Effective Bd theories
We have already noted that thermal equilibrium FIFT is a theory on $S_{1} \otimes \mathbb{R}^{3}$. Let us now consider the connection between the biology and physics at different length rales.

- $T=0$. QFT defined in Minkowski space $\mathbb{M} \propto S O(1,3)$. $g_{\mu}=\operatorname{diag}(1,-1,-1,-1)$. Time-ordered Grams functions (Feynman ϵ) \Rightarrow Wick \Rightarrow Euclidean $\mathbb{R}^{4} \propto S O(4)$ theory $g_{\mu \omega} \rightarrow-\delta_{\mu v}$.

- T\&0 FTFT was found to be equivalent on a QFS defined on $S_{1} \otimes \mathbb{R}^{3}$, where $x_{0} \in[0, \beta]$, and $\phi_{a}(p)=\phi_{a}(0), \psi_{a}(\beta)=-\psi_{a}(0)$.

$$
S_{E}=-\int d_{E}^{d} E_{E} R_{E}
$$

$$
S_{E}^{\beta}=-\int_{\theta}^{\beta} d t \int_{d^{3} \vec{x}} d_{E}
$$

When $T \rightarrow 0, \beta \rightarrow \infty$ and $S_{1} \rightarrow \mathbb{R}$. Periodicity loses meaning as Matrubara frequents coulisse and one recovers the continuum \mathbb{R}^{-}-theory.
moreover, for a finite $T \neq 0$, theory looks different at different scales.
i) $\ell \propto \frac{1}{k_{E}} \ll \frac{1}{T}$. In these length
 frequencies contribute. Modes
effectively walesce. The paths that mainly contribute to the PI are not sensitive to periodicity. Low matrubara modes not relevant.
ii) $I \sim 1 / T$ Temperature corrections prestial. All Matrubara modes
 dynamical \& relevant.
iii) $l \gg 1 / T$. In these length scales τ-dimension does not show anymore.
Only the zero mode contributes to dynamical correlations. Theory has been effectively reduced to three dimensions.

Free theory concelators

$$
H_{n}^{2} \equiv m_{R}^{2}+\omega_{n}^{2}
$$

$$
\begin{aligned}
\left\langle\phi_{n}(x) \phi_{n}^{*}(0)\right\rangle & =\beta \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{e^{i \vec{p} \cdot \bar{x}}}{\omega_{n}^{2}+\omega_{p}^{2}}=\frac{\beta}{4 \pi^{2}} \int_{0}^{\infty} d p \frac{p^{2}}{p^{2}+M_{n}^{2}} \int_{-1}^{1} d z e^{i p|\vec{x}| z} \\
& =-\frac{i \beta}{4 \pi^{2}|\vec{x}|} \sum_{s==1} \int_{0}^{\infty} d p \frac{s p}{p^{2}+M_{n}^{2}} e^{i s p|\vec{x}|} \\
& =-\frac{i \beta}{4 \pi^{2}|\vec{x}|} \int_{-\infty}^{\infty} d p \frac{p}{p^{2}+M_{n}^{2}} e^{i p|\vec{x}|} \\
& =\frac{\beta}{4 \pi|\vec{x}|} e^{-M_{n}|\vec{x}|} \quad \quad M_{n}=\sqrt{m_{R}^{2}+(2 \pi n T)^{2}}
\end{aligned}
$$

Thus all matsubara modes with $n>0$ decouple for $|\bar{x}| \gg 1 / \tau$. Then, for large distances only the zere-mede corselator survives:

$$
\left\langle\phi_{0}(\vec{x}) \phi_{0}^{*}(0)\right\rangle=\frac{\beta}{4 \pi|\vec{x}|} e^{-m_{k}|\vec{x}|} \xrightarrow{m_{k} \rightarrow 0} \frac{\beta}{4 \pi|\bar{x}|} \quad \text { (yakava } \rightarrow \text { Coulomb) }
$$

interacting theory. For $n \geqslant 1$ modes the free theory result remains a good approximation. For the zero mode, the leading correction is the thermal mass arrection $m_{R}^{2} \rightarrow m_{0}^{2}(T)$.

$$
\left\langle\phi_{0}(\vec{x}) \psi_{0}^{*}(0)\right\rangle \rightarrow \frac{\beta}{4 \pi \mid \bar{x}]} e^{-m_{0}(\tau)|\vec{x}|} ; m_{0}^{2}(\tau)=m_{R}^{2}+\frac{\lambda \tau^{2}}{2 \eta} .
$$

The full 4-D-theory correlator then is

$$
\begin{aligned}
\langle\phi(\vec{x}) \phi(0)\rangle_{\beta} & =T^{2} \sum_{n} e^{-i \omega_{n} \tau}\left\langle\phi_{n}(\vec{x}) \phi_{n}(0)\right\rangle \\
& =T^{2} \sum_{n} e^{-i \omega_{n} \tau} \frac{\beta}{4 \pi|\vec{x}|} e^{-M_{n}|\vec{x}|} \stackrel{|\vec{x}| \gg \frac{1}{T}}{\longrightarrow} \frac{T}{4 \pi|\vec{x}|} e^{-m_{n}(\tau)|\bar{x}|}
\end{aligned}
$$

more generally, based on Wrak's theorem, also all higher order grues functions reduce to those of the $3^{0 n}$-modes only.

If we are mainly interested in the dynamis of Cong-ware modes, it would be sensible to derive an effective theory for zero modes only.

* Pharediagram of the Son: \Rightarrow Electroweak plage brensition is crow-owen.

\Rightarrow Banyogenersis not possible in the Sm.
\Rightarrow must be beyond sm physic. inflation

How to do this systematically? A How to compute the form of the effective Bd action, and the relation of the 3d-effective parameters to physical parameters in led-theruy.

Obvious way: integrate out all heavy modes
\Rightarrow problems with nonlocal terms

Practical way: dimensional reduction by matching of Id \& .Bd greens functions.

1. Trinal reduction. Here one simply restricts to static modes, neglecting the $n+0$-modes altogether

$$
\int_{0}^{\beta} d \tau \int d^{3} \times \mathcal{L}_{E}(\partial \phi, \phi) \longrightarrow \frac{1}{T} \int d^{3} x \mathcal{L}_{E}\left(\nabla \phi_{0}, \%_{0}\right) \equiv \int d^{3} \times \mathcal{L}_{3 D}\left(\nabla \phi_{3}, \phi_{3}\right)
$$

$\ln \lambda \phi^{4}$-theory then $\quad \mathcal{L}_{3 D} \equiv \frac{1}{2}\left(\nabla \phi_{3}\right)^{2}+\frac{1}{2} m_{3}^{2} \phi_{3}^{2}+\frac{\lambda_{3}}{4!} \phi_{3}^{4}$

$$
\Rightarrow \quad \left\lvert\, \begin{array}{ll}
\phi_{3}=\sqrt{T} \phi_{0} & \left(\left[\alpha_{3}\right]=L^{-3}=T^{3}\right) \\
m_{3}=m_{R} \\
\lambda_{3}=\lambda_{R} T & \text { dimension ful coupling. }
\end{array}\right.
$$

2. Integrating out $a \neq 0$ modes. Writing the partition function in mode basis we can write

$$
Z=\int_{n} \pi_{n}\left[D \phi_{n}\right]_{\beta} e^{-S_{E}\left[\phi_{n}\right]} \equiv Z_{n \neq 0}^{\phi_{0} \text { - independent part }} \int\left[D \phi_{d}\right]_{\beta} e^{-S_{e f f}\left[\phi_{0}\right]}
$$

Our goal then is to derive $S_{\text {eff }}\left[\phi_{0}\right]$ by integrating out all $\phi_{n \neq 0}$-modes. To this and we conte
$\int^{\text {dimension lem }}$

$$
\phi(\tau, \vec{x}) \equiv T \sum_{n=-\infty}^{\infty} \phi_{n}(\dot{x}) e^{-i \omega_{n} T} \Leftrightarrow \phi_{n}(\hat{x})=\int_{0}^{\beta} d \tau \phi(\tau, \hat{x}) e^{i \omega_{n} \tau}
$$

average field $\downarrow^{\text {real }}$
Whid then gives $\phi_{-n}(\vec{x})=\phi_{n}^{*}(\vec{x})$. Also $\phi_{0}(\vec{x})=\int_{0}^{\beta} d \tau \phi(t, \vec{x})=\beta \bar{\phi}=\frac{1}{\sqrt{T}} \phi_{3}$. In terms of the mode-functions, dagrangsan vecomes:
(y. $\phi_{3}=\frac{1}{\sqrt{T}} \bar{\phi}$)

$$
\begin{aligned}
d_{E}\left[\phi_{m}\right] & =T \sum_{m}(\underbrace{\left.\frac{1}{2} \nabla \phi_{n}\right|^{2}+\frac{1}{2} M_{n}^{2}\left|\phi_{n}\right|^{2}}_{\text {diagonal free port }}+\frac{\lambda T^{2}}{4!} \underbrace{\sum_{k, 1} \phi_{n} \phi_{k} \phi_{l} \psi_{m+k+e}^{*}}_{\text {mode-coupling interacting }}) \\
& =\frac{1}{2}\left(\nabla \phi_{3}\right)^{2}+\frac{1}{2} m_{R}^{2} \phi_{3}^{2}+\sum_{m \neq 0} \mathcal{L}_{\text {free }}+\mathcal{L}_{\text {Int }} .
\end{aligned}
$$

Interacting part can be divided mo 3 peas depending on how many zero modes are contrived:

$$
\mathcal{L}_{\text {int }}=\mathcal{L}_{0}\left[\phi_{3}\right]+\mathcal{L}_{\text {mix }}\left[\phi_{3}, \phi_{m * 6}\right]+\mathcal{L}_{m \neq 0}\left[\phi_{m t o}\right]
$$

where

$$
\begin{aligned}
\mathcal{L}_{0} & =\frac{\lambda T^{3}}{4!} \phi_{0}^{4}=\frac{\lambda T}{4!} \phi_{3}^{4}=\frac{\lambda_{3}}{4!} \phi_{3}^{4} \\
\mathcal{L}_{\text {mil }} & =\frac{\lambda T^{3}}{4!}\left(6 \phi_{0}^{2} \sum_{m \neq 0}\left|\phi_{n}\right|^{2}+{ }^{2} 1 \phi_{0} \sum_{k, 1 \neq 0} \phi_{k} \phi_{e} \phi_{k+l}^{*}\right) \\
& =\frac{\lambda_{3} T}{4} \phi_{3}^{2} \sum_{n=10}\left|\phi_{n}\right|^{2}+\frac{\lambda_{3} T^{3 / 2}}{6} \phi_{3} \sum_{k, l \neq 0} \phi_{k} \phi_{2} \phi_{k+1}^{*}
\end{aligned}
$$

and

$$
\mathcal{L}_{n \neq 0}=\frac{\lambda}{4!} T^{3} \sum_{k, 0, n \neq 0} \phi_{n} \phi_{k} \phi_{e} \phi_{n+k+1}^{*}
$$

With these preparations we can attempt to derive $S_{1+1}\left[\phi_{3}\right]$:

$$
\begin{aligned}
& \int\left[D \phi_{n=6}\right]_{\beta} \exp \left(-\delta\left[\phi_{n}\right]\right)=z_{n=0} e^{-S_{n}\left(\theta_{0}\right)} \\
& =e^{-S_{0}\left[\phi_{\beta}\right]} \int\left[D \phi_{n \neq 0}\right]_{\beta} \exp \left[-S_{f \operatorname{mac}}\left[\phi_{m \neq 0}\right]-S_{\text {mix }}-S_{m \neq 0}\right] \\
& =e^{-S_{0}\left[\phi_{3}\right]} \int\left[D \phi_{n \neq 0}\right]_{\beta} e^{-S_{\text {fnma }}\left[\phi_{n+0}\right]} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k^{\prime}}\left(S_{\text {mix }}+S_{m+0}\right)^{k} \\
& =e^{-S_{0}\left[\phi_{3}\right]}\left(\prod_{\text {m+0 }} Z_{f n o u}^{n+0}\right) \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}\left\langle\left(S_{\text {mix }}+S_{n+0}\right)^{k}\right\rangle
\end{aligned}
$$

where

$$
\langle x\rangle \equiv \frac{1}{\prod_{m \times 0} Z_{f=0}^{n a t}} \int\left[\prod_{n \in 0} D \phi_{n}\right]_{\beta} x e^{-S_{j p u}\left[\phi_{n+0}\right]}
$$

By inspection, we nos get
\int free gas contribution from n*0-mades

$$
\log Z_{n * 0}=\sum_{n \neq 0} \log Z_{\text {foe }}^{n * 0}+\log \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}\left\langle S_{n * 6}^{k}\right\rangle .
$$

$\uparrow_{\text {vacuum graphs from }}$
whereas the effective 3d-actron is $n \neq 0$ - modes

$$
S_{e f f}\left[\phi_{3}\right]=S_{0}\left[\phi_{3}\right]-\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}\left\langle\left(S_{\text {mix }}+S_{n \neq 0}\right)^{k}-S_{n \neq 0}^{k}\right\rangle\right|_{\text {connected }}
$$

Remember that taking log aneans one gets only connected graphs. Subtracting

Renormalization. Vacuum ct's give nix to

$$
\begin{aligned}
\mathcal{L}_{c t} & =\frac{T}{2} \sum_{m}\left(\delta_{m}+P^{2} \delta_{\beta}\right) \phi_{n} \phi_{n}^{*}+\frac{\delta_{A}}{4!} T^{3} \sum_{k, g_{m} m} \phi_{k} \phi_{2} \phi_{n} \phi_{\text {met en }}^{*} \\
& =\frac{1}{2}\left(\delta_{m}+p^{2} \delta_{\phi}\right) \phi_{3}^{2}+\frac{\lambda_{s}}{4!} \phi_{3}^{4}+\mathcal{L}_{\text {mix ea }}^{c k}+\mathcal{L}_{m \in 0}^{c t}
\end{aligned}
$$

(1) Lowest order: $S_{\text {ep }}\left[\phi_{3}\right]=S_{0}\left[\phi_{8}\right]=\int d^{3} \times \alpha_{3 d}\left[\phi_{2}\right]$
(II) 1-loop orel

$$
\begin{aligned}
& \left.\left\langle S_{\text {mix }}\right\rangle\right|_{\text {camnected }}=\sum_{n \neq 0} \frac{1}{z_{m}} \int\left[D \phi_{n}\right] \beta\left(\beta \int d^{3} x \lambda_{\frac{\gamma^{2}}{2}}^{4} \phi_{3}^{2}\left|\phi_{n}\right|^{2}\right) e^{-S_{n \neq 0}\left[\phi_{n}\right]} \\
& =\int d^{3} x \frac{\lambda_{n} T^{2}}{4} \phi_{3}^{2}(x) \sum_{n \neq 0} \frac{\left.\Delta_{n}(0)=\beta \phi_{n}(x) \phi_{n}^{*}(x)\right\rangle}{\left\langle\frac{d_{n}}{(2 n)}\right.} \\
& =\int d^{3} x \frac{\lambda_{k}}{4}\left(\frac{2}{\lambda_{R}} \pi_{\text {vac }}+\frac{T^{2}}{12}\right) \phi_{3}^{2}(x)
\end{aligned}
$$

Combined with the counter term $\int d^{3} \times \frac{1}{2} \delta_{m} \phi_{3}^{2}=-\int d^{3} \times \frac{1}{2} \pi_{r a c} \phi_{3}^{2}$ we get simply

$$
\delta S^{(1)}=\int d^{3} x \frac{\lambda T^{2}}{2 y} \phi_{3}^{2}
$$

and

$$
S_{p 日}\left(\phi_{3} T\right)=\int d^{3} \times\left(\frac{1}{2}\left(\nabla \phi_{3}\right)^{2}+\frac{1}{2} m_{3}^{2}(T) \phi_{3}^{2}+\frac{\lambda_{3}}{4} \phi_{3}^{4}\right)
$$

where still $\phi_{3}=\sqrt{T} \phi_{0}, \lambda_{3}=\lambda_{R} T$ and $m_{3}^{2}(T)=m_{e}^{2}+\frac{\lambda_{R} T^{2}}{24}=m_{D}^{2}(T)$.

$$
=\frac{1}{\sqrt{T}} \bar{\phi}
$$

Thus, at 1-loop level the effective 3d-theory is local, and has an effective coupling $\lambda_{3}=\lambda_{R} T$ and effective mass m_{D}.

$$
\hat{=} \frac{1}{\dot{p}^{2}+m_{0}^{2}(T)}
$$

$$
\wedge-\lambda_{3}
$$

Ring sum from Jd-perturbation wrrection

Combined, these give just the ring-iniprored pressure found earline

$$
\begin{aligned}
P & =\frac{1}{\beta V}\left\{1+\left(\left(m^{2}\right)+\cdots\right\}\right. \\
& =J_{T}^{-}\left(m_{1} T\right)+\frac{\left(m_{D}^{3}(T)-m_{R}^{3}\right) T}{12 \pi}+\frac{1}{2 \lambda_{R}} \pi_{T}^{2}+\frac{\lambda_{3}}{8} \frac{m_{D}^{2} T^{2}}{16 \pi^{2}}
\end{aligned}
$$

This is jest the ring sum we found earline resumming the gers modes.

$$
\begin{aligned}
& \log Z=\log z_{n+0}+\log \int\left[D_{\phi_{3}}\right]_{\beta} e^{-\delta_{\text {ell }}\left[\phi_{0}\right]} \\
& \log z_{n * 0}=\sum_{n * 0} \log z_{n}+\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}\left\langle S_{n * s}^{k}\right\rangle\right|_{\text {conrecteal }} \\
& =\frac{1}{V}\left\{-\sum_{n \neq 0}+\text { ct' }^{\prime}\right. \\
& \log \int\left[D_{\phi_{3}}\right]_{\beta} e^{-\delta_{\text {ell }}\left[\phi_{0}\right]}={ }^{2} \\
& =\frac{T}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \log \left(\vec{p}^{2}+m_{D}^{2}\right)+\left(\frac{\lambda_{3}}{8} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\vec{p}^{2}+m_{0}^{2}}\right)^{2}
\end{aligned}
$$

Higher, order truncations At order λ^{2} we start to get corrections also also to ϕ_{3} and λ_{3} beyond the trivial mappings found above. The λ^{2} correction to λ_{3} comes at 1 -loop and λ^{2}-arrections to $\phi_{3} \&$ and m_{3} at 2 loops.
Coupling constant The lowest order carection is the following

$$
\begin{aligned}
S_{\text {eH }}^{2} & >-\frac{1}{\prod_{n \neq 0} z_{\text {tea }}} \int \prod_{n \neq 0}\left[D \phi_{n}\right]_{\beta} e^{-S_{f \times u}\left[\phi_{n}\right]} \frac{1}{2!}\left(\frac{\lambda^{3}}{4} \sum_{k \neq 0} \int d^{3} x \phi_{0}^{2}\left|\phi_{k}\right|^{2}\right)^{2} \\
& \left.=-\left.\frac{\lambda_{0}^{2} T^{6}}{32} \int d^{3} x d^{3} y \phi_{0}^{2}(x) \phi_{0}^{2}(y) \sum_{k, l \neq c t e d}\langle | \phi_{k}(x)\right|^{2}\left|\phi_{p}(y)\right|^{2}\right\rangle\left.\right|_{\text {connected }} \\
& =-\frac{\lambda_{k}^{2} T^{6}}{16} \sum_{k \neq 0} \int d^{2} x d^{3} y \phi_{0}^{2}(x)\left[\Delta_{k}(\alpha-y)\right]^{2} \phi_{0}^{2}(y)
\end{aligned}
$$

This is clearly a non-local kern, that cannot be written as an effective local 3d-interaction. However, we can do so approximatively if patemal momenta in light modes is small $p \lesssim \lambda_{R} T$. Indeed

$$
\left.\begin{array}{rl}
& T_{k}^{6} \sum_{k \neq 0} \int d^{3} x d^{3} y \phi_{0}^{2}(x)\left[\Delta_{k}(k-y)\right]^{2} \phi_{0}^{2}(y)
\end{array} \begin{array}{r}
r=x-y \\
X=\frac{1}{2}(x+y)
\end{array}\right] \begin{aligned}
& \int d^{3} x d^{3} r \phi_{0}^{2}\left(x+\frac{r}{2}\right) T^{3} \sum_{k \neq 0} \Delta_{k}^{2}(r) \phi_{0}^{2}\left(x-\frac{r}{2}\right) \\
\simeq & T^{3} \int d^{3} x \int d^{3} r T^{3} \sum_{k \neq 0} \Delta_{k}^{2}(r)\left(\phi_{0}^{4}(x)-\frac{2}{3} \vec{r}^{2} \phi_{0}^{2}(x)\left(\nabla_{x} \phi_{0}(x)\right)^{2}+\cdots\right) \\
= & T^{3} \int d^{3} x\left(\#_{1} \phi_{0}^{4}(x)+\#_{2} \phi_{0}^{2}(x)(\nabla \phi)^{2}\right)
\end{aligned}
$$

First wefficient is

$$
\begin{aligned}
& \theta_{1}=T^{3} \sum_{k} \int d^{3} r \Delta_{k}^{2}(r)=T \sum_{k} \int_{\bar{p}_{1} \bar{q}} \Delta_{k}(q) \Delta_{k}(p) \int d^{3} r e^{i(\vec{p} t r) \cdot \vec{r}} \\
&=T \sum_{k \neq p} \int_{\vec{p}} \Delta_{k}(\vec{p}) \Delta_{k}(-\vec{p})=T \sum_{k \neq 0} \int_{\vec{p}} \underbrace{}_{\Delta_{k}^{2}(p)} \\
& \simeq \frac{1}{\left(\omega_{k}^{2}+\vec{p}^{2}\right)^{2}}\left(1-\frac{2 m_{k}^{2}}{\omega_{i}^{2}+\vec{p}^{2}}+\ldots\right)
\end{aligned}
$$

Now use

$$
\begin{aligned}
f^{\prime} \frac{1}{Q^{2 p}} & =T \mu^{3-d} \sum_{m \neq 0} \int \frac{d^{d} \theta}{(2 \pi)^{d}} \frac{1}{\left(\omega_{n}^{2}+Q^{2}\right)^{p}} \\
& =T \sum_{m \neq 0} \frac{\mu^{3-d}}{(4 \pi)^{d / 2}} \frac{\Gamma\left(p-\frac{d}{2}\right)}{\Gamma(p)}\left(\frac{1}{\omega_{n}}\right)^{2 p-d}- \\
& =T^{1-2 p+d} \frac{2 \pi^{d / 2}}{(2 \pi)^{2 p}} \frac{\Gamma\left(p-\frac{d}{2}\right)}{\Gamma(p)} \zeta(2 p-d)
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi} \\
& \Rightarrow \#_{1}=\underbrace{\frac{2 \pi^{d / 2}}{16 \pi^{4}}\left(\frac{\mu}{T}\right)^{3-\alpha}} \underbrace{\Gamma\left(2-\frac{d}{2}\right)} \underbrace{\zeta(4-\alpha)}_{=\zeta(3)}-2 m_{k}^{2} T^{d-5} \frac{2 \pi^{d / 2}}{64 \pi^{6}} \frac{\Gamma\left(3-\frac{d}{2}\right)}{2} \underbrace{\zeta(6-\alpha)}_{=\zeta} \\
& =\frac{1}{8 \pi^{s / 2}}\left(1-\frac{\epsilon}{2} \log \frac{\pi \pi^{2}}{\mu^{2}}\right)=\Gamma\left(\frac{1}{2}+\frac{\epsilon}{2}\right) \quad=\zeta(1+\epsilon) \simeq \frac{1}{\epsilon}+\gamma_{E} \\
& \simeq \sqrt{\pi}\left(1-\frac{\epsilon}{2}\left(\gamma_{E}+\log 4\right)\right) \\
& =\frac{1}{8 \pi^{2}}\left(1-\frac{\epsilon}{2}\left(\gamma_{E}+\log \frac{4 \pi T^{2}}{\mu^{2}}\right)\right)\left(\frac{1}{\epsilon}+\gamma_{E}\right)-\frac{\zeta(3)}{6 \xi_{a}^{4}}\left(\frac{m_{\mu}}{T}\right)^{2} \\
& =\frac{1}{16 \pi^{2}}\left(\frac{2}{\epsilon}+\gamma_{E}-\log \frac{4 \pi T^{2}}{\mu^{2}}-\zeta(3)\left(\frac{m_{k}}{2 \pi T}\right)^{2}\right)
\end{aligned}
$$

The leading term then is

$$
T\left\{\frac{\lambda_{B}}{4!}+\frac{\lambda_{E}^{2}}{16} \frac{1}{16 \pi^{2}}\left(\frac{2}{\epsilon}+\gamma_{E}-\log \frac{4 \pi T^{2}}{\mu^{2}}-\zeta(3)\left(\frac{m_{k}}{2 \pi T}\right)^{2}\right)\right\} T^{2} \phi_{0}^{4}(x)
$$

This is divergent as expected. We have a counter-term at sur disposal, however; $T \frac{\delta_{x}}{4!} \phi_{0}^{4}$. The counter term depends on scheme of course. In the $m_{R \rightarrow 0}$ - limit renormalization at $P^{2}=0$ is not porible. We world use sone other scale, say $\delta=t=u=M^{2}$ to define the coupling λ_{μ}, or we can use fist the $\overline{M S}$-scheme, where one fist removes the $O V$-divergence:

$$
\begin{aligned}
\delta_{\lambda} \overline{\mu \bar{S}}= & -\frac{3}{2} \lambda_{R}^{2} i B_{\sigma}\left(\mu^{2}, 0,0\right) d_{N}=-\frac{3}{2} \lambda_{R}^{2} \frac{1}{16 \pi^{2}} \overbrace{\left(\frac{2}{\epsilon}-\gamma_{E}+\log 4 \pi\right.}^{\frac{2}{\epsilon_{\overline{\mu C}}}} \\
\bar{\lambda}_{3}= & \lambda_{R} T+\left\{4!\frac{\lambda_{R}^{2}}{16 \cdot 16 \bar{\pi}^{2}}\left(\frac{2}{\epsilon}+\gamma_{E}-\log \frac{4 \pi T^{2}}{\mu^{2}}-\zeta(3)\left(\frac{m_{R}}{2 \pi T}\right)^{2}\right)\right. \\
& \left.-\frac{3}{2} \frac{\lambda_{R}^{2}}{16 \pi^{2}}\left(\frac{2}{\epsilon}-\gamma_{E}+\log 4 \pi\right)\right\} T \\
= & \lambda_{R} T\left\{1+\frac{3 \lambda_{R}}{32 \pi^{2}}\left(2 \gamma_{E}+2 \log \frac{\mu}{4 \pi T}-\zeta(3)\left(\frac{m_{R}}{2 \pi T}\right)^{2}\right)\right\}
\end{aligned}
$$

So, we now got a sensible, thermally corrected, local Id U-pont oupluing. However, this was just a first form in the infinite series of operators. We already extracted the second term $\sim \#_{2}(\nabla \phi)^{2} \phi_{8}^{2}$

$$
\begin{aligned}
& -\frac{2}{3} T^{3} \sum_{k} \int d^{3} r r^{2} \Delta_{k}^{2}(r)=-\frac{2}{3} T \sum_{k \neq 0} \int_{p}\left(\partial_{\vec{p}} \Delta_{k}\right)^{2}=-\frac{8}{3} T \sum_{k \neq 0} \int_{p} \frac{\vec{p}^{2}}{\left(\omega_{n}^{2}+\omega_{k}^{2}\right)^{4}} \\
\simeq & -\frac{s}{3} T \sum_{k<\Delta} \int_{\vec{p}} \frac{\omega_{n}^{2}+\vec{p}^{2}-\omega_{n}^{2}}{\left(\omega_{n}^{2}+\vec{p}^{2}\right)^{4}}=-\frac{8}{3}\left(\sum^{\prime} \frac{1}{Q^{6}}-f^{\prime} \frac{\omega_{n}^{2}}{Q^{2}}\right) ; Q^{2} \equiv \omega_{n}^{2}+\omega_{p}^{2} .
\end{aligned}
$$

We have a new integral, which we can compute noting that $f^{\prime} \frac{1}{Q^{2 p}} \sim T^{d+1-2 p}$ whence

$$
\begin{aligned}
& T \frac{\partial}{\partial T} \sum^{\frac{1}{2}} \frac{1}{Q^{2 p}}=(1+d-2 p) \frac{f}{f} \frac{1}{Q^{2 p}} \quad \oint^{\frac{\partial}{\partial T} \omega_{n}^{2}=\frac{2}{T} \omega_{n}^{2}} \\
&=\sum_{w \neq 0} \int_{\vec{p}} T \frac{\partial}{\partial T} \frac{T}{\left(\omega_{n}^{2}+\omega_{0}^{2}\right)^{p}}=f^{\prime} \frac{1}{Q^{2 p}}-2 p f^{1} \frac{\omega_{n}^{2}}{Q^{2} p^{2}} \\
& \Rightarrow \frac{f^{\prime}}{\omega_{n}^{2}} \frac{\omega_{n}^{2}}{Q^{2+2}}=\left(\frac{2 p-d}{2 p}\right) f^{\prime} \frac{1}{Q^{2 q}} \\
& \Rightarrow F_{2}=-\frac{8}{3}\left(1-\frac{6-d}{6}\right) T^{1-6+d} \frac{2 \pi^{d / 2}}{(2 \pi)^{6}} \frac{\widetilde{\Gamma\left(3-\frac{d}{2}\right)}}{\Gamma(3)} \zeta(6-d) \\
&=-\frac{4}{3} \frac{1}{T^{2}} \frac{1}{2^{7} \pi^{4}} \zeta(3)=-\frac{\zeta(3)}{32 \pi^{4} T^{2}}
\end{aligned}
$$

So the second term is

$$
\frac{\lambda_{2}^{2} T^{3}}{16} \frac{\zeta(3)}{32 \pi^{4} T^{2}} \phi_{0}^{2}\left(\nabla \phi_{0}\right)^{2}=\lambda_{R}^{2} T\left(\frac{\zeta(3)}{2\left(1 b_{0}\right)^{2}}\right) \frac{1}{T^{2}} T^{2} \phi_{0}^{2}\left(\nabla \psi_{0}\right)^{2} \alpha \# \lambda_{R}^{2} T\left(\frac{P}{T}\right)^{2} \phi_{3}^{4}
$$

In the dim. reduced theory we aroume

$$
p \lesssim m_{D} \sim \lambda_{K} T \quad \Rightarrow \quad \#_{2} T^{3}(\nabla \phi)^{2} \phi_{0}^{2}<\lambda_{R}^{4} T \phi_{3}^{4}
$$

So the error we maker neglecting this term is higher over in coupling, in the regime where we are working.

Things get even more marry with 2-bop correction to self energy. First, all is well with 8 etc, os we have sen with the rung expansion. However, the graph is more complicated:

OK
all herd. Not captured by effective the org in our recipe.

This means that to get consistent effective theory, we need to integrate oren hard contributions of soft modes as well. How to do this consistently?

Dimensional reduction by matehaing of guans functions There are three tasks: define the truncation of the Jd the or, consistent with the symmetries and then define the parameters of the 30 -theory in terms of the fall Id-theory parameters (defined from observables). Finally, one must define the validity -range of the theory.

In $\lambda \phi^{4}$-theory we ain for the super-renormalizable 3d-the ry

$$
\begin{aligned}
L_{30}=\frac{1}{2}\left(\nabla \phi_{3}\right)^{2} & +\frac{1}{2} m_{3}^{2} \phi_{3}^{2}+\frac{\lambda_{3}}{4!} \phi_{3}^{4} \\
\uparrow & \quad(+\ldots \text { must be mall }) \\
& =?\left(\alpha_{R}, m_{e}, \lambda_{R}\right)
\end{aligned}
$$

Lowest order additional operators

$$
\sim \# \phi_{3}^{6}+\#\left(\nabla \phi_{3}\right)^{2} \phi_{3}^{2}+\cdots
$$

This operator would give a contribution to twoo-point function

$$
\sim \lambda_{6} m_{D}^{2} \sim \lambda_{R}^{4} T^{2}
$$

Similarly, the operator $\#_{2} T^{3}\left((\phi)^{2} \phi_{0}^{2} \sim \lambda_{R}^{2}\left(\frac{P}{T}\right)^{2} T \phi_{3}^{4} \leqslant \lambda_{R}^{4} T \phi_{3}^{4}\right.$

$$
\sim \lambda_{R}^{4} T m_{D} \sim \lambda_{R}^{g / 2} T^{2}
$$

eg these are Suits $\frac{\Delta m_{3}}{m_{3}} \propto \lambda_{l}^{3}$ and $\lambda_{R}^{9 / 2}$, respectively. The two-loop self energy matching can thus be computed to order λ_{R}^{9} (3 loos), Ignoring higher oder terms in effective expansion. Similarly

$$
\sim \lambda_{6} m_{D} \sim \lambda_{R}^{7 / 2} T \quad \text { ok up to } 2 \text { loops }
$$

$$
\sim \lambda_{R}^{2}\left(\frac{P}{T}\right)^{2} \sim \lambda_{R}^{4} T \phi_{3}^{4} \quad \sim \text { to } 2-\text { loop contribution }
$$

$$
\begin{aligned}
& \text { 年 } \\
& \sim \lambda_{\beta}^{3} T^{9} \sum_{k \neq 0} \int d^{3} x d^{3} y d^{3} z \phi_{0}^{2}(x) \hat{\Delta}_{k}(k-y) k \\
& x \phi_{0}^{2}(y) \widehat{\Delta}_{k}(y-z) \phi_{0}^{2}(z) \widehat{\Delta}_{k}(z-x) \\
& \sim \int d^{3} X \lambda_{R}^{3} T^{3} \phi_{0}^{6}(x) \quad T^{6} \sum_{k=0} \int d_{r}^{3} d_{1}^{2} r_{2} \Delta_{k}\left(r_{1}\right) \Delta_{k}\left(r_{2}\right) \Delta_{k}\left(r_{1}-r_{k}\right) \\
& \overbrace{\# \lambda_{R}^{3}}=\lambda_{3}{ }^{6}
\end{aligned}
$$

So, if we need to trust the theory to $p \sim \lambda_{R} T$ we can use the effective 3d-theory 2-point function to 3 wops and 4-point function to 2 loops. If we needed to twist the theory to higher momenta, its perturbative validity region would get smaller

2-point function
The nenormalized 2-point function of the zero-mode, computed from 4d-theory can always be written as
$\int^{\text {this is here only furmolly. Not computed from } 4 d \text { th. }}$

$$
\Delta_{4}^{-1}\left(k^{2}\right) \sim \vec{k}^{2}+m_{R}^{2}+\pi\left(k^{2}\right)+\pi_{3}\left(k^{2}\right) \quad ; \bar{\pi}\left(k^{2}\right)=\pi\left(k^{2}, \phi_{R}, \lambda_{k_{0}} m_{R}\right)
$$

where $\pi_{3}\left(k_{2}^{2}\right)$ comes from the zers-mode and $\bar{\pi}\left(k^{\prime}\right)$ contain $n \neq 0$ \& mixed nat and not contributions. The 2-point function generated by the effective 3dtheory (we now think that $\phi_{3}, m_{3} \& \lambda_{3}$ are some yet undetermined parameters)

$$
\Delta_{3}^{-1}\left(k^{2}\right) \sim \hat{k}^{2}+m_{3}^{2}+\pi_{3}\left(k^{2}\right), \quad: \pi_{3}\left(k^{2}\right)=\pi_{3}\left(k^{2}, m_{3}, A_{3}\right)
$$

which we think is valid for $\rho \sum \lambda_{R} T$. The function $\bar{\pi}\left(l_{0}^{2}\right)$ is \mathbb{R}-safe, and can be expanded as

$$
\bar{\pi}\left(k^{2}\right)={\underset{T}{T}}_{\bar{\pi}_{T}(0)}+\bar{\pi}_{T}^{\prime}(0) \hat{k}^{2}+\underbrace{O\left(\lambda_{R}^{6}\right)}_{O\left(\lambda^{2} T^{2}\right)} \quad\left(O\left(\lambda_{e}^{4}\right) \text { for } p \lesssim \sqrt{\lambda_{e} T} T\right)
$$

for max. accuracy. max accuracy
compute to 3 lopes 2 -loops

$$
\vec{k}^{2}+m_{k}^{2}+\bar{\pi}\left(k^{2}\right) \simeq\left(1+\bar{\pi}^{\prime}(0)\right)\left(\vec{k}^{2}+\frac{m_{k}^{2}+\bar{\pi}(0)}{1+\bar{\pi}^{\prime}(0)}\right)
$$

Note that we have aroumed that renormalization was carried out. This means that $\bar{\pi}(0)$ and $\bar{\pi}^{\prime}(0)$ are finite, purely thermal corrections. Since $\Delta \sim\langle\phi \phi\rangle$, we have $\Delta^{1} \propto \phi^{-1}$ \& we can absorb $(1+\pi(0))$ into ϕ_{3} :

$$
\Rightarrow\left\{\begin{array}{l}
\phi_{3}=\left(\frac{T}{1+\bar{\pi}^{\prime}(0)}\right)^{1 / 2} \phi_{0} \simeq \sqrt{T}\left(1-\frac{1}{2} \bar{\pi}^{\prime}(0)\right) \phi_{0}=\frac{1}{\sqrt{T}}\left(1-\frac{1}{2} \bar{\pi}^{\prime}(0)\right) \bar{\phi}_{40} \\
m_{3}^{2}=\frac{m_{k}^{2}+\bar{\pi}_{T}(0)}{1+\bar{\pi}^{\prime}(0)} \simeq\left(m_{k}^{2}+\bar{\pi}(0)\right)\left(1-\pi^{\prime}(0)\right)=\cdots
\end{array}\right.
$$

Similarly for the 4-point coupling:

$$
\begin{aligned}
\left\langle\phi_{4} \phi_{4} \phi_{4} \phi_{4}\right\rangle & \sim \frac{\lambda_{B} T^{3}}{4!}\left(1+\sum_{i=1}^{2} \lambda_{R_{1} \#_{i}}^{i}\right)\left\langle\phi_{0}^{4}\right\rangle \\
& \sim \underbrace{\frac{\lambda_{B} T}{4!}\left(1+\sum_{i=1}^{2} \lambda_{R_{i}+\#_{i}}^{i}\right)\left(1+\pi^{\prime}(0)\right.}_{=\lambda_{3} / 4!})^{2}\left\langle\phi_{3}^{4}\right\rangle \equiv \frac{\lambda_{3}}{4!}\left\langle\phi_{3}^{4}\right\rangle
\end{aligned}
$$

Tamá tiedenkin redusoitue 1-lumpritasilla jo aiemmin loskeltuen.

Jos hakitaan lisalte" penturbahivsta tarkkuulte, ei sis rith" menn" kerkeampaan kertalukume, vam dönlyy myös listà uusia operaaltorenta.

Mushutus. Tämic of rain le lumalli. DR on hyödy llisimmilliaion kun tuthitaan teorioita joiden IR-alue on ei-perturbahinnen.

Espn:

$$
\begin{aligned}
& \mathcal{L}_{40-5 m}\left(H, W_{i \mu},\{\psi\}\right) \\
& \text { Integrate out } n \neq 0 \text { Matsubara modes (by matching) } \\
& \mathcal{L}_{3 D-S n}\left(H, W_{i L}^{m=0}, W_{i T}^{1=00}\right) \\
& \text { Integrate out } n=0 \text {-modes for } w_{C l} \text {, which } \\
& \text { get } m_{0} \propto g T \neq 0 \\
& \alpha_{3 p-g n}\left(H, W_{i T}^{m=0}\right) \quad\left(m_{T} \sim g^{2} T \text {, nonpenturicasime }\right)
\end{aligned}
$$

Reduced 3d-theories are often universal, Eg. the same 3d-thery represents a large class of 4d-theoris, They only differ by the perturbative OR-Skps, which define the mapping from yd pm-spece to 3 d theory.

Examples: Yukawa theory
Scalar electrodynamies with SSB
Quo
sm
BSm-theowes ISm, 2HDM, SSM

More complicated theories may contain more light scalar freddy for example. (afferent universality class)

EFFECTiVE ACTON
What is the ground state of an interacting theory? Or more generally, what is the classical configuration that is the exctremal solution in interacting theory? How do these depend on T?

- Effective action, effective potential

1PI-gonerating function.
Let us remind us about generating functions in QFT.

$$
\begin{array}{ll}
Z[J] & \text { (all graphs, } \xrightarrow{\varepsilon_{\text {ul. }}} \text { partition function) } \\
W[J]=-i \log Z[J] & \text { (connected, } \left.\longrightarrow-\frac{1}{\beta} \log Z=\Omega\right) \\
\left.\Gamma_{\text {pt }}\left[\phi_{c}\right]=W[J]-\int d d^{4}\right] \phi_{c} & (\text { 1PI-graphs) }
\end{array}
$$

where $\phi_{c}=\langle\phi\rangle=\left.\frac{\delta W}{\delta J}\right|_{J \Rightarrow 0} ; J=-\frac{\delta \Gamma_{p_{r}}}{\delta \phi_{C}}$

Effective action is generalization of classical action, that accounts for the effects of quantum fluctuations on classical field dynamias.

$$
\begin{aligned}
\text { Lowest order: } & \left.\phi=\phi_{a}+\phi_{7} \rightarrow \phi_{u} ;\right]=0 \\
& Z[J] \rightarrow \exp \left\{i S\left[\phi_{a}\right]\right\} \Rightarrow \Gamma_{1 P_{I}}\left[\phi_{a}\right]=\delta_{a}\left[\phi_{u}\right] .
\end{aligned}
$$

$\Gamma_{1 P I}$ can be expressed in different ways:

$$
\begin{aligned}
\Gamma\left[\psi_{u}\right] & =\int d^{4} x\left\{-V_{c y}\left[\psi_{u}\right]+\frac{1}{2}\left(\partial_{\mu} \phi_{u}\right)^{2} Z\left[\phi_{u}\right]+\ldots\right\} \\
& \left.\left.=-i \sum_{n} \frac{1}{m!} \int d^{4} x_{i} \cdots d^{4} x_{n} \Gamma_{v}^{(n)}\left(x_{1}\right), \ldots\right)^{x_{n}}\right)\left[\phi\left(x_{1}\right)-v\right] \cdots\left[\phi\left(x_{n}\right)-v\right]
\end{aligned}
$$

Coefficients of a functional Taybr expansion $=$ IPI n-point function

$$
\begin{aligned}
\left.\frac{\delta^{n} \Gamma\left[\phi_{u}\right]}{\delta \phi_{a}\left(x_{1}\right) \ldots \delta \phi_{a}\left(x_{n}\right)}\right|_{\phi_{Q}=v} & =\Gamma_{v}^{(n)}\left(x_{1} \ldots x_{n}\right) \\
& =\int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \cdots \frac{d^{4} k_{n}}{(2 \pi)^{4}}(2 \pi)^{4} \delta^{4}\left(k_{1}+\ldots k_{n}\right) e^{i\left(k_{i} x_{1}+\ldots+k_{n} x_{n}\right)} \tilde{\Gamma}_{v}\left(k_{1}, \ldots, k_{n}\right)
\end{aligned}
$$

transl. Av.
Making gradient expansion:

$$
\begin{aligned}
\tilde{\Gamma}_{v}^{(n)}\left(k_{1}, \ldots, k_{n}\right) & =\left.\sum_{m} \frac{1}{m!}\left(k_{i} \nabla_{k_{1}}+\cdots+k_{n} \cdot \nabla_{k_{n}}\right)^{m} \tilde{\Gamma}_{v}^{(n)}\left(k_{1}, \ldots, k_{n}\right)\right|_{k_{i}=0} \\
& =\tilde{\Gamma}_{v}^{(n)}(0, \ldots, 0)+\ldots
\end{aligned}
$$

we get

$$
\begin{aligned}
\Gamma\left[\phi_{d}\right]= & -i \sum_{n} \int d^{4} x_{1} \ldots d^{4} x_{n} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \ldots \frac{d^{4} k_{n}}{\left(2 n_{1}\right)^{4}} \int d^{4} x e^{i\left(k_{1} \cdot\left(x_{1}-x\right)+\ldots+k_{n}\left(x_{n}-x\right)\right)} \times \\
& * \tilde{\Gamma}_{v}^{(n)}(0, \ldots, 0)\left[\phi_{c}(x)-v\right] \cdots\left[\gamma\left(x_{n}\right)-v\right] \\
= & -i \int d^{4} \times\left\{\sum_{n} \frac{1}{n!} \tilde{\Gamma}_{v}^{(n)}(0, \ldots, 0)\left(\phi_{c}(x)-v\right)^{n}+\ldots\right\}=\int d^{3} \times\left\{-V\left[\phi_{a}\right]+\ldots\right\}
\end{aligned}
$$

Then in particular

$$
\left.\frac{\delta}{\delta \phi_{u}} \int d^{3} x V\left[\psi_{a}\right]\right|_{\psi_{a}=v}=i \tilde{\Gamma}_{v}^{(1)}(0)
$$

For the case of a homogeneous fill more simply:

$$
\frac{d V_{e \|}}{d v}=i \tilde{\Gamma}_{v}^{(1)}=i Q_{i} \quad v=\int^{q u v} d u \frac{d v}{d u}
$$

Here we derived am important result: the derivative of the quantum corrected. effective potential can be computed as the 1-point function (tadpole) of the Shifted there. of course, for a homogeneous field $(v=0)$

$$
\begin{aligned}
V_{\text {eff }}(\phi)=\frac{1}{V_{4}} \Gamma(\phi) & =\sum_{n} \frac{1}{n!} \frac{1}{V} \Gamma_{v}^{(n)}(0) \phi_{u}^{4} \\
& =\frac{1}{v}\left\{\frac{1}{2!}(-0) \phi_{u}^{2}+\frac{1}{4!}(\vdots O!) \phi_{u}^{4}+\cdots\right\}
\end{aligned}
$$

That is $V_{\text {eft }}(\psi)$ is the sum of all m-point functions (even here, due to symmetry) in the original unshifted theory.

Sponterneously broken Ax"-theory

$$
\begin{aligned}
& \sqrt{ } \text { do mot mix with don.reg } \mu \text {. } \\
& \begin{array}{r}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\underbrace{\frac{1}{2} \bar{\mu}^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}}_{=-V_{\text {tree }}(\phi)}
\end{array} \\
& \begin{aligned}
&\left.\frac{d V_{\text {tres }}}{d \phi}\right|_{\phi=v}=-\phi\left(\mu^{2}-\frac{\lambda}{6} \phi^{2}\right)=0 \Rightarrow \phi=0 \quad V \quad \phi^{2}=\frac{6 \mu^{2}}{\lambda}=v^{2} \\
& \text { local maximum minimum }
\end{aligned}
\end{aligned}
$$

$$
\left.\frac{d^{2} v_{\text {twu }}}{d \psi^{2}}\right|_{\phi=v}=-\bar{\mu}^{2}+\frac{\lambda}{2} v^{2}=2 \bar{\mu}^{2}=\frac{1}{3} \lambda v^{2} \equiv m_{v}^{2}>0
$$

Shifted theory: $\eta=$ const

$$
\begin{aligned}
\mathcal{L}(\phi+\eta)= & \frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{\bar{\mu}^{2}}{2}(\phi+\eta)^{2}-\frac{\lambda}{4!}(\phi+\eta)^{4}+\frac{\delta_{\beta}}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{\delta_{m}}{2}(\phi+\eta)^{2}-\frac{\delta_{\lambda}}{4!}(\phi+\eta)^{4} \\
= & \frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2}\left(-\tilde{\mu}^{2}+\frac{\lambda}{2} \eta^{2}\right) \phi^{2}-\frac{\lambda}{6} \eta \phi^{3}-\frac{\lambda_{R}}{4!} \phi^{4}+\overbrace{\left[\left(\mu^{2}-\delta_{m}\right) \eta-\frac{\lambda+\delta_{2}}{2} \eta^{3}\right] \phi}^{=-\left.\frac{d V}{}\right|_{\varphi=\eta}} \\
& +\frac{\partial_{\phi}}{2}\left(\partial_{\mu} \psi^{2}\right)-\frac{1}{2}\left(\delta_{m}+\frac{\delta_{\lambda}}{2} \eta^{2}\right) \phi^{2}-\frac{\delta_{\mu}}{6} \eta \phi^{3}-\frac{\delta_{\mu}}{4!} \phi^{4}+V(\eta)
\end{aligned}
$$

All Feynman rules can be diectly read from this lagrangian.
(1) Tres lavel:

$$
\begin{array}{r}
i \tilde{\Gamma}_{\text {thea }}^{(1)}=i=i(i)\left(\bar{\mu}^{2} \eta-\frac{\lambda}{6} \eta^{3}\right)=-\bar{\mu}^{2} \eta+\frac{\lambda}{6} \eta^{3}=\left.\frac{d v}{d \phi}\right|_{\phi=\eta} \% \\
\Rightarrow V_{\text {eH }}(\phi)=\int_{d \eta}^{\phi u} i \tilde{\Gamma}_{\eta}^{())}=-\frac{1}{2} \tilde{\mu}^{2} \phi_{u}^{2}+\frac{\lambda}{\eta!} \phi_{u}^{4}=V_{\text {treu }}\left(\phi_{a}\right) \%
\end{array}
$$

(2) 1-bop leveli

$$
\begin{aligned}
& i \tilde{\Gamma}_{1-k_{0,}}^{(1)}=i{ }^{\prime}+i=i\left(-\frac{i \lambda_{k} \eta}{6}\right) \cdot 3 \mu^{\epsilon} \int \frac{d^{2} k}{(2 \pi)^{4}} \frac{i}{k^{2}-M_{\eta}^{2}}+i\left(-i \delta_{m}-i \frac{\left.\delta_{A} \eta^{2}\right) \eta}{6}\right. \\
& =\frac{\lambda_{k}}{2} \eta \underbrace{i A_{\theta}\left(\eta_{\eta}^{2}\right)}+\delta_{m} \eta+\frac{\delta_{\lambda}}{6} \eta^{3}=\frac{\left.d V_{l-\log _{\infty} \eta}\right|_{\phi=n}}{} \\
& =-\frac{m_{\mu}^{2}}{16 \pi^{2}}\left(\frac{2}{\sigma_{\overline{M s}}}+1-\log \frac{m_{h}^{2}}{\mu^{2}}\right)
\end{aligned}
$$

To fix counter terms we need to define renormalization conditions. We require

$$
\left.\frac{d V}{d \phi}\right|_{\phi=v} \equiv 0 \quad \text { and }\left.\quad \frac{d^{2} v}{d \phi}\right|_{\phi=v} \equiv m_{v}^{2}=\frac{1}{3} \lambda \nu_{t+m}^{2}
$$

This is equivalent to $\frac{d V_{1}}{d \phi}$-urn $\left.\right|_{\phi=v}=\frac{d^{2} V_{1-w o}}{d \psi^{2}}=0$. Now:

$$
\frac{d}{d \eta} i A_{0}\left(m_{i}^{2}\right)=\frac{d m_{n}^{2}}{d \eta} \frac{d}{d m_{\eta}^{2}} i A_{0}\left(m_{i}^{2}\right)=\frac{d_{m_{i}^{2}}^{2}}{d \eta} i B_{0}\left(0, m_{l}^{2}, m_{\eta}^{2}\right)=-\lambda \eta\left(\frac{1}{16 \pi^{2}}\left(\frac{2}{\epsilon_{\bar{s}}}-\log \frac{m_{i}^{2}}{\mu_{i}^{2}}\right)\right)
$$

Thus we have:

$$
\begin{aligned}
& \frac{\lambda_{k}}{2} i A_{8}\left(m_{v}^{2}\right)+\delta_{m}^{(1)}+\frac{\delta_{g}^{a)}}{6} v^{2}=0 \quad \& \\
& \frac{\lambda_{k}}{2} i A_{0}\left(m_{v}^{2}\right)+\frac{\lambda_{2}^{2} v^{2}}{2} i B_{0}\left(0, m_{v}^{2} m_{v}^{2}\right)+\delta_{m}^{(1)}+\frac{\delta_{A}^{(1)}}{2} v=0 \\
& \Rightarrow \delta_{\lambda}^{(1)}=-\frac{3 \lambda_{R}^{2}}{2} i B_{0}\left(0, m_{v}^{2}, m_{v}^{2}\right) \quad \Rightarrow \quad \delta_{m}^{(1)}=-\frac{\lambda_{2}}{2} i A_{0}\left(m_{v}^{2}\right)+\frac{\lambda_{0}^{2} v}{4} i B_{0}\left(0, m_{v}^{2}, m_{v}^{2}\right) \\
& \left.\Rightarrow \frac{d V_{1-100}}{d \phi}\right|_{\phi=\eta}=\frac{\lambda_{R}}{2} \eta\left(i A_{0}\left(m_{n}^{2}\right)-i A_{0}\left(m_{i}^{2}\right)\right)+\frac{\lambda_{2}^{2} \eta}{4}\left(v^{2}-\eta^{2}\right) i B_{0}\left(0, m_{i}^{2}, m_{v}^{2}\right) \\
& =-\frac{\lambda_{k}}{32 \pi^{2}}\left\{\left(-\bar{\mu}^{2}+\frac{\lambda_{2}}{2} \eta^{2}\right) \eta\left(\frac{2}{\epsilon_{\bar{\pi}}}+1-\log \frac{m_{n}^{2}}{\mu^{2}}\right)-\left(\bar{\mu}^{2}+\frac{\lambda_{n}}{2} v^{2}\right) \eta\left(\frac{2}{\epsilon_{\bar{\pi}}}+1-\log \frac{m_{v}^{2}}{\mu^{2}}\right)\right. \\
& \left.+\frac{\lambda_{e} \eta}{2}\left(v^{2}-\eta^{2}\right)\left(\frac{2}{\epsilon_{\bar{F}}}-\log \frac{m_{v} v^{2}}{\mu^{2}}\right)\right\} \\
& =\frac{\lambda_{k}}{32 \pi^{2}}\left\{-\bar{\mu}^{2} \eta \log \frac{m_{q}^{2}}{m_{v}^{2}}-\frac{\lambda_{R}}{2} \eta^{3}\left(1-\log \frac{m_{L}^{2}}{m_{v}^{2}}\right)+\frac{\lambda_{R} \eta v^{2}}{2}\right\} \\
& =\frac{\lambda_{R}}{32 \pi^{2}}\left\{\eta m_{\eta}^{2} \log \frac{m_{n}^{2}}{m_{v}^{2}}-\frac{\lambda_{R}}{2} \eta\left(\eta^{2}-v^{2}\right)\right\} \\
& =\frac{\lambda_{R} \eta}{32 \pi^{2}}\left\{m_{\eta}^{2} \log \frac{m_{l}^{2}}{m_{V}^{2}}+m_{V}^{2}-m_{n}^{2}\right\} \quad \text { finite \& goes do zero at } \eta=v \text {. }
\end{aligned}
$$

This com be earsly integrated.

$$
\begin{aligned}
V_{\text {eff }} & =V_{\text {tree }}\left(\phi_{a}\right)+\int_{V}^{\phi} d \eta \frac{\frac{\lambda_{R} \eta}{d \eta}}{32 \pi^{2}}\left\{m_{\eta}^{2} \log \frac{m_{\eta}^{2}}{m_{v}^{2}}+m_{v}^{2}-m_{\eta}^{2}\right\} \\
& =V_{\text {tree }}+\frac{1}{32 \pi^{2}} \int_{m^{2}(v)}^{m^{\prime}(c)} d x\left(x \log \frac{x}{m_{v}^{2}}+m_{v}^{2}-x\right) \\
& =V_{\text {tree }}+\frac{1}{64 \pi^{2}}\left\{m^{4}(\varphi)\left(\log \left(\frac{m^{2}(\varphi)}{m_{v}^{2}}\right)-\frac{3}{2}\right)+2 m_{v}^{2} m^{2}(\varphi)\right\}
\end{aligned}
$$

What was our renormalization scheme exactly?
(1) We know that $\left.\frac{\partial^{2} v_{v}}{\partial y^{2}}\right|_{\phi=v}=\Gamma_{v}^{(2)}=\frac{1}{w^{(2)}(0)}=\left.\left(p^{2}-m_{e}^{2}+\pi\right)\right|_{p^{2}=0}=m_{k}^{2}+\overbrace{i(0)}^{\sum 0}$ So setting $m^{2}=\left.V^{\prime \prime}\right|_{g=v}$ corresponds to setting m^{2} to $\rho^{2}=0$-mass. Indued

$$
\begin{aligned}
\bar{u}(0) & =i+i \cdots+i \\
& =\frac{\lambda v}{2} i A_{0}\left(m_{v}^{2}\right)+\frac{6 \cdot 3 \cdot 2}{2!}\left(-\frac{i \lambda v}{6}\right)^{2} i^{2} i B_{0}\left(0, m_{v}^{2} m_{v}^{2}\right)+\delta_{m}+\frac{\delta_{A}}{2} v^{2} \equiv 0 \\
& =\frac{\lambda v}{2} i A_{0}\left(m_{v}^{2}\right)+\frac{\lambda_{i}^{2} v^{2}}{2} i B_{0}\left(0, m_{v}^{2}, m_{v}^{2}\right)+\delta_{m}+\frac{\delta_{\lambda}}{2} v^{2} \equiv 0
\end{aligned}
$$

(2) Consider defining $\lambda_{R} \equiv \Gamma^{(4)}(0,0,0)$

$$
\Rightarrow\left(\alpha_{1}+t+u\right)+\delta_{\lambda}=0 \Rightarrow \delta_{\lambda}=-\frac{3}{2} \lambda_{R}^{2} i B_{0}\left(0, m_{2}^{2}, m_{2}^{2}\right)
$$

Thus our scheme corresponds to $\lambda_{R} \equiv \Gamma^{(4)}(0,0,0)$ and m^{2} is $p^{2}=0$ mass at broken minimum.

Changing scheme? Suppose we want to define $m=$ pole-mass and $\lambda=\Gamma^{(4)}\left(s_{x}, t_{x}, u_{x}\right)$?

It is earnest to continue to use our current form for the potential, and just define mapping between schemes.

$$
\begin{aligned}
& \bar{\mu}_{0}^{2}=\bar{\mu}_{R}^{2}+\delta \bar{\mu}_{R}^{2} \Rightarrow \bar{\mu}_{R^{\prime}}^{2}=\bar{\mu}_{R}^{2}+\delta \mu_{R}^{2}-\delta \mu_{R^{\prime}}^{2} \\
& \lambda_{0}=\lambda_{R}+\delta \lambda_{R} \\
& \phi_{0}=z_{R}^{1 / 2} \phi_{R}
\end{aligned} \quad \lambda_{R^{\prime}}=\lambda_{R}+\delta \lambda_{R}-\delta \lambda_{R^{\prime}}, ~ \phi_{R}=\left(z_{R} / z_{R^{\prime}}\right) \phi_{R} .
$$

The differmess in ct's are finite. From $-\delta_{m}^{2}=z_{\phi}^{R}\left(\bar{\mu}_{R}^{2}+\delta \bar{\mu}_{R}^{2}\right)-\bar{\mu}_{k}^{2}=\delta_{\phi} \bar{\mu}_{R}^{2}+\left(1+\delta_{\phi}\right) \delta \bar{\mu}_{R}^{2}$. $\delta_{\lambda}=Z_{\phi}^{2}\left(\lambda_{k}+\delta \lambda_{k}\right)-\lambda_{k}=\left(Z_{\phi}^{2}-1\right) \lambda_{k}+Z_{\beta}^{2} \delta \lambda_{k}$ one can solve

$$
\begin{aligned}
& \delta \bar{\mu}_{R}^{2}=-\frac{\delta_{m}^{R}-\delta_{\phi}^{R} \bar{\mu}_{R}^{2}}{1+\delta_{\phi}^{2}} \simeq-\delta_{m}^{R}+\delta_{\phi}^{R} \bar{\mu}_{k}^{2}+\cdots \\
& \delta \lambda_{R}=\frac{\delta_{\phi}^{R}-\left[\left(\delta_{\phi}^{R}\right)^{2}+2 \delta_{\phi}^{k}\right] \lambda_{R}}{\left(1+\delta_{\phi}^{k}\right)^{2}} \simeq-\delta_{\lambda}^{k}-2 \delta_{\phi}^{R} \lambda_{R}+\cdots
\end{aligned}
$$

At l-loop level, we did not need to set wfr-factors. However, the definition $m^{2}=\frac{d^{2} v}{d \psi^{2}}$ and identifuing m^{2} as the $p^{2}=0$-mass corresponds to setting $\delta_{\phi}=-\pi^{\prime}(0)$. oder by oren.

Effective potential at finite T
One-loop result is straightforward. Just note that in Eudidean space i $S \rightarrow-S_{E} ; i \Gamma \rightarrow-\Gamma_{E}$, eg

$$
\begin{aligned}
& \frac{d \delta V_{1-\text { wop }}}{d \eta}=-\Gamma_{E}^{(1)}=-(\Gamma) \\
& =+\lambda \eta \frac{1}{2} \frac{f}{\omega_{n}^{2}+\omega_{n}^{2}}+\delta_{m} \eta+\frac{\delta_{\lambda}}{6} \eta^{3} \\
& =\frac{\lambda \eta}{2} I_{0}^{i A_{0}\left(m_{n}\right)}+\delta_{m} \eta+\frac{\delta_{R}}{6} \eta^{3}+\frac{\lambda \eta}{2} I_{T}^{-}\left(m_{R}\right)
\end{aligned}
$$

$$
\Rightarrow \quad V\left(\phi_{Q_{1} T} T\right)=V_{\text {the }}\left(\phi_{a}\right)+V_{1-a_{0} p_{p}}^{\text {rap }}\left(\phi_{a}\right)+J_{T}^{-}\left(m\left(\phi_{e}\right)\right)
$$

So the thermal correction to $V\left(\phi_{a}, T\right)$ is entruely given by the J_{T}^{-}-integral. To remind: (I changed my notation to follow L8V abs for bossuic J_{T}^{-})

$$
J_{T}^{ \pm}(m)=T \int \frac{d_{p}^{3}}{\left((\alpha \pi)^{3}\right.} \log \left(1 \pm e^{-\beta^{\mu}}\right)
$$

when $\omega_{p}=\sqrt{\vec{p}^{2}+m^{2}(\varphi)}$ is now φ-dependent. In particular for high T :

$$
J_{T}^{-} \simeq-\frac{\pi^{4}}{90} T^{4}+\frac{m_{p}^{2} T^{2}}{24}-\frac{m_{p}^{3} T}{12 \pi}-\frac{m_{P}^{4}}{64 \pi^{2}}\left[2 \gamma_{E}-2 \log 4 \pi+\log \frac{m_{p}^{2}}{T^{2}}-\frac{3}{2}\right]
$$

Combining this with the vacuum term, we find that for is $x \mathrm{~m}$:

$$
\begin{aligned}
\delta V_{l-\sigma_{0 p}} & =\frac{m_{\phi}^{2} T^{2}}{24}-\frac{m_{\phi}^{3} T}{12 \pi}-\frac{m_{\phi}^{4}}{64 \pi^{2}}[\log \frac{m_{V}^{2}}{T^{2}}+\underbrace{2 \gamma_{E}-2 \log 4 \pi}-2 m_{V}^{2} m_{\phi}^{2}]+\underset{\text { prean }}{q-\operatorname{sh} q_{\varphi}} \\
& =a(T)+b(T) \phi^{2}+c(T) m_{p}^{3}+d(T) \phi^{4} \quad=C_{B} \simeq-3.9076
\end{aligned}
$$

Apart from $m_{f}^{3} \delta V_{1-1 \text { op }}$ becomes again a simple polynomial at high T. The most important corrections are the first two terns, giving

$$
\begin{aligned}
V & =V_{\text {bree }}+\delta V_{1-\text { bus }} \quad \sim \phi^{3} T \\
& \approx \underbrace{\underbrace{}_{\text {can cause the bump }}}_{\underbrace{\frac{1}{2}\left(-\mu^{2}+\frac{\lambda T^{2}}{24}\right) \phi^{2}}_{m_{D}^{2}(T)}-\frac{m_{\sigma}^{3} T}{12 \pi}+\frac{\lambda \phi^{4}}{4!}+\cdots}
\end{aligned}
$$

This example qualitatively displays the main physical interest on $V_{\text {ex f }}\left(x_{1} T\right)$: it reveals the possibility of phase transition. ϕ is the order parameter of the system that changes from $\phi=0$ (high T-place) to $\phi \neq 0$ (low-Tphase) somewhere around she critical temperature

$$
-\bar{\mu}^{2}+\frac{\lambda T_{c}^{2}}{2 \varphi}=0 \Leftrightarrow T_{C}=\sqrt{\frac{24 \bar{\mu}^{2}}{\lambda}} \wedge \text { function of model prc. }
$$

important questions:
What is the order of the transition? $1^{\text {st }}$ order $2^{\text {ned }}$ order thermodynamics of the transition dynamics of the transaction.
Observables of transition. Basso? Gw-signal?

Contributions from other fields
All fields that couple to $\&$ contribute to Ven. How? Consider next the
Yukawa interactions

$$
\begin{aligned}
& \mathcal{L}_{Y}=-\frac{y_{f}}{\sqrt{2}} \bar{\psi}_{f} \phi \psi_{f} \xrightarrow[\text { theory }]{\text { shifted }}-\frac{y_{f}}{\sqrt{2}} \bar{\psi}_{f}\left(\phi_{t}+\eta\right) \psi_{f} \\
& \eta \text {-dependent } \\
& \text { mass for } \psi \quad m_{m}=\frac{y \psi}{\sqrt{2}} \eta \\
& +\mathrm{ct}^{\prime} \text { ' } \\
& \Rightarrow \frac{d \delta V_{f}}{d \eta}=-\bigcirc=(-1)(-1)\left(-\frac{y_{F}}{\sqrt{2}}\right) \sum_{F} \operatorname{Tr}\left(\frac{1}{\tilde{p}+m_{f}}\right) \quad ; \quad \tilde{p}=p_{\mu} \tilde{\gamma}^{\mu} \\
& =\frac{d m_{n}}{d n} \quad \tilde{\gamma}^{\mu}=\left(1 y^{0}, \frac{\square}{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{8^{\mu}, 8^{-\mu}\right\}=-28^{m} \\
& =-4 \frac{d}{d \eta} \frac{1}{2} f_{F} \log \left(\omega_{n}^{2}+\omega_{\hat{A}}^{2}\right) \\
& \Rightarrow \delta V_{f}=-4 \frac{1}{2} f_{F}^{f} \log \left(\omega_{n}^{2}+\omega_{\hat{f}}^{2}\right)=-4 J^{+}\left(m_{f}\right)=-4\left(J_{0}+J_{T}^{+}(m)\right)
\end{aligned}
$$

Of course $J_{0}\left(m_{\varphi}^{2}\right)$ is combined with the coumte-tem. We cans add new pieces to existing c.l.'s just setting:

$$
\delta_{m}=\delta_{m}^{\psi}+\delta_{m}^{\psi}+\ldots \quad \text { te. }
$$

where δ_{i}^{4} are again set by $\left.\frac{d \delta V_{T r o}^{4}}{d \eta}\right|_{\eta=v}=\left.\frac{d^{2} \delta V_{\psi}}{d^{2} \eta}\right|_{\eta=v}=0$. Because $J_{0}\left(m_{d}\right)$ is exactly of the same form as the darien secular conechons, the calculation is analogous. One tun finds.

$$
\delta V_{f}^{\text {rem }}=(-4)\left\{\frac{m_{f}^{4}(\phi)}{64 \pi^{2}}\left(\log \left(\frac{m_{f}^{2}(\varphi)}{m_{f}^{2}(v)}\right)-\frac{3}{2}\right)+2 m_{f}^{2}(\varphi) m_{f}^{2}(v)\right\}-4 J_{T}^{+}\left(m_{f}\right)
$$

At high T - $\operatorname{Limit} J_{T}^{\dagger}\left(m_{f}\right)$ becomes:

$$
J_{T}^{+}\left(m_{f}^{2}\right)=\frac{7}{8} \frac{\pi^{4}}{90} T^{4}-\frac{m_{f}^{2} T^{2}}{48}-\frac{m_{f}^{4}}{64 \pi^{2}}\left(\log \frac{m_{f}^{2}(\varphi)}{T^{2}}+28_{E}-2 \log \pi-\frac{3}{2}\right)
$$

So that for $T \gg m_{f}$

$$
\delta V_{f} \simeq-4\{\frac{m_{f}^{2} T^{2}}{48}-\frac{1}{64 \pi^{2}}[m_{f}^{4}(\varphi)(\overbrace{\log \frac{m_{f}^{2}(v)}{T^{2}}}^{\text {cons }}+\underbrace{2 \gamma_{E}-2 \log \pi}_{\text {\& } \in \sim \sim \cdot-113})-2 m_{f}^{2}(\varphi) m_{f}^{2}(v)]\}
$$

Complex salon field

$$
\begin{aligned}
\mathcal{L} & =\left|\partial_{\mu} \Phi\right|^{2}+\bar{\mu}^{2}|\Phi|^{2}-\lambda|\Phi|^{4} \quad ; \Phi \rightarrow \frac{1}{\sqrt{2}}(\varphi+i x) \\
& \left.=\frac{1}{2}\left(\partial_{\mu} \mu\right)^{2}+\frac{1}{2} \partial_{\mu} x\right)^{2}+\underbrace{\frac{1}{2} \bar{\mu}^{2} \varphi^{2}+\frac{1}{2} \mu^{2} x^{2}-\frac{\lambda}{4}\left(\varphi^{2}+x^{2}\right)^{2}}_{-V_{\text {man }}(\varphi, x)}
\end{aligned}
$$

Tree level. Minimum at direction $x=0$

$$
\begin{aligned}
& \left.\frac{d V_{\text {been }}}{d \varphi}\right|_{\substack{x=0 \\
\varphi=v}}=\left(-\bar{\mu}^{2}+\lambda \varphi^{2}\right) \varphi \equiv 0 \Rightarrow \varphi=0 \vee \varphi=\frac{\vec{\mu}^{2}}{\lambda} \\
& \left.\frac{\partial^{2} v_{\text {bu }}}{\partial \varphi^{2}}\right|_{\substack{x=0 \\
\varphi=v}}=-\mu^{2}+3 \lambda v^{2}=2 \lambda v^{2}=2 \bar{\mu}^{2}=m^{2}
\end{aligned}
$$

(this needs to be refined, in fact) and $\left.\quad \frac{\partial^{2} v}{\partial x^{2}}\right|_{\substack{x=0 \\ \varphi=v}}=-\bar{\mu}^{2}+\lambda v^{2}=0 \quad$ Goldstone boron.

Shifted theory:

$$
\begin{aligned}
& \rightarrow \frac{1}{2}\left(\partial_{\mu} h\right)^{2}-\frac{1}{2}\left(-\bar{\mu}^{2}+3 \lambda \eta^{2}\right) h^{2}+\frac{1}{2}\left(\partial_{\mu} x^{2}\right)-\frac{1}{2} \overbrace{\left(-\mu^{2}+\lambda \eta^{2}\right) x^{2}}^{m^{2}} \quad \begin{array}{l}
\text { Shipped then } \\
\varphi \rightarrow h+\eta \\
\varphi^{2} \rightarrow h^{2}+2 h \eta+\eta^{2}
\end{array} \\
& -\frac{\lambda}{4}\left(h^{4}+x^{4}+2 h^{2} x^{2}\right)-\lambda \eta h^{9}-\lambda \eta h x^{2}+h\left(\bar{\mu}^{2}-\lambda \eta^{2}\right) \\
& \varphi^{4} \rightarrow h^{4}+6 h^{2} \eta^{2} \\
& +4 n^{3} \\
& +4 n^{3} \\
& + \text { ct.'s (same structure with } \lambda \rightarrow \delta_{\lambda}, \bar{\mu}^{2} \rightarrow-\delta_{m} \\
& \text { \& } \left.\left(\partial_{\mu} h\right)^{2} \rightarrow \delta_{\phi}\left(\partial_{\mu} h\right)^{2} \&\left(\partial_{\mu} x\right)^{2} \rightarrow \delta_{\phi}\left(\delta_{\mu} x\right]^{2} .\right)
\end{aligned}
$$

One-loop calculation:

After renormalization and adding the thermal parts we again get $\left(\varepsilon_{\alpha}\right.$.)

$$
\delta V_{1-\text { wop }}=\sum_{i=1}^{2}\left\{\frac{1}{64 \pi^{2}}\left[m_{i}^{4}(\varphi)\left(\log \left(\frac{m_{i}^{2}(\varphi)}{m_{i}^{2}(v)}\right)-\frac{3}{2}\right)+2 m_{i}^{2}(\varphi) m_{i}^{2}(v)\right]+J_{r}^{-}\left(m_{i}^{2}(\varphi)\right)\right\}
$$

where $m_{1}^{2}(\varphi) \equiv m_{h}^{2}(\varphi)=-\bar{\mu}^{2}+3 \lambda \varphi^{2}$ and $m_{2}^{2}(\varphi) \equiv m_{x}^{2}(\varphi)=-\bar{\mu}^{2}+\lambda \varphi^{2}$.

This calculation went formally through without a problem. However, note that since $m_{x}^{2}(v)=0$, this result is actually II-defined. What is the problem. The renormalization scheme! The $p^{2}=0$-mass is not well defined in this contest. The problem is the IR-singulanty due to Goldstone boson.
mass renormalization with Goldstone modes more carefully.

$$
\begin{aligned}
& =\overbrace{3 \lambda_{R} i A_{0}\left(m_{h}^{2}\right)+\lambda_{R} i A_{0}\left(m_{\lambda}^{2}\right)+\overbrace{18 \lambda_{R}^{2} h^{2} i B_{0}\left(p_{1}^{2}, m_{h}^{2}, m_{h}^{2}\right)+2 \lambda_{R} h^{2} ; B_{0}\left(p_{1}^{2} m_{\lambda}^{2}, m_{\lambda}^{2}\right)}^{\equiv \pi_{B}\left(p^{2}\right)}}^{\pi_{A_{A}}} \\
& +\delta_{m}+3 h^{2} \delta_{\lambda}+p^{2} \delta_{\phi}
\end{aligned}
$$

The self energy is well behaved for $p^{2} \neq 0$ or $m_{i}^{2} \neq 0$. Hoverer, if $p^{2}=0$ \& ane ties to take $m_{x}^{2} \rightarrow 0$, the $\ldots-\ldots$ - - term is \mathbb{R}-divergent! This means that the $p^{2}=0$ - mass is lR-divergent. We can write it in terns of the pole mas \& a divergent part, by moving from $p^{2}=0$ shame do on-shell scheme.
$p^{2}=0$-scheme:

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\delta_{m}+\delta_{\lambda} v^{2} \equiv-\pi_{A} \\
\delta_{m}+3 \delta_{\lambda} v^{2} \equiv-\pi_{A}-\pi_{B}(0)-\pi_{B}^{\prime}(0) p^{2}-\delta_{\phi} p^{2}
\end{array}\right. \\
& \Rightarrow \delta_{\beta}=-\pi_{B}^{\prime}(0), \delta_{\lambda}=-\frac{1}{2 v^{2}} \pi_{B}(0) \text { and } \delta_{m}=-\pi_{A}+\frac{1}{2} \pi_{B}(0)
\end{aligned}
$$

$p^{2}=m_{p}^{2}$-scheme (mole that $\nabla \neq v!$)

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\bar{\delta}_{m}+\bar{\delta}_{\lambda} \bar{v}^{2} \equiv-\pi_{A} \quad=-\pi_{B}\left(p^{2}\right)+\pi_{B}\left(p^{4}\right) \\
\bar{\delta}_{m}+3 \bar{\delta}_{\lambda} \bar{v}^{2} \equiv-\pi_{A}-\pi_{B}\left(m_{B}^{2}\right)-\left(p^{2}-m_{p}^{2}\right) \pi_{B}^{1}\left(m_{p}^{4}\right)+\bar{\delta}_{\beta} p^{2}
\end{array} \quad-\pi_{B}^{2}\left(m_{p}^{2}\right)\right. \\
& \Rightarrow \quad \bar{\delta}_{\phi}=-\pi^{\prime}\left(m_{B}^{2}\right), \quad \bar{\delta}_{\lambda}=-\frac{1}{2 \bar{v}^{2}}\left(\pi_{B}\left(m_{p}^{2}\right)-m_{p}^{2} \pi_{B}^{1}\left(m_{p}^{2}\right)\right) \quad \text { and } \\
& \bar{\delta}_{m}=-\pi_{A}+\frac{1}{2}\left(\pi_{B}\left(m_{P}^{2}\right)-m_{P}^{2} \pi_{B}^{1}\left(m_{p}^{2}\right)\right)
\end{aligned}
$$

Let us first note that

$$
\delta_{m}^{R}=-z_{\psi}^{R} \delta \bar{\mu}_{R}^{2}-\left(z_{\phi}^{R}-1\right) \bar{\mu}_{R}^{2} \Rightarrow \delta \bar{\mu}_{R}^{2}=-\frac{\delta_{m}^{R}+\delta_{\varphi}^{R} \bar{\mu}_{k}^{2}}{1+\delta_{\psi}^{2}} \simeq-\delta_{m}^{R}-\delta_{\phi}^{R} \bar{\mu}_{e}^{2}
$$

Using $m_{v_{0}^{2}}^{2}=2 \bar{\mu}_{0}^{2}=2\left(\mu_{R}^{2}+\delta \mu_{n}^{2}\right)$ for the bare mars, we can write the $p^{2}=0$ schence mass m_{v}^{2} in lens of the pole mass as

$$
\begin{aligned}
& \text { pole scene } d^{p^{2}=0 \text { scheme }} \\
& \begin{aligned}
& \text { pole sphere }{ }^{\frac{L}{p}=0 \text { scheme }} \\
& m_{v}^{2}=2 \bar{\mu}^{2}=m_{p}^{2}+2 \delta \bar{\delta}_{\mu}^{2}-2 \delta \bar{\mu}^{2} \\
& \simeq m_{p}^{2}-2\left(\bar{\delta}_{m}-\delta_{m}\right)+2\left(\bar{\delta}_{p}-\delta_{y}\right) \bar{\mu}^{2}
\end{aligned} \\
& \simeq m_{p}^{2}-\left(\pi_{B}\left(m_{p}\right)-\pi_{B}(0)-m_{p}^{2} \pi^{\prime}\left(m_{p}\right)\right)+m_{p}^{2}\left(-\pi^{1}\left(m_{p}^{\prime}\right)-\pi_{B}^{1}\left(m_{p}^{2}\right)\right) \\
& =m_{p}^{2}-\underbrace{\left[\pi_{B}\left(m_{p}^{2}\right)-\pi_{B}(0)-m_{P}^{2} \pi_{B}^{\prime}(0)\right] \equiv m_{p}^{2}-\Delta \pi}_{\text {UV-finite, but R- divergent. }}
\end{aligned}
$$

The problem is that $\pi_{B}(0)$ is not well defined at $p^{2}=0$! We can kep the Goldstone mass as a formally nonzero regulator for a awhile. Now observe (all $\Delta \delta_{i}$ are finite)

$$
\begin{aligned}
\Delta \delta_{\phi} \equiv \bar{\delta}_{\phi}-\delta_{\phi} & =-\pi_{B}^{\prime}\left(m_{p}^{2}\right)+\pi_{B}^{1}(0) \\
\Delta \delta_{m} \equiv \bar{\delta}_{m}-\delta_{m} & =\frac{1}{2}\left(\pi_{\phi}\left(m_{p}^{2}\right)-m_{p}^{2} \pi^{1}\left(m_{p}^{2}\right)-\pi_{B}(0)\right) \\
& =\frac{1}{2}\left(\Delta \pi-m_{p}^{2} \Delta \delta_{\phi}\right) \equiv \frac{1}{2} \Delta \Sigma . \\
\Delta \delta_{\lambda} \equiv \bar{\delta}_{\lambda}-\delta_{\lambda} & \simeq-\frac{1}{V^{2}} \Delta \delta_{m}=-\frac{1}{2 v^{2}} \Delta \Sigma .
\end{aligned}
$$

We can now obtain the effective potential corresponding to renormalization conditions

$$
\left.\frac{d \bar{V}}{d \bar{\varphi}}\right|_{\dot{\varphi}=\bar{v}}=0,\left.\quad \frac{d^{2} \bar{v}}{d \bar{p}^{2}}\right|_{\bar{\varphi}=\bar{v}}=m_{p}^{2}
$$

by adding the difference of ct-lagrangizus
s with old ct's

$$
\begin{aligned}
& \bar{V}_{\text {elf }}=\bar{V}_{\text {true }}+V_{\text {l-whop }}^{\text {martin }}-\underbrace{\frac{1}{2} \Delta \delta_{m} \varphi^{2}-\frac{1}{4} \Delta \delta_{2} \varphi^{4}} \\
& \text { different from }=-\frac{1}{4 v^{2}}\left(2 \Delta \Sigma v^{2} \varphi^{2}-\Delta \Sigma \varphi^{4}\right) \quad m_{x}^{2}=-\mu^{2}+\lambda_{k} \varphi^{2} \\
& V_{\text {the }} \\
& =-\frac{\Delta \Sigma}{8 v^{2}}\left(\varphi^{2}-v^{2}\right)^{2}+\text { cons }=-\frac{m_{x}^{4}(\varphi)}{8 \lambda_{2}^{2} v^{2}} \Delta \Sigma+\text { cost }
\end{aligned}
$$

This term can be combined with the x-term in the vacuum effective potential:

$$
\frac{1}{64 \pi^{2}} m_{x}^{4}(\varphi)\left(\log \left(\frac{m_{x}^{2}(\varphi)}{m_{x}^{2}(v)}\right)-\frac{3}{2}\right)-\frac{1}{8} m_{x}^{4}(\varphi)(\underbrace{\widehat{\pi}_{B}\left(m_{p}^{2}\right)-\widehat{\pi}_{B}(0)-m_{p}^{2}}_{=\Delta \Sigma / \lambda^{2} v^{2}} \widehat{\pi}_{B}^{1}\left(m_{B}^{2}\right))
$$

where $\widehat{\pi}_{B}\left(p^{\prime}\right)=18 i B_{0}\left(p_{1}^{2}, m_{h}^{2}, m_{h}^{2}\right)+2 i B_{0}\left(p_{1}^{2}, m_{x}^{2}, m_{x}^{2}\right)$. The only divergent part in ΔI is the x-part in $\tilde{\pi}_{B}(0)$. Using the result:

$$
B_{0}\left(p^{2}, m^{2}, m^{2}\right)=-\frac{1}{16 \pi^{2}}(\underbrace{\frac{2}{\epsilon_{\overline{M s}}}+\log \mu^{2}}_{\text {cancel in } \Delta \Sigma}-\int_{0}^{1} d x \log \left(x(1-x) p^{2}-m^{2}-i \epsilon\right))
$$

can put $m_{x}^{2}(1)=0$ here

$$
\text { - } \begin{aligned}
\hat{\pi}_{B, x}\left(m_{p}^{2}\right)-\hat{\pi}_{B_{1} x}(0)-m_{p}^{2} \hat{\pi}_{B x}^{1}\left(m_{p}^{2}\right) & =\frac{2}{16 \pi^{2}}\left(\int_{0}^{1} d x \log \left(x(1-x) m_{p}^{2}\right)-\log \left(-m_{x}^{2}(v)\right)-1\right) \\
& =\frac{2}{16 \pi^{2}}\left(\log \left(\frac{m_{p}^{2}}{m_{x}^{2}(v)}\right)-3\right) \quad \int_{0}^{1} d x \log x(1-x) \\
& =2 \int_{0}^{1} d x \log x=-2
\end{aligned} \quad \begin{aligned}
& \widehat{\pi}_{B, h}\left(m_{p}^{2}\right)-\hat{\pi}_{B, h}(0)-m_{p}^{2} \hat{\pi}_{B p}^{1}\left(m_{p}^{2}\right) \\
&=\frac{18}{16 \pi^{2}} \int_{0}^{1} d x\left(\log \left([x(1-x)-1] m_{p}^{2}+i \epsilon\right)-\log \left(-m_{p}^{2}+i \epsilon\right)-\frac{m_{p}^{2}}{x(1-x) m_{p}^{2}-m_{p}^{2}}\right) \\
&=\frac{18}{16 \pi^{2}} \int_{0}^{1} d x\left(\log \left(1-x((1-x))+\frac{1}{1-x(1-x)}\right)=\frac{18}{16 \pi^{2}}\left(-2+\frac{\pi}{\sqrt{3}}+\frac{2 \pi}{3 \sqrt{3}}\right)\right.
\end{aligned}
$$

Combining the logs, the X-term in the new vacuum term becomes $\simeq 12.21$: This is wandly negated.

$$
=\underbrace{\frac{1}{64 \pi^{2}} m_{x}^{4}(\varphi)\left\{\log \left(\frac{m_{x}^{2}(\varphi)}{m_{p}^{2}}\right)-\frac{3}{2}\right.}+\overbrace{\left.3+9\left(2-\frac{5 \pi}{3 \sqrt{3}}\right)\right\}}
$$

The old term with $m_{x}^{2} \rightarrow m_{p}^{2}$ in the \log
So, our full pole-mass renornalized 1-loop correction becomes:

$$
\begin{aligned}
\delta \bar{v}_{1-m_{q}}=\sum_{i=1}^{2}\left\{\frac{1}{64 \pi^{2}}\left[m_{i}^{4}(\phi)\left(\log \left(\frac{m_{i}^{2}(\varphi)}{m_{p i}^{2}}\right)-\frac{3}{2}\right)+2 m_{i}^{2}(\varphi) m_{i}^{2}(v)\right]\right. & \left.+J_{\Gamma}^{-}\left(m_{i}^{2}(\varphi)\right)\right\} \\
& \quad \text { for } x \text {-field } m_{i_{i}}^{2}=m_{i}^{2} \\
& +\frac{12.21}{64 \pi^{2}} m_{x}^{4}(\varphi)
\end{aligned}
$$

Chicle:

$$
\begin{aligned}
&\left.\frac{d}{d \bar{\varphi}}(\delta \bar{V}-\delta V)\right|_{\varphi=v}=\left.\frac{d}{d \varphi}\left(\Delta \delta_{m} \varphi^{2}+\frac{1}{\varphi} \Delta \delta_{\mu} \varphi^{4}\right)\right|_{\varphi=v}=\varphi\left(\Delta \delta_{m}-V^{2} \Delta \delta_{\lambda}\right)=0 . \\
& \begin{aligned}
\frac{d^{2} \widetilde{V}}{d \bar{\varphi}^{2}}=\left.\frac{d^{2}}{d \bar{\varphi}^{2}}(V+\Delta V)\right|_{\bar{\varphi}=\bar{v}} & \left.\simeq\left(\frac{Z_{\varphi}}{\overline{z_{p}}} \frac{d^{2} V}{d \varphi^{2}}-\Delta \delta_{m}-3 \varphi^{2} \Delta \delta_{V}\right)\right|_{\varphi=v} \\
& \simeq m_{v}^{2}\left(1-\bar{\delta}_{\phi}+\delta_{\varphi}\right)+\alpha\left(\bar{\delta}_{m}-\delta_{m}\right) \\
& \simeq m_{v}^{2}+\left[2\left(\bar{\delta}_{m}-\delta_{m}\right)-m_{p}^{2}\left(\delta_{\varphi}-\delta_{\mu}\right)\right] \\
& =m_{v}^{2}+\Delta \pi=m_{p}^{2}
\end{aligned} \%
\end{aligned}
$$

Sher w that $\delta V_{Q}=-\frac{V_{R}}{2 m_{P}^{2}} \pi_{A}$, so that $V_{R}=V_{R^{\prime}}$ at least to 1 lop order.

Gauge fields. Here we encounter another problem: gauge dependence. This is a very profound problem that starts from the fact that for the complex (or none general) field the selection of the SSB vacuum state breaks the symmetry: $c y$ the 1 -point function $\varphi_{a}=\langle\varphi\rangle$ is not $G[$.

In practice, one works in Sandau-gauge, which has been found to give results that are usually consistent with GI-invanant Lattice simulations.

Scalar-QED

$$
\mathcal{L}=\left|D_{\mu} \phi\right|^{2}+\mu^{2}|\phi|^{2}-\lambda|\phi|^{4}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

This is like our previous example, except that now we get new gauge mteractions.

$$
\begin{aligned}
& \left|D_{\mu} \phi\right|^{2}=\left[\left(\partial_{\mu}+i e A_{\mu}\right) \phi\right]\left[\left(\partial_{\mu}-i e A_{\mu}\right) \phi^{*}\right] \quad \phi \equiv \frac{1}{2}(h+\eta+i x) \\
& =\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\frac{1}{2}\left(\partial_{\mu} x^{2}\right)-e A_{\mu}(x \partial \mu h-h \partial r x)+\frac{e^{2}}{2}\left(h^{2}+x^{2}\right) A_{\mu} A^{\mu} \\
& +\underbrace{e^{2} \eta h A_{\mu} A^{\mu}}+\underbrace{\frac{1}{2} e^{2} \eta^{2} A_{\mu}^{2}}+\underbrace{e \eta A_{\mu}\left(d^{\mu} x\right)} \\
& \begin{array}{l}
\begin{array}{l}
\text { coupling to gives } m_{\eta}=e \eta \\
\begin{array}{l}
\text { scalar } \\
\Rightarrow \text { tadpole }
\end{array} \quad=-e \eta\left(\partial^{1} A_{\mu}\right) x \\
\text { for gouge field }
\end{array}
\end{array} \\
& R_{\varepsilon} \text {-gauge - going: }
\end{aligned}
$$

In this gange the full quadratiz dagangien is

$$
\begin{array}{r}
\mathcal{L}_{0}=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}-\frac{1}{2}\left(-\mu^{2}+3 \lambda \eta^{2}\right) h^{2}+\frac{1}{2}\left(\partial_{\mu} x\right)^{2}-\frac{1}{2}(-\mu^{2}+\overbrace{\left.\lambda \eta^{2}+\xi(e \eta)^{2}\right) x^{2}}^{\left(\lambda+\xi e^{2} \eta^{2}\right.} \\
-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2}(e \eta)^{2} A_{\mu} A^{\mu}-\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}
\end{array}
$$

In a general gange $m_{x}^{2}(v)=\varepsilon^{2} c^{2} v^{2} \neq 0$, but is the Landau gauge $\varepsilon=0 \quad m_{x}^{2}(v)=0$. Genenal genge propegator:

$$
\begin{aligned}
D_{\mu \nu}^{-1} & =i\left[\left(q^{2}-m_{\mu}^{2}\right) g_{\mu \nu}+\left(1-\frac{1}{\xi}\right) q_{\mu} q_{\nu}\right] \quad ; m_{\mu}^{2} \equiv(e \eta)^{2} \\
\Rightarrow D_{\mu \nu} & =\frac{-i}{q^{2}-m_{A \eta}^{2}}\left(g_{\mu \nu}-(1-\xi) \frac{q_{\mu} q_{v}}{q^{2}-\xi m_{A \eta}^{2}}\right) \xrightarrow[\substack{\text { dandau } \\
\xi=0}]{\text { \&ud. }} \frac{1}{q^{2}+m_{q}^{2}}\left(\delta_{\mu v}-\frac{q_{\mu} q}{q^{2}}\right)
\end{aligned}
$$

Finally, there is a Ghost: $G=\partial_{\lambda^{\prime}} A^{x}-\xi \operatorname{eq} \eta^{x}=0$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\phi \rightarrow(1-i \alpha) \phi \Rightarrow \delta x=-(h+\eta) \alpha \quad j \quad \delta h=\alpha x \quad \delta A_{\mu}=\frac{1}{e} \partial_{\mu} \alpha \\
A_{\mu} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha
\end{array}\right. \\
& \left.\Rightarrow \delta G_{\alpha}=\frac{1}{e} \partial^{\mu} \partial_{\mu} \alpha+\xi e \eta(h+\eta) \alpha \quad \right\rvert\, \alpha \rightarrow e \alpha \\
& \Rightarrow \frac{\delta 6}{\delta \alpha}=\partial^{2}+\xi(e \eta)^{2}+\xi e^{2} \eta h \\
& \Rightarrow \mathcal{L}_{\text {ghast }}=\bar{C}[\partial^{2}+\underbrace{\left.\xi(e \eta)^{2}+\varepsilon e^{2} \eta h\right] c}_{\text {dicouple when }}
\end{aligned}
$$

eg. We can furget ghosh in d-gauge (we are ovly miterested in field dependunt correchims)

So, to one-loop, the only relevant new interaction is $+e^{2} \eta h A_{\mu} A^{M}$

$$
\begin{aligned}
& =3 \lambda_{\eta} i A_{8}\left(m_{\eta}^{2}\right)+\lambda_{\eta} i A_{0}\left(m_{\pi}^{2}\right)+3 e^{2} \eta i A_{0}\left(m_{A}^{2}\right)+\left(\delta_{m}+\delta_{\lambda} v^{2}\right) \eta
\end{aligned}
$$

In dandaus gauge: $\quad m_{h}^{2}=-\mu^{2}+3 \lambda \eta^{2} \quad \frac{1}{2} \frac{d m_{h}^{2}}{d \eta}=3 \lambda \eta$

$$
\begin{array}{ll}
m_{x}^{2}=-\mu^{2}+i \eta^{2} \quad & \frac{1}{2} \frac{d m_{\lambda}}{d \eta}=\lambda \eta \\
m_{A}^{2}=e^{2} \eta^{2} & \frac{1}{2} \frac{d m_{A}^{1}}{d \eta}=e^{2} \eta \\
\Rightarrow \frac{\partial V}{\partial h}=\sum_{i} \frac{g_{i}}{2} \frac{\partial m_{i}^{2}}{\partial \eta} i A_{0}\left(m_{i}^{2}\right)+c t^{\prime} s
\end{array}
$$

$$
\begin{aligned}
& \mu \sim n_{i_{-x}}^{k_{-1}^{\prime h}}=i e\left(p_{m}^{n}-p_{z}^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\overbrace{3 \lambda_{R} i A_{0}\left(m_{h}^{2}\right)+\lambda_{R} i A_{0}\left(m_{x}^{2}\right)+\overbrace{18 \lambda_{R}^{2} h^{2} B_{0}\left(p_{1}^{2}, m_{h}^{2}, m_{h}^{2}\right)+2 \lambda_{R} h^{2} B_{0}\left(p_{1}^{2}, m_{x}^{2}, m_{x}^{2}\right)}^{\pi_{A}}}^{\equiv \pi_{B}\left(p^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\delta_{m}+3 h^{2} \delta_{\lambda}+p^{2} \delta_{\rho}=\pi_{A}+\pi_{B}\left(p^{2}\right)+\pi_{C}\left(p^{2}\right) \quad \begin{array}{l}
\delta \Sigma_{n} \delta \Sigma_{X} \\
\\
\\
\delta \Sigma_{\mu}^{\psi} \\
\delta \Sigma_{A}
\end{array}
\end{aligned}
$$

Here the gauge contribution $\pi_{c}\left(y^{2}\right)$ is technically slightly more demanding to compute, but otherwise the analysis is exactly the same as with the

Complex scalar field.

$$
\begin{aligned}
\delta \bar{v}_{1-\operatorname{kom}}= & \sum_{i=1}^{2} g_{i}\left\{\frac{1}{64 \pi^{2}}\left[m_{i}^{4}(\phi)\left(\log \left(\frac{m_{i}^{2}(\varphi)}{m_{p i}^{2}}\right)-\frac{3}{2}\right)+2 m_{i}^{2}(\varphi) m_{i}^{2}(v)\right]+J_{\Gamma}^{-}\left(m_{i}^{2}(\varphi)\right)\right\} \\
& -\frac{1}{8 \lambda_{R}^{2} v_{R}^{2}} m_{x}^{4}(\varphi)\left(\frac{\lambda_{i}^{2} v_{2}^{2}}{8 \pi^{2}} 12.21+\Sigma_{c}\right)
\end{aligned}
$$

when $\quad m_{n}^{2}(\varphi)=-\mu^{2}+\rho \lambda_{R} \varphi^{2}, \quad m_{x}^{2}(\varphi)=-\mu^{2}+\lambda_{R} \varphi^{2}, \quad m_{A}^{2}(\varphi)=e^{2} \varphi^{2} ; \quad g_{h}=g_{x}=1, \quad g_{A}=3$ and $m_{p h}=m_{s n} \equiv m_{p}$ and $m_{p A} \equiv e v$. Finally

$$
\Sigma_{C}=\pi_{C}\left(m_{A}^{2}(v)\right)-\pi_{C}(0)-m_{A}^{2} \pi_{C}^{1}\left(m_{A}^{2}\right)=\sum_{C}\left(m_{A}^{2}, m_{h}^{2}\right)=\#
$$

General expression for the correction tern on the second hims

$$
-\frac{1}{8 \lambda_{R}^{2} v_{B}^{2}} m_{x}^{u}(\varphi)\left\{\Sigma-\frac{\lambda_{R}^{2} v_{R}^{2}}{8 \pi^{2}} \log \frac{m_{p}^{2}}{m_{x}^{2}(v)}\right\}
$$

where $\Sigma=\pi\left(m_{p}^{2}\right)-\pi(0)-m_{p}^{2} \pi^{1}\left(m_{p}^{2}\right)$ where π is the full self-energy function in the model.

- we did not ronomalize e. Se was not needed at this order Az higher loops this will be needed and requires renormalization of gauge sector.
What is λ_{2} now? We know $\bar{\delta}_{\rho}$ and $\bar{\delta}_{\lambda}$, so we can relate λ_{n} to any observable we wish. It is very close to $\Gamma^{(6)}(0,0,0)$, but not quite! ($\delta_{\lambda} \neq \bar{\delta}_{1}$ and $\delta_{\varphi} \neq \bar{\delta}_{\varphi}$). (ε_{k}.)

I did mot even bother to redo the finite- T-computation with the gauge field. The result is obvious, but let me remind

$$
E_{\mu}^{2} \rightarrow 3 e^{2} \eta f^{f} \frac{1}{k^{2}+a_{c}^{2}}=3 e^{2} \eta\left(i A_{0}\left(m_{n}^{2}(\eta)\right)+I_{T}^{+}\left(m_{n}^{2}(v)\right)\right.
$$

etc.

Ring resummation
Just as with pressure, we encounter an IR -singularity with massless fields, If we try to go so higher orders. Fields that are particulaing sensitive, are the scalar itself f, when the debye mans $m_{D}^{2}(T)\left(=-\mu^{2}+\frac{\lambda T^{2}}{24}\right.$ in the singlt model) is small, and the magnetic modes of the gauge fields.
Ring sum resems diagrams like

The sum is seeded only for $n=0$-modes. For $n \neq 0$-modes thermal mass removes the IR-sensituly. Again, the resummation could he extended to all modes, to get a ring-improvement consistent with $m(\varphi, T) / T \rightarrow \infty$. (Parwanischeme), but then, one recovers the same problems encountered earlier when evaluating the pressers.
Here we dress only the $n=0$-mode. (Carnington-Amold-Espinosa scheme.) This requires no news effort:

$$
\left.n=0: \quad \frac{1}{\vec{p}^{2}+m_{i}^{2}} \rightarrow \frac{1}{\vec{p}^{2}+m_{D i}^{2}(T)} \quad ; m_{D i}^{2}(T)=m_{i}^{2}(Q)+\pi_{T_{i}} \cdot\left(\frac{\lambda_{i}}{4}: \pi_{i} \frac{\lambda}{2 T_{i}}\right)^{2}\right)
$$

where $\pi_{T i}$ is the thermal correction to the self-energy of the eacstation in the high-T limit. (This corrects only bosons of course.]

$$
\Rightarrow J_{T}^{-}\left(m_{i}^{2}\right) \rightarrow J_{T}^{-}\left(m_{i}^{2}\right)-\underbrace{\frac{T}{12 \pi}\left(m_{D i}^{3}(\varphi, T)-m_{i}^{3}(\varphi)\right)}
$$

$$
\Rightarrow J_{m=0}=-\frac{m^{2}>}{12 \pi}
$$

Ring-crrection in CAE-scheme
So, our final result for the ring-crrected potential is
when $\quad m_{h}^{2}(\varphi)=-\mu^{2}+\zeta \lambda_{A} \varphi^{2}, \quad m_{x}^{2}(p)=-\mu^{2}+\lambda_{R} \varphi^{2}, \quad m_{A}^{2}(\varphi)=e^{2} \varphi^{2} ; \quad g_{h}=g_{x}=1, \quad g_{A}=3$ and $m_{p h}=m_{s n} \equiv m_{p}$ and $m_{p A} \equiv e v$. Finally, one caus in dude also any number of fermions with $m_{f}^{2}(\varphi)=\frac{1}{2} y_{f}^{2} \varphi^{2}$ and $g_{f}=-4$. In the and

$$
\Sigma_{c}=\sum_{i \neq h, x}\left(\pi_{i}\left(\mu_{p}^{2}\right)-\pi_{i}(0)-\mu_{p}^{2} \pi_{i}^{1}\left(\mu_{p}^{c}\right)\right)=\sum_{i \neq h_{i} x} \sum_{i}
$$

white these down cappratiy
This result directly extends to the Sm-case. The only difference to the

$$
\begin{aligned}
& \delta \bar{v}_{1-\text { dor }}=\sum_{i=1} g_{i}\left\{\frac{1}{64 \pi^{2}}\left[m_{i}^{4}(\phi)\left(\log \left(\frac{m_{i}^{2}(\varphi)}{m_{p i}^{2}}\right)-\frac{3}{2}\right)+2 m_{i}^{2}(\varphi) m_{i}^{2}(v)\right]\right. \\
& \left.+J_{T}^{-}\left(m_{i}^{2}(\varphi)\right)-\frac{T}{12 \pi}\left(m_{D i}^{3}(\varphi, T)-m_{i}^{3}(\varphi)\right)\right\} \\
& \begin{array}{l}
-\frac{1}{8 \lambda_{R}^{2} V_{R}^{2}} m_{\lambda}^{4}(\varphi)\left(\frac{\lambda_{R}^{2} v_{2}^{2}}{8 \pi^{2}}\left(3 N_{g}+9,21\right)+\Sigma_{C}\right) \text { goldstone made }=1 \text { in SQEE, } 3 \text { in anim. } \quad \Rightarrow \Delta V(T) .
\end{array}
\end{aligned}
$$

scalar electrodynamics case is the parkze-centent. Also, in sm there are 3 Golelforon-modes. Otherwise, one just contends the sum over λ to include all fields in tue Sm.

Debye masses required for the SQED:

Landau gauge: $\quad\left(\Delta_{i} \equiv \frac{1}{p^{2}+m_{i}^{2}} ; p^{2}=\omega_{\hat{n}}^{\Gamma}+\bar{p}^{2}\right)$

$$
\begin{aligned}
& \Rightarrow \pi_{h}=3 \lambda \frac{f}{f} \Delta_{n}+\lambda \frac{f}{f} \Delta_{x}+3 e^{2} \frac{f}{f} \Delta_{A}+\lambda^{2} \eta^{2}\left(18 \frac{f}{f} \Delta_{h}^{2}+2 \frac{f}{f} \Delta_{x}^{2}\right) \\
& I_{0}+I_{F}=I_{0}+\frac{T^{2}}{12} . \quad+6 e^{4} \eta^{2} \frac{1}{\frac{1}{2}} \Delta_{A}^{2}+2 I_{F} y_{f}^{2} \underbrace{f_{F}} \Delta_{F} \\
& I_{0}+I_{p}^{+}=I_{0}+\frac{T^{3}}{24} \\
& =\pi_{\text {ace }}^{2}+\left(4 \lambda+3 e^{2}+\sum_{f} y_{f}^{2}\right) \frac{T^{2}}{12}+\theta\left(\lambda^{2} \eta^{2}, c^{4} \eta^{2}, y_{f}^{4} \eta^{2}\right) \\
& \Rightarrow \quad m_{D, h}^{2}(T)=-\mu^{2}+3 \lambda \varphi_{\varphi}^{2}+\left(4 \lambda+3 c^{2}+\sum_{7} y_{f}^{2}\right) \frac{T^{2}}{12}=-\mu^{2}+3 \lambda \varphi_{\varphi}^{2}+c_{h} T^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similarly }\left[\text { Note that } \mathcal{L}_{\text {releata }}=y_{f} \bar{\psi}_{L} \phi \psi_{R}+y_{f} \bar{\psi}_{k} \phi^{h} \psi_{L}\right. \\
& \left.=\frac{y_{f}}{\sqrt{2}}(x+\eta) \bar{\psi} \psi+\frac{i y_{f}}{\sqrt{2}} x \overline{\psi_{\gamma}} \psi^{5} . \quad \Rightarrow \stackrel{x}{\mathcal{L}}=-\frac{y_{f}}{\sqrt{2}} \gamma_{5}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow m_{D, x}^{2}(\tau)=-\mu^{2}+\lambda \varphi^{2}+c_{x} T^{2} \text {, with } \quad c_{x}=4 \lambda+3 e^{2}+\sum_{f} y_{f}^{2}=c_{\phi}
\end{aligned}
$$

Gauge bosons

$$
\begin{aligned}
& -e A_{\mu}\left(x \partial x_{\partial} h-h \partial r x\right)+\frac{e^{2}}{2}\left(h^{2}+x^{2}\right) A_{\mu} A^{\prime \prime} \\
& +e^{2} \eta^{2} h A_{\mu} \mu^{\prime \prime}+\frac{1}{2} e^{2} \eta^{2} A_{\mu}^{2}+e q \eta_{\mu}(\partial \partial x)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \pi_{p v}^{A} \approx \underbrace{2 e^{2} \delta \mu \xi_{B} \oint_{B} \frac{1}{q^{2}}-4 e^{2} \xi_{B} \xi_{B} \frac{q^{\mu} q^{\nu}}{q^{4}}-4 \sum_{f} e^{2} \sum_{F} \frac{2 q^{\mu} q^{\gamma}-q^{2} g^{2}}{q^{4}}}+\theta\left(m^{2} p^{2}\right) \\
& =2 e^{2} \frac{f}{f_{B}} \frac{q^{3}-2 q^{4}-q^{2}}{q^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \pi_{\mu \nu}^{A}=e^{2}\left(1+N_{f}\right) \frac{T^{2}}{3} \delta_{\mu 0} \delta_{V_{0}} \equiv C_{A_{L}} T^{2} \delta_{\mu 0} \delta_{v 0} \\
& m_{D}^{A_{L}}(\varphi, T)=e^{2} \varphi^{2}+C_{A_{L}} T^{2} \quad ; \quad m_{D}^{A_{S}}(\varphi, T)=e^{\eta} \varphi^{2}
\end{aligned}
$$

Todd: give general expressions for Σ_{i} for $i=\psi, A \mu, A_{\mu}^{a}$

Complex Vent
Effective action can be complex. Indeed, the Vacuem-contribution to V contains a part
f put back the Feynman it $\frac{1}{p^{2}-m^{2}+i \epsilon}$

$$
\begin{aligned}
& \sum_{i} \frac{m_{1}^{4}(\varphi)}{64 \pi^{2}} \log \left(\frac{m_{i}^{2}(\varphi)-i \epsilon}{m_{i i}^{2}}\right)=\sum_{i} \frac{\left.m_{1}^{4}(\varphi)\right)}{64 \pi^{2}}\left\{\log \frac{\left|m_{i}^{2}(\varphi)\right|}{m_{p i}^{2}}-i \pi \theta\left(-m_{i}^{2}(\varphi)\right)\right\} \\
& \Rightarrow \quad \operatorname{lm} V_{\text {eff }}^{\text {(ex) }}=-\sum_{i=h_{1} x} \frac{m_{i}^{4}(p)}{64 \pi^{3}} \theta\left(-m_{i}^{2}(\varphi)\right) \\
& \text { In the simple } \lambda \varphi^{4} \text {-theory with SSB this } \\
& \text { comes about when } \\
& \phi^{*}+\delta \varphi_{k<\sqrt{\text { mid }}} \\
& \langle\phi\rangle=\varphi^{*}
\end{aligned}
$$

In this region, the potential is concave. Negative mars means that the modes (unstable around $\varphi=$ constr) with $m^{2}(\varphi)+k^{2}<0$ eg $k^{2}<-m^{2}(\varphi)$ ane tachyovic, and start to grow exponentially, f excited. In the concave region the minimum of $V_{\text {celt }}$ is unstable.
Indeed, consicles a very large box. If we only require that $\langle\phi\rangle=\varphi_{x}\left\langle\sqrt{\frac{2 \mu}{2}}\right.$, we can arrange an inhomogeneous configuration, where in a fraction of the volume

$$
\frac{V_{x}}{V}=1-\sqrt{\frac{\Delta}{2 \mu^{2}}} \varphi^{*}
$$

$\varphi=-\sqrt{\frac{2 \mu}{\lambda}}$ and elsewhere $\varphi=\sqrt{\frac{2 \mu^{\prime}}{\lambda}} \Rightarrow\langle\phi\rangle=-\frac{V_{\psi}}{V} \sqrt{\frac{2 \mu^{2}}{\lambda}}+\frac{V-V_{*}}{V} \sqrt{\frac{2 \mu}{\lambda}} \equiv \varphi_{*}$

At the infinite volume limit the energy at boundary vanishes

$$
\frac{E_{\text {bid }}}{E_{\text {rT }}} \propto V^{-1 / 3} \rightarrow 0
$$

And we conclude that $E\left(\varphi^{*}\right)_{\text {nh }}=0$.
this is the famous Gibbs construction.
The twee minimum of the satem with

$\langle p\rangle=\varphi^{*}$ between the two minima is inhomogeneous. If prepared to a state in the concave region, system decays to unstable modes. In cond.matter this is called spinodal instability (spinodal decompartion) and in asomoligy tachyonic instability. It can happen eg. at the end of inflation in sine models.

Another complex part can arise from the high- T-Bupansom term. At high T the vacuum term is canceled, but mew instability cones from the cubre term

$$
\begin{aligned}
& \quad-\frac{m^{3}(\varphi, T) T}{12 \pi} \rightarrow-\frac{\left(m^{2}(\varphi, T)-i \epsilon\right)^{3 / 2}}{12 \pi} \rightarrow-e^{-\frac{3}{2}(\pi} \frac{\left|m^{2}(\varphi, \pi)\right|^{2}}{12 \pi} \\
& \Rightarrow \operatorname{lm} V_{e f(}\left(\varphi_{1} T\right)_{H T}=-\frac{\left|m^{2}(\varphi, \pi)\right|^{2}}{12 \pi} \\
& \text { Again we see that the complex part corresponds } \\
& \text { to tine concave area of the Melt. }
\end{aligned}
$$

These complex parts are relevant for the dynamics of a transition, where the field may erode strongly as a function of time, eg. at the and of inflation. \Rightarrow tachyonir particle production
But neither of these complex parts are relevant for the onset \& evolution of phase transions.

Phase transition (1st order)

This is a very complicated topic, with several dishict parts, each of which requires different there tical machinery.

1) Order of transition?
2) Then modynamios of the transition
x detent heat, σ, \ldots

- $V_{\text {eff }}$
- Lattice

$$
\begin{aligned}
&=-\frac{1}{3} R^{\circ} d r \\
&+4 \pi R^{2} \sigma \\
& R_{c} \propto \frac{\sigma}{\Delta N} \\
& R_{c} \searrow T 2 T_{c}
\end{aligned}
$$

5) $C D$-violating perturbations $\delta f_{d} \Rightarrow B A N$ (model, parameters)
6) Gw-signal (model parametion)

Bubble nucleation
This is a complicated problem, because it is monpenturbative. We can not go through the full argument here, but we go through the main posits.

First: Conridu

$$
\begin{aligned}
&|\psi(t)\rangle=e^{-i E t}|0\rangle=e^{-i\left[R(E)+i I_{m}(E)\right]+}|0\rangle \\
& \Rightarrow\langle\psi(t) \mid \psi(t)\rangle= e^{2 \operatorname{Im}(E) t}\langle\psi(0) \mid \psi(0)\rangle \\
& \equiv e^{-\Gamma(E) t}|\psi(0)|^{2} \rightarrow \begin{array}{c}
\text { expenenthas } \\
\text { decay law }
\end{array} \\
& \Rightarrow \Gamma(E)=-2 \operatorname{Im}(E) \quad E=E-\frac{i}{2} \Gamma
\end{aligned}
$$

In Field theory one would then expect that

$$
\begin{equation*}
\Gamma=-2 \operatorname{Im}(F) \tag{?}
\end{equation*}
$$

$\imath_{\text {Free energy }}$

It turns out that

$$
\begin{array}{lll}
\Gamma=-2 I m F & \text { when quantuen tunneling dominates } & \text { (Galen \& (Coleman) } \\
\Gamma=-\frac{\omega}{2 \pi} 2 I m F & \text { when thermal activation dominates } & \text { (Langer) }
\end{array}
$$

to prove this we should compute both soles of the equation: Γ and F.

Here F is the free energy of the system evaluated by "analytic continuation" of the saddle point contribution to F.

$$
F=-T \log \left\{\int D \phi_{\phi_{\phi_{i}=0}=0} e^{-S_{E}(\phi)}\right\} \simeq-T \log \left\{\begin{array}{c}
\downarrow \\
\uparrow \\
z_{0}+\bar{z} \\
\uparrow
\end{array}\right\}
$$

we are interested in instribity of costizyuntom $\phi=0$ what is this?
where \bar{z} is the contribution from the nontrivial "saddle point". Here $z_{o} \gg \bar{z}$ and $z_{0} \in \mathbb{R}$, so that

$$
\operatorname{Im} F \simeq-\frac{T}{Z_{0}} \operatorname{In} \bar{z} \approx T \operatorname{Im}\left\{e^{-S_{E}[\bar{\beta}]}\left(\frac{\operatorname{det}\left(\frac{\delta^{2} S_{E}}{\delta \phi^{2}}\right)_{\phi=\bar{q}}}{\operatorname{det}\left(\frac{\delta^{2} S_{E}}{\delta \phi^{2}}\right)_{\phi=0}}\right)^{-1 / 2}\right\}
$$

Obvious questions arise:

- what is the "saddle point"?
- Where does the imaginary part come from?
- How to compete the determinants?

The boule The saddle point configuration $\bar{\phi}(x, t)$ is a nontrivial solution to the classical equation of motion:

$$
\begin{equation*}
\left.\frac{\delta S}{\delta \phi}\right|_{\phi=\bar{\prime}}=-\partial_{\mu}^{2} \bar{\phi}+V(\phi)=0 . \tag{1}
\end{equation*}
$$

with the boundary condition $\phi(-T)=\phi(+T)=0$ as $T \rightarrow \infty$. Bounce is an cacmple of an instanton. Note that (1) describes motion in a potential $-V$. ?

If $T \ll V^{\prime \prime}$, then Euclidean time-direction is similar to spatial ones and one expects bounce to have $C(4)$-symmetry. (Vacuum tunneling care)

If $T \gg V^{\prime \prime}$, then bound configuration is very large in anis $1 / T$, the τ-direction gets spuezel and the bounce becomes C(3)-symmetric. (thermal achuection)

$$
S_{E}=\int_{d_{z}} \rho_{d_{k}^{3}} \mathcal{L} \rightarrow \beta \int_{d^{2} \times \mathcal{L}}=\beta \delta_{s}
$$

When $V^{n} \sim T$ the situation is more complicated and both effects are relevant. This is a very narrow region however, and uovally one is interested in the curse T>>V". We shall always arorume that the bounce is $\theta(d)$-symmetric.

Because bounce is an extremum, $S[\bar{\phi}]$ must be invariant in particular in the infinitesimal scale tran form $x^{\mu} \rightarrow \lambda k^{\mu}$. To this and define $\phi_{\lambda}(x) \equiv \bar{\phi}(x / \lambda)$, and

$$
\begin{aligned}
& S\left[\phi_{\lambda}\right]=\lambda^{d-2} \frac{1}{2} \int d^{d} \times\left(\partial_{0} \phi_{\lambda}\right)^{2}+\lambda^{d} \int d^{d} x V \equiv \lambda^{d-2}\langle T\rangle+\lambda^{d}\langle v\rangle \\
& \Rightarrow \quad 0=\left.\frac{\partial S\left[\phi_{\lambda}\right]}{\partial \lambda}\right|_{\lambda=1}=(d-2)\langle T\rangle+d\langle V\rangle \Rightarrow\langle V\rangle=\left(\frac{2}{d}-1\right)\langle T\rangle \\
& \Rightarrow \quad \bar{S}=\langle T\rangle+\langle V\rangle=\frac{2}{d}\langle T\rangle=\frac{1}{d} \int d^{4} x(\partial \bar{\phi})^{2}>0 \quad \text { (Good. probability } \\
& \text { makes senna.) }
\end{aligned} \quad \begin{aligned}
\left.\frac{\partial^{2} S}{\partial \lambda^{2}}\right|_{\lambda=1} & =(d-2)(d-3)\langle T\rangle+d(d-1)\langle V\rangle \\
& =(d-2)(d-3+1-d)\langle T\rangle=(2-d) \int d^{4} x\langle\partial \phi)^{2}\langle 0 \text { for } d\rangle 2 .
\end{aligned}
$$

Because $\bar{\delta}>0 \exp (-\bar{s})$ is small. On the other hand $\frac{\partial^{2} s}{\partial \lambda^{2}}<0$ means that the bounce io not a stable minimum configuration. Then must be at least one negative eigenvalue $\bar{\lambda}$ around the bounce. $\Rightarrow\left[\operatorname{det}\left(\frac{\delta^{2} s}{d \beta^{2}}\right)\right]^{-1 / 2}$ becomes complex.

$$
\underbrace{(\phi=0)}
$$

1) At a stable fixed point all eigenmodes of $\frac{\delta^{2} S_{E}}{\delta \phi^{2}}$ are strictly positive.

$$
\Rightarrow\left[\operatorname{det}\left|\frac{\delta^{2} S_{E}}{\delta \phi^{2}}\right|_{\phi=0}\right]^{-1 / 2}=\int D \phi \exp \left\{-\int_{X_{E}} \frac{1}{2} \phi_{E} \frac{\delta^{2} S_{E}}{\delta \phi^{2}} \phi_{E}\right\} \text { is well defined. }
$$

Moving to eigen-basas: $\left.\quad \frac{\delta^{2} S_{2}}{\delta \phi^{2}}\right|_{0} \delta \phi_{n}=\lambda_{0, n}^{2} \delta \phi_{n}$
and: $\delta ⿻_{n} \equiv c_{n} f_{n}$, sech that $\int_{x_{E}} f_{n} f_{m}=\delta_{m m}$
One can ware

$$
\left[\operatorname{det}\left(\frac{\delta^{2} S_{E}}{\delta \phi^{2}}\right)_{\phi=0}\right]^{-1 / 2}=N \int_{-\infty}^{\infty} \pi \frac{d c_{n}}{\sqrt{2 \pi}} \exp \left\{-\sum \frac{1}{2} \lambda_{n}^{(9)} c_{n}^{2}\right\}=\prod_{n} \sqrt{\frac{1}{\lambda_{n}^{(/ \omega}}} .
$$

2) Around the saddle point configuration we can do the same:

$$
\left.\frac{\delta^{2} \delta_{E}^{2}}{\delta \phi^{2}}\right|_{\bar{\phi}} \delta \bar{\phi}_{n} \equiv \bar{\lambda}_{n} \delta \bar{\phi}_{n} ; \quad \delta \bar{\phi}_{n} \equiv \sum c_{n} \bar{f}_{n} \text {, with } \int_{x} \bar{f}_{n} \bar{f}_{m}=\delta_{n m}
$$

However, the Gaussian integration does not work always, because:

$$
\text { - there is one negative mode }\left.\quad \frac{\delta^{2} \delta_{E}}{\delta \phi^{2}}\right|_{\bar{\phi}} \delta \bar{\phi}_{1}=-\bar{\lambda}_{1} \delta \phi_{1}
$$

- there are a number of zens roods: $\left.\frac{\delta^{2} S_{E}}{\delta \phi^{2}}\right|_{\bar{\phi}} \delta \bar{\phi}_{i}=0$
$2 e r o$ modes
Zero. modes correspond to arbitrary placing of the $s p$-configuration $\bar{\Phi}$ in the space, and so they correspond to translations: $\delta \varphi_{n} \propto \partial_{\mu} \varphi$. Indeed: $a^{\mu} \partial_{\mu} \bar{\phi} \approx \bar{\phi}(x+a)-\bar{\phi}(x)$.
Also

$$
\begin{aligned}
& S_{E}[\varphi]=\int_{X}\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+V(\phi)\right] . \\
& \frac{\delta S_{E}}{\delta \bar{\phi}}=0 \Rightarrow-\partial_{\mu}^{2} \bar{\phi}+V^{\prime}(\bar{\phi})=0 \Rightarrow \underbrace{\left(-\partial_{\mu}^{2}+V^{\prime \prime}(\bar{\phi})\right) \partial_{\alpha} \bar{\phi}=0 .}_{\delta^{2} s / \delta \bar{\phi}^{2}} \text { zero mads! }
\end{aligned}
$$

- The zero-mades do not exist (mat er no sense) for the homogeneous $\phi=0$ - configuration.
- Gaussian integration over zero modes would be a disaster. To define them properly one must go to finite volume.
First, from $\int d^{d} x\left(\partial_{2}, \bar{\phi}\right)^{2}=d \bar{S}_{E}$, and the $O(d)$-symmetry of $\bar{\Phi}$, we get $\int d_{x}^{d} x\left(\partial_{x_{n}} \not\right)^{2}=\bar{\delta}_{E}$ for each individual translation.
Then, setting $\partial_{x_{n}} \bar{\phi}=\alpha f_{\text {on }}$ and requinng $\int d^{4} \times f_{\text {fonfom }}=\delta_{n m}$, we get

$$
1=\frac{1}{\alpha^{2}} \int d^{4} x\left(\partial_{n} \varphi\right)^{2}=\frac{1}{\alpha^{2}} \bar{S}_{E} \Rightarrow f_{o n}=\left(\bar{S}_{E}\right)^{-1 / 2} \partial_{y_{m}} \bar{\phi}
$$

Now $\lim _{k \rightarrow \infty}\left(1+\frac{c_{0 n} f_{0 n}}{k}\right)^{k} \bar{\phi}=e^{c_{0 n} \bar{S}_{E}^{-1 / 2} \partial_{x}} \bar{\phi}=\bar{\phi}\left(x+c_{0 n} \bar{S}_{E}^{-1 / 2}\right)$, so we should restrict $C_{o n} S_{E}^{-1 / 2}$ to range $[0, L] . \Rightarrow C_{o n} \in\left[0, L S_{E}^{-l_{2}}\right]$.

$$
\Rightarrow \prod_{n}^{d} \int \frac{d c_{n_{0}}}{\sqrt{2 \pi}}=\left(\frac{\bar{S}_{E}}{2 \pi}\right)^{d / 2} V_{d}
$$

Thus zers-msdes guarantee that $\ln F \alpha V$.

The negative anole shard to prove
The result is quite expected. As one mode becomes negative $\pi \sqrt{\frac{1}{\lambda_{i}}}$ becomes complex. However, there must be just ene negative node, and shire is an additional factor $1 / 2$, which comes from the analytic continuation. These are sticky sous, Following Callan \& Coleman 1g7t, consseler a particular path in the configuration space, labelled by c_{1}, which pares through the saddle point along the unstable direction. This contubutes a term J to partition function:

$$
J=\int_{c_{b}}^{\infty} \frac{d c_{1}}{\sqrt{2 \pi}} e^{-S\left[c_{1}\right]}
$$

to 2. The path is chosen such that

$$
\phi \equiv 0 \text { occurs at, say } c_{10}=0,
$$

- Z, the bounce, occurs at $c_{0}=c_{10}^{*}$
- ϕ_{1}, the negative mode, is tangent to the path at $c_{0}=c_{10}^{*}$.
$\Rightarrow \quad \phi_{0}=0$ is the global minimum of S

- Φ is the local maximum of S, along the path

For $C_{10}>C_{10}^{*} \quad S \rightarrow-\infty$ because V is negative there.

"starting from" the stable situation, one deforms the path, as Shown in frye, the integral along c_{10} remains finite for $\lambda_{1}<0$, but J picks a complex part.

$$
\begin{aligned}
& \ln J=\int_{c_{1}^{*}}^{c_{1}^{*}+i \infty} \frac{d c_{1}}{\sqrt{2 \pi}} e^{-\delta\left[c_{1 k}\right]-\frac{1}{2} s_{1}^{n}\left[c_{i}^{*}\right]\left(c_{1}-c_{1}^{*}\right)^{2}+\cdots} \\
& \simeq e^{-\delta[\bar{\phi}]} \int_{0}^{\infty} \frac{d y}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left|s^{\prime \prime}[\bar{\phi}]\right| y^{2}}=\frac{1}{2}\left|s^{\prime \prime}[\bar{\phi}]\right|^{-1 / 2} e^{-\delta[\bar{\phi}]}=\frac{1}{2} \sqrt{\frac{1}{\left(\lambda_{1}\right)}} e^{-\delta[\bar{\phi}]} \\
&-\infty
\end{aligned}
$$

So the negative mode gives $\frac{1}{2}$ of the "full fluctuation correction", because the Gaussian integral passes over only "half" of the saddle point path.

We should still relate $\operatorname{Im} F$ to the decay rates. This pant is even lengthier (albeit more accurately developed than finding 1 mF), and we only go through some simple bccumples. More generally:
$T=0$: (or $T \ll V^{\prime \prime}$) case. Callan \& Coleman nicely sure that summing over n number of bounces, leads to a connection to the ground state energy $\delta E=F \Rightarrow-2 l m F$ gases the decay rate as suggested "mizially. [Callan \& Coleman Phys.Rev.D16 (1977) 1762]

$$
\Gamma=-2 \operatorname{Im} F
$$

$T \gg V^{n}$ case. Langer [J.s. Langer, Annals of Physics 54 (1967) 258] gives a general proof that the decay rate of a metastable state via thermal activation is dominated by the flow
 across the saddle point configuration, where the rate can again be related bo ImF, this time by:

$$
\Gamma=\frac{\left|\lambda_{1}\right|}{2 \pi T} 2 \operatorname{Im} F \quad \frac{\lambda_{i}}{2,5}
$$

\uparrow first Matoubara frequency
(of course F in the $T \ll V^{\prime \prime}$ and $T \gg V^{\prime \prime}$ cases one very different.). Dangers genend proof beautiful but lengthy.

At any rate we have the result for the nucleation rate at finite T $\left(\lambda_{1}<2 \pi T\right): \quad$ 'means exclude zero-modes (but ont negative mole)

$$
\frac{\Gamma}{V}=\frac{\lambda_{-}}{2 \pi}\left|\frac{\operatorname{det}^{\prime}\left(\partial_{\mu}^{2}-V^{\prime \prime}(\bar{\phi})\right)}{\operatorname{det}\left(\partial_{\mu}^{2}-V^{\prime \prime}(0)\right)}\right|^{-1 / 2}\left(\frac{S_{3 d}}{2 \pi T}\right)^{3 / 2} e^{-S_{3}(\bar{\beta}) / T}
$$

cohere in the end are used $S_{E}=\beta S_{3 d}$. Orally at the time of nucleation $S_{3 d} / T \gg 1$, so one wa bally drops to $\sigma(1)$-terms $\frac{\lambda_{-}}{2 \pi T}$ and $\left|\frac{\operatorname{det}^{1}}{d e t}\right|^{1 / 2}$, and solves Γ / V from

$$
\frac{\Gamma}{V} \simeq T^{4}\left(\frac{S_{34}}{2 \pi T}\right)^{3 / 2} e^{-S_{38}(\beta) / T}
$$

We set $\frac{\lambda_{=}}{2 \pi}=T$ and also approximate dimensionally $\left|\frac{\operatorname{dit}(t)}{\operatorname{dec}()^{-1}}\right|^{-1 /} \sim T^{3}$ this may le off by a factor $0\left(10^{ \pm 1}\right)$.
Simple 1D-example (Affect)
Consider the id example of particle is the potential at right.
Classical flues oven the barrier ib

denominator is dominated by $x \approx 0$-fluctuations, where $V \approx \frac{1}{2} V^{\prime \prime}(0) x^{2}=\frac{1}{2} \omega_{0}^{2} k^{2}$ It gives classically:

$$
z_{0} \simeq \frac{1}{2 \pi} \int d p e^{-\frac{1}{2} p p^{2}} \int d x e^{-\frac{1}{2} \beta \omega_{0}^{2} x^{2}} \simeq \frac{1}{2 \pi} \sqrt{\frac{2 \pi}{\beta}} \sqrt{\frac{2 \pi}{\beta \omega_{0}^{2}}}=\frac{1}{\beta \omega_{0}}
$$

- Nominator has ban designed to evaluate the faure over the maximum of $x=\bar{x}$

$$
\begin{aligned}
& =e^{-\beta V_{0}} \frac{1}{2 \pi} \int_{0}^{\infty} d p p e^{-\frac{\beta}{2} p^{2}}=e^{-\beta V_{0}} \frac{1}{2 \pi}\left(-\frac{1}{\beta}\right) \int_{0}^{\infty} d p \partial_{p} e^{-\beta p^{L}}=\frac{e^{-\beta V_{0}}}{2 \pi \beta} \\
& \Rightarrow \Gamma_{\text {clos }}=\frac{\omega_{0}}{2 \pi} e^{-\beta V_{0}}
\end{aligned}
$$

Quantum mechanically: The flex is given by
$\checkmark^{\text {transmission werflyient }}$

$$
\Gamma=\frac{\operatorname{Tr} \hat{\rho}|t|^{2}}{\operatorname{Tr} \hat{\rho}} \simeq \frac{1}{z_{0}} \int \frac{d E}{2 \pi}|t(E)|^{2} e^{-\beta E}
$$

Convidu the care $\frac{\beta \omega}{2 \pi}<1$, where $\omega^{2} \equiv-V^{\prime \prime}(\bar{x})$

$$
\begin{aligned}
V(x) & =V_{0}+\frac{1}{2} V^{\prime \prime}(\bar{x})(x-\bar{x})^{2} \\
& \equiv V_{0}-\frac{1}{2} \omega^{2}(x-\bar{x})^{2} .
\end{aligned}
$$ In this case the flux is dominated by thermal activation by modes with $E \geqslant V_{0}$. In this region (Solving Ne. Schrodinger equation. Not simph: eg. Landau \& difshiz)

$$
|z|^{2}=\left(1+e^{-2 \pi \frac{E-V_{0}}{\omega}}\right)^{-1}
$$

Then $\quad \int \frac{d E}{2 \pi}|t(E)|^{2} e^{-\beta E}=\frac{1}{2 \pi} e^{-\beta V_{0}} \int_{-\infty}^{\infty} d \epsilon \frac{e^{-\beta \epsilon}}{1+e^{-\frac{2 \pi}{\omega} \epsilon}}$

$$
\begin{aligned}
& =\frac{1}{2 \pi} e^{-\beta V_{0}} \frac{\omega}{2 \pi} \int_{-\infty}^{x} d x \frac{e^{-\left(\frac{\beta \omega}{2 \pi}\right) x}}{1+e^{-x}} \\
& =\frac{1}{2 \pi} e^{-\beta V_{0}} \frac{\omega}{2 \pi} 2 \pi i \sum_{m=0}^{\infty} e^{-i\left(\frac{2 \omega}{2 \pi}\right)(2 n+1) \pi}
\end{aligned}
$$

$$
; x \equiv \frac{2 \pi}{\omega} \epsilon
$$

are in tegral $\rightarrow 0$ when $\frac{\beta \omega}{2 \pi}<1$

$$
\begin{aligned}
& =\frac{1}{4 \pi} e^{-\beta V_{0}} 2 i \omega e^{-i \beta \frac{\beta \omega}{2}} \sum_{n=0}^{\infty}\left(e^{-i \beta \omega}\right)^{n} \\
& =\frac{1}{4 \pi} e^{-\beta V_{0}} \omega \frac{2 i e^{-j \frac{\beta \omega}{2}}}{1-e^{-i \beta \omega}}=\frac{\omega}{2 \pi} \frac{1}{2 \sin \left(\frac{\beta \omega}{2}\right)}
\end{aligned}
$$

The denominator is familiar to u : (mow computed as quantum)

$$
z_{0}=\sum e^{-\left(n+\frac{1}{2}\right) \beta \omega_{0}}=\frac{1}{2 \sinh \frac{1}{2} \beta \omega_{0}}=\left[\operatorname{det}\left(\partial_{t}^{2}+\omega_{0}^{2}\right)\right]^{-1 / 2}
$$

Thus

$$
\Gamma=\frac{\omega}{2 \pi} \frac{\sinh \left(\frac{\beta \omega_{0}}{2}\right)}{\sin \left(\frac{\beta \omega}{2}\right)} e^{-\beta V_{0}} \longrightarrow \frac{\beta \omega<1}{\longrightarrow} \frac{\omega_{0}}{2 \pi} e^{-\beta V_{0}}
$$

We observe that $\frac{1}{2 \sin \left(\frac{\beta \omega}{2}\right)}=\frac{1}{2 \sinh \left(i \frac{\beta \omega}{2}\right)}=\left[\operatorname{det}\left(\partial_{t}^{2}+(i \omega)^{2}\right)\right]^{-1 / 2}$ analytically

$$
=\left[\operatorname{det}\left(\partial_{t}^{2}-\omega^{2}\right)\right]^{-112} \quad \text { continued } \quad \text { bo } \omega \rightarrow i \omega
$$

so we do have

$$
\Gamma=\frac{\omega}{2 \pi}\left|\frac{\operatorname{det}\left(\partial_{t}^{2}+V^{\prime \prime}(\bar{x})\right)}{\operatorname{det}\left(\partial_{t}^{2}+V^{\prime \prime}(0)\right)}\right|^{-1 / 2} e^{-\frac{\tilde{\sigma}}{}-\beta S_{34}}
$$

Here we had no zero modes, but the negative mode behaved as expected. Also, note that here the nation of the fluctuation delenarinants really is small, aroumary $\frac{\beta L 5}{2} \leqslant O(1)$ (calculation armed it was $\lesssim \pi$). This is really the care in almost all relevant applications.

Bubble nucleation in 3d
we argue that by symmetry the bounce solution in Bd Euelidiu, case ($T \gg \omega$) is $O(3)$-symmetric bubble. The classical Som, corresponding to $3 d$-action

$$
S_{s d}=\beta \int d^{3} r\left(\frac{1}{2}(\nabla \varphi)^{2}+V(\varphi, T)\right)
$$

for such contryuration, $\bar{\varphi}=\bar{\varphi}(r)$ is

$$
\frac{d^{2} \bar{\varphi}}{d r^{2}}+\frac{2}{r} \frac{d \bar{\varphi}}{d r}=V^{\prime}(\bar{\varphi}, T)
$$

with $\bar{\varphi}(\infty)=0$ and $\left.\frac{d \bar{\varphi}}{d r}\right|_{r=0}=0$. Such equation can always he solved numerically, when the potential $V^{\prime}\left(\varphi_{1} T\right)$ is defied. Let us pause to do that:A good analytic model potential is

$$
V(\varphi, T)=\frac{1}{2} \gamma\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-\frac{1}{3} \delta T \varphi^{3}+\frac{\lambda}{4} \varphi^{4}, ~ i \varphi, ~=-\mu^{2}+T^{2} \text { eg } T_{0}^{2} \equiv \frac{\mu^{2}}{\gamma}
$$

Clearly at $T=T_{0} \quad \partial_{\varphi}^{2} V_{T}(\varphi) \equiv 0$. We can rewrite $V_{T}(\varphi)$ as

$$
\begin{aligned}
& =0 \text { at } T=T_{c} \\
& V(\varphi, T)=\varphi^{2}\left[\frac{\lambda}{\frac{\lambda}{4}\left(\varphi-\frac{2 \delta}{3 \lambda}\right.} T\right)^{2}+\frac{1}{2} \gamma(\underbrace{\left(1-\frac{2 \delta^{2}}{9 \lambda \gamma}\right) T^{2}-T_{0}^{2}})] \\
& \Rightarrow T_{c}^{2}=\frac{T_{0}^{2}}{1-\frac{2 \delta^{2}}{9 \lambda y}} \text { and } \varphi_{c}=\frac{2 \delta}{3 \lambda} T_{c} \Rightarrow \frac{\varphi_{c}}{T_{c}}=\frac{2 \delta}{3 \lambda} \\
& \rightarrow 1-\left(\frac{T_{0}}{T_{e}}\right)^{2}=\frac{28 \lambda^{2}}{9 \lambda_{y}}
\end{aligned}
$$

We continue study potential more a little later. For now we observe that near T_{c} we expect that the nucleating would be very large, such that $\partial_{r}^{2} \bar{\varphi} \gg \frac{2}{r} \delta_{r} \bar{\varphi}$ near the boundary. We may therefore use

$$
\begin{equation*}
\frac{d^{2} \bar{\varphi}}{d r^{2}} \simeq V^{\prime}(\bar{\varphi}) \tag{1}
\end{equation*}
$$

thin wall labile
If $V=\frac{\lambda}{4} \varphi^{2}\left(\varphi-\varphi_{c}\right)^{2}=\frac{\lambda \varphi_{c}^{4}}{4} g^{2}(g-1)^{2}(\varphi \equiv \varphi c g)$ it is larry to write the equation in form

$$
\begin{aligned}
& \varphi_{c} \frac{d^{2} g}{d r^{2}}=\frac{\lambda \varphi_{c}^{3}}{4} \partial_{g}\left[g^{2}(g-1)^{2}\right] \\
\Leftrightarrow & \frac{d^{2} g}{d y^{2}}=4 g\left(2 g^{2}-3 g+1\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{g}[] & =2 g(1-g)^{2}+2(g-1) g^{2} \\
& =4 g^{3}-6 g^{2}+2 g
\end{aligned}
$$

where $y=r / l_{w}$, with $l_{w}^{-2}=\sqrt{\frac{\pi}{2}} \varphi_{c}=\sqrt{m^{2}\left(T_{c}\right)}$.

$$
\text { Indued: } m^{2}\left(\varphi_{u} T_{c}\right)=\left(T_{c}^{2}-T_{0}^{2}\right) \gamma
$$ It is now cosy to see that

$$
=x \frac{2 \delta^{2}}{9 \lambda \gamma} T_{c}^{2}=\frac{2 \delta^{2}}{9 \lambda} \frac{9 \lambda^{2}}{4 \delta^{2}} p_{c}^{2}
$$

$$
\bar{\varphi}=\frac{\varphi_{c}}{2}\left(1-\tanh \frac{r-R_{c}}{l_{w}}\right)
$$

$$
=\frac{\lambda}{2} \varphi_{c}^{2} \Rightarrow m_{c}=\sqrt{\frac{\lambda}{2}} \varphi_{c}
$$

is a solution. This is exact at T_{C} and a good approximation near T_{L}. For our current approximation somme it is orential that $R_{c} 川 l_{w}$ to be seen shortly). We want to use the nucleation formula $\Gamma=T\left(\frac{S_{3 \alpha}}{2 \pi T}\right)^{3} \exp \left(-S_{3 \mu} I_{T}\right)$ to eshmate the nucleation rate. For this we need an approximation for $S_{3 d}(\bar{\varphi})$ for the bounce (critical bubble). Let as compute $S_{3 d}$ for arbivary radius bubble in thin wall approximation (1). The action has two contributions: 1) volume contribution $\delta S_{s d}^{V}$ and 2) surface contribution $\delta \delta_{3 d}^{\sigma}$

1) Volume contribution inside the bubble $\partial \bar{\rho} / \partial r \simeq 0$ and $V=-\Delta V$

$$
\delta S_{3 a}^{V} \simeq-\int d^{2} r \Delta V=-\frac{4 \pi}{3} R^{3} \Delta V
$$

2) Surface contribution.

$$
\begin{aligned}
\delta S_{s d}^{\sigma} & =4 \pi R^{2} \int_{d r} \frac{1}{2}\left[\left(\partial_{r} \varphi\right)^{2}+V(r)\right] \\
& =4 \pi R^{2} \sigma
\end{aligned}
$$

where $\sigma \equiv \int d_{r}\left(\partial_{r} \varphi\right)^{2}=\operatorname{surface} \operatorname{ten} s i o n$
Altogether then

$$
\begin{aligned}
& S_{3 d}(R)=-\frac{4 \pi}{3} R^{3} \Delta V+4 \pi R^{2} \sigma, \\
& \frac{d S_{32}}{d R}=-4 \pi R^{2} \Delta V+8 \pi R \sigma \equiv 0 \\
& \Rightarrow R=0 V R=\frac{\partial \sigma}{\Delta V} \equiv R_{c} \\
& \Rightarrow S_{3 d}(R)=-\frac{4 \pi}{3}\left(\frac{2 \sigma}{\Delta V}\right)^{3} \Delta V+4 \pi\left(\frac{2 \sigma}{\Delta V}\right)^{2} \sigma=\frac{16 \pi}{3} \frac{\sigma^{3}}{(\Delta V)^{2}} \quad: \text { dimensionero }
\end{aligned}
$$

We thus get for the nudeation rate including fluctuations around the bounce:

$$
\frac{\Gamma}{V} \simeq T^{4}\left(\frac{8}{3 T} \frac{\sigma^{3}}{\Delta V_{T}^{2}}\right)^{3 / 2} e^{-\frac{16 \pi}{3 \Delta \sigma_{j}^{3} T}}
$$

We now see that M / N is defined by ΔV_{T} and σ. These both depend on the temperature, so Γ / N is also (strongly) dependent on T. Let us Study how we get these quantities from. $V\left(P_{1} T\right)$.
a) Surface tension. We compute the 1d-action using

$$
\begin{aligned}
& \partial_{r} \bar{\varphi} \partial_{r}^{2} \bar{\varphi}=\partial_{r} \bar{\varphi} V^{\prime}(\bar{\varphi}) \Leftrightarrow \partial_{r}\left[\frac{1}{2}\left(\partial_{r} \bar{\varphi}\right)^{2}-v\right]=0 \\
& \Rightarrow \quad \sigma=\int d r\left(\partial_{r} \bar{\varphi}\right)^{2}=\int d \varphi\left|\partial_{r}\right|=\int_{0}^{2 \omega} \sqrt{2 v} d \varphi \\
&=\sqrt{\frac{\lambda}{2}} \varphi_{c}^{3} \int_{0}^{1} d g g(1-g)=\frac{\varphi_{c}^{3}}{6 \sqrt{2}} \sqrt{\lambda}=\frac{2 \sqrt{2}}{81} \frac{\delta^{3}}{\lambda^{5 / 2}} T_{c}^{3}
\end{aligned}
$$

b) Because $V\left(\varphi_{T} T\right) \equiv 0, \Delta V=-V\left(\varphi_{T}, T\right)$, where φ_{T} is the broken minimum of $T \neq 0$:

$$
\begin{aligned}
& \partial_{\varphi} V\left(\varphi_{T} T\right)=0 \Leftrightarrow \varphi\left(\gamma\left(T^{2}-T_{8}^{2}\right)-\delta T \varphi+\lambda \varphi^{2}\right)=0 \\
& \Rightarrow \quad \varphi=0 \text { or } \varphi_{T}=\frac{\delta T}{2 \lambda}\left(1+\sqrt{1-\frac{8}{g} \bar{\lambda}(T)}\right),
\end{aligned}
$$

where $\bar{\lambda}(T)=\frac{9}{8} \frac{4 \lambda \gamma}{\delta^{2}}\left(1-\frac{T_{0}^{2}}{T^{2}}\right)=\frac{9 \lambda y}{2 \delta^{2}}\left(1-\frac{T_{0}^{2}}{T^{2}}\right)=\frac{T^{2}-T_{0}^{2}}{T_{c}^{2}-T_{0}^{2}}$.
One could just compute $\Delta V\left(\varphi_{T}, T\right)$ numerically. However, we con get a tractable approesmation defining the latent heat

$$
\begin{array}{r}
\int=\frac{\partial P}{\partial T} ; P=-V ; \rho+P=s T \\
L(T) \equiv \Delta \rho \equiv \Delta(-P+s T)=\left[V\left(\varphi_{T} T\right)-T \frac{d V}{d T}\right]_{\varphi_{T}}^{0}
\end{array}
$$

Latent heat heat is the internal energy released is the transition. We may in particular define $L_{C}=L\left(T_{C}\right)$

$$
\begin{aligned}
& V\left(\varphi_{1} T\right)=\frac{1}{2} \gamma\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-\frac{1}{3} \delta T \varphi^{3}+\frac{\lambda}{4} \varphi^{4} \\
& L_{c}=\left.T_{c} \frac{d}{d T} V\left(\varphi_{,} T\right)\right|_{\varphi=\varphi_{T}}=T_{c}\left(\gamma T_{c} \varphi_{c}^{2}-\frac{1}{3} \delta \varphi_{c}^{3}\right)= \\
&=\left[\gamma\left(\frac{2 \delta}{3 \lambda}\right)^{2}-\frac{1}{3} \delta\left(\frac{2 \delta}{3 \lambda}\right)^{3}\right] T_{c}^{4}=\frac{4 \delta^{2} \gamma}{9 \lambda_{c}^{2}} T_{0}^{2} T_{c}^{2}
\end{aligned}
$$

Anticipating now that $T_{c}-T_{n} \ll T_{c} \quad\left(T_{n}=\right.$ nucleation temperature $)$, we can conte

$$
\Delta V_{T}=-V\left(\varphi_{T}, T\right) \simeq \frac{1}{T_{c}} L_{c}\left(T_{c}-T\right) \simeq \frac{4 \delta^{2} \gamma}{9 \lambda^{2}} T_{0}^{2} T_{c}^{2}\left(\frac{T_{c}-T}{T_{c}}\right)
$$

We now hare eventually an estimate for $\delta_{3 d} / T_{c}$ in thin wall limit:

$$
\begin{aligned}
\frac{\bar{S}_{3 d}}{T_{c}}=\frac{16 \pi}{3} \frac{\sigma^{3}}{\Delta V T_{c}} & \simeq \frac{16 \pi}{3}\left(\frac{2 \sqrt{2}}{81} \frac{\delta^{3}}{\lambda^{5 / 2}}\right)^{3}\left(\frac{9 \lambda^{2}}{4 \delta^{2} \gamma}\right)^{2} \frac{\simeq 1}{\left(\frac{T_{c}}{T_{0}}\right)^{2}}\left(\frac{T_{c}}{T_{c}-T}\right)^{2} \\
& =\frac{16 \sqrt{2 \pi} \pi}{3^{8}} \frac{\delta^{5}}{\sqrt{\lambda} \gamma^{2}}\left(\frac{T_{c}}{T_{c}-T}\right)^{2} \simeq 0,011 \frac{\delta^{5}}{\sqrt{\lambda \gamma^{2}}}\left(\frac{T_{c}}{T_{c}-T}\right)^{2}
\end{aligned}
$$

Note the strong sensitivity on δ : the larger bump, the move larger is $S_{3 d}(\bar{q}) / T_{L}$ \Rightarrow more supercooling is seeded to make \bar{S}_{32} / T_{c} small enough $\Rightarrow T_{n}-T_{c}$ sur gr Incleed, we can get a rough estimate for T_{n} just by retting $S_{b d} / T_{c} \equiv 1$ white gives

$$
T_{n}-T_{c} \simeq 0,1 \frac{\gamma^{5 / 2}}{\lambda^{1 / n} \gamma} T_{c}
$$

Nucleation temperature.
A more appropriate condition for T_{n} could le defined by setting T_{n} to be the temperature at which one nucleates one bubble / haber horizon.

$$
1 \equiv \int d t V_{H} \frac{\Gamma}{V}(t)=\int d t\left(\frac{4_{\pi}}{3} H^{-3}\right) T^{4}\left(\frac{\bar{S}_{3 d}}{2 \pi}\right)^{3 / 2} \exp \left(-S_{د d} / T\right)
$$

To evaluate this carefully note first that in radiation dominance ($\mathrm{Ha} \mathrm{a}^{-2}$)

$$
H=\frac{\dot{a}}{a}=\frac{1}{2 t}=\# T^{2} \Rightarrow \text { below } T_{c}: \frac{t-t_{c}}{t_{c}}=2 \frac{T_{c}-T}{T_{c}} ;
$$

Then we see that $S_{3 d} / T_{c} \propto \frac{1}{\delta T_{c}^{2}} \propto \frac{1}{\delta t^{2}} \Rightarrow \partial_{t}(\beta s) \simeq-2(\beta s) \delta t^{-1}$. These quantities diverge at $t=z_{c}$ but we can expand $\beta S_{s a}$ around the yet umbenown t_{n}

$$
\beta \bar{S}_{3 \alpha} \simeq \beta \bar{S}_{3 d}\left(t_{n}\right)+\left(\beta \bar{S}_{3 a}\right)^{\prime}\left(t_{n}\right)\left(t-t_{n}\right)+\cdots
$$

Obviously $\left(\beta s^{\prime}\right)\left(t_{n}\right)=-\frac{1}{\delta t_{c}}(\beta s)\left(t_{n}\right)$. By far dominant t-dependence of M is in the exponent and the integral is overwhelmingly dominated by $t \approx t_{n}$ we them have:

Which gives simply:

$$
\simeq 2 \frac{T_{c}-T_{n}}{T_{c}}
$$

($\frac{8 T}{T} \ll 1$; so to first

$$
\begin{gathered}
e^{(\beta \bar{S})_{n}}=\frac{1}{6 \sqrt{2 \pi}}(\underbrace{T_{n}}_{n})^{4} \frac{t_{n}-t_{c}}{t_{n}}(\beta \bar{S})_{n}^{c / 2} \\
\simeq\left(\frac{T_{c}}{H_{c}}\right)^{2}
\end{gathered}
$$

$$
\Leftrightarrow \quad\left(\beta \bar{S}_{3 c}\right)_{m}=-\log (3 \sqrt{2 \pi})+4 \log \left(\frac{T_{c}}{H_{c}}\right)+\log \frac{T_{c}-T_{m}}{T_{c}}+\frac{1}{2} \log \left(\beta \bar{S}_{x}\right)
$$

This equation can be solved iteratively for any $\bar{s}_{\text {sd }}$. Plugging in

$$
H \equiv\left(\frac{4 \pi^{3}}{45} g_{*} \frac{T^{4}}{M_{r e}^{2}}\right)^{1 / 2} \simeq 17 \frac{T^{2}}{M_{r e}} \Rightarrow \frac{T_{c}}{H_{c}} \simeq \frac{1}{17} \frac{M_{r e}}{T_{c}} \simeq 7.22 \cdot 10^{15} \mathrm{Gev} .10^{15}\left(\frac{100}{T_{c}}\right)
$$

Then we already wee that $\beta \bar{S}_{2 d}$ is rather large ≈ 100 :

$$
\left(\beta \bar{S}_{3 d}\right)_{n} \simeq 144.0+4 \log \left(\frac{100}{T_{c}}\right)+\log \frac{T_{c}-T_{n}}{T_{c}}+\frac{1}{2} \log \left(\beta \bar{S}_{s_{0}}\right)
$$

If we now set: $\left(\beta \bar{S}_{3 \alpha} d_{n} \equiv 0.011 \alpha\left(\frac{T_{c}}{T_{c}-T_{h}}\right)^{2}\right.$, when e in our model $\alpha=\delta 5 / \sqrt{\lambda} \gamma^{2}$, we can further set

$$
\begin{aligned}
\frac{\Delta T_{n}}{T_{c}} & =0.1 \sqrt{\alpha}\left(139,5+4 \log \left(\frac{100}{T_{c}}\right)+\frac{1}{2} \log \alpha\right)^{-1 / 2} \\
& \simeq 8,92 \times 10^{-3} \sqrt{\alpha}\{1-\underbrace{0,014\left\{\log \left(\frac{100}{T_{c}}\right)\right.}_{\text {sal correction }}+\frac{1}{8} \log \sqrt{Q})\}
\end{aligned}
$$

It is now clear that even in very Strong transitions, when $\alpha \sim \sigma(1) \Delta T_{n}$ is at $G(\%)$-level of T_{c}

Let us now male some numerical estimates: In the MSM: (ε_{α})

$$
\begin{aligned}
& \lambda \simeq \frac{G_{F} m_{n}^{2}}{\sqrt{2}} \simeq 0,129 \\
& \gamma \simeq \frac{1}{48}\left(24 \lambda+9 g^{2}+3 g^{12}+12 y_{t}^{2}\right) \simeq 0,40 \\
& \delta \simeq \frac{3}{12 \pi}\left((2 \lambda)^{3 / 2}+2\left(2\left(\frac{g^{2}}{4}\right)^{3 / 2}+\left(g^{2}+g^{12}\right)^{3 / 2}\right) \simeq 0,03\right.
\end{aligned}
$$

$$
m_{W}^{2}=\frac{g^{2} y^{2}}{4}
$$

$$
m_{z}^{2}=g_{\frac{2}{2}+y^{12}-\varphi^{2}}
$$

$$
m_{z}^{2}=\frac{y^{2}}{2} \varphi^{2}
$$

$$
m_{n}^{2}=2 \lambda v^{2}
$$

$$
\sqrt{2} G_{F}=\frac{g^{2}}{4 m_{0}^{2}}=\frac{1}{v^{2}}
$$

$$
\Rightarrow \lambda=m_{n}^{2} / 2 v^{2}=\frac{G_{F} m_{n}^{2}}{\sqrt{2}}
$$

$$
g \simeq \frac{2 \mu_{6}}{v} \simeq 0,65
$$

Because δ is so small, the msm -transition is very

$$
\sqrt{g^{2}+y^{12}}=\frac{2 H_{7}}{v} \simeq 0,74
$$ whale. Formally $T_{0}^{2} \equiv \frac{2 \mu^{2}}{\gamma}=\frac{m_{n}^{2}}{\gamma^{2}}$;

$$
g^{\prime}=0,35
$$

$$
\begin{aligned}
T_{0} & \simeq 197,7 \mathrm{GeV} \quad\left(\sim 0 \mathrm{k}, \quad \text { dattica: } T_{c} \simeq 159,5 \mathrm{GeV}\right. \\
T_{c} & \simeq 198,4 \mathrm{GeV} \\
T_{c}-T_{n} & \simeq 1.2 \mathrm{MeV} \quad \text { Ridiculous! }
\end{aligned}
$$

reflects the feet the at transition very weak.

These numbers reflect the fact that sm.transition is very weak. It actually is not first order at all, but a cors-oves. All, wove get

$$
\frac{V_{c}}{T_{c}} \simeq \frac{2 \delta}{3 \lambda} \simeq 0,1531 . \quad \text { EUBG needs } \frac{V_{c}}{T_{c}} \geq 1
$$

or rather $\quad \frac{v_{n}}{T_{n}} \approx 1$,
but $\frac{V_{n}}{T_{n}}=0,1533$
τ almost the same.

How to improve?

$$
\int^{m} \stackrel{T_{c}}{ } \times 100 \mathrm{GeV}
$$

- New light boronic dea's with large coupling to higges
- 2-(or multi) step transitions.

For example, if one adels 6 new tonic species (R-handed, light stops in the MSSM), then we must add

$$
\begin{array}{rlrl}
\Delta \delta=6 / 48 & \text { and } \quad \Delta \delta=6 / 4 \pi \\
\Rightarrow \quad & & & \\
& T_{0} & \simeq 172,5 \mathrm{GeV} & \text { and } \frac{v_{c}}{T_{c}} \\
& \simeq 0,769 \\
T_{c} & \simeq 186.1 \mathrm{GeV} & & \frac{v_{n}}{T_{n}} \simeq 0.772
\end{array}
$$

moderate change
dremeti chance!

Our approximations are a little curdle. In a more careful colluation the light stop scans world work, but it is ruled out by experiments

2-step transitions
Add new scalars coupled to h :

$$
\begin{aligned}
V(h, s, T)= & -\mu^{2}|H|^{2}+\lambda|H|^{4}+\lambda_{h c}|H|^{2} s^{2} \\
& -\mu_{s} s^{2}+\frac{\lambda_{s}}{4} s^{4}
\end{aligned}
$$

correct just masses: $-\mu^{2} \rightarrow-\mu^{2}+c_{h} T^{2}$

$$
-\mu_{s}^{2} \rightarrow-\mu_{s}^{2}+c_{s} T^{2}
$$

Arrange $T_{s} \equiv \frac{\mu_{s}^{2}}{c_{s}}>T_{n} \equiv-\frac{\mu_{n}^{2}}{c_{n}}$, and yet $V(v, 0,0)>V(0, \omega, 0)$

Then transition progresses as is Fir g A. In the second transition step the two minima of $(h, s)=(0, \omega(T))$ and $(h, s)=(v(T), 0)$ ane separated by a tree-level boron, if $\lambda_{h r}>0 . \Rightarrow$ Can have strong transition without le age radiative connections. This kind of mechanism is currently most promising \& drive model building efforts.

Other topees that we have no time to address are

* Dynamical expansion of bubbles

Hydrodynamics:
Micurcopic wall-partich interactions "friction"diflagtations?detonations?
Jouget?

- Runaway?
* CP-solating dymamios at wall
Out-of-eq. FT.

