
ϕn(p)

)]
. (2.46)

The first term in (2.46) comes from the condensate. It was taken to be constant so that its

derivatives vanish and the integral over its action is proportional to the volume βV of the
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space S1 ⊗ R3. The rest of the partition function agrees with what we already computed

above and we can immediately write down the final result:

1

V
logZ(β, µ, ξ) = β(µ2 −m2)ξ2 −

∑
±

∫
d3p

(2π)3

[1
2
βωp + log(1− eβ(ωp±µ))

]
. (2.47)

Note that we did not integrate over the condensate variable in the partition function.

Indeed, we are not treating the condensate as a quantum fluctuation, but as an external

background field that is used to impose the charge conservation.

Critical temperature Tc and formation of condensate at T < Tc. Let us now treat

ξ as a variational parameter, which should be minimized for a given temperature β = 1/T

and chemical potential µ

1

V

(∂ logZ
∂ξ

)
β,µ

= 2β(µ2 −m2)ξ ≡ 0 ⇒ ξ = 0 if |µ| ≠ m, (2.48)

In fact the condition for µ will be ξ = 0 if |µ| < m. However for |µ| = m the condensate ξ

can be nonzero. As has already been suggested, we determine ξ form charge conservation

at |µ| = m. Assume now that the total charge per volume Q/V in the system is fixed.

At high temperaturs, where there are many states available for the fluctuations, all charge

resides in fluctuations:

q ≡ Q

V
= −eT

V

(∂ logZ
∂µ

)
high T−→ q(µ, T )particles = −e

∫
d3p

(2π)3

( 1

eβ(ωp−µ) − 1
− 1

eβ(ωp+µ) − 1

)
. (2.49)

0 0.5 1 1.5
0
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Figure 6: Charge density in the residing in

particles and in the condensate. The critical

temperature in this case is Tc/m ≈ 0.1214,

corresponding to Q/V ≡ 0.5m3.

Here we assumed that particles have charge

−e and antiparticles a charge e (see equa-

tion (1.39)). From this expression we see

that the charge density in particles de-

creases as temperature is lowered for fixed

µ and it is increased when |µ| is increased

(either positive or negative depending on

the sign of Q) for a fixed T . However, |µ|
cannot be raised above m, as then the par-

ticle number would not well defined (non-

integrable singularity would develop in the

integral). Instead, there is a critical tem-

perature corresponding to |µ| = m, which

is the lowest temperature in which all exci-

tations can reside in fluctuations:

q = q(m,Tc)particles (2.50)

Below Tc, a |µ| cannot be increased, and

a condesate is formed instead. The charge
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distribution in the low temperatures T < Tc comes again from (2.47) by differentiation with

respect to µ and then setting µ = m (note that based on high-T limit sgn(q) = −sgn(eµ)):

|q| = −2m|e|ξ(T )2 − |q(m,T )particles| ⇔ ξ(T )2 =
1

2m
(|q| − |q(m,T )particles|). (2.51)

and then

qcond(T ) = e sgn(µ)
(
|q| − |q(m,T )particles|

)
, T < Tc. (2.52)

This solution is displayed in figure 6 (blue solid line) for the case Q/V = 0.5m3, along with

the particle contribution to the charge density (red dashed line). Bose condensation was

observed in dilute atomic gases in 1995 by Eric Cornell and Carl Wieman at the NIST–JILA

lab, University of Colorado. After this the phenomenon has been repeated by hundreds of

laboratories worldwide.

Finally let us point out that one could formally include the condensate into the den-

sity of the state function f(p), as an independent spectral contribution at zero momenta.

However, not all systems with an IR-peaked distribution qualify as Bose condensates. For

example during inflation the mode-freezing causes a pile-up of modes with wavelengths

longer than the horizon. From the point of view of a local causal observer these states

can not be distinguished from a zero-mode and a construction of the form (2.45) becomes

meaningful. The subsequent analysis connecting the condensate and chemical potential

does not apply however, because the “condensate” in this case does not carry a charge.

Excercises to section 2

2.1 Show by direct calculation that the canonical commutation relations (2.53) imply

commutation the mode operator commutation relations (2.10), given the field opera-

tors (2.3). Show also that expression for the single scalar field Hamiltonian takes the

simple form (2.6) in terms of raising an lowering oprators.

2.2 Show that the critical temperature for forming the condensate in the non-relativistic

limit (Q/V ≪ m3, this is only an approximative condition) can be expressed as

Tc =
2π

m

(
Q

V

)2/3

ζ(32)
−2/3

and in the relativistic limit (Q/V ≫ m3) as

Tc =
( 3

m

Q

V

)1/2
.

2.3 Quantize the complex scalar field theory by the usual canonical quantization rules

[ϕ̂(x, t), π̂(x′, t)] = iδ3(x− x′)

[ϕ̂(x, t), ϕ̂(x′, t)] = [π̂(x, t), π̂(x′, t)] = 0. (2.53)
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where the field operator ϕ̂(t,x) is

ϕ̂(t,x) =

∫
d3p

(2π)32ωp

(
âpe

−ip·x + b̂†pe
ip·x) (2.54)

and π ≡ δLϕ/δϕ̇ = ϕ̇∗.

2.4 Write the quantized charge operator Q̂ of the charged scalar field in terms of the

rising and lowering operators: Q̂ =
∫
p(a

†
pap − bpb

†
p). What do you need to do to

make this result physically sensible?

2.5 Using the expresssios for the Hamiltonian density (2.33) and charge (2.31), show

that e−βĤ ϕ̂(τ,x)eβĤ = ϕ̂(τ − β,x) and eβµQ̂ϕ̂e−βµQ̂ = eβµϕ̂. Hint: show first that

[Ĥ, ϕ̂(x)] = i∂tϕ̂ and [Q̂, ϕ̂(x)] = −ϕ̂.

2.6 Compute the energy density and pressure for the Klein-Gordon field form the energy

momentum tensor E = T0
0 p = Ti

i. For this purpose quantize the energy momentum

tensor for the field:

T̂µν =
δL

δ(∂µϕ)
∂νϕ− δµνL

Compare your results to the energy-density and pressure obtained from quantum-

statistical methods. Show that if you use cut-off regularization, then the vacuum

energy equation of the state does not satisfy w = p/ρ = 1 in the energy-momentum

tensor picture, while in the statistcal definition it does. Show then that assuming

dimensional regularization both methods agree on the eos. Spend some time thinking

what this is teling about the reality of the vacuum energy divergence?

2.7 Show that the thermal part of the bosonic J−
T -function can be expanded as:

J−
T (m,T ) = −m

2T 2

2π2

∞∑
n=1

1

n2
K2

(nm
T

)
where K2(x) is the Bessel function of the second kind.

2.8 Compute also the related integral:

I−(m,T ) ≡
∫∑
∆0(ωn, ωp) =

∫
d3p

(2π)3
1

2ω

(
1 + 2nB(ωp)

)
.

Show that the thermal part of this integral has the expression

I−T (m,T ) =
mT

2π2

∞∑
n=1

1

n
K1

(nm
T

)
.

Show also that mI−T (m,T ) = ∂mJ
−
T (m,T )

– 26 –



3 Higher spin fields

Now we expand our library of quantum systems to higher spin fields. We begin from

fermions, which we quantize both using canonical and path integral quantization, followed

up by the quantum statistcis analysis of a free femion theory. We then move on to gauge

fields, which we quantize using the path integral method. We discuss the gauge invariance

problem and find the black body radiation formulae for free gauge theory.

Keywords: Anticommutation rules, grassmann valued fields, KMS-relation, gauge fixing,

Abelian gauge fields, non-Abelian gauge fields.

3.1 Fermions

We first quickly go through the canonical quantization of a free fermion field theory, which

is is described by the Lagrangian

Lψ = iψ̄ ∂/ ψ −mψ̄ψ. (3.1)

The conjugate momentum to ψ is π = δL/δψ̇ = iψ†. Theory is quantized by canonical

anticommutation rules:

{ψ̂α(t,x), iψ̂†
α(t,x

′)} = iδαβδ
3(x− x′),

{ψ̂α(t,x), iψ̂α(t,x′)} = {iψ̂†
α(t,x), iψ̂

†
α(t,x

′)} = 0. (3.2)

We can expand the fermionic field operator in terms of the particle and anti-particle creation

and annihilation operators:7

ψ̂(t,x) =

∫
d3p

2ωp(2π)3

∑
s

(
âspu(s,p)e

−ip·x + b̂s†p v(s,p)e
ip·x
)

(3.3)

We also choose to normalize the particle and antiparticle spinors such that u†(s,p)u(s′,p) =

v†(s,p)v(s′,p) = 2ωpδs,s′ . With these normalizations the canonical anticommutation rela-

tions (3.2) imply

{âsp, â
s′†
p′ } = {b̂sp, b̂

s′†
p′ } = (2π)2(2ωp)δs,s′δ

3(p− p′), (3.4)

while all other commutators vanish. The Hamiltonian density of the Dirac field is

H = πψ̇ − Lψ = ψ̄
(
− iγ · ∇+m

)
ψ = iψ†∂tψ, (3.5)

where in the last line we used the Dirac equation (i∂/+m)ψ = 0. It is then straightforward

to show that the Hamiltonian operator can be written as:

Ĥ =
∑
s

∫
d3p

2ωp(2π)3

[
ωp

(
âs†p â

s
p + b̂s†p b̂

s
p

)
− n0pωp

]
. (3.6)

Where again n0p = 2ωpV and the strange appearance of the number-operator terms is due

to the chosen normalization of states.
7We use the same covariant normalization here that was introduced for scalar fields in (2.10).
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Conserved charge and partition function with chemical potential The free Dirac

theory (3.1) is invariant in the global U(1)-transformation

ψ → eiαψ, (3.7)

which implies that there is a conserved current and a conserved charge given by

jµ(x) = ψ̄(x)γµψ(x); Q =

∫
d3xj0 =

∫
d3xψ†ψ. (3.8)

Just as complex scalar field, fermions can also carry a conserved charge. In the fermonic

case one again uses the Hamiltonian representation of the path integral, so that

Z(β, µ) = Tr[e−β(Ĥ−µQ̂)]

=

∫
[Dψ̄Dψ]β̄ exp

[ ∫
Xβ

E

(
iπ∂τψ −H(π, ψ) + µQ(π, ψ)

)]
=

∫
[Dψ̄Dψ]β̄ exp

[
−
∫
Xβ

E

ψ̄
(
γ0(∂τ − µ)− iγ · ∇+m

)
ψ
]

≡
∫
[Dψ̄Dψ]β̄ exp

[
−
∫
Xβ

E

ψ̄∆−1
F ψ

]
, (3.9)

where β̄ in the integration measure represents the fact that fermion configurations are

antiperiodic over the interval β: ψ(β,x) = −ψ(0,x) and ψ̄(β,x) = −ψ̄(0,x), as explained
in ??. The fields ψ and iψ† are independent variables which, due to anticommutativity

of the fermion operators ψ̂ are Grassman valued, anticommuting numbers. The basic

properties of Grassman numbers are given in appendix C.

Fermionic generating functional and propagator We can build a Generating func-

tion for Fermions simlarly to the Bosonic case, introduce Grassmann valued sources η and

η̄ for ψ̄ and ψ and

Z[β, µ, η, η̄] =

∫
[Dψ̄Dψ]β exp

[
−
∫
Xβ

E

(
ψ̄∆−1

F ψ + ψ̄η + η̄ψ
)]

= Z(β, µ) exp
[ ∫

Xβ
E

∫
Xβ′

E

η̄(τ ′,x′)∆F (τ, τ
′;x,x′)η(τ,x)

]
. (3.10)

Here we allowed the normalization factor also depend on the chemical potential. To get to

the second line, one shifts ψ → ψ′ ≡ ψ −∆F η and notes the invariance of the integration

measure on the shift, so that the gaussian integral over ψ′ and ψ̄′ still is equal to Z(β, µ).

We can see that ∆F is the free fermion propagator:

∆F (τ,x) =
1

Z(β, µ)

δ2Z[β, µ; j]

δη̄(τ,x)δη(0)

∣∣∣
j=0

=
1

Z(β, µ)

∫
[Dψ̄Dψ]β ψ(τ,x)ψ̄(0) exp

[
−
∫
Xβ

E

ψ̄∆−1
F ψ

]
=

1

Tr[ρ̂]
Tr
[
ρ̂T
(
ψ̂(τ,x) ˆ̄ψ(0)

)]
= ⟨T

[
ψ(τ,x)ψ̄(0)

]
⟩. (3.11)
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Because ψ and ψ̄ are anticommuting variables, the path integral expectation value corre-

sponds (as it should by design) to an anti time-ordered product:

T
[
ψ̂(τ,x) ˆ̄ψ(0)

]
= θ(τ)ψ̂(τ,x) ˆ̄ψ(0)− θ(−τ) ˆ̄ψ(0)ψ̂(τ,x). (3.12)

Fermionic KMS-relation We can now derive the fermionic KMS-relation from the

operator formalism. We again denote ρ̂ = e−β(Ĥ−µQ̂) ≡ e−βK̂ , one can now show that for

0 < τ < β:

∆F (τ,x) =
1

Tr[ρ̂]
Tr
[
ρ̂T
(
ψ̂(τ,x) ˆ̄ψ(0)

)]
=

1

Tr[ρ̂]
Tr
[
e−βK̂ψ̂(τ,x)eβK̂e−βK̂ ˆ̄ψ(0)

]
=

e−βµ

Tr[ρ̂]
Tr
[
ψ̂(τ − β,x)e−βK̂ ˆ̄ψ(0)

]
= −e

−βµ

Tr[ρ̂]
Tr
[
ρ̂T
(
ψ̂(τ − β,x) ˆ̄ψ(0)

)]
= −e−µβ∆F (τ − β,x). (3.13)

The proof is entirely simlar to the one we did in (2.39) for the charged scalar field. In

particular, we used e−βĤ ψ̂(τ,x)eβĤ = ψ̂(τ − β,x) and eβµQ̂ψ̂e−βµQ̂ = e−βµψ̂ and in third

equality we used (3.12). This is the KMS-realation for fermions in a thermal equilibirium

system. It implies that if µ = 0, the fermionic propagator is antiperiodic in τ . Introducing

a Fourier transformation,

∆F (τ,x) =

∫∑
∆F (p0,p)e

−ip0τ−ip·x (3.14)

and imposing the KMS-condition (3.13) now directly implies:

e−βµe−iβp0 = −1 ⇒ p0 = (2n+ 1)πT − iµ ≡ ωFn − iµ. (3.15)

so that
∫∑→∫

F

∑
in (3.14). The same result can be obtained also by introducing the Fourier

decomposition for the field and requiring the antiperiodicity

Fermionic propagator in momentum space We can read off the fermionic propagator

in momentum space (we use the same signature for fermions and bosons in the definition

of the Fourier transforms, given in appendix A) including chemical potential from (3.9):

∆F (p0,p) =
1

γ0(iωFn + µ) + γ · p+m
. (3.16)

The restriction to fermionic Matsubara frequencies could have been inferred also from the

antiperiodicity of the field configurations within the definition of (3.9), without the use of

the KMS-relation. But it is good to know more than one avenue to a given result.

An important result which follows from the antiperiodicity is that there are no fermionic

zero-modes: even the lowest fermionic Matsubara mode has a finite frequency πT . This

result has far reaching consequences. For example, there can be no fermionic condensates.

Also, all fermionic degrees of freedom are heavy at finite temperatures, and they can often

be integrated out if one is not interested in the short range properties of a given system.
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3.1.1 Free fermi gas pressure

We now perform the gaussian integration over the fermionic degrees of freedom to evaluate

the partition function and the pressure of the fermionic gas. The most relevant property of

Grassmann variables here is the Gaussian integral (C.10) over a discrete set of Grassmann

variables ηi: ∫
Πidη

†
idηie

−η†Dη = detD.

The path integral over fermion fields is again understood as a product of integrals over a

dense grid of x-values, brought to the continuum limit at the end of the calculation. We

then get:

P (β, µ) =
1

βV
logZ(β, µ)

=
1

βV
log

∫
[Dψ̄n,p][Dψn,p] exp

[
−
∫
F

∑
ψ̄n(p)[∆

−1
F ]ψn(p)

]
=

1

βV
log
∏
n,p

Det
(
∆−1
F (n,p)

)
=

∫
F

∑
logDet

(
− ωFn + iµ+ iα · p+ iγ0m

)
=

∫
F

∑
logDet

(
−ωFn + iµ+ iσ · p im

im −ωFn + iµ− iσ · p

)

= 2

∫
F

∑
log
[
(ωFn − iµ)2 + p2 +m2

]
= 2

∫
F

∑∫ ωp

dω′ 2ω′

(ωFn − iµ)2 + ω′2 , (3.17)

where
∫
F

∑
refers to combined sum and integral over fermionic Matsubara frequencies. Note

the factor of 2, which comes from the 4 × 4 structure of the Dirac matrices, for which we

used the Weyl representation (A.2) (we did not display 12-factors explicitly). Note that

the sign of µ is not physical in (3.17). Because we are summing over both all n ∈ Z, we
can switch the sign of µ by changing n→ −n.

Fermionic Matsubara sum We again compute the Matsubara sum using complex in-

tegration. This time we need just a different function to pick up the Fermionic frequencies.

Figure 7: Complex integration contour

C1 for appropriate for evaluating the sum

over Fermionic Matsubara frequences with a

chemical potential µ.
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Given our experience with bosonic sums, the choice is obvious:

∞∑
n=−∞

1

(ωFn− iµ)2+ω′2 =
1

2πi

∮
C1

1

ω′2 − z2
−β

eβ(z−µ) + 1

=
β

2ω′

(
− 1

eβ(ω′−µ) + 1
+

1

e−β(ω′+µ) + 1

)
. (3.18)

Inserting this back to (2.42) and integrating over ω′ one finds the expected result:

P (β, µ) = 2

∫
p

∫ ωp

0
dω′
(
1−

∑
±

1

eβ(ω′±µ) − 1

)
= 2

∑
±

∫
d3p

(2π)3

(ωp

2
+

1

β
log
(
1 + e−β(ωp±µ))). (3.19)

Again, we found out old result for fermoionic system with a chemical potential, but now

extended to inclulde antiparticles as well. The factor of 2 counts the spin degree of freedom.

3.2 Free Abelian gauge field

We now add the electromagnetic field to our repertoir. We quantize gauge fields only using

the path integral quantization, using the Faddev-Popov method. Canonical quantization

can be found for example in Laine and Vuorinen [1]. The Lagrangian density for the free

electromagnetic field in the Minkowski space is

LA = −1

4
FµνF

µν =
1

2
(E2 −B2) = −LE

A. (3.20)

where Fµν = ∂µAν − ∂νAµ and the physical electric an magnetic fields are

Ei = Fio = ∂0Ai − ∂iA0

Bi = 1
2ϵijkFjk = (∇×A)i (3.21)

Going to Euclidean space Aµ transforms as xµ:

AE
µ = (−iA0;A). (3.22)

Since the gauge field is just a vector composed of four scalar fields, one could naively expect

that the partition function can be expressed as

Znaive(β)
?
=

∫
[DAµ]β exp

[ ∫
Xβ

E

LE
A

]
. (3.23)

As is well known from zero-temperature QFT, the integral (3.23) does not even exist.

It is an ill defined quantity because one attempts to integrate over an infinite volume of

physically equivalent gauge configurations. Indeed, the physical electric and magnetic fields

(and the QED-Lagrangian) remain invariant in the gauge transformation:

Aµ → Aαµ = Aµ + ∂µα. (3.24)
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Figure 8: Schematic picture showing

gauge orbits (curves) that describe the

same physics and a gauge fixing surface

that picks only one member of each orbit.

Here α(τ,x) is an arbitrary scalar field config-

uration. The set of all gauge-fields that can be

obtained from each others by a gauge trans-

formation form a gauge orbit. In order to find

a physically meaningful partition (or generat-

ing) function, we need to get rid of the identi-

cal copies and instead pick only one member of

each orbit. To this end one introduces a con-

straint in the form

G[Aαµ] = 0 (3.25)

This idea is schematically illustrated in fig-

ure 8. In practice, one has to be very care-

ful in imposing the constraint. The path inte-

gral quantization is based on the full equalty

of all possible quantum configurations, and the

gauge fixing has to be done such that one does not spoil this democracy. This is pre-

cisely what the Faddeev-Popov method does: instead of simply inserting a functional

δ-distribution, one extracts the infinite gauge-volume factor from the path integral (3.23).

We start by inserting a functional unit-operator into (3.23) in the form:

1 = ∆FP[Aµ]

∫
[Dα]βδ(G[Aαµ]), (3.26)

where

∆FP[Aµ] = det
(δG[Aαµ]

δα

)
≡ det(MG). (3.27)

is the functional Faddeev-Popove determinant. One can easily show that ∆FP[Aµ] is Gauge-

invariant:

∆−1
FP [A

α′
µ ] =

∫
[Dα]βδ(G[Aα

′α
µ ])

=

∫
[D(α′α)]βδ(G[A

α′α
µ ]) = ∆−1

FP [Aµ]. (3.28)

It is then easy to show that

Znaive(β) =

∫
[DAµ]β

(
∆FP[Aµ]

∫
[Dα]βδ(G[Aαµ])

)
exp

[ ∫
Xβ

E

LE
A

]
=
( ∫

[Dα]β
) ∫

[DAµ]β∆FP[Aµ]δ(G[Aµ]) exp
[ ∫

Xβ
E

LE
A

]
. (3.29)

The front factor is an infinite volume integral following from integration along the gauge

orbit. The remaining part is the physical partition fucnction:

Z(β) =

∫
[DAµ]β∆FP[Aµ]δ(G[Aµ]) exp

[ ∫
Xβ

E

LE
A

]
. (3.30)
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3.2.1 Black body radiation

It is instructive to evaluate (3.33) directly in the free field case. To do this, we have to fix

the gauge. A particularily convenient choice here is to use the axial gauge condition:

A3 ≡ 0. (3.31)

In this gauge the FP-determinant takes the form:

∆FP[Aµ] = det
(δ(A3 + ∂3α)

δα

)
= det(∂3). (3.32)

Using this result and integrating over the A3 field configurations we get:

Z(β) = det(∂3)

∫
[DA0DA1DA2]β exp

[ ∫
Xβ

E

LE
A

]
. (3.33)

Normally in the zero-T QFT one throws the det(∂3)-term out, because it does not couple to

dynamical fields and hence reduces to an (there) irrelevant constant. At finite T this term

contributes to the pressure, cancelling a residual gauge-contribution that remains after

integrating out the delta-function constraint. We now evaluate in the axial gauge (3.32):∫
Xβ

E

−1

4
F E
µνF

µν
E

∣∣∣
A3=0

=
1

2

∫
Xβ

E

AE
µ

(
δµν□E − ∂E

µ∂
E
ν

)
AνE

∣∣∣
A3=0

=
1

2

∫
Xβ

E

(A0, A1, A2)

(
∇2 −∂τ∂1 −∂τ∂2

−∂1∂τ ∂2
τ + ∂2

2 + ∂2
3 −∂2∂1

−∂2∂τ −∂1∂2 ∂2
τ + ∂2

1 + ∂2
3

)(
A0

A1

A2

)
. (3.34)

Going to the Fourier space using our usual signature for p · x one can write this as

logZ = log det(∂3)−
1

2
log det

(
p2 ωnp1 ωnp2

ωnp1 ω2
n + p2 − p21 −p2p1

ωnp2 −p1p2 ω2
n + p2 − p22

)

=
1

2
Tr
[
log p23

]
− 1

2
Tr
[
log(p23(ω

2
n + p2))

]
= −Tr

[
log(ω2

n + p2)
]

(3.35)

The log det(∂3)-term can be seen as arising from ghost loop in the axial gauge as indicated

in figure 9. We can now read off the pressure the last line in (3.35) is already in the

standard form, and we know the final result of the Matsubara summation. The black body

radiation pressure then becomes:

logZ = +

Figure 9: Gaussian determinant con-

tributions to Z are visualized by vac-

uum loops. Wavy line describes pho-

tons and dotted line ghosts.

ß

P =
1

βV
logZ

= −2

∫
d3p

(2π)3

[ |p|
2

+ T log(1− eβ|p|)
]
. (3.36)

If we throw out the vacuum part and make one

partial integration in the thermal part, we can

write this result as

PT = −2J−
T (0) =

T 4

3π2

∫ ∞

0
dy

y3

ey ∓ 1
=
π2

45
T 4. (3.37)
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3.3 Photon propagator

Axial gauge may be somewhat cumbersome to use in perturbative calculations. A more

useful gauge condition is the covariant gauge

Gω[Aµ] = ∂µAµ − ω(x) = 0. (3.38)

In this gauge

∆FP = detβ(∂
2). (3.39)

The final trick in the FP-procedure is to integrate over all possible covariant gauge-fixing

functions ω with a gaussian weight exp[ 12ξ
∫
Xβ

E
ω2]. After this integration the partition

function becomes, up to a constant:

Z(β) =

∫
[Dω]β exp[−

1

2ξ

∫
Xβ

E

ω2]

∫
[DAµ]β∆FP[Aµ]δ(G[Aµ]) exp

[ ∫
Xβ

E

LE
A

]
= detβ(∂

2)

∫
[DAµ]β exp

[ ∫
Xβ

E

(
LE
A − 1

2ξ
(∂µA

µ)2︸ ︷︷ ︸
≡Leff

)]
(3.40)

WE are now back to integrating over all gauge-field contributions, but now the ξ-dependent

part imposes a penalty for gauge copies corresponding to high frequencies, and the path

integral is finite. This also manifests with the fact that the greens function (∆E
µν)

−1 in Leff∫
Xβ

E

Leff = −1

2

∫
Xβ

E

AE
µ

(
δµν□E + (1− 1

ξ
)∂E
µ∂

E
ν︸ ︷︷ ︸

≡(∆E
µν)

−1

)
AνE, (3.41)

can be inverted. Going to momentum space ∂E
µ → −ipµ and □E → −δµνipµipν = p2. Then

(∆E
µν)

−1 → p2δµν − (1− 1
ξ )p

µpν and hence the Euclidean propagator in the Rξ-gauge is:

∆E
µν =

1

p2
(
δµν − (1− ξ)

pµpν
p2

)
, (3.42)

where pµ is the bosonic 4-momentum on S1 ⊗ R3: pµ = (ωn;p) with ωn = 2πnT .

Photon pressure, again We can now again compute the photon pressure using the

Rξ-gauge propagator. Indeed,

Excercises to section 3

2.1 Show that

e−β(Ĥ−µQ̂)ψ̂(0,x)eβ(Ĥ−µQ̂) = e−βµψ̂(β,x).

2.2 Fill in all the gaps in the derivation of the gauge field action (3.35) and partition

function (3.34).
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2.3 Show that in the low temperature limit m/T ≫ 1 the thermal integrals

J∓
T (m,T ) ≡ ∓T

∫
d3p

(2π)3
log(1∓ e−βωp) → J∓

T = Tn(m,T ),

where ω2
p = p2 +m2 and n(m,T ) is the Maxwell-Bolzmann number density.

2.4 Show the following identity for bosonic fields∫∑′ 1

Q2p
≡
∑
n̸=0

∫
d3Q

(2π)d
µ3−d

(ω2
n +Q2)p

=
2πd/2

(2π)2p
T d−2p+1µ3−d

Γ(p− d
2)

Γ(p)
ζ(2p− d),

where ζ(s) is the Riemann zeta function.

2.5 Show that in the high-temperature limit the bosonic thermal integral has the expan-

sion:

J−
T (m,T ) =

π2T 4

90
− m2T 2

24
+
m3T

12π
+

m4

2(4π)2

[
log(

meγE

4πT
)− 3

4

]
− m6ζ(3)

3(4π)4T 2
+ · · ·

Note that the third term arises purely from the zero mode. Similarly for Fermions

show that

J+
T (m,T ) =

7

8

π2T 4

90
− m2T 2

48
− m4

2(4π)2

[
log(

meγE

πT
)− 3

4

]
+

7m6ζ(3)

3(4π)4T 2
+ · · ·

The two first 2-3 terms in these expansions are easy but the logarithmic corrections

are much harder. The difficulty comes from the fact that J ’s are not analytic around

m = 0. The section 2.3 of Laine and Vuorinen or the classic article by Doland and

Jackw [4].

2.6 Show carefully the following identitites on fermionic integrals∫ N∏
i=1

dθ∗i dθe
−θ∗iAijθj = detA

∫ N∏
i=1

dθ∗i dθkθ
∗
l e

−θ∗iAijθj = detA(A−1)kl.
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4 Interacting bosonic field theory

Sof far we have mostly derived known results from relativistic statistical physics, starting

from the path integral representation. We will now put the machinery we have developed

to good use, to study interacting theories. The explicit rotation t → −iτ requires no

changes to the formal perturbative zero-temperature QFT machinery. The only difference

appears in the evaluation of loop integrals: whereas in the zero temperatures the integrals

are, after the Wick-rotation defined in R4, the finite temperature field theory integrals are

living in the semicompact space S1⊗R3, which results in frequency integrals being replaced

by frequency sums over the Matsubara frequencies. In particular the UV-structure of the

theory, which is sensitive only to the short distances |∆x| ≪ 1/T , is not at all altered by

the compactification of one of the spatial dimensions.

Let us very briefly

4.1 Self-interacting scalar field

Consider an interacing real scalar field theory with a Lagrangian:

LE =
1

2
(∂µϕ)

2 +
m2

2
ϕ2 + VI(ϕ) ≡ LE0 + VI(ϕ). (4.1)

The generating function for this system in the path integral formulation can be written as:

Z[β, j] =

∫
[Dϕ]β exp

[
−
∫
Xβ

E

(
LE0 + VI(ϕ)− jϕ

)]
= exp

[
−
∫
Xβ

E

VI

( δ
δj

)] ∫
[Dϕ]β exp

[ ∫
Xβ

E

(
LE0 − jϕ

)]
= Z0(β) exp

[
−
∫
τ,x
VI

( δ
δj

)]
exp

[1
2

∫
Xβ

E

∫
Xβ′

E

jτ ′x′∆0(τ − τ ′,x− x′)jτ,x)
]

= Z0(β)Z1[β, j]. (4.2)

The second step appears trivial: if one peforms all functional differentations with respcet

to the source term, the second line expression reproduces the first. The equality is only

formal however, as we can never perform the expansion to all all orders in practice. In the

last step we used the known result for the free theory generating function and consequently

∆0 is the free theory propagator and Z0(β) is the free theory partition function. In terms

of the Grand potential this result becomes:

Ω = − 1

β
logZ[β, j] = − 1

β
logZ0(β)−

1

β
logZ1(β) = Ω0 + δΩ. (4.3)

Expanding the opertor VI(−δ/δj) consistently in powers of coupling constants, creates

the perturbative expansion for the partition function and physical quantitites that can be

derived from it. Perturbative expansions for thermal Greens functions can then be derived

taking appropriate number of derivatives with respect to the source.
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Themal expansion for the partition function Let us study this explicitly in the case

with quartic self-interaction:

VI(ϕ) =
λ

4!
ϕ4. (4.4)

To compute the partition function we must first perform the partial derivatives with respect

to j and then set j ≡ 0.

logZ1(β) = log
[
e−

∫
VI(δ/δj)e

1
2

∫∫
j∆0j

]
j=0

=

∞∑
k=1

(−1)k

k!

[ ∫
VI

( δ
δj

)]k
e

1
2

∫∫
j∆0j

∣∣∣connected
j=0

= −
∫
VI

( δ
δj

)
e

1
2

∫∫
j∆0j

∣∣∣
j=0

+ . . . , (4.5)

where we were used an even more compact notation
∫

≡
∫
Xβ

E
. This produces the well

known perturbative expansion of all vacuum diagrams contributing to Z(β). As is well

known, the similar series for the Grand potential, which is the logarithm of Z, contains

only the subset of connected diagrams. We can now compute the lowest order pertrubative

correction to δΩ:

δΩ(1) =
1

β

∫ β

0
dτ

∫
d3x

λ

4!

δ4

δj(τ,x)4
e

1
2

∫∫
j∆0j

∣∣∣
j=0,connected

=
1

β

λ

4!

1

2!

∫ β

0
dτ

∫
d3x

δ4

δj(τ,x)4

[1
2

∫ ∫
j∆0j

]2
=

λ

8β

∫ β

0
dτ

∫
d3x

[
∆0(0)

]2
=

λ

8β
βV
[
∆0(0)

]2
=
λV

8

[∫∑ 1

ω2
n + ω2

p

]2
(4.6)

In the third line we noted that the propagator ∆0 gets to be evaluated at coinciding space-

time points. This quantity is indpendent of the coordinates, which results in the integral

giving out the volume factor βV and finally we wrote the propagator in the momentum

space representation. We thus get a perturbative correction to the pressure:

δP = −
δΩ(1)

V
= −λ

8

[∫∑ 1

ω2
n + ω2

p

]2
. (4.7)

this result corresponds to the vacuum diagram “eight”, displayed in figure 10 and we could

have derirved the expression (4.7) directly using the Feynman rules given in the figure 11.

Our definition is to define vertices without any combinatoric factors, so for each diagram

the combinatoric factor must be comptuted including all non-equivalent ways to construct

the diagram in question. The problem is of course that the correction (4.7) is, as expected,

UV-divergent and needs to be renormalized before a physically sensible contribution to the

pressure can be identified.
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Figure 10: The first two perturbative corrections contributing to the grand potential δΩ.

Figure 11: Finite temperature field theory Feynman rules for real scalar field with quartic

self interaction, corresponding to imaginary time path shown in figure 3.

4.2 Renormalization in FTFT.

In finite temperature field theory calculations we enounter the same UV-divergences as

the zero temperature field theory. On the other hand, the finite temperature does not

induce any new UV-divergences. This is easy to undrestand qualitatively from the point

of view of loop integrals, wher the finite-T field theory can be seen as a deformation of

the vacuum 4d field theory from R4-the space to S1 ⊗ R3-space, with one of the spatial

dimensions is compactified on a circle. This compactification obviously has no effect on

the short distance physics of the theory, which is where the UV-divergences come from.

From technical point the issue is less trivial. With higher order perturbative corrections

some fine-tuned conspiracies are clearly needed so that no T -dependent sub-divergences

emerge. The issue becomes even more complex when one introduces resummations of

infinite subsets of diagrams, which is required to cancel some IR-divergences appearing in

perturbative computations.

Fundamentally renormalization is needed because the Lagrangian parameters are all

associated with local operators (with several fields evaluated at the same space-time point),

which can never be measured directly, since all physical measurements have some finite

resolution. Instead, we have to parametrize the theory based on some set of either measured

or othewise defined quantitites, which neessarily depend on some finite spatial resolution

or the associated energy scale. This unavoidably leads to scale dependence of all QFT

parameters. This phenomenon of running couplings can be studied quantitatively by setting

up renormalization group equations based on the scale dependence of some fundamental
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Greens functions. We shall briefly go through these theory structures to be self contained

in our analysis of the finite-T renormalization.

BPHZ-method We study the renormalization procedure using the simple scalar field

theory of (4.1) and (4.4) as and example:

L(ϕ, λ,m) =
1

2
(∂µϕ)

2 − m2

2
ϕ2 − λ

4!
ϕ4. (4.8)

Here the mass m2 and coupling λ and the field ϕ itself are non-observable bare parameters.

We introduce the physical parameters using the Bogoliubov-Parasiuk-Hepp-Zimmermann

(BPHZ) method, expressing the bare parameters in terms of some physical parameters,

denoted by index R:

ϕ ≡ Z
1/2
ϕ ϕR, λ ≡ λR + δλ, m2 ≡ m2

R − δm2, (4.9)

Rescalind the field and rewriting the bare mass and couplings in terms of the renormalized

operators, one can now rewrite the original Lagrangian as

L(ϕ, λ,m) = L(ϕR, λR,mR) +
δϕ
2
(∂µϕR)

2 − 1

2
δmϕ

2
R − 1

4!
δλϕ

4
R

≡ LR + δL ≡ LR0 + VR(ϕR), (4.10)

where

δϕ ≡ Zϕ − 1,

δµ ≡ Zϕ
(
m2

R + δm2
)
−m2

R,

δλ ≡ Z2
ϕ

(
λR + δλ

)
− λR, (4.11)

The terms containing δϕ, δm and δλ are absorved into the renormalized potential V (ϕR).

This means they are treated perturbatively and they introduce the new interaction terms.

The corresponding momentum space Feynman rules are shown in figure 12. Because δx’s

merely express relations between observable and non-observable parameters, they can be

adjusted at will order by order in perturbation theory, as dictated by the chosen renormal-

ization conditions.

Renormalization schemes Renormalized parameters depend on the chosen scheme.

Different choices lead to different sets of renormalized parameters, which are related to

each others by finite relations. For example, in the on-shell scheme, we require that the

pole of the propagator is physical on-shell mass. This means setting
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Figure 12: Additional FTFT Feynman rules for the counter-terms for the real scalar field

in the BPHZ-schem.

Excercises to section 4

4.1 Show explicitly the following identities

I0(m) =

∫
d3p

(2π)3
1

2ω
=

∫
d4p

(2π)4
i

k2 −m2
.

and

J0(m) = −
∫

d3p

(2π)3
ω

2
= i

∫
d4p

(2π)4
log(k2 −m2)

Consider these from the point of view of the contour integration and the dimensional

regularization. Can you prove these also using the cut-off regularization?

4.2 Consider a theory defined by the Lagrangian fucntion

L =

2∑
i=1

[1
2
(∂µϕi)

2 − m2
i

2
ϕ2i −

λ

4!
ϕ4i
]
− g(ϕ1ϕ

2
2 + ϕ2ϕ

2
1).

Compute the thermal self-energy functions at one-loop level. Compute the thermal

integrals explicitly in the high temperature limit T ≫ mi. Perform also the vacuum

reonrmalization (see appendix for details) assuming that λi, g > 0, such that the

theory has a symmetric vacuum state.

4.3 Compute carefully the thermal integrals
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5 IR-divergences and resummations

5.1 Superdaisy resummation, Gap equation

6 Other interacting field theories

6.1 Yukawa theory

6.2 Non-Abelian gauge fields

6.3 Standard model

7 Effective action

7.1 One-loop effective action

8 Applications

8.1 Phase transition parameters

8.2 Bubble nucleation

9 Applications

9.1 Bubble nucleation

9.2 Bubble growth and coalescence

9.3 Spahaleron rate

10 Real-time methods

10.1 Self-consistent renormalization and resummation at Hartree level
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Appendices

In these appendices we collect a large number of notations and definitions made throughout

these lecture notes. We also complement the discussion in the text by several appendices

with highly relevant, but technical calculations.

A Notations and conventions

In these notes we are very often transforming between spaces with Minkowski and Euclidean

metrics. All zero-temperature 4d-loop integrals are computed using a Wick rotation to R4-

space, and the imaginary time formulation of thermal field theory is inherently living in

partly compactified Euqlidean space S1 ⊗R3. Here we collect some of our basic definitions

regarding 4-momenta, inner products and so on. The Widk rotation from the Minkowski

spaceM to Euclidean space E, is effected by t→ −it and k0 → ik0. This results in number

of substitution rules:

Figure 13: Wick rotations in the time

and frequency planes.

d4xM → −id4xE
LM → −LE
iSM → −SE
ηµν → −δµν

(p · q)M → (p · q)E
k
/
M

→ −k
/
E

∂/M → −∂/E
γµE ≡ (iγ0;γ)

{γµ, γν} = 2ηµν → {γµ, γν} = −2δµν (A.1)

We define the Euclidean metric with fully neg-

ative signature gEµν ≡ −δµν and the Minkowski

metric with mostly negative signature gMµν =

ηµν = diag(1,−1,−1,−1). These rules imply

that on-shell m2 = p2M = −p2E . Note that replacement rules do not constrain the defi-

nition of x · p and we keep this quantity the same in both space-times: x · p = x0po−x · p.

Dirac matrices Dirac matrices in the Weyl representation are given by

γ5 ≡

(
12 0

0 −12

)
, γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
, (A.2)

where 12 is the 2-dimensional unit matrix and the Pauli matrices are:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.3)
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Integral shorthands We often need to integrate and sum over the space-time or fourier

mode variables in different spaces Sβ1 ⊗ R3, R4 and Minkowski space. To simplify the

notation we will be using a number of shorthands. For the Sβ1 ⊗R3-spcace integral we often

use the shorthands listed below:

∫
Xβ

E

≡
∫ β

0
dτ

∫
d3x ≡

∫ β

0
dτ

∫
x
,

∫
XE

≡
∫
d4xE ,

∫
XM

≡
∫
d4xM . (A.4)

where the index E refers to Euclidean and M to Minkowski space. Similarly, we will use∫
KE

≡
∫

d4kE

(2π)4
,

∫
KM

≡
∫

d4kM

(2π)4
(A.5)

and in particular

T
∞∑

n=−∞

∫
d3k

(2π)3
≡ T

∞∑
n=−∞

∫
k

≡
∫∑
. (A.6)

Fourier transformations We often use normalization to a finite box, whose volume

is then brought to infinity at the end of the calculation. We write some of the relevant

formulae here to facilitate these calculations. First, consider a system in a finite box of

length L centered at x = 0. Then the discrete Fourier transformation is defined as

φ(x) =
1

L

∞∑
n=−∞

φ̂ne
i(2n+s)πx

L ⇔ φ̂n =

∫ L/2

−L/2
dxφ(x)e−i(2n+s)

πx
L . (A.7)

where s = 0 for periodic (bosonic) and s = 1 for antiperiodic (fermionic) boundary con-

ditions. If we now define kn = 2πn/L, φ̂n ≡ ϕ̂(kn)dk and dk = 2π/L and take the limit

L→ ∞, we get the continuous Fourier transforms

φ(x) =

∫ ∞

−∞

dk

2π
φ̂(k)eikx ⇔ φ̂(k) =

∫ ∞

−∞
dxφ(x)e−ikx. (A.8)

Going to more than one dimension is straightforward and we just list our conventions for

different spacetimes starting from the 4d-Euclidean and the Minkowski spaces:

φ(x) =

∫
kM,E

φ̂(k)e−ik·x ⇔ φ̂(k) =

∫
xM,E

φ(x)eik·x, (A.9)

where k ·x = k0t−k ·x in Minkowski and k ·x = k0τ −k ·x in Euclidean space. We define

the Fourier-transforms in the fully (Sβ1 ⊗ (SL1 )
3) and partly (Sβ1 ⊗ R3) compactified spaces

of interest following the same sign-convention:

φ(τ,x) =
1

βV

∞∑
n=−∞

∑
{m}

φ̂n,{m}e
−iωnτ+ik{m}·x L→∞−→

∫∑
φ̂n(k)e

−iωnτ+ik·x, (A.10)
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where ωn = (2n + s)π/β and k{m} ≡ (km1, km2, km3) with kmi = (2mi + s)π/L, where

V = L3 and mi ∈ Z. Usually we omit the discrete indices in the box-normalized Fourier

transform, denoting just k{m} → k. The inverse transformations are

φ̂n,{m} =

∫ β

0
dτ

∫ L/2

−L/2

3∏
i=1

dxi φ(τ,x)e
iωnτ−ik{m}·x

φ̂n(k) =

∫
Xβ

E

φ(τ,x)eiωnτ−ik·x (A.11)

B Transition amplitude and path integral integral

Path integral for transition amplitude is usually derived from the operator formalism. It is

also possible to define the transition amplitude as a path integral and derive the operator

formalism from it. We take this approach here. First consider a particle moving in 1-

dimension in a potential V (q). The probability for the particle to move from position qa
at time ta to a position qb at time tbis defined as:

P (ta, qa; tb, qb) = |K(ta, qa; tb, qb)|2, (B.1)

where the transition amplitude K(ta, qa; tb, qb) is a linear superposition of phase factors

over all possible paths connecting the two points:

K(tb, qb; ta, qa) ≡
∑

all paths

keiS[q,q̇]/ℏ, (B.2)

where S[q, q̇] is the classical action for the system. The constant factor k is related to the

path integral measure, and it is defined from the natural condition.

K(tb, qb; ta, qa) =
∑
c

K(tb, qb; tc, qc)K(tc, qc; ta, qa) (B.3)

Figure 14: Example of a discrtized

path between points qa and qb.

All paths contribute a mere phase factor and are

hence equally likely; the classical correspondence

and even causality in relativistic field theory arise

from constructive quantum interference effects.

Emergence of the classical regime is then clearly

and explicitly controlled by the size of the Planck

constant ℏ.

Path integral measure We start with the

path integral for the simple harmonic oscillator

in real time domain. In figure 14 we show a sam-

ple discretized path between points qa and qb.

The discretized path integral measure is

∑
paths

= lim
N→∞

kN

N∏
i=1

kN

∫
dqi ≡

∫
[Dq]. (B.4)
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The need for the one “extra kN -factor becomes obvious shortly. Similarly, the discretized

action becomes

S =

∫
dtL =

∫
dt
(
1
2mq̇

2 − V (q)
)

→
∑
i

(m
2

(qi+1 − qi)
2

ϵ
− ϵV

(qi+1 + qi
2

))
. (B.5)

Again, our choice of the symmetrical combination as the argument of the discreteized

potential function become evident shortly. To fix kN and to show that K(tb, qb; ta, qa)

obeys the expected equation for the time-evolution operator, we apply the completeness

relation (B.3) choosing tc as the last time-sclice in the discretized path:

K(tb, qb; ta, qa) = kN

∫ ∞

−∞
dq′ exp

[ i
ℏ

(m
2

(qb − q′)2

ϵ
− ϵV

(qb + q′

2

))]
K(tb − ϵ, q′; ta, qa)

≈ kN

∫ ∞

−∞
dδq exp

( im
2ℏϵ

δq2
)[

1− iϵ

ℏ
V (qb) + · · ·

]
×

×
(
1 + δq

∂

∂qp
+

1

2
δq2

∂2

∂q2b
+ · · ·

)
K(tb − ϵ, qb; ta, qa). (B.6)

The first observation here is that the existence of the gaussian integral requires tilting of

the time-path shown in the figure 13

t→ (1− iδ)t ⇒ ϵ→ (1− iδ)ϵ. (B.7)

As a result of this tilt, gaussian integral in (B.6) is well defined and can be performed with

the usual formula: ∫ ∞

−∞
dyy2ne−by

2
= (−1)n∂nb

√
π

b
. (B.8)

Integrals over odd powers vanish by symmety. Regulator can be removed after integrations

and we obtain

K(tb, qb; ta, qa) = kN

√
2iπℏϵ
m

(
1− iϵ

ℏ
V (qb) +

iϵℏ
2m

∂2

∂q2b

)
K(tb − ϵ, qb; ta, qa), (B.9)

where we dropped all terms that are higher than first order in ϵ. One first observes that

to leading order in ϵ, when ϵ→ 0, one must have

kN =

√
m

2iπℏϵ
. (B.10)

After this identification, one can easily turn (B.11) into a differential equation

iℏ
∂

∂t
K(t, q; ta, qa) =

(
− ℏ2

2m

∂2

∂q2
+ V (q)

)
K(t, qb; ta, qa). (B.11)

Which is just the Schrodinger equation obeyed by the time-evolution operator. One can

also apply the formula without any integration xxx

Connection to operator picture√
ia

π

∫ ∞

−∞
eiap

2+ibp = e−ib
2/4a (B.12)
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Figure 15: Examples of consistent pe-

riodic paths in τ (green) and a noncon-

sistent path (orange, dashed).

Imaginary time paths

C Grassmann variables

For fermionic path-integral we needed to intro-

duce anticommuting Grassmann variables. In

the main text we assumed that the reader is fa-

miliar with these structures, but we give a brief

review here as a reference and for the benefit of

those less familiar with the subject. Suppose that

θi and θj are Grassman valued variables, or G-

numbers. The fundamental realation then is:

θiθj = −θjθi. (C.1)

It then follows immediately that θ2i = 0. This has far reaching consequences. For example

the most complicated function of G-number θ is

ϕ(θ) = a+ bθ (C.2)

where a, b ∈ C. Then many elementary functions acting on G-numbers are redundant. For

example

eaθ = 1 + aθ =
1

1− aθ
(C.3)

and so on. Integration over G-numbers is defined to be translationally invariant:∫
dθϕ(θ) =

∫
dθϕ(θ + ξ), (C.4)

where ξ is another G-number and dθ is also anticommuting G-nubmer. Using (C.7) this

implies that

a

∫
dθ + b

∫
dθθ = (a− bξ)

∫
dθ + b

∫
dθθ (C.5)

Since this must hold for all ϕ (a and b) and ξ, we must have
∫
dθ = 0. We furthermore set∫

dθθ ≡ 1, so that ∫
dθ(a+ bθ) = b. (C.6)

Grassmann integral is then same as Grassmann derivative
∫
dθϕ(θ) = ∂θϕ(θ). Note also

that because of anticommutation rules:∫
dθdη ηθ = 1. (C.7)

Any odd permutation of the four factors in the prodcut dθdηηθ changes the sign of the

integral. Let us now define complex conjugated G-numbers.

θ =
1√
2
(θ1 + iθ2), θ∗ =

1√
2
(θ1 − iθ2) (C.8)
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That is, complex conjugation does nothing (of course, it lives in different space) for G-

numbers. Then from the above interation rules, we find
∫
dθdθ∗θ∗θ = 1 and then∫

dθ∗dθe−θ
∗bθ = b. (C.9)

It is straightforward to extend this to an arbitrary N -vector of G-nubers θi and θ
∗
i :∫ N∏

i=1

dθ∗i dθie
−

∑
ij θ

∗
iAijθj =

∫ N∏
i=1

dθ∗i dθi
(−1)N

N !

(∑
jl

θ∗jAjkθk
)N

=

∫ N∏
i=1

dθidθ
∗
i

N∏
j=1

θ∗j
(∑
kj

Ajkjθkj
)

=

∫ N∏
i=1

dθidθ
∗
i

∑
perm

A1k2 · · ·ANkN θ
∗
1θk1 · · · θ∗NθkN

= ϵk1,...,kNA1k2 · · ·ANkN = det(A). (C.10)

Fermionic path integral To construct a fermionic path integral it is useful to define

the eigenstates of Grassmann coordinates θ (one assumes that creation and annihilation

operators anticommite with Grassmann numbers θ: {θ, â} = 0, etc. ):

|θ⟩ = e−θâ
† |0⟩ = (1− θâ†)|0⟩ ⇒ â|θ⟩ = θ|θ⟩ = θ|0⟩

⟨θ| = ⟨0|e−âθ∗ = ⟨0|(1− âθ∗) ⇒ ⟨θ|â = ⟨θ|θ∗ = ⟨0|θ∗ (C.11)

These are the fermionic equivalent of theof the position coordinate eigenstates for the

bosonic system. These definitions imply the following normalization:

⟨θ|θ′⟩ = ⟨0|(1− âθ∗)(1− θ′â†)|0⟩ = 1 + θ∗θ′ = eθ
∗θ′ . (C.12)

With this normalization one finds the expected unit operator:∫
dθ∗dθe−θ

∗θ|θ⟩⟨θ| =
∫

dθ∗dθ(1− θ∗θ)(1− θâ†)|0⟩⟨0|(1− âθ∗)

=

∫
dθ∗dθ

(
− θ∗θ|0⟩⟨0|+ θâ†|0⟩⟨0|âθ∗

)
= |0⟩⟨0|+ |1⟩⟨1| = 1. (C.13)

Similarly, one can prove that the trace of a given operator Â is∫
dθ∗dθe−θ

∗θ⟨−θ|Â|θ⟩ =
∫

dθ∗dθ(1− θ∗θ)⟨0|(1 + θâ†)Â(1− âθ∗)|0⟩

=

∫
dθ∗dθ

(
− θ∗θ⟨0|Â|0⟩ − ⟨0|âθ∗θâ†|0⟩

)
= ⟨0|Â|0⟩+ ⟨1|Â|1⟩ = 1. (C.14)

Here we assumed implicitly that Â is bosonic, i.e. it commutes with the Grassmann vari-

ables θ and θ∗. It is important to note that the trace requires using antiperiodic configu-

ration with respcect to the initial and final states.
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We can now use these results to write the Partition function as a path integral by

splicing the contour to N equal length intervals ϵ = β/N :∫
dθ∗dθe−θ

∗θ⟨−θ|e−βĤ |θ⟩∫
dθ∗dθe−θ

∗θ⟨−θ|e−ϵĤ1e−ϵĤ1 · · ·1e−ϵĤ |θ⟩. (C.15)

Let us label the unit operators from right to left with index i = 1, ..., N and call θ1 = θ and

θN+1 = −θ. Now observe that in each position involving the unit operator, we encounter

a term:

e−θ
∗
i+1θi+1⟨θi+1|e−βĤ(â†,â)|θi⟩ = e−θ

∗
i+1θi+1⟨θi+1|θi⟩e−ϵH(θ∗i+1,θi)

= exp
[
− θ∗i+1θi + θi+1θi −H(θ∗i+1, θi)

]
= exp

(
− ϵ
[
θ∗i+1

(θi+1 − θi
ϵ

)
+H(θ∗i+1, θi)

])
(C.16)

The rightmost point obeys this rule with θ1 = θ and the leftmost point with θN+1 = −θ.
One then has

Z(β) =

∫
dθ∗dθe−θ

∗θ⟨−θ|e−βĤ |θ⟩

=

∫ N∏
i=1

dθ∗i dθi exp
(
− ϵ

N∑
i=1

[
θ∗i+1

(θi+1 − θi
ϵ

)
+H(θ∗i+1, θi)

])
N→∞−→

∫
[Dθ∗Dθ]β̄ exp

(
−
∫ β

0
dτ
(
θ∗∂τθ +H(θ∗, θ)

)
(C.17)

where θ(τ) is a Grassmann valued field.

A Dirac field can be composed from four independent G-number fields in each space-

time point. Extending the previous result to spatial variable is a simple question of first

labeling the discrete spatial coordinates and then taking the continuum limit. Moreover,

since det(γ0) = 1, we can replace ψ† by ψ̄ in the measure, and define the Dirac field path

integral as in the text:

Z(β) ≡
∫
[Dψ̄Dψ]β̄ exp

[
−
∫
Xβ

E

ψ̄∆−1
F ψ

]
= det(∆−1

F ). (C.18)

Where we det(∆−1
F ) is a functional determinant that can then defined as the continuum

limit of (C.10).

D Euclidean space integrals in dimensional regularization

Dimensional regularization is the convenient way to isolate the singularities in the integrals

arising from loop expansions and vacuum contributions to effective action. The idea is

familiar from QFT-textbooks and we give minimum amount of details, mainly to fix our
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conventions. Given a n-dimensional UV-divergent integral, we continue the integral into

d = n− ϵ dimensions. A standard integral that one encounters in thermal field theory is

Φ(m, d, α) =

∫
ddp

(2π)d
1

(p2 +m2)α
=

1

(4π)d/2
Γ(α− d

2)

Γ(α)

1

(m2)α−
d
2

. (D.1)

The right hand side can be expanded in a Laurent series in ϵ near any integer dimension

using the properties of the Γ-functions. We list some of the relevant properties below:

Γ(s+ 1) = sΓ(s)

Γ(1/2) =
√
π, Γ(−1/2) = −2

√
π

Γ(ϵ) ≈ 1

ϵ
− γE

Γ(−1 + ϵ) ≈ −1

ϵ
− 1 + γE

Γ(−2 + ϵ) ≈ 1

2ϵ
+

3

4
− 1

2
γE (D.2)

where the Euler-Mascheroni constant is γE ≈ 0.577215664901. Moreover, one often needs

to use the formula: aϵ = eϵ log a ≈ 1+ ϵ log a. For example, the vacuum contribution to the

pressure, continued to dimension 3− ϵ, can now be evaluated to give:

J0(m) ≡ µϵ
∫

d3−ϵp

(2π)4
1

2

√
p2 +m2 =

1

2
µϵΦ(m, 3− ϵ,−1

2)

=
m4

(4π)3/2
(4π

µ2

m2
)ϵ/2

Γ(−2 + ϵ
2)

Γ(−1/2)

≈ − m4

64π2

(2
ϵ
− γE + log 4π + log

µ2

m2
+

3

2

)
≡ − m4

64π2

( 2

ϵMS

+
3

2
+ log

µ2

m2

)
. (D.3)

where we defined a shorthand

1/ϵMS ≡ 1/ϵ+ log(4π)− γE , (D.4)

This is the term subtracted from the infinite integral in the MS-bar scheme. A friendly

advice is that it is best to perform all these expansions using Mathematica or an equivalent.

Similarly, the 4d-vacuum scalar bubble diagram, can be evaluated

iA0(m) ≡ µϵ
∫

d4−ϵp

(2π)4
1

p2 +m2
= µϵΦ(m, 4− ϵ, 1) (D.5)

=
m2

(4π)2
(4π

µ2

m2
)ϵ/2

Γ(−1 + ϵ
2)

Γ(1)

≈ − m2

16π2

(2
ϵ
− γE + log 4π + log

µ2

m2
+ 1
)

≡ − m2

16π2

( 2

ϵMS

+ 1 + log
µ2

m2

)
. (D.6)

Add more stuff when needed...
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E Thermal J±
T and I±T -integrals

In this appendix we derive and collect the main properties of the thermal integrals J±
T and

I±T . In particular we derive their high and low temperature limits. We also extend these

integrals to the complex plane, extending their use in the effective action to the unstable

region.
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