1. Quantum statistical physics

- Ensembles, thermal potentials, partition function.
- SHO, SFO, partite in bot, pressure, IT-integrals
- Path integral for SHoo. Matsubana sums. Exact PI.

Thermal ensembles

Microcanonical: $\quad \hat{\rho}=\delta(\hat{H}-E) ; U(S, V, N)=T S-P V+\mu S$

$$
\uparrow
$$

$$
d U=T d S-P d V+\mu d N
$$

$$
\begin{array}{ll}
\text { density operator } & \rho=T s-p+\mu n \\
& d \rho=T d s-\mu d n
\end{array}
$$

\therefore Isolated system

Canonical:

$$
\begin{array}{ll}
\hat{\rho}_{c}=e^{-\beta \hat{H}} \overbrace{\text { Hamiltonian }} ; & F(T, V, N)=U-T S=-P V+\mu N \\
d F=-S d T-P d V+\mu d V
\end{array}
$$

In thermal contact with the
surroundings:
Heat exchange

$$
\begin{aligned}
& U \rightarrow\langle E\rangle=\frac{1}{\operatorname{Tr} \hat{\rho}_{c}} \operatorname{Tr}\left(\hat{H} e^{-\beta \hat{H}}\right) \\
& \operatorname{Tr} \hat{\rho}_{c} \equiv Z_{c}(T, V, N)
\end{aligned}
$$

\square

Statistical physics: $\quad F=-T \log Z_{c}$

Indeed: $\quad d F=-S d T-P d V+\mu d N$

$$
\begin{aligned}
\Rightarrow S=-\frac{\partial F}{\partial T} & =\log z+\frac{T}{z} \frac{\partial z}{\partial T}=\log z+\frac{1}{T z} \operatorname{Tr} \hat{H} e^{-\hat{\beta}} \\
& =-\frac{F}{T}+\frac{\langle E\rangle}{T} \Rightarrow F=U-T S
\end{aligned}
$$

Grand canonical: $\hat{\rho}_{g c}=e^{-\beta(\hat{A}-\mu \hat{N})}$
Heat 8 particle exchange

$$
\begin{aligned}
& \Omega(T, V, \mu)=F-\mu V=-P V \\
& d \Omega=-S d T-P d V-V d \mu \\
& \quad Z_{g}(V, T, \mu)=T_{r} e^{-\beta(\hat{H}-\mu \hat{N})}
\end{aligned}
$$

Grand canonical partition function

Again:

$$
\Omega=-T \log z_{g c} \Rightarrow \quad P=-\left(\frac{\partial \Omega}{\partial V}\right)_{T, \mu}=T \frac{\partial}{\partial V} \log z_{g c}
$$

also

$$
N=-\left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V}=T \frac{\partial}{\partial \mu} \log z_{\partial x}
$$

$$
P=-\frac{0}{V}=\frac{T}{V} \log _{\hat{\text { Luge }}} z_{\text {essene }} \sim V \quad S=-\left(\frac{\partial \Omega}{\partial T}\right)_{V, v}=\log z_{g e}+T \frac{\partial}{\partial T} \log _{z g}
$$

$$
\begin{aligned}
& N=T \frac{\partial}{\partial \mu} \log Z_{\partial x}=T \frac{1}{Z_{x x}} \operatorname{Tr}\left(\beta \hat{N} e^{-\beta(\hat{H}-\mu \hat{\mu})}\right)=\langle N\rangle \\
& \log Z_{j \mu} \alpha V \Rightarrow P=T \frac{\partial}{\partial V} \log Z_{g x}=\frac{T}{V} \operatorname{Cog} Z_{y c}=-\frac{\Omega}{V} . \\
& \text { will see }
\end{aligned}
$$

Again: $\quad d \Omega=-S d T-P d V-N d \mu$

$$
\begin{aligned}
\Rightarrow S=-\frac{\partial \Omega}{\partial T} & =\log z+\frac{T}{Z} \frac{\partial Z}{\partial T}=\log Z+\frac{1}{T Z} \operatorname{Tr}(\hat{H}-\mu \hat{N}) e^{-\beta(\hat{H}-\mu \hat{N})} \\
& =-\frac{F}{T}+\frac{1}{T}(\langle E\rangle-\mu\langle N\rangle) \Rightarrow \Omega=\langle E\rangle-T S-\mu\langle N\rangle
\end{aligned}
$$

Note: Gibbs entropy: def: $\tilde{\rho} \equiv \frac{\hat{\rho}}{\operatorname{Tr} \hat{\rho}}=\frac{\hat{\rho}}{z}$

$$
\begin{aligned}
\Rightarrow S_{\text {gibe }} \equiv-\operatorname{Tr}(\tilde{\rho} \log \tilde{\rho}) & =-\frac{1}{z} \operatorname{Tr}(\underbrace{\hat{\rho}}_{-\beta H}\left(\log _{-\beta \hat{\rho}}-\log z\right)) \\
& =+\log z+\frac{\beta}{z} \operatorname{Tr}((\hat{H}-\mu \hat{N}) \hat{\rho}) \\
& =+\log z+\frac{1}{T}(\langle E\rangle-\mu\langle N\rangle) \\
& =-\frac{\Omega}{T}+\frac{\langle E\rangle-\mu\langle N\rangle}{T} \Rightarrow \Omega=\langle E\rangle-T S_{\text {gibes }}-\mu\langle N\rangle
\end{aligned}
$$

Simple harmonic oscillator

$$
\hat{H}_{S H O}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{q}^{2}
$$

where $[\hat{q}, \hat{p}]=i,[\hat{q}, \hat{q}]=[p, \hat{p}]=0$

$$
\begin{aligned}
& \hat{q} \equiv \frac{1}{\sqrt{2 m \omega}}\left(a+a^{+}\right) \quad \Rightarrow \frac{1}{2} m \omega^{2} q^{2}=\frac{\omega}{4}\left(a+a^{+}\right)^{2} \\
& \hat{p} \equiv-i \sqrt{\frac{m \omega}{2}}\left(a-a^{+}\right) \quad \Rightarrow \quad \frac{1}{2 m} p^{2}=-\frac{\omega}{4}\left(a-a^{+}\right)^{2} \\
& \Rightarrow \quad H_{\text {SHa }}=\frac{\omega}{4}\left(\left(a+a^{+}\right)^{2}-\left(a-a^{+}\right)^{2}\right)=\frac{\omega}{2}\left(a a^{+}+a^{+} a\right)=\omega\left(a^{+} a+\frac{1}{2}\right)
\end{aligned}
$$

given that $\left[a, a^{+}\right]=1 \quad\left(\varepsilon_{\alpha}\right)$.

Number states: $\quad a^{+}|0\rangle=|1\rangle ; a^{+} a|1\rangle=a^{+} a a^{+}|0\rangle=a^{+}|0\rangle=|1\rangle$

$$
\begin{aligned}
& \frac{1}{\sqrt{n!}}\left(a^{+}\right)^{m}|0\rangle=|n\rangle, \quad\langle m \mid m\rangle=\delta_{m m} \\
& \langle n \mid n\rangle=\frac{1}{n!}\langle 0| a^{n} a^{+n}|0\rangle \\
& =\frac{1}{n!}\left\langle 01 n a^{(1-1}\left(a^{a}\right)^{n-1}+a^{n-1} a^{+1+} a \mid 0\right\rangle \\
& =\langle n-1 \mid n-1\rangle \Rightarrow \text {. }
\end{aligned}
$$

also $\hat{N}|n\rangle \equiv a^{+} a|n\rangle=\frac{1}{\sqrt{n}} a^{+} a\left(a^{+}\right)^{2}|0\rangle=n|n\rangle$.
\Rightarrow Number operator $\hat{N}=a^{+} a$

Partition function

$$
\begin{aligned}
Z_{S H O} & =\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})}=\operatorname{Tr} e^{-\beta(\omega-\mu) \hat{N}-\frac{1}{2} \beta \omega} \\
& =e^{-\frac{1}{2} \beta \omega} \sum_{n}\langle n| e^{-\beta(\omega-\mu) \hat{N}}|m\rangle \\
& =e^{-\frac{1}{2} \beta \omega} \sum_{n}\left(e^{-\beta(\omega-\mu)}\right)^{n}=\frac{e^{-\frac{1}{2} \beta \omega}}{1-e^{-\beta(\omega-\mu)}} \\
& \Rightarrow \ln Z=-\frac{\beta \omega}{2}-\log \left(1-e^{-\beta(\omega-\mu)}\right)
\end{aligned}
$$

Particle number:

$$
\begin{aligned}
N=\langle\hat{N}\rangle & =\frac{1}{\operatorname{Tr} \hat{\rho}} \operatorname{Tr}(\hat{N} \hat{\rho})=T \frac{\partial}{\partial \mu} \log z \\
& =-T \frac{1}{1-e^{-\beta(\operatorname{lo}-\mu)}}\left(-e^{-\beta(\omega-\mu)} \cdot \beta\right)=-1 \\
& =\frac{1}{e^{\beta(\omega-\mu)}-1}=f_{B E}(\omega) \quad ; N \in[0, \infty[
\end{aligned}
$$

Energy. Either directly computing from trace $E=\langle\hat{H}\rangle=\frac{1}{Z} \sum\langle n| \hat{H} \hat{\rho}|n\rangle$.. or

$$
\begin{aligned}
\langle E\rangle & =\Omega+T_{s}+\mu\langle N\rangle=-T \log z_{g c}+T\left(\log z_{g c}+T \frac{\partial}{\partial T} \log z_{g_{c}}\right)+\mu T \frac{\partial}{\partial \mu} \log z_{k c} \\
& =\frac{\omega}{2}-T^{2} \frac{\partial}{\partial T} \log \left(1-e^{-\beta(\omega-\mu)}\right)+\mu f_{b E}=\frac{\omega}{2}+\frac{\omega}{e^{\beta(--\mu)}-1}
\end{aligned}
$$

Simple fermionic oscillator

Pauli exclusion principle: \Rightarrow anticommutation rules:
$\Rightarrow a \rightarrow \alpha$, with $\left\{\alpha, \alpha^{+}\right\}=1 ;\{\alpha, \alpha\}-\left\{\alpha^{\dagger}, \alpha^{4}\right\}=0$

Now only two stales!

$$
\begin{aligned}
& \alpha^{+}|0\rangle=|1\rangle \quad \alpha|1\rangle=0 \\
& \alpha^{+}|1\rangle=\alpha^{+} \alpha^{t}|0\rangle=\frac{1}{2}\left\{\alpha^{+}, \alpha^{+}\right\}|0\rangle=0
\end{aligned}
$$

Hamiltonian function: $H_{\text {so }} \equiv \frac{1}{2} \omega\left(\alpha^{+} \alpha-\alpha \alpha^{+}\right)=\omega\left(\alpha^{+} \alpha-\frac{1}{2}\right)=\omega\left(\hat{N}-\frac{1}{2}\right)$

Partition function

$$
\begin{aligned}
& Z_{\text {gEO }}=\operatorname{Tr} e^{-\beta(\hat{i}-\mu \hat{N})}=e^{\frac{1}{2} \beta \omega} \sum_{n=0, n}\langle n| e^{-\beta(\omega, 0) \hat{\omega}}|n\rangle=e^{\frac{1}{2} \beta \omega}\left(1+e^{-\beta(\omega-\mu)}\right) \\
& \Rightarrow \ln z_{S F O}=\frac{1}{2} \beta \omega+\log \left(1+e^{-\beta(\omega-\mu)}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \langle E\rangle=\frac{1}{z} \operatorname{Tr}\left(\hat{H} e^{-\beta(\omega-\mu) \hat{N}+\frac{1}{2} \beta \omega}\right)=\frac{e^{-\frac{-}{\beta} \beta}}{1+e^{-\beta(\omega-\mu)}}\left(-\frac{\omega}{2} e^{\frac{\beta \omega}{2}}+\frac{\omega}{2} e^{-\beta(\omega-\beta)+\frac{1}{2} \beta \omega}\right) \\
& =\frac{1}{1+e^{-\beta^{(\omega-\mu \mu)}}}\left(-\frac{\omega}{2}\left(1+e^{-\beta(\omega-\mu)}\right)+\omega e^{-\beta(\omega-\mu)}\right)=-\frac{\omega}{2}+\omega f_{f 0}(\omega)
\end{aligned}
$$

Particles in a box

Boundary cond: $\psi(x, y, z=0,2)=0$

$$
\Rightarrow L=\frac{m_{i} \lambda_{i}}{2}
$$

$\Rightarrow\left|p_{i}\right|=\frac{2 \pi}{\lambda_{i}}=\frac{\pi n_{i}}{L}$. Number of quantized stales
Each mode is equivalent with a SHO with $\omega=\frac{|\overrightarrow{\mid}|^{2}}{2 m} ; \vec{p}=\frac{\pi}{2}\left(n_{1}, n_{2}, n_{3}\right)$.

$$
\hat{H}=\sum_{\{\{ \}} \hat{H}_{\{i\}} ; \hat{N}=\sum_{\{\{ \}} \hat{N}_{\{i\}}
$$

and

$$
z=\operatorname{Tr} e^{-\beta(\hat{h}-\mu \hat{\beta})}=\prod_{\{i\}} z_{\{i\}} .
$$

Now

$$
\left(\Delta p_{i}=\frac{\pi}{2}\right)
$$

$$
\begin{aligned}
& T \log z=T \sum_{\{i\}} \log z_{\{i\}} \xrightarrow{L \rightarrow \infty}\left(\frac{L}{\pi}\right)^{3} T \int_{0}^{\infty} \prod_{s=1}^{3} d p, \mid \log z_{\tilde{p}} \\
& =V T \int \frac{d^{2} p}{(2 \pi)^{3}} \log z_{p} \\
& \Omega=-T \log z \\
& P=-\frac{\Omega}{V}=t \frac{T}{V} \operatorname{lo} z \quad=V \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\mp \frac{\omega_{\rho}}{2} \mp T \log \left(1 \mp e^{-\beta(\omega-\mu)}\right)\right)_{+\pi}^{-B} \\
& \Rightarrow P_{ \pm}=-\frac{\Omega}{V}=\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\mp \frac{\omega_{p}}{2} \mp T \log \left(1 \mp e^{-\beta(\omega-\mu)}\right)\right) . \begin{array}{c}
+B \\
-F
\end{array}
\end{aligned}
$$

Number densities \& $\langle E\rangle N$:

$$
=P_{T}^{\mp}=\int \frac{d^{3} p}{(2, c)^{3}} \frac{p^{2}}{3 E T} \frac{1}{e \beta^{(6-\mu)^{5} \pm ?}}
$$

$$
\begin{aligned}
& n=\frac{N}{V}=\frac{T}{V} \frac{\partial}{\partial \mu} \log _{g} z_{g c}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{e^{\beta(n-\mu)} \pm 1} \\
& E_{\bar{T}} \equiv\langle\hat{H}\rangle=V \int \frac{d^{3} p}{\left(\alpha_{\pi}\right)^{3}}\left(\mp \frac{\omega_{p}}{2}+\frac{\omega_{p}}{e^{\beta\left(\omega_{\rho-\mu)}\right.} \pm 1}\right)=\mp E_{0}+E_{T}^{ \pm}
\end{aligned}
$$

upper signs: fermions bower -11- : bosons
Antiparticles.
In relativistic field theory those are included automatically. Here we must put them in by hand. We can do thin using Dirac hole interpretation. A state with n antiparticles corresponds to a positive energy state withe lace of n particles. Then

L Same as for particles

$$
\begin{aligned}
& \langle\bar{m}| \hat{\rho}|\bar{m}\rangle=e^{-\beta(\omega-\mu(-1)) \eta \mp \frac{1}{2} \beta \omega}=e^{-\frac{1}{2} \beta \omega} e^{-\beta(\omega+\mu) m} \\
\Rightarrow & E_{ \pm}=V \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\mp \omega_{\beta}+\frac{\omega_{\beta}}{e^{\left.\beta\left(\omega_{i} ;\right)^{\mu}\right)}}+\frac{\omega_{\beta}}{e^{\beta\left(\omega_{\nu}, \mu\right)} \pm 1}\right)= \pm 2 E_{0}+E_{\tau}^{ \pm}
\end{aligned}
$$

upper signs
Similarly, if particles carry a conserved charge

$$
Q_{ \pm}=v \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{1}{e^{\left(\omega_{i} \mu\right)} \pm 1}-\frac{1}{e^{\left(\beta^{(4, \mu)} \pm 1\right.}}\right) .
$$

Chemical potential a free energy differma due to adding/remoning a particle $(d \Omega=\cdot+\mu d \nu)$. Folding antiparticle requires pair creation $50 \mu N m+\mu_{w R}$. \Rightarrow at low $T \ll m$ (anti)particles suppressed by $\mathrm{e}^{-2 \beta o m}$.

Path integral methods We may define QMM transition amplitudes with PI.

Start from the standard Cf T case (conceptually simple)

$$
\begin{equation*}
P(b, a) \equiv|K(b, a)|^{2} \tag{1}
\end{equation*}
$$

when

$$
\begin{equation*}
F(b, a) \equiv \sum_{\forall \text { path es }} k e^{\frac{i}{\hbar} S} \tag{2}
\end{equation*}
$$

where $S=$ Clecrrical action and

$$
\begin{equation*}
K(c, a)=\sum_{\forall b} K(c, b) K(b, a) \tag{3}
\end{equation*}
$$

Correspondence: $\frac{\delta}{\delta q(t)} \delta[q]=0 \Rightarrow$ constructive interference only around $q_{e c}$ \hbar small \Rightarrow classical physics at macro-scales.

Discretization:

$$
\sum_{\forall \text { patin o }}=\lim _{N \rightarrow \infty} k_{N_{i=1}} \prod^{N} \int d q_{i} k_{i} \equiv \int\left[D_{x}\right]
$$

$$
\begin{aligned}
S=\int d t L & =\int d t\left(\frac{1}{2} m \dot{q}^{2}-V(q)\right) \\
& \longrightarrow \sum_{k=0}^{N+1}\left(\frac{m}{2} \frac{\left(q_{k+1}-q_{k}\right)^{2}}{\epsilon}-\epsilon V\left(\frac{q_{k}+q_{k+1}}{2}\right)\right)
\end{aligned}
$$

$$
q_{0}=q_{a}
$$

$$
q_{w+1}=q_{t}
$$

$$
\epsilon=\frac{t_{b}-t_{a}}{N+1}
$$

\uparrow why average?

Determine k: by applying (3) to interval $\left[t_{b}-\epsilon, t_{b}\right]$

$$
\begin{array}{l}
K\left(q_{b}, t_{b} ; q_{a} z_{a}\right)=\int_{-\infty}^{\infty} d q^{\prime} k_{N} e^{i\left(\frac{m}{2}\left(\frac{q_{b}-q^{\prime}}{\epsilon}\right)^{2}-\epsilon V\left(\frac{q_{b}+q^{\prime}}{2}\right)\right)} K\left(q^{\prime}, t_{b} \in ; q_{a}, t_{a}\right) \\
\simeq \int_{-\infty}^{\infty} d q^{\prime} k_{N} e^{\frac{i m}{2 \varepsilon}\left(q_{b} q^{\prime}\right)^{2}}\left(1-i \epsilon V\left(q_{b}\right)+\ldots\right)(1+\left(q-q^{\prime} q^{\prime}\right) \frac{\partial}{\partial q_{b}}+\underbrace{0: o d d}_{\sim \epsilon}
\end{array} \underbrace{\frac{1}{2}\left(q q^{\prime}\right)} \frac{\partial^{2}}{\partial q_{b}}+. .) K\left(q_{b}, t_{b}-\epsilon ; q_{a} t_{a}\right) .
$$

This is where we need to bolt the time path: convergence of the gaussian integral can be guaranteed by $t \rightarrow z(1-i \delta) \Rightarrow \in \rightarrow \in\left(1-i \delta^{\prime}\right) ; \delta^{\prime}=\frac{\delta}{x+1}$
Then using

$$
\begin{aligned}
& =\left.\lim _{\delta \rightarrow 0}(-1)^{m} \partial_{a}^{m} \sqrt{\frac{\pi}{a}}\right|_{a=\delta^{1}-i b_{\epsilon}}=(-1)^{m} \partial_{-i b_{\epsilon}} \sqrt{\frac{\pi}{-i b_{E}}}=\sqrt{i \hbar}(-i)^{n} \partial_{b_{\epsilon}}^{n} \frac{1}{\sqrt{b_{E}}} \\
& \Rightarrow K\left(q_{0}, t_{b} ; q_{a}, z_{a}\right) \simeq \underbrace{k_{N} \sqrt{\frac{2 i \pi \epsilon}{m}}}_{\equiv 1}(1-i \epsilon V\left(q_{b}\right)+\underbrace{\frac{1}{2}\left(\frac{i}{2}\right)\left(\frac{2 \epsilon}{m}\right) \frac{\partial^{2}}{\partial q_{0}^{2}}}_{=\frac{i \epsilon}{2 m}}+O\left(\epsilon^{3}\right)) K\left(q_{b}, t_{b}-\epsilon ; q_{a}, t_{a}\right) \\
& \Rightarrow \text { LH }=\text { RHS when } \epsilon \rightarrow 0 \Rightarrow k_{N} \sqrt{\frac{2 i \pi \epsilon}{m}}=1 \Leftrightarrow k_{N}=\sqrt{\frac{m}{2 \pi i \epsilon}} \\
& \Rightarrow \quad 0 \quad i \frac{\partial}{\partial t_{b}} K\left(q_{b}, t_{b} ; q_{a}, z_{a}\right)=\left(-\frac{1}{2 m} \frac{\partial}{\partial q_{b}^{2}}+V\left(q_{b}\right)\right) K\left(q_{b}, t_{b} ; q_{a}, z_{a}\right) \\
& \text { Also: } \lim _{q_{0} \rightarrow k_{a}} K\left(q_{01}, t_{t} ; q_{2}, t_{2}\right)=\lim _{\epsilon \rightarrow 0} k_{N} e^{i \frac{m\left(q_{2}-q_{2}\right)^{2}}{2 \epsilon}}=\delta\left(q_{0}-q_{a}\right) \\
& \text { only one slice-interval, no integration }
\end{aligned}
$$

$\Rightarrow K$ obeys the sane equation as $U\left(q_{a} t_{0} ; q_{0} t_{2}\right)=\left\langle q_{0}, t_{0}\right| e^{-i \hat{H}\left(t_{2}-z_{2}\right)}\left|q_{0} t_{t}\right\rangle$ \& has the same initial condition.

Formal equivalence
Using the integral relation (4): $e^{-i b^{2} / u a}=\sqrt{\frac{i a}{a}} \int d p e^{i a p^{2}+i b p}$ one can write

$$
\begin{align*}
K\left(q_{0}, t_{b} ; q_{a}, t_{m}\right) & =\int\left[D_{q}\right] e^{i \int_{t_{2}}^{t_{b}} d t\left(\frac{1}{2} m \dot{q}^{2}-V(q)\right)} \\
& =\int\left[D_{q} D_{p}\right] e^{i \int_{t}^{t_{t}} d t\left(p q-\frac{p^{2}}{2 m}-V(q)\right)} \tag{5}
\end{align*}
$$

Going baclewards, diseretizing \& Fieating P jest as $V(q)$ we see $a=\frac{\epsilon}{2 m}$. Then it is easy to show that $2^{\text {nd }}$ line in (s) reproduces discretized $K\left(q_{n}, t_{0} ; q_{n}, t_{s}\right)$. However, we see also that $K_{N}^{P} \equiv \sqrt{\frac{i Q}{\pi}}=\sqrt{\frac{i G}{2 m \pi}} \Rightarrow K_{N} K_{N}^{P}=\sqrt{\frac{i \epsilon}{2 m \pi}} \cdot \sqrt{\frac{m}{2 \pi i}}=\frac{1}{2 \pi}$?
one p-integral for each q-internal including enroints. eats the extra

$$
\begin{aligned}
& \Rightarrow K\left(q_{0}, t_{0} ; q_{a}, t_{2}\right)=\lim _{M_{\rightarrow \infty} \rightarrow \infty} \prod_{i=1}^{N} \prod_{k=1}^{N+1} \int d q_{i} \frac{d P_{k}}{2 \pi} e^{-i\left(H\left(q_{k}, p_{k}\right) \in-\widehat{P_{k}\left(q_{[+i}-q_{i}\right)}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}_{i}=\frac{x_{i n+x i}}{2}
\end{aligned}
$$

Given this prescription for \hat{H} in terms of commuting $\left[\bar{x}, \partial_{\hat{r}}\right]=0$:
-Not conjugate variables

$$
\int \frac{d p_{i}}{2 \pi} e^{-i \hat{H}\left(\bar{x}, \alpha_{i}\right)_{i} \epsilon} \underbrace{e^{i p_{i}\left(q_{i n}-q_{i}\right)}}_{\left\langle q_{i n} \mid p_{i}\right\rangle\left\langle p_{i} \mid q_{i}\right\rangle}=\left\langle q_{i+1}\right| e^{-i \hat{H}(\hat{q}, \hat{p}) \epsilon}\left|q_{i}\right\rangle
$$

The last step is only valid if $\left\langle q_{i+1} \hat{H}(\hat{q}, \hat{\rho}) \mid q_{c}\right\rangle \equiv\left\langle q_{i}\right| \hat{H}\left(\frac{q_{i+1}+q_{i}}{2}, \hat{p}\left|q_{i}\right\rangle\right.$ \Rightarrow operators must be Weyl-ordued. For example

$$
\begin{aligned}
& \text { Well }\left(\dot{q}^{2} \hat{p}^{n}\right)=\hat{q}^{2} \hat{p}^{n}+\hat{p}^{n} \hat{q}^{2}+2 \hat{q} \hat{p}^{n} \hat{q} \Rightarrow\left\langle q_{i+1}\right| \text { Well }\left(\dot{q}^{2} \hat{p}^{n}\right)\left|q_{i}\right\rangle \\
& =\left(q_{t+1}^{2}+2 q_{i+1} q_{i}+q_{i+1}^{2}\right)\left\langle q_{i+1}\right| \hat{p}^{n}\left|q_{1}\right\rangle \\
& =\left(q_{i+1}+q_{i}\right)^{2} \hat{p}^{n} \\
& \Rightarrow K\left(q_{0}, t_{0} j q_{a}, t_{t}\right)=\lim _{i \rightarrow \infty} \prod_{i=1}^{N} \int d q_{i}\left\langle q_{t+1}\right| e^{-i \hat{H} e}\left|q_{i}\right\rangle \\
& =\lim _{N \rightarrow \infty}\left\langle q_{0}\right| e^{-i \hat{H} \in} \overbrace{\int d q_{N}\left|q_{N}\right\rangle\left\langle q_{N}\right|}^{=1} e^{-i \hat{H} \epsilon}\left|q_{N-1}\right\rangle \cdots\left\langle q_{1}\right| e^{-i \hat{H} \epsilon}\left|q_{a}\right\rangle \\
& =\left\langle q_{b}, t_{b}\right| e^{-i H\left(t_{b}-t_{2}\right)}\left|q_{a,}, t_{a}\right\rangle=U\left(q_{b}, t_{b} ; q_{c}, t_{a}\right) .
\end{aligned}
$$

Finite $-T$: we are interested in computing traces

$$
\begin{aligned}
Z & =\operatorname{Tr} \hat{\rho}=\sum_{n}\langle n| e^{-\beta \hat{H}}|n\rangle=\sum_{n}\langle n| e^{-\beta \hat{H}} \int d q|q\rangle\langle q \mid n\rangle \\
& =\int d q\langle q| \sum_{n}|n\rangle\langle n| e^{-\beta \hat{H}}|q\rangle=\int d q\langle q| e^{-\beta H}|q\rangle .
\end{aligned}
$$

We can wite $\left\langle q^{\prime}\right| e^{-\beta H}|q\rangle=\left\langle q^{\prime}\right| e^{-i \hat{H}(-i \beta)}|q\rangle=K\left(t_{a}-j \beta, q^{\prime} ; t_{a}, q\right\rangle$, and in particular

$$
\begin{aligned}
Z & =\int d q K(-i \beta, q ; 0, q) \\
& =\int[D q]_{\substack{q-i \\
\psi q}} e^{-i \int(-i d \tau) d_{H}\left(\partial_{t} \rightarrow i \partial_{\tau}\right)}
\end{aligned}
$$

$=\int\left[D_{q}\right]_{\beta} e^{-\int_{0}^{\beta} d r \alpha_{E}}$. In meavave $\left[D_{q}\right]_{\beta}$ index β refers to periodicity in τ.
where

$$
\alpha_{E}=\frac{1}{2}\left(\partial_{\tau} q\right)^{2}+V(q)
$$

Of course we could have derived the Eudidean path integral direaty without the recourse to real time PI. That would be perfectly analogous to what we did, except that one
 does not need the time-sath tiling argument.
(Also in this case $d \tau$ must be positive along the perth, for PI to exist.)

Generating function \& propagator
We now have a PI expression for \mathcal{Z} :

$$
Z(\beta)=\int\left[D_{q}\right]_{\beta} e^{-S_{E}[q]} ; S_{E}[q]=\int_{0}^{\beta} d \tau L_{E}=\int_{0}^{\beta} \int_{d \tau}\left(\frac{1}{2} \dot{q}^{2}+V(q)\right)
$$

We car generalize this to a generating function

$$
Z[\beta j]=\int\left[D_{q}\right]_{\beta} e^{-S_{E}[q]+\int_{0}^{\beta} d \tau j(\tau) q(\tau)}
$$

Then $Z(\beta)=Z[\beta, 0]$. We get the 2-point corelation function.

$$
\left.\Delta\left(\tau_{1}, \tau_{2}\right) \equiv \frac{1}{z(\beta)} \frac{\delta^{2} Z\left[\beta_{j}\right]}{\delta j\left(\tau_{2}\right) \delta_{j}\left(\tau_{1}\right)}\right|_{j=0}=\frac{1}{z(\beta)} \int\left[D_{q} q_{\beta} q\left(\tau_{1}\right) q\left(\tau_{2}\right) e^{-S_{E}[q]}\right.
$$

Bared on the derivation of the PI \& its connection to operator formalism on p.12, it is obvious that $\Delta\left(\tau_{1}, \tau_{c}\right)$ is the τ-ordered propagator:

$$
\Delta\left(\tau_{1}, \tau_{2}\right)=\frac{1}{\operatorname{Tr} \hat{\rho}} \operatorname{Tr}\left[\hat{\rho} \tau\left(\hat{q}_{1}\left(\tau_{1}\right) \hat{q}\left(\tau_{2}\right)\right]=\left\langle\tau\left(\hat{q}\left(\tau_{1}\right) \hat{q}\left(\tau_{2}\right)\right)\right\rangle\right.
$$

where

$$
\tau\left(\hat{q}\left(\tau_{1}\right) \hat{q}\left(\tau_{1}\right)\right)=\theta\left(\tau_{1}-\tau_{2}\right) \hat{q}\left(\tau_{1}\right) \hat{q}\left(\tau_{2}\right)+\theta\left(\tau_{2}-\tau_{1}\right) \hat{q}\left(\tau_{2}\right) \hat{q}\left(\tau_{1}\right)
$$

i.e PI-expectation values are automatically time-ordered (on τ-ordered).

Translation invariance \& Rms relation $\left(p=\dot{q}=\partial_{t} q=-i \partial_{\tau} q\right)$
Noting that $\hat{g}(\tau)=e^{\hat{H} \tau} \hat{q}(0) e^{-H \tau}$

$$
\begin{aligned}
& \Rightarrow \Delta\left(\tau_{1}, \tau_{2}\right) \\
& \left.=\left\langle\tau\left(\hat{q}\left(\tau_{1}\right) \hat{q}\left(\tau_{c}\right)\right)\right\rangle \quad \tau_{1}\right\rangle \tau_{2} \\
& =\operatorname{Tr}\left(e^{-\beta \hat{H}} \hat{q}\left(\tau_{1}\right) q\left(\tau_{L}\right)\right) / \operatorname{Tr} \hat{p} \\
& =\operatorname{Tr}\left(e^{-\beta \hat{H}} \hat{q}\left(\tau_{1}\right) e^{\hat{H} \tau_{2}} \hat{q}(0) e^{-\mu \tau_{2}}\right) / \operatorname{Tr} \hat{p} \\
& =\operatorname{Tr}\left(e^{-\beta \hat{H}} e^{-H T_{2}} \hat{q}\left(r_{1}\right) e^{\hat{H} \tau_{2}} \hat{q}(0)\right) / \operatorname{Tr} \hat{p} \\
& =\operatorname{Tr}\left(e^{-\beta \dot{\beta} \hat{q}} \hat{q}\left(s_{1}-\tau_{2}\right) \hat{q}(0)\right)=\Delta\left(\tau_{1}-\tau_{2}, 0\right)=\Delta\left(\tau_{1}-\tau_{2}\right) \quad T_{r} \text { invariant. }
\end{aligned}
$$

Rms: $\quad \Delta(\tau)=\frac{1}{\operatorname{Tr} \hat{p}} \operatorname{Tr}\left(e^{-\beta \hat{\beta}} \hat{q}(\tau) \hat{q}(0)\right), \tau>0$

$$
\begin{aligned}
& =\frac{1}{\operatorname{Tr} \hat{\beta}} \operatorname{Tr}\left(e^{-\beta \hat{\mu}} \hat{q}(r) e^{\beta \hat{\beta}} e^{-\beta \hat{u}} \hat{q}(0)\right)=\frac{1}{\operatorname{Tr} \hat{p}} \operatorname{Tr}\left(\hat{q}(\tau-\beta) e^{-\beta \hat{h}} \hat{q}(0)\right) \\
& =\frac{1}{\operatorname{Tr} \rho} \operatorname{Tr}(\tau(\hat{q}(\tau-\beta \hat{q}(0))=\Delta(\beta-\tau) .
\end{aligned}
$$

KUBO - MARTNU - SCIHWINGER (KMS)-Relation

Propagator as greens function
Now take

$$
\left[\frac{1}{2} \dot{q}^{2}+\frac{1}{2} \omega^{2} q^{2}-j q\right]
$$

$$
V_{0}=\frac{1}{2} m \omega^{2} q^{2} \quad \stackrel{q \rightarrow m^{-1 / 2}}{\rightarrow} q \frac{1}{2} \omega^{2} q^{2}
$$

$$
\begin{aligned}
& \Rightarrow Z[\beta, j]=\int\left[D_{q}\right]_{\beta} e^{-\int_{0}^{\beta} d \tau\left[\frac{1}{2} q\left(-\partial^{2}+\omega^{2}\right) q-j q\right]} \quad \begin{array}{ll}
& \int d \tau^{\prime} \Delta^{-1}\left(\tau, \tau^{\prime}\right) q\left(\tau^{\prime}\right) \\
& \equiv\left(-\partial_{\tau}^{2}+\omega^{2}\right) q(\tau)
\end{array} \\
& =\int\left[D_{q}\right]_{\beta} e^{-\int_{0}^{\beta} d \tau d \tau^{\prime} q(\tau) \Delta^{-1}\left(\tau, \tau^{\prime}\right) q\left(\tau^{\prime}\right)} \underbrace{\rho d \tau j(\tau) q(\tau)} \\
& =\frac{1}{2} q \Delta^{-1} q-j q=\frac{1}{2}(\widetilde{q}-j \Delta) \Delta^{-1}(q-\Delta j)-\frac{1}{2} j \Delta j \\
& =Z(\beta) e^{\frac{1}{2} \int_{0}^{\beta} d \tau d \tau^{\prime} j\left(\tau^{\prime}\right) \Delta\left(\tau-i^{\prime}\right)^{\prime}(\tau)} \\
& \rightarrow \frac{1}{2} q^{\prime} \Delta^{-1} q^{\prime}-\frac{1}{2} j \Delta j
\end{aligned}
$$

Thus indeed (as notation already suggerb) $\left.\quad \frac{1}{z(\beta)} \frac{\delta^{2} z\left[\beta_{i}\right]}{\delta j\left(z_{2}\right) \delta_{j}(\tau)}\right|_{j=0}=\Delta_{0}(\tau)$. So $\Delta_{0}(\tau)$ is the Grams function, that obeys

$$
\left(-\partial_{\tau}^{2}+\omega^{2}\right) \Delta_{0}\left(\tau, \tau^{\prime}\right)=\delta\left(\tau-\tau^{\prime}\right) .
$$

Setting

$$
\begin{aligned}
& \Delta_{0}(\tau, \omega) \equiv T \sum_{n=-\infty}^{\infty} \Delta_{0}\left(\omega_{n}\right) e^{-i \omega_{n} \tau} \\
\Rightarrow & \left(\omega_{n}^{2}+\omega^{2}\right) \Delta_{0}\left(\omega_{n}, \omega\right)=1 \Rightarrow \Delta_{0}=\frac{1}{\omega_{n}^{2}+\omega^{\prime}}
\end{aligned}
$$

Also KMS: $\Delta(\tau-\beta)=T \sum_{n=-\infty}^{\infty} \Delta_{0}\left(\omega_{i}\right) e^{-i \omega_{n} \tau} \underbrace{e^{i \omega_{n} \beta}}_{=1} \equiv \Delta(\tau)$

$$
\Rightarrow e^{i \omega_{n} \tau}=1 \Rightarrow \omega_{n}=2 \pi n T
$$

Bosmic Matsubara frequencies

Matsubara sums.
First compute propagator

$$
\begin{aligned}
\Delta_{0}(\tau, \omega) & =T \sum_{n=-\infty}^{\infty} \Delta_{6}\left(\omega_{n}\right) e^{-i \omega_{n} \tau} \\
& =T \sum_{m=-\infty}^{\infty} \frac{1}{\omega^{2}+\omega_{n}^{2}} e^{-i \omega_{n} \tau}
\end{aligned}
$$

Note that $\Delta(-\tau, \omega)=\Delta(\tau, a), b$
because $\tau \rightarrow-\tau \& n \rightarrow-n$ leaves $\Delta_{0}(\tau, \omega)$ invariant.
Now are the feet that $\frac{e^{\beta z}}{e^{\beta z}-1} \simeq \frac{1}{\beta \delta z)}$ for $z \simeq 2 n \pi T_{i}+\delta z$ and $\quad \frac{e^{(\beta-T) z}}{e^{\beta \gamma}-1} \rightarrow 0 \quad \forall|z| \rightarrow \infty$
$\Rightarrow \quad \Delta_{0}(\tau, \omega)=\frac{1}{2 \pi i} \oint_{c} \frac{e^{-z|z|}}{\omega^{2}-z^{2}} \frac{e^{\beta z}}{e^{\beta z}-1}$: sum is given by residues insole c_{1}

$$
\begin{aligned}
& =\sum_{ \pm} \lim _{z \rightarrow \pm \omega} \frac{z_{\mp} \omega \omega}{(z \mp \omega)(z \pm \omega)} e^{\mp \omega \mid \tau 1} \frac{e^{ \pm \beta \omega}}{e^{ \pm \beta \omega}-1} \\
& =\frac{1}{2 \omega}\left(e^{-\omega \mid \tau 1} \frac{e^{\omega}}{e^{\beta \omega}-1}-e^{\omega \mid \tau 1} \frac{e^{-\beta \omega}}{e^{-\beta \omega}-1}\right) \\
& \text { - sign due to clockwise } \\
& \text { path in aborted to } \\
& \omega^{2}-z^{2} \rightarrow z^{2}-\omega^{2} \\
& =\frac{1}{2 \omega}\left(\left(1+n_{B}(\omega)\right) e^{-\omega t \tau}+m_{B}(\omega) e^{\omega(t)}\right) \text {, with } n_{B}(\omega) \equiv \frac{1}{e^{\left(\omega^{\omega}-1\right.}}
\end{aligned}
$$

ln particular $T \sum_{n=-\infty}^{\infty} \frac{1}{\omega_{n}^{2}+\omega^{2}}=\frac{1}{2 \omega}\left(1+2 n_{b}(0)\right)$

Partition function Unis is a very important topic. We will do the calculation exactly in Ex. 1.6. Here we do a more heuristic CFT-evaluation, followed by a regularization trickle. The usual OFT-evaluation uses F-spae:
"QFT"- evaluation (Fourier space evaluation)

$$
Z(\beta)=\int\left[D_{q}\right]_{\beta} \exp \left(\int_{0}^{\beta} d \tau \frac{1}{2} q(\tau)\left(-\partial_{\tau}^{2}+\omega^{2}\right) q(\tau)+C_{S}\right)
$$

Scale: $\tau \equiv \beta \eta$ \& $q \equiv \beta^{1 / 2} \tilde{q} ;[q]=[\tau]^{1 / 2}=[\omega]^{-1 / 2}$

$$
-\int_{0}^{\beta} d \tau \frac{1}{2} q(\tau)\left(-\partial_{\tau}^{2}+\omega^{2}\right) q(\tau) \rightarrow \int_{0}^{1} d \eta \frac{1}{2} \tilde{q}(\eta)\left(-\partial_{\eta}^{2}+(\beta \omega)^{2}\right) \tilde{q}(\eta)
$$

since $k_{N \tau}=\left(\frac{m}{2 \pi i \epsilon_{N \tau}}\right)^{1 / 2}$, where $\epsilon_{N \tau}=\frac{\beta}{N-1} \Rightarrow k_{N \tau}=\beta^{-1 / 2} k_{N \tau}$

$$
\Rightarrow \quad\left[D q_{\beta}=\prod_{i}^{N_{1}} k_{w i} d q_{i}=\prod_{i}^{N+1} k_{w i} d \tilde{q}_{i}=[D \tilde{q}]_{1} \quad\right. \text { invariant }
$$

($s+1$ 'th integration is the trace over q).

$$
\begin{aligned}
& \text { - } \tilde{q}(\eta) \equiv \sum_{n} \hat{\tilde{q}}_{n} e^{-i \tilde{\omega}_{n} \eta}, \tilde{\omega}_{n} \equiv 2 \pi n \quad \text { complex } \hat{\tilde{q}}_{n}=\hat{\tilde{q}}_{\underline{w}}^{-n} \\
& \int_{0}^{1} d \eta \frac{1}{2} \tilde{q}(\eta)\left(-\partial_{\eta}^{2}+(\beta \omega)^{2}\right) \tilde{q}(\eta)=\sum_{n, m} \frac{1}{2} \hat{q}_{n} \tilde{\tilde{q}}_{m}\left(\tilde{\omega}_{n}^{e}+(\beta \omega)^{2}\right) \int_{\int_{0}^{1} d n e^{i\left(\tilde{\omega}_{n}+\omega_{0}\right) \eta}}^{\delta_{n} \text { because } \tilde{q} \in \mathbb{R} .} \\
& =\sum_{n} \frac{1}{2}\left(\tilde{\omega}_{n}^{2}+(\beta \omega)^{2}\right)\left|\tilde{q}_{n}\right|^{2}=\sum_{n} \frac{1}{2}\left(\tilde{\omega}_{n}^{2}+(\beta \omega)^{2}\right)\left[\left(\operatorname{Re} \tilde{q}_{n}\right)^{2}+\left(h_{n} \tilde{q}_{n}\right)^{2}\right] \\
& q_{i} \equiv q\left(\eta_{i}\right)=\sum_{n} e^{-i \tilde{\omega}_{n} \eta_{i}} \hat{\tilde{q}}_{n} \equiv \sum_{n} U_{i n} \hat{\tilde{q}}_{n} \quad \text { Unitary transformation }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \prod_{i} d q_{i}= & \operatorname{det}\left(\frac{\partial q_{i}}{\partial \hat{q}_{n}}\right) \prod_{n} d \hat{\tilde{q}}_{n}=\operatorname{det}(U) \prod_{n} d \hat{\tilde{q}}_{n} \\
= & \prod_{n \geqslant 0} d \hat{\bar{q}}_{n} d \dot{d} \hat{\tilde{q}}_{n}^{*}=\prod_{n \geqslant 0} d \operatorname{Re} \hat{\tilde{q}}_{n} d I_{m} \hat{\tilde{q}}_{n} \\
& \text { we are a bit sloppy with reeve zens mede nee... }
\end{aligned}
$$

After these preliminaries we can evaluate $\mathcal{Z}(\beta)$:

$$
\begin{aligned}
Z(\beta) & =C \operatorname{det}(\overbrace{\left(-\partial_{n}^{2}+(\beta \omega)^{2}\right)}^{\Delta_{n}^{-1}})^{-1}=C e^{-\operatorname{Tr} \log \Delta_{\eta}^{-1}} ; C=\lim _{\omega \rightarrow \infty}\left(\sqrt{\pi} e^{C}\right)^{N} \\
\Rightarrow-\log z(\beta) & =\frac{1}{2} \operatorname{Tr} \log \Delta_{q}^{-1}+C^{\prime}=\frac{1}{2} \sum_{n} \log \left(\tilde{\omega}_{n}^{2}+(\beta \omega)^{2}\right)+C^{\prime} \\
& =\int_{1}^{\beta \omega} d \theta \sum_{n} \frac{\theta}{\theta^{2}+\tilde{\omega}_{n}^{2}}+\frac{1}{2} \sum_{n} \log \left(1+\tilde{\omega}_{n}\right)+C^{\prime} \\
& =\int_{0}^{\beta} d \omega^{\prime} \omega^{\prime} \beta \Delta_{0}\left(\tau=0, \omega^{\prime}\right)+c^{\prime \prime} d \text { top } \\
& =\frac{1}{2} \int_{0}^{\beta \omega} d \theta\left(1+2 n_{B E}(\theta)\right)=\frac{\beta \omega}{2}+\log \left(1-e^{-\beta \omega}\right)
\end{aligned}
$$

We were careful not to drop any β-dependent constants on the way. This means that we know $Z(\beta)$ and $Z[\beta, j]$ up to an overall constant. Usually that is good enough as all correlation functions evaluated from $\mathcal{Z}[\beta, j]$ are independent of sech constant.
However $P=\frac{1}{\beta V} \log z$ would seem to depend on $C^{\prime \prime}: S P^{\prime \prime}=\frac{C^{\prime \prime}}{\beta V}$. Also, we know from our quantum statsutics calculation that $C^{\prime \prime}=0$. How does this result emerge from a more rigorous calculation?

Most straightforward way is to perform PI consistently in the direct space.
This is the topic of Exercise 1.6 .
daine \& Vnoriwen - trice.
The idea is to evaluate tue infinite coefficient in the limit $\omega=0$, where z can be evaluated also wirrout PI. However, zero mode becomes unbounded in this limit and reeds special care. Hence on wises:

$$
\begin{aligned}
& q(\tau)=\frac{1}{\beta} \hat{q}_{0}+\frac{1}{\beta} \sum_{n \neq 0} \hat{q}_{n} e^{-i \omega_{n} \tau} \\
\Rightarrow & \left(-\partial_{\tau}^{2}+\omega^{2}\right) q(\tau)=\omega^{2} \hat{q}_{0}+\sum_{n \neq 0}\left(\omega_{n}^{2}+\omega^{2}\right) \hat{q}_{n} e^{-i \omega_{n} \tau} .
\end{aligned}
$$

The using $\int_{0}^{\beta} d \tau e^{i\left(\omega_{n}+\omega_{n}\right) \tau}=\beta \delta_{m, n}$, one fris

$$
\begin{aligned}
& S_{E}=\int d \tau q(\tau)\left(-\partial_{\tau}^{2}+\omega^{2}\right) q(\tau)=\frac{1}{2 \beta} \omega^{2} \tilde{q}_{0}^{2}+\frac{1}{2 \beta} \sum_{n \neq 0}\left(\omega_{n}^{2}+\omega^{2}\right) \\
& \text { ing Gaussian integrals we get }
\end{aligned}
$$

Performing Gaussian integrals we get

all ω-indef. terms for non-zer commodes alosibed be $C(\beta)$ Contains also surface terms

The goal is to determine $C(\beta)$ in the $\omega \rightarrow 0$ limit. But zero mode blows out here, because it contributes a gaussian integral $\int d q_{0} e^{-\frac{1}{2} \omega^{2} q_{0}^{2}}$

To circumvent this we consider a regerlated system, where the average variation over $\tau \in[0, \beta]$ is restricted to some range of. Indeed:

$$
\int_{0}^{\beta} d \tau q(\tau)=\int d \tau\left(\frac{1}{\beta} \hat{q}_{0}+\frac{1}{\beta} \sum_{n \neq 0} \hat{q}_{n} e^{-i \Delta n \tau}\right)=\hat{q}_{0}
$$

So that $\frac{\hat{q}_{0}}{\beta}=\langle q(\tau)\rangle$. The constraint only restricts the zero mode, which now gives a contipucion $\beta \Delta q$. So we have:

$$
Z_{\text {reg }}(\beta, w=0)=C(\beta) \beta \Delta q \prod_{n=1}^{\infty} \frac{1}{\omega_{n}^{2}}
$$

On the other hand:

$$
\begin{aligned}
Z_{\operatorname{reg}}(\beta, \omega=6) & =\int_{\Delta q} d q\langle q| e^{-\frac{1}{2} \beta q^{2}}|q\rangle \\
& =\int_{\Delta q} d q \int \frac{d p}{2 \pi}\langle q) e^{-\frac{1}{2} \beta p^{2}}|p\rangle\langle p \mid q\rangle \\
& =\int_{\Delta q} d q \int \frac{d p}{2 \pi} e^{-\frac{1}{2} \beta p^{2}} \frac{{ }^{2} \mid}{\left.\langle p \mid q\rangle\right|^{2}}=\frac{\Delta q}{\sqrt{2 \pi \beta}}
\end{aligned}
$$

Combining the two results we get which then gives

$$
C(\beta)=\frac{1}{\sqrt{2 \pi \beta^{3}}} \pi \omega_{n}^{2}
$$

$$
z(\beta)=\frac{1}{\beta \omega} \prod_{n>0} \frac{\omega_{n}^{2}}{\omega_{n}^{2}+\omega^{2}}=\frac{1}{\beta \omega} \prod_{n>0} \frac{1}{\left(1+\left(\frac{\beta \omega}{2 \pi n}\right)^{2}\right)}=\frac{1}{2 \sinh \frac{1}{2} \beta \omega}
$$

when one ab last axed $\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)=\frac{\sinh \pi x}{\pi x}$. (This of caus hides rome of the burden of proof. excencisic 1.7)
2. Free bosonic field theory

We will study simple Klein-bordon field and then more to complex scalar field with monvanising charge, and fists with a study of Bose condensation
2.1. Rlein-Gordon field

Consider

$$
\alpha=\frac{1}{2}(\partial, \beta)^{2}-\frac{m^{2}}{2} \phi^{2} \quad \Rightarrow \quad \pi=\frac{\delta \alpha}{\delta \dot{\phi}}=\dot{\phi}
$$

Canonical quantization

$$
\begin{align*}
& {[\hat{\phi}(\vec{x}, z), \hat{\pi}(\vec{y}, t)]=i \delta^{3}(\hat{k}-\vec{y})} \\
& {[\hat{\phi}(\hat{x}, t), \hat{\phi}(\dot{y}, t)]=[\hat{\pi}(\hat{x}, t), \hat{\pi}(\vec{y}, t)]=0} \tag{0,1}
\end{align*}
$$

Field operator

$$
\begin{aligned}
& \phi \quad \phi(\bar{x}, t)=\int \frac{d^{3} p}{(a r i)^{3}} D_{p}\left(\hat{a}_{\hat{p}} e^{-i p x}+\hat{a}_{p}^{+} e^{i p \cdot x}\right) \\
& \hat{\pi}\left(\vec{x}_{, k}\right)=\int \frac{d^{\beta} p_{p}}{\left(Q_{r}\right)^{3}} D_{p}\left(-i \omega_{p} \hat{a}_{p} e^{-i p \cdot x}+i \omega_{p} \hat{a}_{p}^{+} e^{i p \cdot x}\right)
\end{aligned}
$$

Canonical rules (2,1) imply that $\left[\hat{a}_{\hat{p}}, \hat{l}_{\vec{p}}\right]=\left[\hat{a}_{\hat{p}}^{+}, \hat{a}_{\vec{p}}^{+}\right]=0$, while

$$
\left[\hat{a}_{\vec{p}}, \hat{a}_{\vec{i}}^{\prime}\right]=C_{\vec{p}} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)
$$

Where $D_{p}^{2} C_{\vec{p}}=\frac{(2)^{3}}{2 \omega_{p}}$. Beyond this restriction one is free to choose $C_{\vec{p}}$ at will. Lt is interesting to keep $D_{p} \& C_{p}$ free for now, and wite down the Aamiltomion

$$
\begin{aligned}
\frac{\hat{H}}{V} & =\frac{1}{V} \int d_{x}^{3}(\hat{\pi} \dot{\tilde{\phi}}-\hat{\mathcal{L}})=\int \frac{d_{p}^{3}}{(2 \pi)^{3}} \frac{2 \omega_{p}^{2} D_{p}^{2}}{V}(\hat{a}_{p}^{+} \hat{a}_{p}+\underbrace{\frac{1}{2}}_{p} \underbrace{}_{\left.=C_{p} \delta_{p}(\sigma) \hat{a}_{p} \hat{a}_{p}\right]} \equiv \frac{C_{p} V}{(2 \pi)^{3}} \\
& =\int \frac{d_{p}^{3}}{(2 R)^{3}}\left(\frac{2 \omega_{p}^{2} D_{p}^{2}}{V} \hat{a}_{p}^{+} \hat{a}_{p}+\frac{\omega_{p}^{2} D_{p}^{2} C_{p}}{(2 \pi)^{3}}\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{2 \omega_{p}^{2} D_{p}^{2}}{V} \hat{a}_{p}^{+} \hat{a}_{p}+\frac{\omega_{p}}{2}\right)
\end{aligned}
$$

\longrightarrow Vawum part, independent of choice for C_{F} \& D_{F}
If we went to set $\frac{\hat{H}}{V} \equiv \int \frac{d_{p}^{p}}{(2 \pi)^{3}} \omega_{p}\left(\hat{a}_{p}^{+} \hat{a}_{p}+\frac{1}{2}\right)$, we need to chore

$$
\begin{aligned}
\frac{2 \omega_{p}^{2} D_{p}^{2}}{V} \equiv \omega_{p} & \Rightarrow D=\sqrt{\frac{V}{2 \omega_{p}}} \& C_{\vec{p}}=\frac{(2 \pi)^{3}}{V} \\
& \Rightarrow\langle p \mid p\rangle=\langle 0| a_{p} a_{p}^{+}|0\rangle=C_{p} \delta(0)=\frac{(2 \pi)^{3}}{V} \frac{V}{(2 r)^{3}}=1
\end{aligned}
$$

This is the normalization used above with SHO, In QFF one often uses a covariant normalization $C_{p} \equiv(2 \pi)^{3} 2 \omega_{p}$, which then implies $D_{p}=\frac{1}{2 a_{p}}$. wite this normalization
d-mivarmant

$$
\begin{aligned}
& \Rightarrow \quad \hat{\phi}\left(\vec{x}_{1} t\right)=\int \frac{\overbrace{d^{3} p}^{(2 \pi)^{3} d \omega_{p}}\left(a_{p} e^{-i p \cdot x}+a_{p} p^{i p} e^{i x}\right)}{} \\
& {\left[a_{p}, a_{p^{\prime}}^{t}\right]=(2 \pi)^{3} 2 \omega_{p} \delta^{3}\left(p-p^{\prime}\right) ; \quad\langle p \mid p\rangle=\stackrel{\rho}{\overbrace{2}} \mathrm{~V}=N_{p}^{\text {mic }}} \\
& \hat{H}=\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{1}{2} a_{p}^{t} a_{p}+v \frac{\omega_{p}}{2}\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3} 2 a_{p}}(\omega_{p} a_{p}^{+} a_{p}+\overbrace{2 \omega_{p} \zeta}^{\mathcal{N}_{p}^{\text {vac }}} \frac{\omega_{p}}{2})
\end{aligned}
$$

aurally $V \rightarrow 1$ (unit volume)

Partition function \& generating functional
Now

$$
\begin{aligned}
z(\beta) & =\operatorname{Tr}\left[e^{-\beta \hat{u}}\right]=\int\left[D \phi_{a}\right]\left\langle\phi_{a}(\hat{\alpha})\right| e^{-\beta \hat{\mu}}\left|\phi_{a}(\hat{k})\right\rangle \\
& =\int[D \phi]_{\alpha(\hat{k}, 0)=\phi(\bar{\sigma}, \beta)=\phi \phi_{a}(\hat{0})} e^{-\int_{0}^{\beta} d \tau \int d^{3} x \alpha_{E}\left(\phi_{i} \partial_{f} \phi\right)}
\end{aligned}
$$

Where we formally made the same replacements as with SHO parton function:

$$
\begin{aligned}
& \frac{i}{\hbar} \int d t d^{3} \times \frac{1}{2}\left(\left(\partial_{t} \phi\right)^{2}-(2 \phi)^{2}-m^{2} \phi^{2}\right) \\
& \xrightarrow{t \rightarrow-i \tau}-\underbrace{\underbrace{\frac{1}{2}\left(\left(\partial_{r} \phi\right)^{2}+(\nabla \phi)^{2}\right.}+m^{2} \phi^{2})=-\int_{X_{E}^{\beta}} \mathcal{L}_{E}\left[\phi, \eta_{\theta} \phi\right]]}_{\int_{0}^{\beta} d \tau d^{3} x} \\
& \equiv \int_{\chi_{E}^{\beta}} \equiv \mathcal{S}_{E}(\phi, q, \phi) \\
& \equiv-S_{E}[\phi]
\end{aligned}
$$

Alternatively, we can use the Hamiltonian form

$$
z(\beta)=\int\left[D D_{\beta}[D \pi] e^{\int_{X_{E}^{\beta}}\left(i \pi\left(\partial_{\tau}(\gamma)-\mathcal{L}_{E}(\phi, \pi)\right)\right.}\right.
$$

where we used $\pi=\partial_{\tau} \phi=i \partial_{\tau} \phi$. One can abs write generating functional!

$$
\begin{aligned}
& z[\beta, j]=\int[\infty \phi]_{\beta} \exp \left[-S_{E}(\phi)+\int_{\alpha \in \mathcal{L}} j \phi\right] \\
& \text { chance } \quad=\int[D \phi]_{\beta} \exp \left[-\int_{x_{E} x_{E}^{\prime}} \phi\left(x_{E}\right) \Delta_{0}^{-1}\left(x_{E}, x_{E}^{\prime}\right) \phi\left(x_{E}^{\prime}\right)+\int_{X_{E}} j\left(x_{E}\right) \phi\left(x_{E}\right)\right] \\
& \text { : discrezze a matrons }{ }^{5} x^{\top} A x \\
& =z(\beta) \exp \left(-\frac{1}{2} \int_{x_{E}^{\beta} x_{E} E_{E} j} j\left(x_{E}\right) \Delta_{0}\left(x_{E}-x_{E}^{\prime}\right) j\left(x_{E}^{\prime}\right)\right) \text {. }
\end{aligned}
$$

Propagator

$$
\Delta_{0}(\tau, \vec{x})=\left.\frac{1}{z(\beta)} \frac{\delta^{2} z[\beta, j]}{\delta j(0) \delta j(, \vec{x})}\right|_{j=0}=\langle\tau[\hat{\phi}(\tau, \vec{x}), \hat{\phi}(0)]\rangle_{\beta}
$$

This propagator is also the Gens function for equation

$$
\left(-\partial_{\tau}^{2}-\nabla^{2}+m^{2}\right) \Delta_{0}(\tau, \vec{x})=\delta(\tau) \delta^{3}(\vec{x})
$$

Fourier space $\Delta(\tau, \bar{p}) \equiv \int_{\vec{p}} \Delta(\tau, \dot{x}) e^{i \bar{p} \cdot \bar{x}}$, gives

$$
\left(-\partial_{\tau}^{2}+\omega_{\vec{p}}^{2}\right) \Delta_{0}(\tau, \stackrel{\rightharpoonup}{p})=\delta(\tau)
$$

This is the same equation solved for Sty earlier with $\omega \rightarrow \omega_{\bar{p}}$. So we know the revolt

$$
\Delta_{0}\left(\omega_{n, \stackrel{p}{p}}\right)=\frac{1}{\omega_{n}^{2}+\omega_{n}^{2}} ; \quad \omega_{n}=2 \pi T \text {. }
$$

and asp $\quad \Delta_{0}(\tau, \bar{p})=\frac{1}{2 \sigma_{p}^{p}}\left(\left(1+m_{B E}\left(\omega_{\bar{p}}\right)\right) e^{-a_{p}|\tau|}+a_{B E}\left(m_{j}\right) e^{\omega_{F}|\tau|}\right)$.
Evaluating KG-fied 2 .
introducing

$$
\begin{aligned}
& {\left[d \tau d^{3} x\right]=\beta L^{3} \quad\left[S_{E}\right]=\beta^{0} L^{0}} \\
& \Rightarrow \quad\left[\left(\partial_{\tau} \gamma\right)^{2}\right]=\beta^{-2}[\phi]^{2} \equiv \beta^{-1} L^{-3} \Rightarrow[\phi]=\beta^{3 / 2} L^{-3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\phi(\bar{x}, t) & =\beta^{1 / 2} \sum_{m} \frac{d^{3} p}{\left(d_{n} \vec{j}\right)} \hat{\phi}_{n}(\vec{p}) e^{-i\left(m_{n} T-\vec{p} \cdot \vec{x}\right)} \quad[\hat{\phi}]=L^{3 / 2} \\
& =\beta^{3 / 2} \int_{B} \hat{\phi}_{n}(\vec{p}) e^{-i\left(e_{n} T-\vec{p} \cdot \bar{x}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \delta_{E}[\hat{\phi}(\vec{\alpha}, t)] & =\beta \sum_{n, m} \int_{\vec{p}, \vec{p})} \hat{\phi}_{n}(\vec{p})\left[\omega_{m}^{2}+\vec{p}^{2}+m^{2}\right] \hat{\phi}_{m}(\vec{p}) \underbrace{\int_{0}^{\beta} d \tau}_{\beta \delta_{n, m}} e^{-i\left(\omega_{n}+\omega_{m}\right) \tau} \underbrace{\int_{0}^{3} x e^{+i(\vec{p}, \cdot p) \cdot k}}_{(2 \pi)^{3} \delta^{3}\left(\vec{p}+\vec{p}^{\prime}\right)} \\
& =\sum_{n} \int_{\vec{p}}\left(\tilde{\omega}_{n}^{2}+\left(\beta \omega_{\vec{p}}\right)^{2}\right)\left|\hat{\phi}_{n}(\vec{p})\right|^{2}
\end{aligned}
$$

Again, measure is invariant in F-transform, which is unitary, and we get directly
[DRess] [Ding $]_{n>0}$

$$
\begin{aligned}
& \log Z(\beta)=\log \left\{\int[\varnothing)_{\beta} \exp \left[-\frac{1}{2} \beta \mathcal{F} \beta^{2}\left(\omega_{n}^{2}+\omega_{\bar{D}}^{2}\right)\left|\phi_{p}\right|^{2}\right]\right\} \\
& =\log \left\{\prod_{m_{1}, \vec{p}} \int d\left|\phi_{n_{p}}\right| \exp \left[-\frac{1}{2} \beta^{2}\left(\omega_{n}^{2}+\omega_{\bar{b}}^{2}\right)\left|\phi_{p}\right|^{2}\right]\right. \\
& =\frac{1}{2} \log \prod_{n, \vec{p}} \frac{2 \pi}{\beta^{2}\left(\omega_{n}^{2}+\omega_{0}^{2}\right)}=-\frac{1}{2} \sum_{n, \vec{p}} \log \left(\beta^{2}\left(\omega_{n}^{2}+\omega_{\hat{p}}^{2}\right)\right) \\
& =V \int \frac{d^{3} p}{(2 \pi)^{3}}\left(-\frac{\beta \omega_{\pi}}{2}-\log \left(1-e^{-\beta^{\omega_{p}}}\right)\right)=\frac{V}{T} J_{T}^{-}\left(m_{1} T\right) \\
& \Rightarrow P=\frac{T}{V} \log Z=J_{+}^{-}(m, T)
\end{aligned}
$$

While we again derived Ennis result schematically in "QST"-feshion, we know from our earlier work with SHO PI that this is an exact soul.

Noninteracting complex scalar field, with action

$$
\alpha=\left|\partial_{\mu} \phi\right|^{2}-a m^{2}\left(\left.\phi\right|^{2}\right.
$$

Decomposing $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right) \Rightarrow \mathcal{L}=\sum_{i=1}^{2} \frac{1}{2}\left(\partial_{\mu} \sigma_{i}\right)^{2}-\frac{m^{\prime}}{2} \phi_{i}^{2}$. So we already know that $Z(\beta)_{\phi}=\left[z(\beta)_{k \in}\right]^{2}$, if no charge. However, we hove continuous symmetry

$$
\phi \rightarrow e^{i \alpha} \phi \quad j \quad \mathcal{L} \rightarrow \mathcal{L}
$$

Soother
$\Rightarrow \exists$ conserved current \& charge. $\quad \delta \delta=0 \Rightarrow \frac{\delta \alpha}{\delta \phi}=\partial_{\mu} \frac{\delta \alpha}{\delta(\partial, \phi)}$ \& complex eng

$$
\begin{aligned}
& \delta \alpha=\frac{\delta \alpha}{\delta \phi} \delta \phi+\frac{\delta \alpha}{\delta(\partial, \phi)} \delta\left(\partial_{\mu}, \phi\right)+h, c \\
&=\alpha \cdot\left(\partial_{\mu}\left(\frac{\delta \alpha}{\delta \partial_{, \phi}} i \phi\right)-h \cdot c\right)=0 \\
& \Rightarrow \partial_{\mu} j^{\mu}=0, \text { where } j^{\mu} \equiv i\left[\phi \partial^{\mu} \phi^{*}-\phi^{*} \partial^{\mu} \phi\right]
\end{aligned}
$$

Charge:
irrelevant, depends on sous. of charge

$$
\rightarrow \text { if } \phi \approx e^{-i p \cdot x} \Rightarrow j^{\mu} \alpha-p^{\mu}
$$

$$
Q=\int d^{3} k j^{0}(\alpha)=\int d^{3} x\left(i\left(\phi \pi-\phi^{n} \pi^{x}\right)\right)
$$

where $\pi=\delta \alpha_{\mu} / \delta\left(\partial_{t} \phi\right)=\partial^{t} \phi^{*}=\partial_{t} \phi^{*}=i \partial_{\tau} \phi^{*}$.
Note that in component notation $\pi_{i}=\partial_{t} \phi_{i} \Rightarrow \pi=\frac{1}{\sqrt{2}}\left(\partial_{2} \phi_{i}-i \partial_{t} \phi_{2}\right)=\frac{1}{\sqrt{2}}\left(\pi_{1}-i \pi_{2}\right)$

$$
\begin{array}{r}
\quad \pi^{*}=\frac{1}{\sqrt{2}}\left(\partial_{1} \phi_{1}+i \partial_{1} \phi_{2}\right)=\frac{1}{\sqrt{2}}\left(\pi_{1}+i \pi_{2}\right) \\
\Rightarrow Q d^{3} \times \frac{i}{2}\left(\left(\phi_{1}+i \phi_{2}\right)\left(\pi_{1}-i \pi_{2}\right)-h . c\right)=\int d^{3} \times\left(\phi_{1} \pi_{2}-\phi_{2} \pi_{1}\right)
\end{array}
$$

Partition function with $\mu \neq 0$

$$
\begin{aligned}
z(\beta, \mu) & =\operatorname{Tr}\left[e^{-\beta\left(\hat{H}-\mu^{\hat{\mu}}\right)}\right] \\
& =\int\left[D \pi D \pi^{n}\right]\left[\varrho \phi D \phi^{\prime}\right]_{\beta} \exp \left\{\int_{X_{E}^{\beta}}\left(\pi \dot{\phi}+\pi^{* \prime} \phi-\mu l+\mu Q\right)\right\}
\end{aligned}
$$

we still kept the notation $\dot{\phi} \equiv \partial_{+} \phi$ despite moving to Euclidean space

Here $\mu=\pi \pi^{*}+\nabla \phi \nabla \phi^{*}+m^{2} \phi \phi^{*}$

$$
Q=i \phi \pi-i \phi^{*} \pi^{*}
$$

Combining all terms containing π we get

$$
\begin{aligned}
& -\pi \pi^{*}+\pi \dot{\phi}+\pi^{*} \dot{\phi}^{*}+i \mu\left(\phi \bar{\phi}-\phi^{*} \pi^{*}\right) \\
= & -\pi \pi^{*}+\pi(\dot{\phi}+i \mu \phi)+\pi^{*}\left(\dot{\phi}^{*}-i \mu \phi^{*}\right) \\
= & -(\underbrace{\left(\pi-\dot{\phi}^{*}+i \mu \phi^{*}\right.}_{\equiv \pi^{\prime}})(\underbrace{\pi^{*}-\dot{\phi}-i \mu \phi}_{\pi^{\prime *}})+(\dot{\phi}+i \mu \phi)\left(\dot{\phi}^{*}-i \mu \phi^{*}\right)
\end{aligned}
$$

After Shift $\pi \equiv \pi^{\prime}+\dot{\phi}^{*}-i \mu \phi^{*}, \pi^{*} \equiv \pi^{\prime}+\dot{\phi}+i \mu \phi$ the π^{\prime} integrals can be performed and give just a constant. We are left with Also noting that $\dot{\phi}=i \partial_{2} \phi$, we are then feet with

$$
z(\beta, \mu)=\int\left[\partial_{\phi} \partial \phi^{*}\right] \exp \left\{\int_{\gamma_{E}}\left[\left(\partial_{\tau}+\mu\right) \phi\right]\left[\left(\partial_{\tau}-\mu\right) \phi^{*}\right]+|\nabla \phi|^{2}+m^{2}|\phi|^{2}\right\}
$$

Now move to F-space

$$
\phi(\tau, \vec{x}) \equiv \beta^{3 / 2} \& \hat{\phi}_{n}(p) e^{-i \omega_{n} \tau+\pi \hat{p} \cdot \vec{x}},
$$

one finds first from periodicity requirement $\phi(\tau+\beta, \bar{x})=\phi(\tau, \bar{x}) \Rightarrow \omega_{n}=2 \pi n T$.
Also: $\partial_{\tau} \phi \longrightarrow-i \omega_{n} \phi_{n} \partial_{\tau} \phi^{*} \longrightarrow i \omega_{n} \phi_{n}$, whence:

$$
z(\beta, \mu)=\int\left[D \phi_{n} D \phi_{m}^{*}\right] \exp \left\{\beta \oint \phi_{n}^{*}(p)\left(\beta^{2}\left(\omega_{n}+\mu\right)^{2}+m^{2}+\vec{p}^{2}\right) \phi_{n}(p)\right\}
$$

we can read of the propagator

$$
\Delta_{0}\left(\omega_{n}, \vec{p}, \mu\right)=\frac{1}{\left(\omega_{n}+i \mu\right)^{2}+\omega_{p}^{2}}
$$

So chemical potential appears as a shift of Matrubara-frequency $i \omega_{n} \rightarrow i \omega_{n}-\mu$. Periodicity of $\phi(\pi, \dot{k})$ then implies $\omega_{n}=2 \pi n t$.

Rms-condition Derivation is identical to sRO. Define $\hat{K}=\hat{H}-\hat{\mu N}$, \& that grand canonical $\hat{p}=e^{-\beta \hat{k}}$. Now arouse $0<\tau<\beta$:

$$
\begin{aligned}
& \Delta_{\phi}(\tau, \vec{x})=\frac{1}{\operatorname{Tr} \hat{\rho}} \operatorname{Tr}[\hat{\rho} \tau(\hat{\phi}(\tau, \dot{x}) \hat{\phi}(\alpha))] \\
& { }^{\tau \geqslant \beta}=\frac{1}{\operatorname{Trj} \hat{\rho}} \operatorname{Tr}\left[e^{-\beta \hat{k}} \hat{\phi}\left(\tau_{1} \vec{x}\right) e^{\beta \hat{k}} e^{-\beta \hat{k}} \hat{\phi}(0)\right] ; \quad e^{-\beta \hat{k}} \hat{\phi}(\tau, \vec{z}) e^{\beta \hat{k}} \\
& =e^{\mu \mu \hat{\omega}} e^{-\beta \hat{\beta}} \hat{\phi}(t, \bar{x}) e^{\rho \hat{\beta}} e^{-\mu \mu \hat{M}} \\
& =\frac{1}{\operatorname{Tr} \tilde{p}} e^{\beta \mu} \operatorname{Tr}\left(e^{-\beta \hat{k}} \hat{\phi}(0) \hat{\phi}(\tau-\beta, \vec{x})\right) \\
& =e^{\mu \beta \hat{\nu}} \hat{\phi}(\tau-\beta, \vec{z}) e^{-\mu \beta \hat{\beta}} \\
& =e \beta \mu \hat{p}(\tau-\beta, \vec{x}) \\
& =\frac{1}{T_{\gamma} \hat{\beta}} e^{\beta \mu} \operatorname{Tr}[\hat{\rho} \tau(\hat{\phi}(\tau-\beta) \hat{\phi}(0))]=e^{\beta \mu} \Delta_{\gamma}(\tau-\beta, \dot{x})
\end{aligned}
$$

If one only had this mfermation to go by, one could now citroduce Fourier transformation

$$
\Delta_{\psi}(\tau, \hat{x})=\sum \Delta_{n}(0, \hat{p}) e^{-i p_{0} \tau+i \vec{p} z}
$$

Then imposing the UMS-condition gives: (without solving s eapliatly)

$$
1=e^{\beta \mu} e^{i p_{0} \tau} \Rightarrow p_{0}=2 \pi n T+i \mu
$$

Evaluating $2(\beta, \mu)$: Chemical potential poses but a minor complication. Now already with some experiona we may could

$$
\begin{aligned}
& P=\frac{1}{\beta V} \log Z(\beta, \mu)=\frac{1}{\beta V} \operatorname{Tr} \log \Delta_{\phi} \\
& =-\frac{1}{\beta V} \sum_{n, \vec{p}} \log \left(\beta^{2}\left((\omega+i \mu)^{2}+\omega_{p}^{2}\right)\right) \\
& =-\frac{1}{\beta} \int_{\vec{\beta}} \int_{0}^{\omega_{p}} d \omega^{1} \underbrace{\sum_{n=-\infty}^{N}} \frac{2 \omega^{t}}{\left(\omega_{n}+i \mu\right)^{2}+c 0^{12}} \\
& =\frac{1}{2 \pi i} \oint_{c_{1}}^{\frac{-1}{z^{2}-\omega^{2}} \frac{\beta}{e^{\beta(z+y)-1}}} \\
& =\frac{\beta}{2 \omega^{\prime}}\left(\frac{1}{e^{\beta\left(\sigma^{\prime}+j^{2}\right)-1}}+\frac{1}{e^{-\beta\left(\omega^{\prime}+f^{2}-1\right.}}\right)=\frac{\beta}{2 \omega^{\circ}}\left(1+\sum_{ \pm} \frac{1}{e^{\beta\left(\omega+\omega^{2}\right)}-1}\right) \\
& =-\int_{\vec{p}} \int_{0}^{\omega_{i}} d \omega^{\prime}\left(1+\sum_{ \pm} \frac{1}{e^{\beta(\omega \pm \mu}-1}\right) \\
& =\sum_{ \pm} \int \frac{d^{3} p}{(2 \pi)^{3}}\left(-\frac{\omega_{p}}{2}-\frac{1}{\beta} \log \left(1-e^{-\beta\left(\omega_{p} \pm \mu\right)}\right)\right) .
\end{aligned}
$$

Bose condensation
If system has a charge, then it has conserved particle number. At high T all particles fit into available phase space. At very low T however, there may mot be enough phase space \& charge starts to accumulate do ground state, which has zero free energy.

We missed condmsate above, when we moved from discrehzed p to continuous one. The correct way is to set

$$
\phi(\bar{c}, \vec{x})=\underbrace{e^{i \theta}}_{\text {complex condensate }}+\underbrace{\sum^{\prime} \phi_{n}(\vec{p}) e^{-i \omega_{n} \tau+i \vec{p} \cdot x}}_{\text {fluctuating steppes }}
$$

Using this, the evaluation of the previous section is conceded to

$$
\begin{aligned}
& z\left(\beta, \mu^{\prime}, \varepsilon\right)=\int\left[D \phi_{i n p} D_{\phi_{i n p}^{\alpha}}^{\sim}\right] \exp [\beta V\left(\mu^{2}-m^{2}\right) \underbrace{\xi^{2}}_{\text {mot integrated! }}-\sum_{n}^{f} \phi_{n}^{*}(p)\left(\left(\omega_{1}+i \mu\right)^{2}+\omega_{p}^{2}\right) \phi_{m}(p)] \\
& \Rightarrow \frac{1}{V} \log z(\beta, \mu, \xi)=\beta\left(\mu^{2}-m^{2}\right) \xi^{2}-\sum_{ \pm} \int_{\vec{p}}\left[\frac{\beta \omega_{1}}{2}+\log \left(1-e^{-\beta(\omega \pm \mu)}\right)\right]
\end{aligned}
$$

what is this.

Treat $\&$ as a variational parameter, requiring

$$
\left.\frac{1}{V}\left(\frac{\partial \log z}{\partial \varepsilon}\right)_{\beta, \mu}=2 \beta\left(\mu^{l}-m^{2}\right)\right\}=0 \Rightarrow \varepsilon=0 \text { if }|\mu|+m \text {. }
$$

So the condensate can only form if the free energy of the ground state

$$
f_{g s}=\omega_{g s}-\mu=m-\mu=0 .
$$

We now determine \& from charge conservation.
Denote $q \equiv \frac{Q}{V}=-\frac{e N}{V}=-\frac{e T}{V} \frac{\partial \log z}{\partial \mu}$

$$
\Omega=-T \log 2
$$

$$
d \Omega=-S d T-P d V-N d \mu
$$

$$
\Rightarrow N=-\frac{\partial g}{\partial \mu}=T \frac{\partial \log _{0} z}{\partial \mu}
$$

$$
=-2 e \mu \xi^{2}-e \int_{\vec{p}}\left[\frac{1}{e^{\beta\left(\omega_{p} \mu\right)}-1}-\frac{1}{e \beta^{(10+\mu)}-1}\right]
$$

$$
\xrightarrow[\sum \rightarrow 0]{\text { high } T}-e \int_{\vec{p}}\left[\frac{1}{e^{\beta\left(\omega_{p} \mu \mu_{1}\right.}-1}-\frac{1}{e^{\beta(\omega+y)}-1}\right] \equiv q(\mu, T)_{\text {particles }}
$$

both get smaller for smaller T and eventually $\rightarrow 0$ or $\beta \rightarrow \infty(T \rightarrow 0)$
for $Q>0$ change \longleftrightarrow (arose $a>0 \Rightarrow$ meed $\mu>0$.) sign of μ. for a fixed $\beta \& 4_{5}$. particle distribution increases if μ is increased.
\Rightarrow to keep q fired as I decreases must increase μ but this can be done only until $\mu=m$.
$\Rightarrow \exists$ lowest $T=T_{C}$ at which all particles are on fluctuating states.
we solve thin by setting

$$
\begin{aligned}
& q=-e \int_{\vec{p}}\left[\frac{1}{e^{\beta\left(\omega_{p}-m\right)}-1}-\frac{1}{e^{\beta(1+t m)}-1}\right] \\
& \Rightarrow T_{c}=T_{c}(q) . \quad \begin{array}{l}
\text { mont be shied } \\
\text { mumericuly }
\end{array}
\end{aligned}
$$

At foo temperatures $T<T_{C}$ we balance q by the condensate:

$$
\begin{aligned}
& q=-2 e m \xi^{2}+q(m, T)_{\text {pertitces }} \\
\Rightarrow & \xi^{2}(T)=-\frac{1}{2 m e}\left(q-q(m, T)_{\text {parties }}\right) \\
\Rightarrow & \xi(T)=\frac{1}{2 m|e|}\left(|q|-\left|q(m, T)_{\text {paries }}\right|\right)
\end{aligned}
$$

$$
\text { Here } \frac{Q}{V} \equiv 0,5 \mathrm{~m}^{3} \Rightarrow T_{c} \simeq 0,1214 \mathrm{~m} \text {. }
$$

and finally: $\Rightarrow q_{\text {cold }}=-2 e m \xi^{2}=q-q(m, T)_{\text {parties }}$.

One could attempt to treat condensate farmedly as a δ-function contribution to $f(4)$, sting (awquerdly)

But can any \mathbb{I} enhanced distribution br thought of as a condensate? No, if it is not associated wist conserved charge.
3. Higher Spin field

Now move to Fermions \& gauge fields. Still moninteracting.
Keywords: Anticommutation rules, garsomann numbers/fieds, KMS-relation. gauge fivening, Abelian gauge field, Mon-abelian gt.

Fermions Free dognangian

$$
\mathcal{L}=i \bar{\psi} \nsim \psi-m \bar{\psi} \psi
$$

canonical momentum: $\pi=\frac{\delta \alpha}{\delta \dot{\psi}}=i \psi t$.
Canonical anticommutation rules

$$
\begin{aligned}
& \left\{\hat{\psi}_{\alpha}(t, \vec{x}), i \hat{\psi}_{\beta}^{+}(t, \vec{y})\right\} \equiv i \delta_{\alpha \beta} \delta^{3}(\vec{k}-\vec{y}) \\
& \left.\left\{\hat{\psi}_{\alpha}(t, \vec{x}), \hat{\psi}_{k} k, \vec{y}\right)\right\} \equiv 0 \\
& \left\{\hat{\psi}_{\alpha}^{+}(t, \vec{x}), \hat{\psi}_{\beta}^{+}(t, \vec{y})\right\} \equiv 0
\end{aligned}
$$

Field operator 1

$$
\hat{\psi}(t, \bar{x})=\int \frac{d_{p}^{3}}{\left(a_{n}\right)^{3} 2 u_{p}} \sum_{s}\left(a_{p}^{s} u_{s}(p) e^{-i p \cdot x}+b_{\hat{p}}^{s t} v_{s}(p) e^{i p \cdot x}\right)
$$

Choosing normalization $u^{f}(s, \bar{p}) u\left(s^{\prime}, \vec{p}\right)=v^{t}(s, \hat{p}) v(s, p)=2 u_{p} \delta_{s s^{\prime}}$, the canonical commutation relations imply

$$
\left\{a_{\vec{p}}^{s}, a_{\vec{p}^{\prime}}^{s+1}\right\}=\left\{b_{\vec{p}}^{3}, b_{\dot{p}}^{s+1}\right\}=(2 \pi)^{3} 2 a a_{p} \delta^{3}\left(\bar{p}-\vec{p}^{\prime}\right)
$$

while other anticommutator vanish.

Hemillonion function

$$
\begin{aligned}
\Rightarrow H & =\int d^{3} x \mathcal{H}=\int d^{3} x(\pi \dot{\psi}-\mathcal{L}) \\
& =\int d^{3} x\left(i \psi^{+} \dot{\psi}-i \psi^{t} \partial_{t} \psi-i \bar{\psi}(+i \bar{\gamma} \cdot \nabla-m) \psi\right) \\
& =\int d^{3} x \bar{\psi}(-i \bar{\gamma} \cdot \nabla+m) \psi=\int d^{3} x i \psi^{+} \partial_{t} \psi
\end{aligned}
$$

asserting field operators into this exprearion one finds

$$
\hat{H}=\int \frac{d_{p}^{3}}{(2 \pi)^{3} 2 \omega_{p}}\left(\omega_{p}\left(a_{p}^{+} a_{p}^{3}+b_{p}^{c t} b_{p}^{3}\right)-\omega_{\hat{p}}\right)
$$

Conserved charge \mathcal{L}_{4} is symmetric under $\psi \rightarrow e^{i \alpha} \psi$

$$
\Rightarrow \quad \partial_{j} j^{\mu}=0 \quad \text { where } j^{\mu}(x)=\bar{\psi}(x) \gamma^{\mu} \psi(x)
$$

\& $\frac{\partial Q}{\partial t}=0$ for $Q=\int d^{3} k j^{0}=\int d^{3} \times \psi^{+} \psi \equiv \int d^{3} x Q(z, \vec{x})$

We can mow write $\left(\mathcal{L}=\pi \dot{\psi}-\mathcal{d} \rightarrow i \pi \partial_{2} \psi-\mathcal{L}\right)$

$$
\begin{aligned}
Z(\beta, \mu) & =\operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{Q})}\right) \\
& =\int\left[D \psi^{+} D \psi\right]_{\bar{\beta}} \exp (\int_{x_{E}^{\beta}} \overbrace{i \pi \partial_{\tau} \psi}^{-\psi^{+} \partial_{\tau} \psi}-\mathcal{H}(\pi, \psi)+\mu \overbrace{Q_{\mathcal{Q}}(\pi, \psi)}^{\left.\psi^{\dagger} \psi=\overline{\psi \gamma^{0} \psi}\right)}
\end{aligned}
$$

$$
\begin{equation*}
=\int[D \bar{\psi} D \psi]_{\bar{\beta}} \exp (-\int_{\chi_{E}^{\beta}} \bar{\psi} \underbrace{\left(\gamma^{0}\left(\partial_{\tau}-\mu\right)-i \bar{\gamma} \cdot \nabla+m\right) \psi}_{\equiv \Delta_{F}^{-1}(\tau, \bar{x})} . \tag{A}
\end{equation*}
$$

[$]_{\bar{\beta}}$ refers to fact that integration is over antiperiodic field configurations: $\psi(\beta, \vec{x})=-\psi(0, \bar{x})$ and $\psi^{t}(\beta, \vec{x})=-\psi^{t}(\beta, x)$. Here $\psi(x)$ is mathematically a Grossmann valued field.

Digression Gousmann number
Assume θ_{i} and θ_{j} are G-numbers $\Rightarrow \theta_{i} \theta_{j} \equiv-\theta_{j} \theta_{i}$

$$
\Rightarrow \theta_{i}^{2}=0 \quad \Rightarrow \phi(\theta)=a+b \theta \quad \text { most general function }
$$

1 c-mumbers
Thus for example $e^{a \theta}=1+a \theta=\frac{1}{1-a \theta}=\frac{1}{2}(1+a \theta)^{2}=\ldots$
integration:

$$
\begin{gathered}
\int d \theta \phi(\theta) \equiv \int d \theta \phi\left(\theta+\zeta_{\text {another }}\right)_{\text {G-mumber }} \\
\phi(\theta)=a+b \theta \Rightarrow a \int d \theta+b \int d \theta \theta=(a-b \xi) \int d \theta+b \int d \theta \theta
\end{gathered}
$$

where we used $d \theta \xi=-\xi d \theta$. This must hold for all $\xi \Rightarrow \rho d \theta=0$. Furthermon we set $\int d \theta \theta \equiv 1 \Rightarrow \int d \theta \phi(\theta)=\int d \theta(a+b \theta)=b$. Grassmann integration is then formally equivalent to G-derivative

$$
\frac{\partial}{\partial \theta} \phi(\theta)=\frac{\partial}{\partial \theta}(a+b \theta)=b .
$$

Note also that $\int d \eta d \theta \theta \eta=1$ due to anticommutation rule. Any odd permutation of $d \eta d \theta \theta \eta$ changes the sign of integration.
Now consider complex G-mumbers

$$
\theta=\frac{1}{\sqrt{2}}\left(\theta_{1}+i \theta_{2}\right) \text { and } \theta^{*}=\frac{1}{\sqrt{2}}\left(\theta_{1}-i \theta_{2}\right)
$$

Then $\int d \theta d \theta^{*} \theta^{2} \theta=1$ and in particular $\int d \theta^{*} d \theta \underbrace{e^{-\theta^{*} b \theta}=b}$ Generalization:

$$
\begin{aligned}
\int \prod_{i=1}^{N} d \theta^{*} d \theta e^{-\sum_{j, k} \theta_{j}^{*} A_{j k} \theta_{k}} & =\int \prod_{i=1}^{N} d \theta_{j}^{*} d \theta_{i}^{(-1)^{N}}\left(\sum_{j, k} \theta_{j}^{*} A_{j k} \theta_{k}\right)^{N} \\
& =\int \prod_{i=1}^{N} d \theta_{i} d \theta_{i}^{*} \prod_{j=1}^{N} \theta_{j}^{*}\left(A_{j k_{j}} \theta_{k_{j}}\right) \\
& =\int \prod_{i=1}^{N} d \theta_{i} d \theta_{i}^{*} \sum_{p e m m} A_{4 k_{1}} \cdots A_{w k_{w}} \theta_{1}^{*} \theta_{k_{l}} \cdots \theta_{N}^{*} \theta_{k_{N}} \\
& =\epsilon_{k_{1} \cdots k_{N}} A_{4_{k}} \cdots A_{w k_{w}} \equiv \operatorname{dit}(A) .
\end{aligned}
$$

Fermionic path integral
Kat stales $(\{\theta, \hat{a}\} \equiv 0$ etc.)
L behave like 6 -mumioss

$$
\begin{aligned}
& |\theta\rangle \equiv e^{-\theta \hat{a}^{+}}|0\rangle=\left(1-\theta \hat{a}^{+}\right)|0\rangle \quad \Rightarrow \hat{a}|\theta\rangle=\theta|\theta\rangle=\theta|0\rangle \\
& \langle\theta| \equiv\langle 0| e^{-a \theta^{*}}=\langle 0|\left(1-a^{+} \theta^{*}\right) \quad \Rightarrow\langle\theta| \hat{a}^{+}=\langle\theta| \theta^{*}=\langle 0| \theta^{*}
\end{aligned}
$$

One then finds

$$
\left.\begin{array}{rl}
\left\langle\theta^{\prime} \mid \theta\right\rangle & =\langle 0|\left(1-\hat{a} \theta^{*}\right)\left(1-\theta \hat{a}^{+}\right)|0\rangle
\end{array}\right)=\langle 0 \mid 0\rangle+\langle 0| \hat{a}, \theta^{1 *} \theta \hat{a}^{+}|0\rangle .
$$

Unit operator, trace. With the θ-states then

$$
\begin{aligned}
\int d \theta^{*} d \theta e^{-\theta^{*} \theta}|\theta\rangle\langle\theta| & =\int d \theta^{*} d \theta\left(1-\theta^{*} \theta\right)\left(1-\theta a^{+}\right)|0\rangle\langle 0|\left(1-a \theta^{*}\right) \\
& =\int d \theta^{*} d \theta\left(-\theta^{*} \theta|0\rangle\langle 0|+\theta a^{+}|0\rangle\langle\theta| a \theta^{*}\right) \\
& =|0\rangle\langle 0|+|1\rangle\langle 1|=1 .
\end{aligned}
$$

$$
\begin{aligned}
\int d \theta^{*} d \theta e^{-\theta^{*} \theta}\langle-\theta| \hat{A}|\theta\rangle & =\int d \theta^{*} d \theta\left(1-\theta^{*} \theta\right)\langle 0|\left(1+\hat{a} \theta^{*}\right) \hat{A}\left(1-\theta \hat{a}^{+}\right)|0\rangle \\
& =\int d \theta^{*} d \theta\left(-\theta^{*} \theta\langle 0| \hat{A}|0\rangle-\langle 0| \hat{a} \theta^{*} \theta a^{+}|0\rangle\right) \\
& =\langle 0| \hat{A}|0\rangle+\langle 1| \hat{A}|1\rangle=\operatorname{Tr} \hat{A} .
\end{aligned}
$$

Where we arrumed that $[\hat{\theta}, \hat{A}]=0$ etc. Eg. $\hat{H} \propto \hat{a}^{+} \hat{a}$, * Tr corresponds to antiperiodic PI over θ weighted by $e^{-\theta^{2} \theta}$.

Path integnel. for SFO

$$
\begin{aligned}
Z & =\int d \theta^{*} d \theta e^{-\theta^{\theta} \theta}\langle-\theta| e^{-\beta \hat{H}}|\theta\rangle \quad \int d \theta_{1}^{*} d \theta_{1} e^{-\theta_{1}^{*} \theta_{1}}\left|\theta_{1}\right\rangle\left\langle\theta_{1}\right| \\
& =\int d \theta^{*} d \theta e^{-\theta^{\theta} \theta}\langle-\theta| e^{-\epsilon \hat{H}} \lambda_{N} e^{-\epsilon \hat{H}} \cdots 1, e^{-\epsilon \hat{H}}|\theta\rangle
\end{aligned}
$$

Now

$$
\begin{aligned}
e^{-\theta_{i+1}^{*} \theta_{i+1}}\left\langle\theta_{i+1}\right| e^{-\epsilon \hat{H}\left(a^{+}, \hat{a}\right)}\left|\theta_{i}\right\rangle & =e^{-\theta_{i+1}^{*} \theta_{i+1}}\left\langle\theta_{i+1} \mid \theta_{i}\right\rangle e^{-\epsilon H\left(\theta_{i+1}^{*}, \theta_{i}\right)} \\
& =\exp \left(-\theta_{i+1}^{*} \theta_{i+1}+\theta_{i+1}^{*} \theta_{i}-\epsilon H\left(\theta_{i+1}^{*}, \theta_{i}\right)\right) \\
& =\exp \left(-\epsilon\left[\theta_{i+1}^{*}\left(\frac{\theta_{i+1}-\theta_{i}}{\epsilon}\right)+H\left(\theta_{i+1}^{*}, \theta_{i}\right)\right)\right.
\end{aligned}
$$

The rightmost point is ok. Nothing special. The leftmost point requirs some care because it hat $-\theta$:

$$
\begin{align*}
& \int d \theta^{*} d \theta e^{-\theta^{*} \theta}\langle-\theta| e^{-\epsilon \hat{H}\left(a^{+}, \alpha\right)} \int d \theta_{N}^{*} d \theta_{N}\left|\theta_{N}\right\rangle \\
= & \int d \theta^{*} d \theta \int d \theta_{N}^{*} d \theta_{N} e^{-\theta^{*} \theta}\left\langle-\theta \mid \theta_{N}\right\rangle e^{-\epsilon H\left(-\theta^{*}, \theta_{N}\right)} \\
= & \int d \theta^{*} d \theta \int d \theta_{N}^{*} d \theta_{N} \exp \left(-\theta^{*} \theta-\theta^{*} \theta_{N}-\epsilon H\left(-\theta_{N}^{*}, \theta_{N}\right)\right) \\
= & \left.\int d \theta^{*} d \theta \int d \theta_{N}^{*} d \theta_{N} \exp \left[-\epsilon\left(-\theta^{*}\right) \frac{(-\theta)-\theta_{N}}{\epsilon}+H\left(-\theta^{*}, \theta_{N}\right)\right)\right]
\end{align*}
$$

So, in total

$$
\begin{aligned}
z & =\int d \theta^{*} d \theta e^{-\theta^{*} \theta}\langle-\theta| e^{-\beta \beta}|\theta\rangle \\
\theta_{0} & =\theta \\
& =\int \prod_{i=0}^{N} d \theta_{i}^{*} d \theta_{i} \exp \left[-\epsilon \sum_{i=1}^{n} \theta_{i+1}^{*}\left(\frac{\theta_{i+1}-\theta_{i}}{\epsilon}\right)+H\left(\theta_{i+1}^{*}, \theta_{i}\right)\right]_{\theta_{N}=-\theta_{0}} \\
& =\int\left[D \theta^{*} D \theta\right]_{\tilde{\beta}} \exp \left[-\int_{0}^{\beta} d \tau\left(\theta^{*} \partial_{\tau} \theta+H\left(\theta^{*}, \theta\right)\right)\right]
\end{aligned}
$$

Periodic path integral over Grassmann field $\theta=\theta(\tau)$.

Fermionic generating functional

$$
\begin{aligned}
Z[\beta, \mu ; \eta, \bar{\eta}]= & \int[D \bar{\psi} D \psi]_{\bar{\beta}} \exp \left[-\int_{x_{E}^{\beta}}\left(\Psi^{\psi} \Delta_{F}^{-1} \psi+\bar{\psi}_{\eta}+\bar{\eta} \psi\right)\right. \\
& =\left(\bar{\psi}+\bar{\eta} \Delta_{F}\right) \Delta_{F}^{-1}\left(\psi+\Delta_{F} \eta\right)-\bar{\eta} \Delta_{F} \eta \\
= & Z(\beta, \mu) \exp \left[\int_{x_{E}^{\beta}} \int_{x_{E}^{\beta}} \bar{\eta}\left(x_{E}\right) \Delta_{F}\left(x_{E}-x_{E}^{\prime}\right) \eta\left(x_{E}^{\prime}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{F}(\tau, \bar{x}) & =\left.\frac{1}{Z(\beta, \mu)} \frac{\delta^{2} Z\left[\beta, \mu^{j} \eta, \bar{\eta}\right]}{\delta \bar{\eta}(\tau, \bar{x}) \delta(0)}\right|_{\eta=\bar{\eta}=0} \\
& =\frac{1}{Z(\beta, \mu)} \int[D \bar{\psi} D \psi]_{\beta} \psi(r, \bar{x}) \bar{\psi}(0) e^{-\int_{X F F} \bar{\psi} \Delta_{F}^{-1} \psi} \\
& =\frac{1}{\operatorname{Tr} \tilde{p}} \operatorname{Tr}\left(\hat{p} \tau[\hat{\psi}(c, \dot{x}] \hat{\psi}(0))=\langle\tau(\hat{\psi}(\tau, \bar{x}) \hat{\psi}(0))\rangle_{\beta}\right.
\end{aligned}
$$

Because ψ and $\bar{\Psi}$ are andicommuting field y is τ arti-time ordered product

$$
\tau[\hat{\psi}(\tau, \hat{x}) \hat{\psi}(0)]=\theta(\tau) \hat{\psi}(\tau, \hat{x}) \hat{\psi}(0)-\theta(-\tau) \hat{\psi}(0) \psi(\tau, \vec{x})
$$

Fermionic KMS-relation Again denote $\hat{K}=\hat{H}-\mu \hat{Q}$

$$
\begin{aligned}
& \Delta_{F}(\tau, \vec{k})=\frac{1}{\operatorname{Tr} \hat{\rho}} T_{\gamma}[\hat{\rho} \tau[\hat{\psi}(\tau, \vec{x}), \hat{\psi}(0)]] \quad ; \quad \tau>0 \\
& =\frac{1}{\operatorname{Tr} \hat{\rho}} \operatorname{Tr}(\underbrace{\left.e^{-\beta^{\hat{k}} \hat{\psi}(r, \hat{x}) e^{\beta \hat{k}}} e^{-\beta \hat{k}} \hat{\psi}(0)\right)}_{-\beta \mu} \\
& =\frac{e^{-\beta \mu}}{\operatorname{Tr} \hat{\rho} \hat{\jmath}} \operatorname{Tr}\left[e^{-\beta \hat{k}} \hat{\psi}(0) \hat{\psi}(\tau-\beta, \hat{R})\right] \quad \tau-\beta<0 \\
& =-\frac{e^{-\beta \mu}}{\operatorname{Tr} \hat{\rho}} \operatorname{Tr}\left[e^{-\beta \hat{u}} \tau(\hat{\psi}(\tau-\beta, \vec{x}) \hat{\psi}(0))\right]=-e^{-\beta \mu} \Delta_{F}(\tau-\beta, \hat{\alpha})
\end{aligned}
$$

Here one arad: $\hat{H}=i \hat{\psi}^{+} \partial_{z} \hat{\psi}=-\hat{\psi}^{+} \partial_{\tau} \hat{\psi}, \quad \hat{Q}=\hat{\psi}^{+} \hat{\psi} \quad \& \quad\left\{\hat{\psi}, \hat{\psi}^{+}\right\}=\delta$

$$
\begin{aligned}
\Rightarrow \hat{\psi}_{x} \hat{H}=\int_{y}-\hat{\psi}_{x} \hat{\psi}_{y}^{+} \partial_{\tau} \hat{\psi}_{y} & =\int_{y} \hat{\psi}_{y}^{+} \hat{\psi}_{x} \partial_{\tau} \hat{\psi}_{y}-\partial_{\tau} \hat{\psi}_{x} \\
& =\int-\hat{\psi}_{y}^{+}\left(\partial_{\tau} \hat{\psi}_{y}\right) \hat{\psi}_{z}-\partial_{\tau} \hat{\psi}_{z}=\left(\hat{H}-\partial_{\tau}\right) \hat{\psi}_{x}
\end{aligned}
$$

$$
\Rightarrow \quad e^{-\beta \hat{u}} \hat{\psi}(\tau, \vec{x}) e^{\beta \hat{\psi}}=e^{-\beta \hat{\psi}} e^{+\beta\left(\hat{H}-\partial_{\tau}\right)} \hat{\psi}(\tau, \dot{\vec{x}})=\hat{\psi}(\tau-\beta, \bar{x})
$$

$$
\begin{aligned}
& \hat{Q} \hat{\psi}_{x}=\int_{y} \hat{\psi}_{y}^{+} \hat{\psi}_{y} \hat{\psi}_{x}=\int_{x}-\hat{\psi}_{y}^{+} \hat{\psi}_{x} \hat{\psi}_{y}=\hat{Q} \hat{\psi}_{x}-\hat{\psi}_{x}=(\hat{l}-1) \hat{\psi}_{x} \\
& \Rightarrow e^{\beta \mu \hat{Q}} \hat{\psi}(\tau, \vec{\alpha}) e^{-\beta \mu \hat{Q}}=e^{-\beta \mu \hat{\psi}(\tau, \vec{\psi}) .}
\end{aligned}
$$

$+\hat{\psi}_{x}$
One call now F-transform

$$
\Delta_{F}(r, x)=\frac{f}{\&} \Delta_{F}\left(p_{p} \vec{p}\right) e^{-\varphi p_{0} \bar{T}+i p, \vec{x}}
$$

Then the KMS-condition implies

$$
-e^{-\beta \mu} e^{i \beta p_{0}}=1 \Rightarrow p_{0}=\left(Q_{n+1}\right) \pi T-i \mu
$$

$\Rightarrow f^{\&} \rightarrow f_{F}$ where $F-r e t e n s$ to fermionic frequencies. The Fermionic frequency requirement could have been seen also from antipeniodiaty of 4. Anyway one can read of from (A) on P, 35:

$$
\Delta(p, p)=\frac{1}{\gamma^{0}\left(l \omega_{\mathrm{Fn}^{n}}+\mu\right)+\gamma^{\prime} \cdot \vec{p}+m}
$$

In crucial difterma to boons, there are no

Fermionir zens modes. That is, even the
lightest thermalized fermionic excitation hess a thermal mass πT.
\Rightarrow at hight T one can integrate fermions out from effective field theories that attempt to describe bung-asave length modes (late).

Fermion gas pressure

$$
\begin{aligned}
& \left.P(\mu, \beta)=\frac{1}{\beta V} \log Z(\beta, \mu)=\frac{1}{\beta V} \log \int\left[D \bar{\psi}_{n, p} D \psi_{n p}\right] \exp \left(\frac{f_{r}}{\psi_{F}} \bar{\psi}_{n}(p) \Delta_{F}^{-1} \psi_{n} L_{p}\right)\right) \\
& 5 \times 18^{\circ} \\
& =\frac{1}{\beta V} \log \prod_{n, \bar{p}} \operatorname{det}\left(\Delta_{F}^{-1}(\eta, \bar{p})\right) \\
& \operatorname{det} A B=\operatorname{det} A \operatorname{det} B \\
& \operatorname{det} i \beta=1 \\
& =\sum_{F}^{f} \log \operatorname{det}\left(-\omega_{F r}+i \mu+i \vec{\alpha} \cdot \vec{p}+i \gamma^{p} m\right) \\
& =f_{F} \log \operatorname{det}\left(\begin{array}{cc}
-\omega_{f n}+i \mu+i \sigma \cdot \bar{p} & i m \\
i m & -\omega_{F n}+i \mu-i \sigma \cdot \vec{p}
\end{array}\right) \\
& =2 \frac{f}{f_{f}} \log \left[\left(\omega_{s_{n}}-i \mu\right)^{2}+\dot{p}^{\prime}+m^{2}\right] \\
& =2 \sum_{j_{F}}^{f} \int_{0}^{\omega_{s}} d \Delta^{l} \frac{2 s l}{\left(\omega_{-n}-i \mu\right)^{2}+\omega^{12}} \\
& =2 \int_{\vec{p}} \int_{6}^{\omega_{1}} d \omega^{\prime} 2 \omega^{2} T \underbrace{\sum_{n=-\infty}^{\infty} \frac{1}{\left(\omega_{-n}-j \mu\right)^{2}+\omega^{n}}} \\
& =\frac{1}{2 \pi i} \oint \frac{1}{\omega^{2}-z^{2}} \frac{-\beta}{e^{\beta(z-\mu)}+1} \\
& =\frac{\beta}{26^{\prime}}\left(-\frac{1}{e^{\beta\left(\omega^{\prime} f^{2}\right)+1}}+\frac{1}{e^{\left.-\beta\left(\omega^{(}+5\right)^{2}\right)}+1}\right) \\
& =2 \int_{\vec{p}} \int_{0}^{\omega_{p}} d \omega^{\prime}\left(1-\sum_{ \pm} \frac{1}{e^{\beta\left(\omega^{\prime} \not p^{\prime}\right)}+1}\right) \\
& =\frac{2 \sum_{ \pm} \int \frac{d^{3} \rho}{(2 \sigma)^{3}}\left(\frac{\omega_{p}}{2}+\frac{1}{\beta} \log \left(1+e e^{\beta\left(v_{p} \mu\right)}\right)\right)}{2 \text { particl-antipartich }}
\end{aligned}
$$

Abelian gauge theory

We quantize Gauge frees cong the Faddue - Sopor method in path integral.
First mole that

$$
\mathcal{L}_{A}=-\frac{1}{2} F_{\mu \nu} F^{\mu V}=\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)
$$

$$
\begin{aligned}
& E_{i}=F_{\alpha}=\partial_{0} A_{i}-\partial_{l} A_{0} \\
& B_{l}=\frac{1}{2} \epsilon_{i j l} F_{j 2}=(\forall \times \vec{A})_{i}
\end{aligned}
$$

with $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial A_{\mu}$ is invariant is gauge transformation

$$
A_{\mu} \rightarrow A_{\mu}^{\alpha}=A_{\mu}+\partial_{\mu \alpha} \quad \alpha \text { anbivory scalar field. }
$$

All these configurations describe the same pheprics $(\vec{B} \& \vec{E}) \Rightarrow$ Huge degeneracy.

Comonical quantization: need to constrain to physical subspace Path integral quantization: need to define PI for Z.

Indeed asa result of G-degeneracy, the partition function

$$
z_{\text {reave }}=\int\left[D_{\lambda}\right]_{\rho} e^{\rho_{X_{\rho}^{\prime}} \alpha_{\alpha}}
$$

\{Moving to Euclidean space $A_{\mu}^{E}=\left(-i A_{2} ; \vec{A}\right)$ of $A_{\mu}^{n}=\left(A_{0} ; \vec{A}\right)$ \} is not defined \& one can not use this to create a generating function. Problem is that writing

$$
\int_{X E} \alpha_{A}=\int_{x_{\bar{E}}^{\prime}}-\frac{1}{4} F_{\mu \omega} F^{\mu \nu}=\frac{1}{2} \int_{x_{E}^{\prime}} A^{\mu}\left(-\square_{E} \delta_{\mu \nu}-\partial_{\mu} \partial_{\nu}\right) A^{\mu}
$$

one can Show that the operator

$$
a_{E} \delta_{\mu v}-\partial_{\mu} \partial_{\nu}
$$

does not have an inverse.

To fir this one has to impose a gauge fixing condition

$$
G\left[A_{\mu}^{\alpha}\right] \equiv 0
$$

mopect the PI measure
But this must be done without brarong the PI-democracy. Sech path is equally good. Is-mathoo delrutely ectirado the G-dependence by introducing a unit operation.

$$
1 \equiv \Delta_{F \rho}\left[A_{\mu}\right] \int\left[D_{\alpha}\right] \delta\left(G\left[\alpha_{\mu}^{\alpha}\right]\right)
$$

$$
\check{\rho}_{-\infty} d x \delta(x-x)=1
$$

cohere

$$
\Delta_{\mathrm{Fp}}\left[A_{\mu}\right]=\operatorname{det}\left(\frac{\delta G\left[A_{\mu}^{\mu}\right]}{\delta \alpha}\right)
$$

Faddur-Popor functional determinant

$$
\begin{aligned}
& -\frac{1}{4}\left(\partial_{\mu} A_{0}-2 A_{\mu}\right)\left(\partial^{2} \beta_{-}-\partial^{0} x^{x} A^{2}\right) \\
& =-\frac{1}{2}\left(\partial_{\mu} A_{0} \partial^{\mu} A^{\nu}-\partial_{\mu} A_{0} \partial^{\nu} A^{\wedge}\right) \\
& =\frac{1}{2}\left(A_{\nu}\left(\partial_{\mu} \partial^{D}\right) A^{N}-A_{\nu} \partial_{\mu} \partial^{\nu} A^{N}\right) \\
& =\frac{1}{2} A_{\nu}\left(g^{\mu} \nabla-\partial \partial^{\nu}\right) A_{\mu}
\end{aligned}
$$

First note that $\Delta_{f p}$ is gauge invariant

$$
\begin{aligned}
\Delta_{F p}^{-1}\left[A_{\mu}^{\alpha^{\prime}}\right] & =\int\left[D_{\alpha}\right] \delta\left(G\left[A_{\mu}^{\gamma^{\prime} \alpha}\right]\right) \\
& =\int\left[D \alpha^{\prime} \alpha\right] \delta\left(G\left[A_{\mu}^{\alpha^{\prime} \alpha}\right]\right) \\
& =\Delta_{F p}\left(A_{\mu}\right)
\end{aligned}
$$

integral ores all gauges
still internal over al ganger

Then it is leary of see that

$$
Z_{\text {nate }}(\beta)=\int[D,]_{\beta}\left(\Delta_{\text {Fp }}\left[A_{\mu}\right] \int\left[D_{\alpha}\right] \delta\left(6\left[\alpha_{\mu}^{\alpha}\right]\right)\right) e^{\int_{x E}^{\text {incant }} d}
$$

 \& $2, \alpha$ provides just a finite shia) So, for each α we can transform $A_{\mu}^{\alpha} \rightarrow A_{n}$ everywhere

$$
\begin{aligned}
& =\left(\int[D \alpha]\right) \int\left[D A_{A}\right]_{\beta} \Delta_{F P}\left[A_{\mu}\right] \delta\left(G\left[A_{\mu}\right]\right) e^{\int_{\text {AR }} Q_{A}} \\
& =\left(\int[D \alpha]\right) Z_{\text {pup }}(\beta) \quad \underbrace{}_{\text {constraint on shall }}
\end{aligned}
$$

infinite gauge volume extracted
Eg.

$$
Z_{\text {pup }}(\beta)=\int[D A]_{\beta} \Delta_{F p}\left[A_{\mu}\right] \delta\left(G\left[A_{\mu}\right]\right) e^{\int_{x_{E}} Q_{A}}
$$

Precise form depends on gauge chare. (what $5 \mathrm{G}[\mathrm{A}]$)

Black body radiation This is just a fancy name. We are again coraluating the free partition function. Here it is a little more interesting due to G-dependence a.

Axial gauge chore $\quad A_{3} \equiv 0$
(special case of $\eta \cdot A=0$ with $\eta \equiv(0,0,01))$
In this case FP determinant is comple:

$$
\Delta_{f p}\left[\mu^{*}\right]=\operatorname{det}\left(\frac{\delta\left(A_{3}+\partial_{3} \alpha\right)}{\delta \alpha}\right)=\operatorname{det}\left(\partial_{3}\right) \nless A_{\mu}
$$

Using this \& the functional δ-constraint we get

$$
Z(\beta)=\operatorname{det}\left(\partial_{3}\right) \int D A_{\partial} D A_{1} D A_{2} e^{\left.\int_{X_{E} \beta} \alpha_{\beta}\right|_{A_{3}=0}}
$$

In zoos T-there we would drop $\operatorname{det}\left(\partial_{3}\right)$ an an úrelewant constant. Nothere!
Doting

$$
\begin{aligned}
\int_{\alpha_{E}^{N}} \mathcal{L}_{A} & =\left.\frac{1}{2} \int_{\alpha \alpha_{E}} A_{\mu}\left(-\delta_{\mu \mu} D_{E}-\partial_{\mu} \partial_{v}\right) A_{V}\right|_{A_{3}=0} \quad \delta \partial_{0}=\partial_{\tau} \\
& =\frac{1}{2} \int_{x_{E}^{\beta}}\left(A_{0}, A_{1}, A_{2}\right)\left(\begin{array}{ccc}
-0-\partial_{0} \partial_{0}-\partial_{0} \partial_{1} & -\partial_{2} \partial_{2} \\
-\partial_{1} \partial_{0} & -B-\partial_{2} \partial_{1}-\partial_{1} \partial_{2} \\
-\partial_{2} \partial_{0} & -\partial_{2} \partial_{1} & -D-\partial_{2} \partial_{L}
\end{array}\right)\left(\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2}
\end{array}\right)
\end{aligned}
$$

Moving \& F-sqce $\partial_{0} \partial_{i} \rightarrow c_{n} p_{i}, \partial_{i} \partial_{j} \rightarrow-\rho_{i} p_{j} ; 0 \rightarrow \omega_{n}^{2}+\hat{p}^{2}$.

$$
\Rightarrow \log z=\log \operatorname{det}\left(p_{p}\right)-\frac{1}{2} \log \operatorname{det}\left(\begin{array}{ccc}
e^{-i \omega_{n} \tau}+i_{p} \bar{p} & \omega_{n} p_{1} & \omega_{0} p_{1} \\
\omega_{n-1} p_{1} & \cos _{n}^{2}+p_{1}^{2}-p_{1}^{2} & -p_{1} p_{2} \\
\omega_{n} p_{2} & -p_{1} p_{2} & \omega_{n}^{2}+p_{1}^{2}-p_{2}^{2}
\end{array}\right)
$$

Now

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\bar{p}^{2} & \omega_{n} p_{1} & \omega_{n} p_{2} \\
\omega_{n p_{1}} & \omega_{0}^{2}+\bar{p}_{2}^{2}-p_{1}^{2} & -p_{1} p_{2} \\
\omega_{n p_{2}} & -p_{1} p_{2} & \omega_{n}^{2}+p^{2}-p_{2}^{2}
\end{array}\right) \\
& =\bar{p}^{2}\left|\begin{array}{cc}
\omega_{n}^{2}+p^{2}-p_{L}^{2} & -p_{1} p_{2} \\
-p_{1} p_{2} & \omega_{n}^{2}+p_{2}^{2}-p_{2}^{2}
\end{array}\right|-\omega_{n} p_{1}\left|\begin{array}{cc}
\omega_{1} p_{1} & -p_{1} p_{2} \\
\omega_{n} p_{2} & \omega_{n}^{2}+p_{2}^{2}-p_{2}^{2}
\end{array}\right|+\omega_{n} p_{2}\left|\begin{array}{cc}
\omega_{n} p_{1} & \omega_{n}^{2}+p_{p}^{2}-p_{1}^{2} \\
\omega_{n} p_{2} & -p_{1} p_{2}
\end{array}\right| \\
& =\vec{\rho}^{2}\left(\left(\omega_{n}^{2}+\vec{p}^{2}\right)\left(\omega_{n}^{2}+\vec{p}_{3}^{2}-p_{1}^{2}-p_{2}^{2}\right)\right)-\omega_{a} p_{1}\left(\omega_{n} p_{1}\left(\omega_{n}^{2}+p^{2}-p_{2}^{2}\right)+\omega_{0} p_{1} p_{2}^{2}\right) \\
& \text { - } \omega_{n} p_{2}\left(\omega_{n} p_{2}\left(\omega_{n}+p_{p}^{2}-p_{1}^{2}\right)-\omega_{\alpha} p_{1}^{n} p^{2}\right) \\
& =\left(\omega_{n}^{2}+p^{2}\right)\left(\vec{p}^{2}\left(\omega_{n}^{2}+p_{3}^{2}\right)-\omega_{n}^{2} p_{1}^{2}-\omega_{n}^{2} p_{2}^{2}\right)=\left(\omega_{n}^{2}+\vec{p}^{2}\right)\left(\omega_{n}^{2} p_{3}^{2}+p^{2} p_{3}^{2}\right)=p_{3}^{2}\left(\omega_{n}^{2}+p^{2}\right)^{2}
\end{aligned}
$$

Thus we get
FP-determinant cancels this part

$$
\Rightarrow \log Z=\frac{1}{2} \operatorname{Tr} \log p_{3}^{2}-\frac{1}{2} \operatorname{Tr} \log \left(p_{3}^{2}\left(\omega_{n}^{2}+p_{3}^{2}\right)^{2}\right)=-\operatorname{Tr} \log \left(\omega_{n}^{2}+p^{2}\right)
$$

We recognize a familiar structure and write immediately:
f^{2} phr. pol. states.

$$
P_{\gamma}=\frac{1}{\beta V \log Z_{\gamma}=-2 \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{|p|}{2}+T \log \left(1-e^{-\beta|p|}\right)\right) . \text { value, drop }}
$$

This can be in fect evaluated all the way (because $m_{j}=\infty$)

$$
\delta P_{\gamma T}=-2 J_{T}^{-}(0)=\frac{T^{4}}{3 \pi^{2}} \int_{0}^{\infty} d y \frac{y^{3}}{P^{y}-1}=\frac{T^{4}}{3 \pi^{2}} 3!\underbrace{\sum_{2}(4)}_{\frac{\pi^{4}}{90}}=\frac{\pi^{2}}{45} T^{4}
$$

It is astomary to denote det-contribution by a vacuum loop:"

Photon propagator. Axial gauge can be cumbersome in PT.
Covenant gauges can be induced by

$$
\begin{aligned}
G_{\omega}\left[A_{\mu}\right] & =\partial^{\mu} A_{\mu}-\omega=0 \\
\Rightarrow \quad \Delta_{F p}\left[A_{\mu}\right] & =\operatorname{det}\left(\frac{\delta\left(\partial^{\mu}\left(A_{\mu}+\partial_{\mu} \alpha\right)-\omega\right)}{\delta \alpha}\right)=\operatorname{det}\left(\partial^{2}\right)
\end{aligned}
$$

Final trick is to do so integral over different doves of w :

$$
\begin{aligned}
Z(\beta) & =N_{\xi} f\left[D_{\omega}\right] e^{-\frac{1}{2 \xi} \int_{x_{E}^{\beta}} \omega^{2}} \int[D A]_{\beta} \Delta_{F p}\left[A_{F_{1}}\right] \delta\left(G_{\omega}\left[A_{\mu}\right)\right] e^{\int_{x_{\xi}} \alpha_{A}} \\
& =N_{\xi} \operatorname{det}\left(\partial^{2}\right) \int[D A]_{\beta} \exp [\int_{X_{\xi} \beta}(\underbrace{\left.\alpha_{A}-\frac{1}{2 \xi}\left(\partial_{\mu} \mu^{\mu}\right)^{2}\right)}_{\alpha_{\text {elf }}}]
\end{aligned}
$$

N

$$
\begin{aligned}
\alpha_{\text {el }} & =-\frac{1}{2} A^{\mu}\left(\delta_{\mu \nu} \Gamma^{2}+\left(1-\frac{1}{\varepsilon}\right) \delta_{\mu} \partial_{\mu} \partial_{\nu}\right) A^{\nu} \\
& \longrightarrow-\frac{1}{2} A^{\mu}\left(\delta_{\mu \nu} p^{2}-\left(1-\frac{1}{\varepsilon}\right) p_{\mu} p_{v}\right) A^{\nu}=-\frac{1}{2} A^{\mu} \Delta_{\mu \nu}^{-1} A^{\nu}
\end{aligned}
$$

Is invertible:

$$
\Delta_{\mu \nu}=\frac{1}{p^{2}}\left(\delta_{\mu \nu}-(1-\xi) \frac{p_{\mu} p_{v}}{p^{2}}\right), \quad p_{\mu}=\left(\omega_{n j} \dot{p}\right)
$$

$$
\text { with } \omega_{h}=2 \pi n T \text {. }
$$

Photon pressure, again can be computed in covariant gauge. It is particularity simple in Feynman gauge where $\varepsilon=1$. Nov directly (here $N_{E}=1$)
$\left[\operatorname{det}\left(j^{2}\right)\right]^{4}$

$$
\begin{aligned}
P=\frac{1}{\beta V} \log z & =\frac{1}{\beta V} \log \operatorname{det}\left(\partial^{2}\right) \cdot\left(\operatorname{det}\left(\delta \omega \partial^{2}\right)\right)^{-1 / 2} \\
& =-2 \frac{1}{\beta V} \frac{1}{2} \log \operatorname{det}\left(\partial^{2}\right) \\
& =-2 \frac{1}{\beta V} \frac{1}{2} \operatorname{Tr} \log \left(\omega_{n}^{2}+\vec{r}^{2}\right)=-2 J_{T}^{-}(0) .
\end{aligned}
$$

For a general ε one can write

$$
\Delta_{\mu \nu}=\frac{1}{p^{2}}\left(\delta_{\mu_{0}}-\frac{p_{\mu} p_{v}}{p_{v}}\right)+\varepsilon \frac{p_{\mu \nu v}}{p_{4}^{4}}=\frac{1}{p^{2}}\left(p_{\mu v}^{\top}+\xi p_{\mu v}^{L}\right)
$$

Noting that $P_{\mu \nu}^{\top} P_{\alpha}^{L \nu}=0 \quad \& P_{\mu \nu}^{T} P_{\alpha}^{T V}=P_{\mu a}^{\top} \& P_{\mu \nu}^{L} P_{\alpha}^{L \nu}=P_{\mu \alpha}^{L}$

$$
\begin{aligned}
\frac{1}{2} \log \left(\operatorname{det}\left(\Delta_{\mu v}\right)\right) & =\frac{1}{2} \log \left(\operatorname{det} \frac{1}{p^{2}}\left(\mathcal{T}_{\mu \nu}^{\top}+\xi p_{\mu \nu}^{L}\right)\right)=\frac{1}{2} \operatorname{Tr} \log \frac{1}{p_{2}}\left(\mathcal{T}_{\mu v}^{\top}+\xi p_{\mu \nu}^{L}\right) \\
& =\frac{1}{2} \operatorname{Tr} \sum_{n=1}^{\infty}\left(\frac{1}{p^{2}}\right)^{n}\left(P_{\mu \nu}^{\top}+\xi p_{\mu \nu}^{L}\right)^{n}=\frac{1}{2} \operatorname{Tr} \sum_{n=1}^{\infty}\left(\frac{1}{p^{2}}\right)^{n}\left(P_{\mu v}^{\top}+\xi^{n} P_{\mu \nu}^{L}\right) \\
& =-\frac{3}{2} \operatorname{Tr} \log p^{2}+\frac{1}{2} \operatorname{Tr} \log \left(\xi / p^{2}\right)
\end{aligned}
$$

$=0$ in dim. reg. or is finite constant from ghost $=-2 \operatorname{Tr} \log \rho^{2}+\frac{1}{2} \operatorname{Tr} \log \xi$ we dined out in definition of

$$
\begin{aligned}
& \text { partition function } \\
& 2 \text { 1-2 } \quad 2 \log p+\frac{1}{2} \text {, } \\
& \Rightarrow P=-\underbrace{}_{r} \log p^{2}+\frac{1}{2} \operatorname{Tr} \log \xi+\frac{1}{\beta V} \log N(\xi) \\
& \longrightarrow=-\log \left\{f\left[D_{\omega}\right] e^{-\frac{1}{2 \xi} \int_{X_{E}^{N}} \omega^{2}}\right\} \\
& =-\operatorname{Tr} \log p^{2} \% \\
& =-\frac{1}{2} \operatorname{Tr} \log \xi .
\end{aligned}
$$

Interacting bosonic field the ry
The formal PT machinery is similar to $T=0$ QFT. Only the Feynmanrules are slightly different: continuous $p_{u} \rightarrow \omega_{n} \quad \&-i \lambda \rightarrow \lambda$. This affects mainly the integrals coming from loop docgramn. (and how depends formulation (imaginary vs real time)).

Keywords: Perturbative expansion. Finite -T Feynman rules, renormalization.
Self-interacting scalar field
consider first:

$$
\mathcal{L}_{E}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{m^{2}}{2} \phi^{2}+V_{I}(\phi)=\mathscr{L}_{E O}+V_{I}(\phi)
$$

Now the generating function becomes

$$
\begin{aligned}
& z[\beta, j]=\int\left[D \omega_{\beta}\right]_{\beta} \exp \left[-\int_{\underset{E}{\beta}}\left(\mathcal{L}_{E 0}+V_{I}(\phi)-j \phi\right)\right] \\
& \stackrel{e x p}{=}\left[-\int_{X_{E}^{\beta}} V_{I}\left(\frac{\delta}{\delta j}\right)\right] \int\left[D_{\delta \delta}\right]_{\beta} \exp \left[-\int_{x_{E}^{\beta}}\left(\alpha_{\varepsilon_{0}}-j \phi\right)\right] \\
& =z_{0}(\beta) \cdot \underbrace{\exp \left[-\int_{X_{E}^{\beta}} V_{I}\left(\frac{\delta}{\delta_{j}}\right)\right] \exp \left[\iint j\left(x_{E}\right) \Delta_{0}\left(x_{E}-x_{E}^{\prime}\right) j\left(x_{E}^{\prime}\right)\right]} \\
& =Z_{0}(\beta) Z_{1}[\beta, j] \\
& \uparrow \text { loop corrections }
\end{aligned}
$$

-This step is highly non- trinal: does PI converge to full result?

Now the Grand potential becomes even dearer

$$
\Omega=-\frac{1}{\beta} \log Z=-\frac{1}{\beta} \log _{\uparrow} z_{0}-\frac{1}{\beta} \log Z_{1}=\Omega_{0}+\delta \Omega
$$

Ret: connected loops etc.

Quartic self-interaction

$$
V_{I}(\phi) \equiv \frac{\lambda}{4_{0}^{1}} \phi^{4}
$$

To compute an approximation for z we need to expanal

$$
\begin{aligned}
\log Z_{1}(\beta) & =\log \left[e^{-\int V_{1}\left(\frac{\partial}{\delta j}\right)} e^{\frac{1}{2} \iint j \Delta j}\right]_{j=0}=\log (1+\delta) \\
& =\left.\sum_{k=1}^{\infty} \frac{1}{k!}\left[-\int V_{I}\left(\frac{\delta}{\delta j}\right)\right]^{k} e^{\frac{1}{2} \iint j \Delta j}\right|_{j=0} ^{\text {connceted }} \\
& =-\left.\int V_{I}\left(\frac{\delta}{\delta j}\right) e^{\frac{1}{2} \iint j \Delta j}\right|_{j=0}+\ldots
\end{aligned}
$$

Where we used even more compact notation $f_{x E}=\int$. This creates the well kansu PI. Even move log (β) only pis the connected diagrams:

$$
\log z(p) \sim+\cdots+\cdots+\cdots
$$

Lowest order calculation

$$
\begin{aligned}
\delta \Omega_{1} & =-\frac{1}{\beta} \int_{x_{E}^{B}}-\left.\frac{\lambda}{4!}\left(\frac{\delta}{\delta j}\right)^{4} e^{\frac{1}{2} \iint^{j \Delta j}}\right|_{j=0} \\
& =\frac{1}{\beta} \frac{\lambda}{4!} \frac{1}{2!} \frac{1}{2^{2}} \int_{x_{E}}\left(\frac{\delta}{\delta j x}\right)^{4}\left[\iint j \Delta j\right]^{2} \\
& =\frac{\lambda}{\delta \beta} \int_{x E}[\Delta(0)]^{2}=\frac{\lambda}{\delta \beta} \beta V[\Delta(0)]^{2} \\
& =\frac{\lambda V}{8}\left[\frac{\rho}{f_{B}} \frac{1}{\omega_{n}^{2}+\vec{p}^{2}}\right]^{2} \\
\Rightarrow & \delta P_{1}=-\frac{\delta \Omega_{n}}{V}=-\frac{\lambda}{8}\left[\frac{\rho}{\delta_{B}} \frac{1}{\omega_{n}^{2}+\vec{p}^{2}}\right]^{2}
\end{aligned}
$$

Of course, we can compute this also diagrammatically from FTFT- Faymanan rubes (by inspection or by writ rotation from $T=0$-rules + propagation nub)

$$
\begin{aligned}
& \simeq \frac{1}{\omega_{n}^{2}+\omega_{p}^{2}} \\
& \simeq-\frac{\lambda}{4!} \\
& \simeq f_{B}=T \sum_{2 n} \int \frac{d^{3} p}{(2 x)^{3}}
\end{aligned}
$$

add sumption

$$
\Rightarrow \delta P_{1}=\frac{T}{V}=-\frac{\lambda}{4!} 3\left[\frac{f}{f} \frac{1}{\cos _{n}^{2}+u_{n}^{2}}\right]^{2}=-\frac{\lambda}{8}\left[\frac{f}{f} \frac{1}{\cos _{n}^{2}+4_{n}^{2}}\right]^{2} \%
$$

This result hear the problem of being infinite, of cause.

Indeed, using our complex integration techniques we car umpute:

$$
\begin{aligned}
\frac{f}{f \cdot \frac{1}{\omega_{p}^{2}+\omega_{p}^{2}}} & =\int_{\vec{p}} T \sum_{n} \frac{1}{\omega_{n}^{2}+\omega_{p}^{2}}= \\
& =\int_{\vec{p}} T \frac{1}{2 \pi i} \oint \frac{1}{\omega_{p}^{2}-z^{2}} \frac{\beta}{e^{\beta z}-1}=\int_{\vec{p}} \frac{1}{2 \omega}\left(\frac{1}{e^{p p^{\omega}-1}-1}-\frac{1}{e^{-\beta \omega_{p}-1}}\right) \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{1}{2 \omega_{p}}+\frac{1}{\omega_{p}} \frac{1}{e \beta^{\beta \omega}-1}\right) \equiv I_{0}+I_{T}^{-}
\end{aligned}
$$

vaguer part: \uparrow
\uparrow thermal part. finite.

$$
\begin{aligned}
& \rightarrow \frac{\mu^{\epsilon}}{2} \int \frac{d^{h t} p}{(2 \pi)^{7}} \frac{1}{\left(p^{2}+m^{2}\right)^{1 / 2}}=\frac{\mu^{\kappa}}{2} \Phi\left(m, 3-\epsilon, \frac{1}{2}\right): \Phi(m, d, \alpha)=\frac{1}{(\pi \pi)^{d / 2}} \frac{\Gamma\left(\alpha-\frac{d}{2}\right)}{\Gamma(\alpha)} \frac{1}{\left(m^{2}\right)^{\alpha-\frac{1}{2}}} \\
& =\frac{1}{2} \frac{m^{2}}{(4 \pi)^{3 / 2}}\left(4 \pi \frac{\mu^{2}}{m^{2}}\right)^{\epsilon / 2} \frac{\Gamma\left(-1+\frac{\epsilon}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=\frac{m^{2}}{\left(4 \pi^{2}\right)^{2}}\left(4 \pi \frac{\mu^{2}}{m^{2}}\right)^{\epsilon / 2} \frac{\Gamma\left(-1+\frac{\epsilon}{2}\right)}{\Gamma(1)}=i S_{0}\left(m^{2}\right) \\
& =-\frac{\eta_{2} m^{2}}{32 \pi^{2}}\left(\frac{2}{\epsilon}-\delta_{E}+\log 4 \pi+1+\log \frac{\mu^{2}}{m^{2}}\right)+\theta(\epsilon)
\end{aligned}
$$

\Rightarrow Need to renormalize.

Renormalization Lagrangian defined in terms of local operators. All observations have finite resolution \Rightarrow Lagrangian parameters ane not observable. In our mortal theory.

$$
\mathcal{L}\left(\phi, m^{2}, \lambda\right)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4 i} \phi^{4} \quad \text { (Minkowshi) }
$$

Redefine (formally so fer)

$$
\phi \equiv z_{\phi}^{1 / 2} \phi_{R}, \lambda=\lambda_{e}+\delta \lambda, m^{2} \equiv m_{R}^{2}+\delta m^{2}
$$

Then

$$
\begin{aligned}
\mathcal{L}\left(\phi_{1} m^{2}, \lambda\right) & =\mathcal{L}\left(\phi_{R}, m_{l}^{2}, \lambda_{R}\right)+\frac{\delta_{\phi}}{2}\left(\partial_{\mu} \phi_{R}\right)^{2}-\frac{1}{2} \delta_{m} \phi_{R}^{2}-\frac{1}{4!} \delta_{\lambda} \phi_{R}^{4} \\
& \equiv \mathcal{L}_{0}\left(\phi_{R}, m_{l}^{2}\right)+V_{I}\left(\lambda_{R}, m_{l}^{2} ; \delta_{\phi}, \delta_{m}, \delta_{y}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{\varphi}=z_{\phi}-1 \\
& \delta_{m}=z_{\phi}\left(m_{R}^{2}+\delta m^{2}\right)-m_{R}^{2} \\
& \delta_{\lambda}=z_{\phi}^{2}\left(\lambda_{R}+\delta \lambda\right)-\lambda_{R}
\end{aligned}
$$

wave function renormalization
mass renormalization
coupling constant renormalization

In BPIPZ-seleme used here δ_{i} are treated an interactions, giving (Euclidean)

$$
\begin{array}{ll}
-\cdots-\cdots & -\frac{1}{2}\left(p^{2} \delta_{\phi}+\delta_{m}\right) \\
-\frac{\delta_{n}}{4!}
\end{array}\binom{=-i p^{2} \delta_{\phi}-i \delta_{m}}{-\frac{i \delta_{x}}{4!}}_{\text {minkewski }}
$$

Renormalization schemes: = choice of parameters. (coupling constant: later)

$$
\begin{aligned}
& \Delta_{R}^{-1}(p)=p^{2}-m_{R}^{2}-\underset{\text { self energy }}{\pi_{R}\left(p^{\prime}\right)} \stackrel{p^{2}=m_{R}^{2}}{\longrightarrow} p^{2}-m_{R}^{2} \\
& \text { eg: }\left\{\begin{aligned}
\pi_{R}\left(m_{R}^{2}\right) & \equiv 0 \\
\left.\frac{d}{d p^{2}} \pi_{R}\left(p^{2}\right)\right|_{p^{2}=m_{B}^{\prime}} & \equiv 0
\end{aligned}\right. \\
& \begin{array}{l}
\overline{\frac{1}{2}}+-\infty-+\cdots \\
p^{2}+m_{2}^{2} \\
\frac{1}{x^{2} m_{2}}\left(-(\pi) \frac{1}{p^{2}-w_{2}}\right.
\end{array} \\
& =\frac{1}{r^{2}-n^{2}-\pi} \\
& \text { renormalization count } \Delta^{-1}=p^{2}-n^{2}-\pi
\end{aligned}
$$

Alternatively $\quad \Delta_{R}^{-1}(p) \xrightarrow{p^{2}=0}-m_{R_{0}}^{2}$

$$
\left\{\begin{aligned}
& \pi_{R_{0}}(0) \equiv 0 \\
&\left.\frac{d}{d p^{2}} \pi_{R_{0}}\left(p^{2}\right)\right|_{p^{2}=0} \equiv 0
\end{aligned}\right.
$$

Ore -loop calculation

Minkowski mules

$$
\begin{aligned}
& =\frac{i}{p^{2}-m_{R}^{2}} \\
& =-\frac{i \lambda_{k}}{4!}
\end{aligned}
$$

\mathbb{R}^{4}-Euclid rule

$$
\begin{aligned}
& \frac{1}{p^{2}+m^{2}}\left(\frac{1}{a_{n}^{2}+m_{0}}\right) \&=0 \\
& -\frac{\lambda_{0}}{4!}
\end{aligned}
$$

Selfenergy correction: what is the 'bib' in given st of rules, wot π :

$$
\begin{aligned}
& \frac{i}{p^{2}-m_{R}^{2}}+\frac{i}{p^{2}-m_{R}^{2}}(-i \pi) \frac{i}{p^{2}-m_{R}^{2}}+\cdots \quad \frac{1}{p^{2}+m_{R}^{2}}+\frac{1}{p^{2}+m_{R}^{2}}(-\pi) \frac{1}{p^{2}+m^{2}}+\cdots \\
= & \frac{i}{p^{2}-m_{R}^{2}}\left(1+\frac{\pi}{p^{2}-m_{R}}+\cdots\right)=\frac{1}{p^{2}-m_{R}^{2}-\pi} \quad=\frac{1}{p^{2}+m_{R}^{2}}\left(1-\frac{\pi}{p^{2}+m_{R}}+\cdots\right)=\frac{1}{p^{2}+m_{R}^{2}+\pi}
\end{aligned}
$$

Eg: $T_{r e}=i-$-(0) in Msheowshi rules \& $-\pi_{E}=-$ in \&edidean rules.

$$
\begin{aligned}
& \rightarrow \text { id }_{\text {Lem }}^{4} \text { same direcity from aa } E \text {-rules } \\
& \pi_{1-\text { loon }}^{\text {eam }}=i=i\left(\frac{-i \lambda_{R}}{2}\right) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m_{R}^{2}}=-\left(-\frac{\lambda_{R}}{2}\right) \int \frac{d^{4} P_{E}}{(2 \pi)^{4}} \frac{1}{P_{E}^{2}+m^{2}}=\frac{\lambda_{R}}{2} I_{0} \\
& \xrightarrow[\text { rn. }]{\text { dim. }} \frac{\lambda_{R}}{2} \mu^{\epsilon} \int \frac{d^{d^{2-E} P}}{(2 \pi)^{\mu-\epsilon}} \frac{1}{P_{E}^{2}+m^{2}} \equiv \frac{\lambda_{R}}{2} i A_{\theta}\left(m_{R}^{2}\right) \\
& =\frac{\lambda_{R}}{2} \mu^{\epsilon} \Phi\left(m_{n}, y-\epsilon, 1\right) \simeq \frac{\lambda_{n} m_{n}^{2}}{32 \pi^{2}}\left(21 \pi \frac{\mu^{2}}{m_{n}^{2}}\right)^{\epsilon / 2} \frac{\Gamma\left(-1+\frac{\epsilon}{2}\right)}{\Gamma(1)} \\
& =-\frac{\lambda_{k} m_{Q}^{2}}{32 \pi^{2}}(\overbrace{\left.\frac{2}{\epsilon}-\gamma_{E}+\log 4 \pi+1+\log \frac{\mu^{2}}{m_{2}^{2}}\right)+\left(C_{\epsilon}\right),} \\
& \equiv-\frac{\lambda_{k} m_{R}^{2}}{32 \pi^{2}}\left(\frac{2}{\epsilon_{\vec{k}}}+1+\log \frac{\mu}{m_{R}^{2}}\right) \approx p^{2} \text {-independent constant. }
\end{aligned}
$$

Full stlf onergy in sacuum:

$$
\pi=i(\cdots)+\cdots \cdots)=\pi_{1-\ldots p}\left(m_{k}^{2}\right)+\delta_{\rho}^{(1)} p^{2}+\delta_{m}^{(1)}
$$

On-shell scheme

$$
\begin{aligned}
\frac{d}{d p^{2}} \pi\left(p^{2}\right) & =-\delta_{\phi}^{(1)}=0 \\
\pi\left(m_{R}^{2}\right) & =\pi_{1-v_{q}}\left(m_{k}^{2}\right)-\delta_{m}^{(1)}
\end{aligned} \quad=0 \Rightarrow \delta_{m}=-\pi_{1-\text { wop }}\left(m_{n}^{2}\right) .
$$

Full thermal relf-onergy (mow with finite-T-rules)

$$
\begin{aligned}
\pi & =-(\cdots)=\frac{\lambda_{R}}{2} \& \frac{1}{\omega_{n}^{2}+\omega_{p}^{2}}+\delta_{m} \\
& =\frac{\lambda_{R}}{2}\left(I_{0}+I_{T}\right)-\frac{\lambda_{k}}{2} i \delta_{0}\left(m_{R}^{2}\right)=\frac{\lambda_{k}}{2} \int \frac{d^{3} p}{\left(\alpha_{r}\right)^{3}} \frac{1}{c_{p}} \frac{1}{e^{\beta 4}-1}=\pi_{T}
\end{aligned}
$$

we thees get a finibe T-dependent self-onergy correction
Oon-sule
at pole

$$
\Rightarrow \Delta^{-1}\left(p^{2}, \tau\right)_{\text {ron }}=\underbrace{p^{2}}+m_{R}^{2}+\frac{\lambda_{R}}{2} I_{T}(m, \tau) \equiv 0
$$

$\cos _{n}^{2}+\vec{p}^{2}$ in $\quad \imath$ thesmal consection to dispersion retation imag. T-neles
For $T \gg m_{R}$

$$
I_{T} \simeq \frac{1}{2 \pi^{2}} \int d p \frac{P}{e \int p-1}=\frac{T^{2}}{2 \pi^{2}} \zeta(2)=\frac{T^{2}}{12} \quad \Rightarrow \quad \pi_{T} \simeq \frac{\lambda_{B} T^{2}}{24}
$$

$\Rightarrow \Delta^{-1}\left(p^{2}\right)_{\text {ren }}=p^{2}+m_{R}^{2}(T) ; \quad m_{R}^{2}(T) \simeq m_{R}^{2}+\frac{\lambda_{R} T^{2}}{24} \quad$ thermal mas.

Now go back to our revaluation of the presorese (Eudielean rules now)

$$
\begin{aligned}
& \Rightarrow \delta P_{1}=\frac{T}{V}\{+0\} \\
& =-\frac{\lambda_{0}}{8}\left[\frac{f}{f} \frac{1}{\omega_{n}^{2}+\omega_{n}^{2}}\right]^{2}-\frac{1}{2} \delta_{m}^{(1)} f \frac{1}{\omega_{n}^{2}+\omega_{n}^{2}}+N_{\text {vac }} \\
& =-\frac{1}{2 \lambda_{R}}\left[\pi_{\text {Vac }}^{1-\text { are }}+\pi_{T}\right]^{2}+\pi_{\text {Vac }}^{\text {tan }} \frac{1}{\lambda_{R}}\left(\pi_{\text {Vac }}+\pi_{T}\right)+N_{\text {vac }} \\
& =-\frac{1}{2 \lambda_{R}} \pi_{T}^{2}+\underbrace{\left(\lambda_{\text {vac }}-\frac{1}{2 \lambda_{R}} \pi_{\text {vac }}^{2}\right) \equiv-\frac{1}{2 \lambda_{R}} \pi_{T}^{2}}_{\equiv 0}
\end{aligned}
$$

Vacuum counterterm is something eve car add do Lagrangian any time

$$
\int d x+\sqrt{-\eta} \mathscr{L} \rightarrow \int d x \sqrt{-}(\mathcal{L}+1) \quad \Rightarrow 0
$$

L invariant
So, at 1-loop fred the proser is

$$
\begin{aligned}
& \text { definition of } m
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& m=0 \\
& \simeq \frac{\pi^{2}}{90} T^{4}+\frac{1}{2 \lambda_{R}}\left(\frac{\lambda_{R} T^{2}}{24}\right)^{2} \simeq \frac{\pi^{2}}{90} T^{4}\left(1-\frac{5 \lambda_{R}}{64}\right) ~
\end{aligned}
\end{aligned}
$$

finite correction. Follows from defining the on-shell ones (here 3000) and the racer energy.

Coupling constant renormalization Choose the scheme:

$$
\begin{aligned}
\lambda_{R} & \equiv \Gamma^{(4)}(0,0,0) \\
& =i\left(\lambda_{B}+3 \cdot \frac{2}{3} x_{3}^{2}+t \text { tqu-channels }+\frac{1}{2!} \frac{\lambda_{R}^{2}}{(!!!)^{2}} \cdot 8 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \int \frac{1}{\left(p^{2}+m_{R}^{2}\right)}+\delta_{\lambda}^{(1)} \equiv \lambda_{e}\right. \\
& \Rightarrow \delta_{\lambda}^{(1)}=-\frac{3}{2} \lambda_{B}^{2} \int_{\rho} \frac{1}{\left(p^{2}+m_{B}^{2}\right)^{2}} \equiv-\frac{3}{2} \lambda_{B}^{2} G_{0} \quad\left(G_{0}=i B_{0}\left(m_{2}^{2}, m_{b}^{2}, 0\right)\right\}
\end{aligned}
$$

Prose of no T-dip. divergences to 2 bops
I. Self energy:

$$
\begin{aligned}
& -\frac{\lambda_{k}^{2}}{4} \frac{1}{4} \frac{1}{p^{2}+m^{2}} \& \frac{1}{\left(p^{2}+m^{2}\right)^{2}}-\frac{\lambda_{e}^{2}}{6} \sum_{i}^{\sum_{1}^{0}} f_{\left(p^{2}+m^{2}\right)\left(p^{2}+m^{2}\right)\left((q-p)^{2}+m^{2}\right)} \\
& -\frac{\delta_{m}^{(1)} \lambda_{k}}{2} \frac{f}{\left(p^{2}+m^{2}\right)^{2}}-\frac{\delta_{m}^{(1)}}{2} \frac{1}{p^{2}+m^{2}}+\delta_{p_{p} p^{2}}^{(2)}+\delta_{m^{\prime}}^{(2)} \\
& \delta_{\lambda}^{(1)}=-\frac{3}{2} \lambda_{R}^{2} \int_{p} \frac{1}{\left(p^{2}+m_{k}^{2}\right)^{2}} \quad \delta_{m}^{(1)}=-\frac{\lambda_{n}}{2} \int_{p} \frac{1}{p^{2}+m_{R}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\lambda_{R}} \pi_{T} \quad \rho_{P} \frac{1}{\left(p^{2}+m^{2}\right)^{2}}+G_{T}(m, m) \quad=\rho_{P} \frac{1}{p_{2}+m^{2}}+\frac{2}{\lambda_{R}} \pi_{T}=I_{0}+I_{V} \\
& \equiv G_{0}+G_{T}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\lambda_{R}}{2} \pi_{T}\left(G_{0}+G_{T}\right)+\frac{3 A_{R}^{2}}{4} G_{0}\left(\frac{2}{\lambda_{R}} \pi_{T}+I_{0}\right)-\frac{\lambda_{B}^{2}}{G} H\left(m, m, m, p^{2}\right)+\delta_{\phi p}^{(2)} p^{2}+\delta_{m}^{(2)} \\
& =-\frac{\lambda_{R}}{2} \pi_{T} G_{T}+\lambda_{R} \pi_{T} G_{0}+\frac{3 \lambda_{R}^{2}}{4} G_{0} I_{0}-\frac{\lambda_{R}^{2}}{6}\left(H_{0}+H_{0 T}+H_{T}\right)+\delta_{\phi}^{(2)} P^{2}+\delta_{m}^{(2)} \\
& \xrightarrow{T \rightarrow 0} \frac{3 \lambda_{R}^{2}}{4} G_{0} I_{0}-\frac{\lambda_{R}^{2}}{G} H_{0}+\delta_{g}^{(2)} P^{2}+\delta_{m}^{(2)} \\
& \Rightarrow \quad \delta_{\phi}^{(2)}=\left.\frac{\lambda_{R}^{2}}{6} \frac{\partial}{\partial \partial_{p}^{2}} H_{0}\right|_{\rho_{s m_{n}^{2}}} \\
& \delta_{m}^{(2)}=\left.\frac{\lambda_{n}^{2}}{6}\left(1+m_{R}^{2} \frac{\partial}{\partial \rho^{2}}\right) H_{0}\right|_{p^{2}=m^{2}}-\frac{3 \lambda_{i}^{2}}{4} G_{I^{2}} I_{0} \\
& \Rightarrow-\frac{\lambda_{R}^{2}}{6} H_{0}+\frac{3 \lambda_{k}^{2}}{4} G_{0} I_{0}+\delta_{\phi}^{(2)} p^{2}+\delta_{m}^{(2)}=-\frac{\lambda_{k}^{2}}{6}\left(H_{0}\left(p^{2}\right)-H_{0}\left(m_{k}^{2}\right)-\left.\left(p^{2}+m_{k}^{2}\right) \frac{d}{d p^{2}} H_{0}\right|_{p^{2}=m_{k}}\right)
\end{aligned}
$$

This combination is finite. Remain the terms $\lambda_{2} \pi_{T} G_{0}$ and $-\frac{\lambda_{k}^{2}}{6} H_{0}$.
Div. Structure of

T- dep. mot killed by ct's only hare. killed by ct's

The remaining ct-contribution ($\frac{2}{3}$ s of T-dep. part of) exactly cancels this. $\Rightarrow \pi^{(2)}$ is finite. In particular all potentially T-dep. mitimities canal.

The 2-loop contribution to presorere comes from following terms:

Adding (1), (Ia) and (1b) gives:

$$
\begin{aligned}
& \delta P_{(2 a)}=\frac{T}{V}\{\underbrace{-\pi_{M C}}\} \\
& =\frac{1}{2!}\left(\frac{\lambda_{R}}{4!}\right)^{2} 6 \cdot 6 \cdot 2 \frac{4}{\lambda_{l}^{2}}\left(\pi_{\text {vac }}^{(1)}+\pi_{T}\right)^{2} \frac{f}{f} \frac{1}{\left(p^{2}+m^{2}\right)^{2}}+\frac{1}{2} \delta_{m}^{(1)} \frac{\lambda_{k}}{4!} 6 \cdot 2 \frac{\lambda_{2}}{\lambda_{R}}\left(\pi_{v a c}^{(1)}+\pi_{\tau}\right) \sum_{j_{p}}^{f} \frac{1}{\left(p^{2}+m^{2}\right)^{2}} \\
& +\left(\frac{1}{2} \delta_{m}^{(1)}\right)^{2} \frac{1}{4} \frac{1}{\left(p^{2}+m^{2}\right)^{2}} \\
& =\frac{1}{4}(\overbrace{\left(\pi_{V C c}^{(1)}+\pi_{T}^{u}\right)^{2}}^{\pi_{T}^{2}}-2 \pi_{\text {Vac }}^{(1)}\left(\pi_{V C c}^{(1)}+\pi_{T}^{(i)}\right)+\pi_{V a c}^{(1) 2}) ~ \sum_{p} \frac{1}{\left(p^{2}+m^{2}\right)^{2}}=\frac{1}{4} \pi_{T}^{(1)^{2}}\left(G_{0}+G_{T}\right) \\
& =-\frac{\delta_{\lambda}^{(1)}}{8}\left[\xi \frac{1}{\omega_{n}^{1}+\varphi_{n}^{2}}\right]^{2}=-\frac{\delta_{\lambda}^{(1)}}{2 \lambda_{R}^{2}}\left(\pi_{\text {lac }}^{(1)}+T_{T}^{(1)}\right)^{2}=-\frac{3}{4} G_{0}\left(\pi_{\text {lac }}^{(1)}+T_{T}^{(1)}\right)^{2} \\
& \delta^{(2)}=\frac{1}{2} \frac{f}{\delta_{m}^{(2)}+p^{2} \delta_{\phi}^{(2)}}=\overbrace{\frac{3 \lambda_{p}}{4} G_{0} I_{0}\left(\pi_{m}^{(1)}+\pi_{T}\right)}^{\frac{3}{2} G_{0}\left(\pi_{m c}^{(1)}+T_{p}^{2}\right)} \\
& +\frac{\lambda_{k}^{2}}{12} \frac{1}{4} \frac{1}{\omega_{n}^{2}+\alpha_{2}^{2}}\left(H\left(m_{2}^{2}\right)+\left.\left(p^{2}+m_{h}^{2}\right) \frac{\partial H}{\partial p^{p}}\right|_{p^{2}=m_{i}^{2}}\right)
\end{aligned}
$$

Remains the divergence structure of

$$
\begin{aligned}
& =\frac{\lambda_{R}^{2}}{2 \cdot 4!} G\left(\frac{2}{\lambda_{R}}\right)^{2} \pi_{T}^{2} G_{0}+\frac{\lambda_{R}^{2}}{2 \cdot 4!} 4 f \frac{H_{0}\left(b^{2}\right)}{\omega_{n}^{2}+\varphi_{0}^{2}}+\theta+\text { finite } \\
& =\frac{1}{2} G_{0} \pi_{T}^{2}+\frac{\lambda_{R}^{2}}{12} \frac{1}{\omega_{h^{2}+\omega_{0}} H_{0}\left(r^{2}\right)}+\theta+\text { finite }
\end{aligned}
$$

We then get

$$
\begin{aligned}
& \delta P_{(b b)}=\frac{T}{V}\{\delta^{(2)}+\delta^{(2)}+\underbrace{(2)}\} \\
& =-\frac{3}{4} G_{0} \overbrace{\left(\pi_{\text {rec }}+\pi_{T}\right)^{2}}^{=\pi_{\text {a }}^{2}+2 \pi_{T} \pi_{\text {aus }}+\pi_{T}^{2}} G_{0} \pi_{\text {mac }}\left(\pi_{\text {rec }}+\pi_{T}\right)+\frac{1}{2} G_{0} \pi_{T}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{4} G_{0} \pi_{T}^{2}+\text { finube }
\end{aligned}
$$

Summing the two, we get $\delta P_{(2 a)}+\delta P_{(2 b)}$ is finite. The T-dependent divergences went away in particular. In all

$$
\delta P_{(2)}=\frac{1}{4} \pi_{T}^{2} G_{T}+\left.\frac{T}{V}\right|_{\text {finite, } T \neq 0 \text { part }}
$$

(TTO part absorbed to $N^{(2)}$)

Infrared divergence \& Daisy resumption
We still have a problem, this tine at IR. Indeed

$$
\delta P_{(2)}^{\infty \infty}=\frac{1}{4} \pi_{T}^{2}\left({\underset{S}{p}}^{\left.G_{0}+\int_{T}\right)} \frac{1}{\left(p^{2}+m^{2}\right)^{2}}=\frac{1}{4} \pi_{T}^{2} G_{T}\right.
$$

contains an IR divergence for $m=0$.

$$
\begin{aligned}
I=\frac{f}{f} \frac{1}{\omega_{n}^{2}+\omega_{p}^{2}} & =\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\frac{1}{2 \omega}+\frac{1}{\omega} \frac{1}{e^{\beta \omega}-1}\right) \\
G=\frac{f}{f} \frac{1}{\left(\omega_{n}^{2}+\omega_{p}^{2}\right)^{2}} & =-\frac{\partial}{\partial m^{2}} I=\int \frac{d_{p}^{3}}{(2 \pi)^{3}}(\frac{1}{4 \omega^{3}}+\underbrace{\frac{1}{2 \omega^{3}}\left(n+\beta \omega\left(n^{2}+n\right)\right)}_{\sim \frac{1}{\beta \omega^{4}}} \text { for mall } \omega \\
& =G_{0}+G_{T} \quad
\end{aligned}
$$

$\Rightarrow G_{T} \sim \frac{T}{2 \pi^{2}} \int_{N_{\mathbb{R}}} \frac{d p}{p^{2}} \sim \frac{1}{\Lambda_{\mathbb{R}}}$ for $m=0 \quad$ PT breaks down at $I R$ at finite T.
Basketball is \mathbb{R}-see however:

$$
\begin{aligned}
& \sim \frac{\lambda_{e}^{2}}{6} T^{3} \int_{\vec{p}} \int_{\vec{q}} \int_{\vec{r}} \frac{1}{m_{i}=0 j m_{s} \dot{q}^{2} \vec{r}^{2}(\vec{p}+\vec{q}+\vec{r})^{2}} \\
& \propto \frac{\lambda_{k}^{2} T^{3}}{32 \cdot 6 \pi^{3}} \int d p d q d r d c \alpha d c \beta \frac{d s}{(\vec{p}+\vec{q}+\vec{r})^{2}} \propto \int d p \sim f i n d e
\end{aligned}
$$

The problem is that $T \neq 0$-corrections create an effective mans $\sim \pi_{T}$, but we are still expanding PT using massless propagator. We already saws that thermal loop correction incluced $m_{R}^{2} \rightarrow m_{R}^{2}+\frac{\lambda T^{2}}{24}$, so resuming the leading loop corrections should help. Question is how one does His consistently?

Dairy resummation for pressure
It is important to realize that $I R$-divergence comes entirely from the $n=0$-mode.

$$
G_{T}^{n=0}=T \int \frac{d^{3} \rho}{(2 \pi)^{3}} \frac{1}{\omega_{p}^{4}} \sim \frac{T}{2 \pi^{2}} \int \frac{d p}{p^{2}}
$$

All other integrals G_{T}^{m+0} are IR-finite because of the thermal mass $2 \pi_{n} T$.
\Rightarrow only need to ressum the $n=0$-mode.
There is also intuive reasoning for this: zero modes have long wave-length and II is matural that their interactions are screened by $n+0$-modes.

$$
\lambda T^{2} / 24=\text { screening mas }
$$

Also, the IR-divergnce if X-diagram was just the first in a series. - To order A_{R} the most IR-divengent diagram is

\int symm factor of subdicgram O

$$
i s_{N}=\frac{1}{N!} \frac{(N-1)!}{2}\left(s_{\pi_{1}}\right)^{N}=\frac{\left(S_{\pi_{1}}\right)^{N}}{2 N}
$$

$\uparrow \quad \tau$ order of PT ways to order N Q 's to circle

$$
S_{\pi_{1}}: \sum_{R} \frac{\lambda}{4!} 6 \cdot 2 \cdot I \equiv S_{\pi_{1}} \lambda_{R} I \text { oriented }
$$

Add all possible cit's

$$
\Leftrightarrow \text { each sub } \rightarrow
$$

$$
\Rightarrow \quad \frac{T}{V} \sum_{N=2}^{\infty} S_{N} \sum_{k=0}^{N}\binom{N}{k}=\sum_{N=2}^{\infty} S_{N} \quad \begin{aligned}
& \text { mote that all } \\
& \text { graphs with } \\
& N \geqslant 3 \text { are fink e }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{\vec{p}} \sum_{N=2}^{\infty} \frac{(-1)^{N}}{N}\left(\pi_{T} \bar{\Delta}_{0}\left(\omega, \overrightarrow{\Delta_{0}}\right)\right)^{N} \\
& =-\frac{1}{2} \int_{\vec{p}}\left(\log \left(1+\pi_{T} \bar{\Delta}_{0}\right)-\pi_{T} \bar{\Delta}_{0}\right)^{N=1-\operatorname{term}} \\
& =-\frac{1}{\omega_{0}^{2}+\omega_{0}^{2}} \\
& \int_{\vec{p}}\left(\log \left(\omega_{h}+\omega_{p}+\pi_{T}\right)-\log \left(\omega_{n}^{2}+\omega_{\hat{p}}^{2}\right)-\pi_{T} \bar{\Delta}_{0}\right)
\end{aligned}
$$

${ }^{\uparrow}$ denote this by $\Delta_{0} \equiv \Delta_{n=0}$

$$
\text { one - sign from each vertex - } \lambda
$$

one - sign from each vertex - λ

Here :=:-z=-:-:= refers to resummed zero-mode propagator $\Delta^{-1}=\omega_{r}^{2}+\pi_{T}$. This is still valid abr for $m \neq 0$. And that is fine. We may have $T \gg m$ Now remember our One-bop result

$$
\begin{aligned}
& \frac{T}{V}\{+\}=-\frac{1}{2 \lambda_{R}} \pi_{T}^{2}=-\frac{1}{2 \lambda_{R}}\left(\pi_{T, 0}+\pi_{T, n \neq 0}\right)^{2} \\
&=-\frac{1}{2 \lambda_{R}} \pi_{T, 0}^{2}-\frac{1}{\lambda_{R}} \pi_{T_{1}, 0} \pi_{T, n \neq 0}-\frac{1}{2 \lambda_{R}} \pi_{T, n+0}^{2} \\
&\Rightarrow \frac{T}{V}\{+\}+\underbrace{\frac{1}{2} \pi_{T} \int_{\hat{P}} \bar{\Delta}_{0}}_{=\frac{1}{\lambda_{R}} \pi_{R} \pi_{T, 0}}=\frac{T}{V}+\underbrace{}_{i=0}\}
\end{aligned}
$$

both OV-\& IR finite contributions.

So the full f-Wop ing-resummed result is diagrammatically:

$$
P=\frac{T}{V}\left\{+\left({ }_{m}\right)+\right.
$$

$$
\begin{aligned}
& =P_{0}-\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\log \left(\vec{p}^{2}+m^{2}+\pi_{T}\right)-\log \left(\vec{p}^{2}+m^{2}\right)\right)-\underbrace{\text { correction }}_{\underbrace{2 \lambda_{R}}_{\text {modifiol } l-\text { wop }}\left(\pi_{T, 0}^{2}+\pi_{n+0}^{2}\right)} \\
& \text { se } \quad \int_{\vec{p}} \frac{1}{p^{2}+m^{2}}=-\frac{m T}{4 \pi} \quad\left(\varepsilon_{\text {ccercire })}\right. \\
& \Rightarrow \quad \pi_{T, 0}=-\frac{\lambda m T}{3 \pi} \Rightarrow \pi_{T, 0} \ll \pi_{T} \text { if } T \gg m .
\end{aligned}
$$

So for Tyson the 1-loop part is un-modified. Then use

$$
\begin{aligned}
&-\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \log \left(\vec{p}^{2}+m^{2}\right)=-\frac{1}{2} \int m^{m^{2}} d m^{(2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{p^{2}+m^{2}}=+\frac{T}{4 \pi} \rho^{m} d m^{\prime} m^{\prime 2}=T \frac{T m^{3}}{12 \pi}+C \\
& \Rightarrow \frac{V}{T}\left\{2=\frac{\left(m^{2}+\pi_{T}\right)^{3 / 2} T}{12 \pi}-\frac{m^{3} T}{12 \pi}\right. \\
& \xrightarrow{m \rightarrow 0} \frac{T \pi_{T}^{3 / 2}}{12 \pi}=\frac{1}{12 \pi} \frac{1}{(24)^{3 / 2}} \lambda^{3 / 2} T^{4}
\end{aligned}
$$

Thus, the ring contribution is $\sim \lambda^{3 / 2}$, which is larger than the 2 -loop erections.

$$
\Rightarrow P \simeq \frac{\pi^{2}}{90} T^{4}\left(1-\frac{5 \lambda}{64 \pi^{2}}+\frac{5 \lambda^{33 / 2}}{384 \pi}+\cdots\right)
$$

restricted to T>>m

Full daisy resummation?
How about resumming all matribara modes? Sometimes one might like to do this, (lakes) π hts try:

$$
\begin{aligned}
& \tau^{N}=1 \text {-term } \\
& =-\frac{1}{2} f\left(\log \left(1+\pi_{T} \Delta_{0}\right)-\pi_{T} \Delta_{0}\right) \\
& =-\frac{1}{2} \frac{f}{4}\left(\log \left(\omega_{n}+\omega_{p}+\pi_{T}\right)-\log \left(\omega_{n}^{2}+\omega_{n}^{2}\right)-\pi_{T} \Delta_{0}\right) \\
& =\frac{P}{V}\left\{\left\{\begin{array}{l}
0 \\
i
\end{array}\right\}+\frac{1}{\lambda_{R}} \pi_{T}\left(\pi_{T}+\pi_{\text {ReC }}\right)\right.
\end{aligned}
$$

- Now this is of course still divergent. In addition to $\frac{1}{\lambda_{R}} \pi_{T}\left(\pi_{T}+\pi_{v a e}\right)$, that got extracted there is the divergence $\frac{1}{4} \pi_{T}^{2} G_{0}$ in the $N=2$-term.

This is cancelled by
-we did not need these above, because for the zers-mode

$$
\int_{\vec{p}} \frac{1}{\left(p_{p}^{2} m^{2}\right)^{2}}=-\frac{\partial}{\partial m^{2}} \int_{\bar{p}} \frac{1}{p_{+}^{2}+m^{2}}=\frac{\partial}{\partial m^{2}} \frac{m T}{4 \pi}=\frac{T}{4 \pi m} \quad \text { (ov-finit) }
$$

So, combining with $\delta P_{1} \&$ subtracting the appropriate ct's one can write a finite sing convected P

The mixed term from 2-uop contribution δP_{2}

$$
P=\frac{v}{T} \sum_{N=0}^{m} S_{N}-\frac{1}{4} \pi_{T}^{2} G_{0}
$$

$$
\begin{aligned}
& =\frac{V}{T}\{\underbrace{0}_{1-\log 1} \underbrace{0}+\frac{1}{\lambda_{R}} \pi_{T}\left(\pi_{T}+\pi_{\text {ven }}\right)+\frac{1}{4} \pi_{T}^{2} G_{0} \\
& =-\frac{1}{2} f \log \left(\omega_{h}^{2}+\omega_{p}^{2}+\pi_{T}\right)-\frac{1}{2 \lambda_{R}} \pi_{T}^{2}+\frac{1}{\lambda_{R}} \pi_{T} \pi_{f+11}+\frac{1}{4} \pi_{T}^{2} G_{0}+e \\
& =-J_{0}\left(\sqrt{m^{2}+\pi_{T}}\right)+\underbrace{J_{T}^{-}\left(\sqrt{m^{2}+\pi_{T}}, T\right)}-\overbrace{\frac{1}{2 \lambda_{R}} \pi_{T}^{2}}^{1 \text {-Lop }}+\frac{1}{\lambda_{R}} \pi_{T} \pi_{\text {full }}+\frac{1}{4} \pi_{T}^{2} G_{0}+\cdots
\end{aligned}
$$

resumed thermal integral
Let us now check the finiteness of this result.

$$
\begin{aligned}
& -J_{0}\left(m^{2}+\pi_{T}\right)=\frac{m^{4}+2 m^{2} \pi_{T}+\pi_{T}^{2}}{{ }_{2}{ }^{2} \pi^{2}}\left(\frac{2}{\epsilon_{n s}}+\frac{3}{2}+\log \frac{\mu^{2}}{m^{2}+\pi_{\tau}}\right) \\
& \left.\frac{1}{\lambda_{R}} \pi_{T} \pi_{\text {tull }}=\frac{1}{2} \pi_{T} i A_{B}\left(m^{2}\right)=-\frac{m^{2} \pi_{T}}{32 \pi^{2}}\left(\frac{2}{\epsilon_{m s}}+1+\log \frac{\mu^{L}}{m^{2}}\right)\right) \\
& \left.\frac{1}{4} \pi_{T}^{2} G_{0}=\frac{1}{4} \pi_{T}^{2} i B_{0}\left(0, n_{i}^{\prime}\right)=-\frac{\pi_{T}^{2}}{64 \pi^{2}}\left(\frac{2}{\epsilon_{m a c}}+\log \frac{\mu^{2}}{m^{2}}\right)\right) \\
& \uparrow m^{2}+\pi r \\
& \Rightarrow-J_{0}\left(m^{2}+\pi_{T}\right)+\frac{1}{\lambda_{R}} \pi_{T} \pi_{\text {tull }}+\frac{1}{4} \pi_{T}^{2} G_{0}+\bullet \\
& =\frac{1}{64 \pi^{2}}\left\{-m^{4} \log \left(1+\frac{\pi_{T}}{m^{2}}\right)+2 m^{2} \pi_{T}\left(\frac{1}{2}-\log \left(1+\frac{\pi_{T}}{m^{2}}\right)\right)+\pi_{T}^{2}\left(\frac{3}{2}-\log \left(1+\frac{\pi_{r}}{m^{2}}\right)\right)\right\} \\
& \uparrow
\end{aligned}
$$

Thin 's finite and $\longrightarrow 0$ as $T \rightarrow 0$. So all is well? No, the term is again IR-diver gent, of blows ep when $m^{2} \rightarrow 0$. The resummation failed.

The problem in with the mixed correction $-\frac{1}{4} \pi_{T}^{2} G_{0}$ from the 2 -loop contribution coming from $\delta P_{(2 b)}=\frac{T}{V}\left\{\delta_{\delta_{n}}^{(i)}+\cdots\right.$.

If we replace $G_{0}\left(\mathrm{~m}^{2}\right)$ here with $G_{0}\left(\mathrm{~m}^{2}+\pi_{T}\right)$, then the offending loy.term just drops! This is weird though, because 6_{0} came from δ_{i}, eg. the comer term.

So, sf we want to nesum the whole thing, we should apparently somehow replace .-.--.- by $=:=:=:=$ crerywhen (?) in the 2-6op terms.
Is there a systematic way to do this?
yes! The 2PI-expansion. We come back to thin later, if time permits.

Daisy nevannmation for self-mergy
Leading \mathbb{R}-divergences are again $n=0$ loops $\pi=\pi_{T}+\pi_{n i n g}$. with

$$
-\pi_{T}=\cdots+\cdots=\cdots=\pi_{T, 0}+\pi_{T, \Downarrow \geqslant 0}
$$

and

$$
\begin{aligned}
&-\pi_{\text {ring }}=\sum_{N=2}^{\infty} s_{N}^{\prime} \quad s_{J}^{\prime}=\frac{1}{N!} N!\left(s_{\pi}\right)^{N} \\
& \Rightarrow \quad \pi=\pi_{T}+\frac{\lambda_{R}}{2} T \int_{\vec{p}} \sum_{N=0}^{\infty}(-1)^{N} \pi_{T}^{N} \pi_{0}^{N+1}-\pi_{T, 0} \\
&=\pi_{T}+\frac{\lambda}{2} T\left\{\int_{\vec{p}} \frac{1}{\dot{p}^{2}+m^{2}+\pi_{T}}-\int_{\vec{p}} \frac{1}{\bar{p}^{2}+m^{2}}\right\} \\
&=\pi_{T}-\frac{\lambda T}{8 \pi}\left(\sqrt{m^{2}+\pi_{\Gamma}}-m\right) \xrightarrow{m \rightarrow 0} \frac{\lambda T^{2}}{24}\left(1-\frac{\lambda^{1 / 2} \sqrt{24}}{8 \pi}\right)
\end{aligned}
$$

So the ring correction to man is $\frac{\lambda^{3 / 2} T^{2}}{16 \sqrt{6} \pi}$.

Full Daisy resummation of self-energy
To do full Daisy resummation we again need more it's at 2 -loop lever

$$
I_{T} \text {-function. } O C
$$

$$
\begin{aligned}
& I_{0}\left(\sqrt{m^{2}+\pi_{T}}\right)-i A_{0}\left(m^{2}\right)-\pi_{T} i B_{0}\left(m^{2}, m_{1}^{2} 0\right) \\
= & \frac{-1}{16 \pi^{2}}\left(\left(m^{2}+\pi_{T}\right)\left(\frac{2}{\epsilon_{\bar{T}}}+l+\log \frac{\mu^{2}}{m^{2}+\pi_{T}}\right)-\left(m^{2}+\pi_{T}\right)\left(\frac{2}{\epsilon_{\pi_{S}}}+\gamma+\log \frac{\mu^{2}}{m^{2}}\right)+\pi_{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\pi=\cdots+\cdots+\cdots+\cdots+\frac{1}{2} \lambda_{\Omega} \pi_{T} G_{0} \\
& +\sum_{N=2}^{\infty} S_{N}^{\prime}+\ldots \\
& \uparrow \\
& \text { deflower from } \\
& 2 \text {-hop } \\
& \text { renomedigel } \\
& \Rightarrow \pi=\pi_{T}+\frac{\lambda_{R}^{2}}{4} \frac{1}{\sum^{p} \frac{1}{\left(p^{2}+m^{2}\right)^{2}}\left(\frac{1}{\frac{2}{2}} \frac{1}{p^{2}+m^{2}}-\int_{T} \frac{1}{p^{2}+m^{2}}\right)-\frac{1}{2} \lambda_{R} \pi_{T} \int_{p} \frac{1}{\left(p^{2}+m^{2}\right)^{2}} .}
\end{aligned}
$$

$$
\begin{aligned}
& =\Delta\left(\frac{1}{1+\pi_{T} \Delta}-\pi_{T} \Delta-1\right) \\
& =\pi_{T}+\frac{\lambda_{n}}{2} \pi_{T}\left(\frac{f}{4}-\int_{G_{T}}\right) \frac{1}{\left(p^{2}+m^{2}\right)^{2}}+\frac{\lambda}{2} \frac{1}{4} \frac{1}{\rho^{2}+m^{2}+\pi \pi_{T}}-\frac{\lambda_{2}}{2} f \Delta-\frac{\lambda_{1}}{2} \pi_{T} \frac{f}{f} \Delta^{2} \\
& =\frac{\lambda_{e}}{2} f \frac{1}{p^{2}+m^{2}+\pi \pi_{T}}-\frac{\lambda_{e}}{2} \int \frac{1}{p^{2}+m^{2}}-\frac{\lambda_{e}}{2} \pi_{T} \int \frac{1}{\left(p^{2}+m^{\prime}\right)^{2}} . \\
& =\frac{\lambda_{R}}{2}\left(I_{0}\left(\sqrt{m^{2}+\sigma_{T}}\right)+I_{T}^{-}\left(\sqrt{m^{2}+\pi_{T}}, T\right)\right)-\frac{\lambda_{R}}{2} i A_{0}\left(m^{2}\right)-\frac{\lambda_{B}}{2} \pi_{T} \underbrace{i B_{0}\left(0, m^{\prime}, \mu^{4}\right)} \\
& \uparrow_{\text {thermal resumed }}-\frac{1}{16 \pi^{2}}\left(\frac{2}{\epsilon_{n \overline{5}}}+\log _{\frac{\mu}{2}}^{\frac{\mu}{m^{2}}}\right)
\end{aligned}
$$

$=\frac{1}{16 \pi^{2}}\left(\left(m^{2}+\pi_{\Gamma}\right) \log \left(1+\frac{T_{\Gamma}}{m^{2}}\right)+\pi_{T}\right) \quad$ finite, but again $m \rightarrow \infty$

The culprit is the same as before: the $\frac{1}{2} \lambda_{R} \pi_{T} G_{O}$-term. "Resuming" the valium mass in 6o-here would remove the boy-term arorciated with $\pi_{T} \Rightarrow r e$-finite.

Superdaisey resummation \& Gap equation
One can extend our previous results to "superdaisy" rosummation by generalizing the ring-equation for π to a gap-equation:

$$
\pi_{s o} \equiv \frac{\lambda_{0}}{2} f \frac{1}{p^{2}+m^{2}+\pi_{s o}}-\frac{\lambda_{e}}{2} \int \frac{1}{p^{2}+m^{2}}-\frac{\lambda_{k}}{2} \pi_{s 0} \int \frac{1}{\left(p^{2}+m^{\prime}\right)^{2}}
$$

note that this is $U S$-finite by our prenous argument and its IR-problem for $m=0$ is similar to full ring result. This equation captures diagrams of the type

Deriving the gap equation more precisely, including consistent renormalization a's is not that leary. It is best dene with 2PI-techniques.

As stated before these "full" resarmmations may be destable for continuity in m / T. But they may be useful abs in other contexts, due to other reasons.

Large N -expansion
Consider a model, when $\phi \rightarrow\left(\begin{array}{c}\phi_{1} \\ \vdots \\ \dot{\phi}_{N}\end{array}\right)$, where $N \gg 1$. But still

$$
\mathcal{L}_{E}=\frac{1}{2}\left(\partial_{\mu} \vec{\phi}\right)^{2}+\frac{m^{3}}{2} \vec{\phi}^{2}+\frac{\lambda}{4!} \vec{\phi}^{4}
$$

This is $O(N)$ symmetric model, where $\vec{\phi}^{2}=\sum_{i} \phi_{1}^{2}$ and

$$
\vec{\phi}^{4}=\left(\sum_{i} \phi_{i}^{2}\right)^{2}=\sum_{i} \phi_{i}^{4}+2 \sum_{i<j} \phi_{i}^{2} \phi_{j}^{2} \quad \sum_{i} \phi_{i}^{2} \sum_{j} \phi_{j}^{2}
$$

\Rightarrow eg at two. loop level, due to simple combinatorics

$$
\rightarrow \sum_{j, k} \sum_{i} \sim N^{2}
$$

So, at large-N limit the simple bubble diagrams dominate and

$$
\frac{\pi_{\text {so }}}{\pi_{\text {erect }}} \longrightarrow 1 \text { when } N \rightarrow \infty
$$

That is, the SD-result from the Gap-equation is the Pact result for $6(N)$ theory in $N \rightarrow \infty$ limit.

Other interactions (some simple 2-lop nexulb)
yukama theory

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}+\bar{\psi}(i \phi-m) \psi-y \bar{\psi} \phi \psi \\
\Rightarrow \quad \mathcal{L}_{E} & =\frac{1}{2}\left(\partial_{\mu} \phi\right)_{E}^{2}+\frac{m^{2}}{2} \phi^{2}+\frac{1}{4!} \phi^{4}-\bar{\psi}\left(i \tilde{\gamma}-m_{j}\right) \psi+y_{\xi}^{\Psi} \phi \psi
\end{aligned}
$$

where $\tilde{\gamma}^{\mu} \equiv\left(i \gamma^{0}, \bar{\gamma}\right) \Rightarrow\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{火}\right\}=-2 \delta^{\mu \nu} \quad$ Indices are raised \& Coward by $-\delta^{\mu v}$ and $-\delta_{\mu \mu}$.

$$
\begin{aligned}
& \Rightarrow \quad \cdot \tilde{p} \tilde{p}=\frac{1}{2}\left[\tilde{y}^{\mu}, \tilde{\gamma}^{\nu}\right] p^{\mu} p^{v}=-p_{\epsilon}^{2} \\
& \text { - } \operatorname{Tr}(\tilde{k} \tilde{p})=\frac{1}{2} k_{p} p_{v} \operatorname{Tr}\left(\left\{\tilde{j}^{\mu}, \tilde{y} v^{\prime}\right\}\right)=-4 k \cdot p \xrightarrow{\text { around do. }}-(d+1) k \cdot p \\
& \text { - } \tilde{\gamma}^{\mu} \tilde{k} \gamma_{\mu} \equiv\left\{y^{\prime \prime}, \gamma^{\alpha}\right\} k_{d} \gamma_{\mu}-\tilde{\gamma}^{\mu} \tilde{\gamma}_{\mu} \tilde{k}=2 \tilde{k}-(d+1) \tilde{k}_{k}=-(d-1) \tilde{k}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \cdots \frac{1}{p_{0}^{2}+\omega_{p}^{2}} ; p_{0}=\omega_{n 8}+i \mu \\
& \square=\frac{1}{\tilde{p}+m}=-\frac{\tilde{\phi}-m_{f}}{\omega_{n f}^{2}+m_{f}^{2}} ; \quad p^{\mu}=\left(\omega_{n F}-i \mu j \hat{p}\right) \\
& \square \quad \therefore \quad-y_{f} \delta^{4}\left(\Sigma_{k}\right) \quad \hat{a}-\frac{\lambda}{4!} \delta^{4}\left(\sum_{p_{i}}\right)
\end{aligned}
$$

Fermion lime within a loop $\quad f_{F} \frac{1}{x_{1}+m}$
Boron line within a loop $f_{B} \frac{1}{p^{p} \mathrm{~m}^{2}}$

Cored fermion bop add - sign.

Each renter carries a S'fefunction 4

$$
\begin{aligned}
\delta^{4}\left(\sum_{p_{i}}\right)= & \delta\left(\omega_{i}\right) \delta^{0}\left(\xi \dot{p}_{i}\right) \\
& \uparrow
\end{aligned}
$$

Pressure in Yukawa theory to order $\lambda^{3 / 2}, y^{3}$. (in massless care)

$$
P \simeq O+\bigcap_{\sim y^{2}}+\left\{\bigcap_{\sim}^{m=0}\right.
$$

From p. 63, the scalar part in just

$$
=\frac{\lambda_{R}}{8}\left(\frac{2}{\lambda_{R}}\right)^{2} \pi_{T}^{2}=\frac{2}{\lambda_{R}} \pi_{T}^{2}=\frac{\lambda_{R}}{12.24} T^{4}
$$

Renormalization in limit $p^{2} \rightarrow 0 \& m_{f} \rightarrow 0$.

$$
\begin{aligned}
& -\pi=\sum_{k-p}^{s=1}+\cdots+\prod_{1}^{k} p+p^{2}+\delta_{n} \\
& =-y^{2} \int_{k} \frac{T_{r}(\tilde{k}(\tilde{k}-\tilde{p}))}{\left(k^{2}-m_{f}^{2}\right)\left((k-p)^{2}-m_{f}^{2}\right)}+\delta_{\mu} p^{2}=4 y^{2} \int_{k} \frac{k^{2}-k \cdot p}{\left(k^{2}-m_{f}^{2}\right)\left((k-p)^{2}-m_{f}^{2}\right)}+\delta_{k} p^{2} \\
& =2 y^{2} p^{2} i B_{0}\left(0, m_{y}^{2}, m_{f}^{2}\right)=p^{2} \cdot \frac{y^{2}}{8 \pi^{2}}\left(\frac{2}{\epsilon_{\bar{x}}}+\log _{\frac{\mu}{}}^{\frac{\mu^{s}}{m_{f}^{2}}}\right)+\delta \psi p^{2} \equiv 0 \\
& \Rightarrow \delta_{\phi}=-\frac{d \pi}{d p^{2}}=-\frac{y^{2}}{8 \pi^{2}}\left(\frac{2}{\epsilon_{\overline{\pi s}}}+\log \frac{\mu^{\delta}}{m_{f}^{2}}\right)
\end{aligned}
$$

All that δ_{ϕ} does is canceling the vacuum IR-dio. part from the 2.bop diagram:

$$
\cdots+{ }^{\delta_{p / p}}={ }^{\text {on ft }}+\cdots
$$

In fact, in dim reg one con just put $m_{f} \equiv 0$ and $p \equiv 0$ to begin with and then use the result $\int_{k} \frac{1}{k^{2 n}} \equiv 0 \Rightarrow$ No divergence \& no counter-tenn!

In this definition the \mathbb{R}-singularity $\sim^{\prime \prime} \log \left(\frac{\mu^{2}}{m_{j}^{2}}\right) \rightarrow-\frac{z^{\prime \prime}}{\epsilon_{m c}}$ and cancels the OV -divergence. This is standard reset with the dim Reg in the massless limit. at any rate, we can compute the 2-bop diagram not worrying of cather \mathbb{R} - or $O U$-divergences.

$$
\begin{aligned}
& =\left(\frac{d+1)}{2} y_{f}^{2} \sum_{k, p_{q} q} \frac{k^{2} q^{2}-p^{2}}{k^{2} q^{2} p^{2}} \delta^{4}(k+p-q) * c t\right. \\
& =\frac{d+1}{2} y_{f}^{2}\left(\sum_{p, B}^{f} \sum_{k, j}^{\infty} \frac{2}{p^{2} k^{2}}-\sum_{k p p, F}^{f} \frac{1}{k^{2} q^{2}}\right)+c k . \\
& =2 y_{f}^{2}\left(2 I_{T}^{-}(0) I_{T}^{+}(0)-\left(I_{T}^{+}(0)\right)^{2}\right)=\frac{y_{f}^{2}}{96} T^{4}
\end{aligned}
$$

When we axed the feat that in massive limit $\frac{f_{ \pm}}{\dot{k}^{2}}=I_{ \pm}(0, T)=I_{\tau}^{ \pm}(0)$, where $-(t)$ refers to boons (fermions) and finally $I_{T}^{-}(0)=T^{2} / 12$ and $I_{T}^{+}(0)=T / 24$.

Ring correction because $=0$, the ring correction now simple

$$
P_{\text {ring }}=\frac{m^{3}(T) T}{12 \pi^{2}}
$$

where

$$
m^{2}(\tau)=\overbrace{\left(=\pi_{Y}\right)}^{r^{\text {hare }}}=\frac{\lambda_{R} T^{2}}{24}-y^{2} \frac{\overbrace{k_{j} F}^{f} \frac{T_{r}\left(k_{k} k_{k}\right.}{-4 k^{2}}}{k^{4}}=\left(\lambda_{R}+4 y^{2}\right) \frac{T^{2}}{2 \eta}
$$

Combining all, to ordu $y^{3}, x^{3 / 2}$:

$$
P_{\text {yrkewe }}=\left\{\frac{\pi^{2}}{90}\left(1+\frac{7}{2}\right)+\frac{\lambda_{R}+3 y^{2}}{288}+\frac{\left(\lambda_{R}+4 y^{2}\right)^{3 / 2}}{12 \pi(2 y)^{3 / 2}}\right\} T^{4}
$$

QED The QED Lagrangian in Euclidean space is $\left(S_{E} \equiv \int \alpha_{E}\right)$

$$
d_{E}=\bar{\psi}\left(i(\tilde{\chi}+i e \tilde{\not X})-m_{\rho}\right) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

which gives Ferules. $\frac{1}{p^{2}}\left(\delta_{\mu 0}-(1-\varepsilon) \frac{P_{\mu} p_{0}}{p^{2}}\right)$

The QED pressure up to e^{3} :

$$
\beta V P \simeq\left\{\sum_{n}\right\}+\infty+\infty+
$$

1) Free gas limit: $\quad\left\{_{n}\right\}+\square=\frac{\pi^{2}}{90} T^{4}\left(2+\frac{7}{2} N_{f}\right)$

Renormalization. $p^{2}=0$ limit $m_{f} \equiv 0$, there is $n s$ correction in dem. reg.
ii) e^{2}-correction

$$
\begin{aligned}
& =e^{2} N_{f} \sum_{p k_{q}}^{f} \frac{\operatorname{Tr}\left[\tilde{k}^{\tilde{j}} \tilde{\gamma}^{\mu} \tilde{q} \tilde{\gamma}_{f}\right]}{k^{2} \rho^{2} q^{2}} \delta^{4}(k+\rho-q)+(1-\varepsilon)-\operatorname{part} \\
& =\left(d^{2}-1\right) N_{f} e^{2} \sum_{p, k, q} \frac{k \cdot q}{p^{2} k^{2} q^{2}} \delta(k+p-q)+c 6 \\
& =4 e^{2} N_{f}\left(\sum_{p_{F},}^{f} \sum_{k B B}^{f} \frac{q}{k^{2} p^{2}}-\frac{p}{\psi_{k F}} \sum_{q_{F},}^{f} \frac{1}{k^{2} q^{2}}\right)=\frac{e^{2}}{48} N_{f} T^{4}
\end{aligned}
$$

Gauge invariance

$$
\begin{aligned}
& \left.\alpha \quad f_{p, k, 1} \frac{1}{p^{4} k^{2} q^{2}} \operatorname{Tr}\left[\chi_{k} \tilde{\phi} \tilde{q} y\right]\right]^{\mu}(k+q-q) \\
& =f_{p, k, q} \frac{4}{p^{4} k^{2} q^{2}}\left(2 k \cdot p q \cdot p-p^{2} k \cdot q\right) \delta^{4}(k \cdot p-q) \\
& 4 k \cdot p q \cdot p=\left((k+p)^{2}-k^{2}-p^{2}\right)\left(q^{2}+p^{2}-(q-p)^{2}\right)=\left(q^{2}-k^{2}-p^{2}\right)\left(q^{2}-k^{2}-p^{2}\right)^{2} \\
& 2 p^{2} \text { k. } q=p^{2}\left(\left(q^{-k}\right)^{2}-k^{2}-q^{2}\right)=p^{2}\left(p^{2}-k^{2}-q^{2}\right) \\
& \Rightarrow \quad 4 k \cdot p q \cdot p-2 p^{2} k \cdot p=\left(q^{2}-k^{2}\right)^{2}-p^{2}\left(q^{2}+k^{2}\right) \\
& =\sum_{p . \operatorname{lar} q} \frac{2}{p^{4} k^{2} q^{2}}\left(q^{4}+k^{4}-2 k^{2} q^{2}-p^{2}\left(q^{1}+k^{2}\right)\right) s^{4}(k+p-q) \\
& =4{\underset{q}{q, k, p}}\left(\frac{q^{2}}{p^{4} k^{2}}-\frac{1}{p^{4}}-\frac{1}{p^{2} k^{2}}\right) \delta^{4}(k+p-q)=4 \frac{f}{f} \frac{=k^{2}+2 k \cdot p}{\frac{(p+k)^{2}-p^{2}}{p^{4} k^{2}}} \\
& =4 f_{p, k}\left(\frac{1}{p^{4}}+\frac{2 p \cdot k}{p^{7} k^{2}}\right)=0 \text {. }
\end{aligned}
$$

Ring correction First we need the photon mass

$$
\begin{aligned}
& \sim=\frac{1}{d} f \frac{t^{2}}{k^{4}}=\frac{1}{d} \ddagger \frac{k^{2}-\omega_{n}^{2}}{k^{4}} \\
& \neq \frac{k^{\mu} k^{v}}{k^{\mu}}=\delta_{\mu 0} \delta_{\nu 0} \& \frac{\omega_{n}^{2}}{k^{4}}+\delta_{\mu i} \delta_{\nu_{i}} \notin \frac{k_{i}^{2}}{k^{4}} \\
& \text { masonic on } \\
& \begin{array}{l}
\text { Permionic }
\end{array}=\delta_{\mu \nu} \delta_{\nu 0} I_{T}^{\prime}(0)-\frac{1}{3} \delta_{\mu i} \delta_{\nu i}\left(I_{T}^{\prime}(0)-I_{T}(0)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial T} I_{T}(0)=\frac{\partial}{\partial T} f \frac{1}{k^{2}}=\sum_{n} \int_{\vec{E}} \frac{\partial}{\partial T} \frac{T}{\omega_{n}^{2}+\vec{k}^{2}} \\
& =\sum_{n} \int_{\vec{b}}\left(\frac{1}{c_{0}^{2}+\vec{k}^{2}}-\frac{2 \omega_{n}^{2}}{\left(\omega_{n}^{2}+\vec{k}^{2}\right)^{2}}\right)=\frac{1}{T} I_{T}(0)-\frac{2}{T} I_{\Gamma}^{\prime}(0) \\
& \Rightarrow I_{T}^{\prime}(0)=\frac{1}{2}\left(I_{T}(0)-T \frac{\partial}{\partial T} I_{T}(0)\right)=-\frac{1}{2} I_{T}(0) \\
& \Rightarrow \frac{f}{\frac{k^{\mu} k^{v}}{k^{4}}}=\left(\delta_{\mu i} \delta_{v i}-\delta_{\mu 0} \delta_{r_{0}}\right) \frac{1}{2} I_{T}(0) \quad \text { valid for both } \\
& \text { aaronic \& } \\
& \text { Fermionic Mm. } \\
& \Rightarrow \pi_{\mu \nu}=4 e^{2} N_{f}\left(1-\left(\delta_{\mu i} \delta_{\nu i}-\delta_{\mu 0} \delta_{\nu 0}\right)\right) I_{T}^{+}(0)=8 e^{2} N_{f} \delta_{\mu 0} \delta_{\nu 0} I_{T}^{+}(0) \\
& \begin{aligned}
=\frac{e^{2}}{3} T^{2} N_{f} \delta_{\mu \nu} \delta_{v 0} & = \\
& m_{D}^{2}(T) \delta_{\mu 0} \delta_{v o} \\
& \text { Debye mass }
\end{aligned}
\end{aligned}
$$

Thus, only the longitudinal polarization mode of the photon get a thanal mass. This means that only the electric field is screened, but magnetic field, which comes from spatial components only: $B_{i}=\epsilon_{i j k} F_{j k}$ is mot seemed at this level. The ring sum then press only one component

$$
\delta P_{\text {ming }}^{Q E D}=\frac{m_{D}^{3}(T) T}{12 \pi}=\frac{e^{3} N_{f}^{3 / 2}}{36 \sqrt{3} \pi} T^{4}
$$

All together, to order e^{3}

$$
P=\left\{\frac{\pi^{2}}{90}\left(2+\frac{7}{2} N_{f}\right)+\frac{e^{2}}{48} N_{f} T^{4}+\frac{e^{3} N_{f}^{3 / 2}}{36 \sqrt{3} \pi}\right\} T^{4}
$$

Non-Abelian gauge symmetry.
The PI -Quantization very similar to QED. The difference is that Gauge-transt. is non-linear \& hence one gets ghost even in simple gauges.

Introduction. Consider a model, where $\mathcal{L}=\bar{\psi}_{i}(i \not \partial-m) \psi_{i}$ is in variant undue global $S U(N)$-transform
$\psi_{i} \rightarrow U_{i j} \psi_{j}$, where $U \equiv e^{i T^{a} \theta^{a}}$ and $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$ τ structure functions
To make this theory locally invariant we white

$$
\mathcal{L}=\bar{\psi}(i \not \varnothing-m \psi)-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)
$$

where the covariant derivative $D_{\mu} \equiv \delta_{i j} \partial_{\mu}-i g T_{i j}^{a} A_{\mu}^{a}$ and the gauge invariant Yang -mills field Strength tensor is

$$
\begin{aligned}
F_{\mu \nu} \equiv \frac{i}{g}\left[D_{\mu} D_{\nu}\right] & =\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) T^{a}-i g\left[T^{b}, T^{c}\right] A_{\mu}^{b} A_{\nu}^{c} \\
& =\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b \varepsilon} A_{\mu}^{b} A_{\nu}^{c}\right) T^{a}=F_{\mu \nu}^{a} T^{a}
\end{aligned}
$$

Invariance of $\Psi_{i \not D} \psi$ implies that when $\psi \rightarrow U_{\theta} \psi \equiv e^{i r^{\theta} \theta} \psi$

$$
T \cdot A \longrightarrow U_{\theta} T \cdot A U_{\theta}^{+}+\frac{i}{g} U\left(\partial_{\mu} U^{+}\right)
$$

Infinterimally

$$
\begin{aligned}
& \delta \psi_{\theta} \equiv i \theta^{a} T^{a} \psi \\
& \delta A_{\theta \mu}^{a}=\frac{1}{g} \partial_{\mu} \theta^{a}+f^{a b c} \theta^{b} A^{c} \quad \text { Ex: show these }
\end{aligned}
$$

The obviously GI - Mm Lagrangian is

$$
\mathcal{L}_{Y M}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu}^{2}\right)=-\frac{1}{2} \overbrace{r}\left(T^{a} T^{b}\right) F_{\mu \nu}^{a} F^{b, \mu \nu}=-\frac{1}{4} F_{\mu \nu}^{a b} F^{a, \mu \nu}
$$

The quadratic part of $\mathcal{L}_{Y_{M}}$ is just sum over QED -like fields, in addition to which we pick cubic and quadratic self-interactions.

Gauge fixing
Again, we introduce coranant gauge condition: $G_{\omega}[A] \equiv \partial_{\mu} A^{a \mu}-\omega^{a}=0$

$$
\begin{aligned}
& \Rightarrow z=\int\left[D A_{\mu}^{a}\right]_{\beta} \Delta_{F P}^{\Sigma_{\mu}}\left[A_{\mu}^{a}\right] \int\left(D \theta^{a}\right] \delta\left(G_{\omega}\left[A_{\theta}\right]\right) e^{\int_{X_{E}^{A}} \mathscr{L}_{Y_{M}}} \\
& =\left(\int[D D]\right) \int\left[D A_{\mu}^{a}\right]_{\beta} \Delta_{F p}^{Y_{n}}\left[A_{\mu}^{a}\right] \delta\left(G\left[A^{a \mu}\right]\right) e^{\int_{X_{E}^{\beta}}-\frac{1}{4} F_{\mu \mu}^{a} \sigma^{a, ~}} \\
& \Rightarrow Z_{\text {puss }}=N(\xi) \int\left[D A_{\mu}^{a}\right]_{\beta} \Delta_{f p}^{\gamma_{\mu}}\left[A_{\mu}^{a}\right] \exp \left(\int_{X_{L}^{\beta}}\left[-\frac{1}{4} F_{\mu}^{a}, F^{a, \mu \nu}-\frac{1}{2 \varepsilon}\left(\partial_{\mu} A^{\mu}\right)^{2}\right]\right)
\end{aligned}
$$

Ghosts
There appear due to nonlinearity. In R_{ξ}-gauge

$$
\Delta_{F p}^{\text {in }}[A]=\operatorname{det}\left(\frac{\delta \partial^{\mu}\left(\frac{1}{g} \partial_{\mu} \theta_{z}^{a}+f^{\text {dec }} \theta_{\lambda}^{d} A^{c}\right)}{\delta \theta_{y}^{b}}\right)=\operatorname{det}\left(\partial^{\mu}\left[\frac{1}{g} \delta^{a b} \partial_{\mu}+f^{a b c} A_{\mu}^{c}\right]\right)
$$

Bubonic determinant
As used, we express this as a fermionic critegral aver ghost fields c and \bar{c}

$$
\Delta_{F P}^{M M}[A]=\int[D \bar{c} D c]_{\beta} e^{-\rho_{X_{B}^{B}} \bar{c}_{a}\left[\partial^{\mu}\left(\delta^{a b} \partial_{\mu}+g f^{a b x} A_{\mu}^{c}\right)\right] c_{b}}
$$

periodic

Note: despite their Grassmann nature, ghosts should obey the same (periodic)
boundary conditions as gauge fields. \Rightarrow bosonic matsubara frequencies.

So the full 6-fixed YM-2heory Generating function is

$$
\begin{aligned}
& 2\left[\beta j j_{a}, \eta_{a}, \bar{\eta}_{a}\right]=N(\xi) \exp \left[\int_{x_{E}} d_{I}\left(\frac{\delta}{\delta j_{a}^{\mu}} \frac{\delta}{\delta \eta_{a}} \frac{\delta}{\delta \bar{\eta}_{b}}\right) \int\left[D A_{\mu}^{a}\right]_{\beta}[D \bar{c} D c]_{\bar{\beta}} x\right. \\
& \kappa \exp \left[\int_{x_{E}^{0}} \mathcal{L}_{f_{r a}}+j_{a}^{\mu} A_{\mu}^{a}+\bar{C}_{a} \eta_{a}+\bar{\eta}_{a} C_{a}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& d_{\text {free }}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)^{2}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}\right)^{2}-\bar{c}_{a}\left(\delta^{a b} \square\right) c_{b} \\
&=-\frac{1}{2} A_{\mu}^{a}\left(\delta^{\mu \nu} \square+\left(1-\frac{1}{\varepsilon}\right) \partial^{\mu} \delta^{\nu}\right) A_{\nu}^{a}-\bar{c}_{a}\left(\delta^{a b} \square\right) c_{b} \\
& L_{\nabla}=\partial_{\mu} \mu^{\mu}=-\delta_{\mu \nu} \partial^{\mu \nu} \partial^{\nu}
\end{aligned}
$$

Quadratic part is, for each a, the same as for QED, so we get
and

$$
\mu, a \sim \sim \sim \sim_{1} b=\delta_{a b} \frac{1}{p^{2}}\left(\delta_{\mu 0}-(1-\xi) \frac{p_{v} p_{v}}{p^{2}}\right) ; p^{2}=\omega_{n}^{2}+\omega_{p}^{6}
$$

$=\delta_{a b} \frac{1}{p^{2}}$; bosonic matsubara frequencies

The interaction lagrangian in $\quad F_{\mu}^{a}=\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{\text {abe }} A_{\mu}^{b} A_{\nu}^{c}\right)$

$$
\begin{aligned}
\mathcal{L}_{I}\left[A_{\mu}, \bar{c}_{a}, c_{0}\right]= & ? g f^{a b c}\left(\partial_{\mu} \bar{c}_{a}\right) A_{\mu}^{c} c_{b} \quad \text { after a partial integration } \\
& -\frac{g}{2} f^{a b c}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) A_{\alpha}^{b} A_{\delta}^{c} \delta^{\alpha \mu} \delta^{\beta \nu} \\
& -\frac{g^{2}}{4} f^{a b c} f^{a d e} A_{\mu}^{b} A_{\nu}^{c} A_{\alpha}^{d} A_{\beta}^{e} \delta^{\alpha \mu} \delta^{\beta \nu}
\end{aligned}
$$

From these we can inter the F-roles. Eg the ghost rule, using $A=\int\left(\hat{d} \epsilon e^{-i k x}+\hat{d}^{+} e^{+} e^{n k x}\right), c=\int\left(\hat{a} e^{-i k x}+\hat{b}_{c}^{+} e^{r k x}\right)$ and $\bar{c}=\int\left(\hat{a}_{c}^{+} e^{i k x}+b_{c} e^{-i k x}\right)$

$$
\left.=\langle 0| a_{b}^{\left(-g f^{d e f}\left(\partial^{\mu} \hat{c_{c}}\right.\right.} \hat{c}_{d}^{e} \hat{A}_{\mu} \hat{c}_{f}\right) a_{a}^{+} d_{c}^{t}|0\rangle_{a m p}
$$

$$
\ldots\}_{a}^{\mu, \ldots, \ldots, n_{b}^{p}}
$$

$$
\stackrel{l}{-} g f^{b c a} i g p_{\mu}=d^{?} i g f^{a b c} p_{\mu}
$$

$$
\langle 0|-\frac{g}{2} f^{\operatorname{def}}\left(\partial_{\alpha} \hat{\lambda}_{\beta}^{d}-\partial_{\beta} \hat{A}_{\alpha}^{d}\right) \hat{A}_{\gamma}^{e} \lambda_{\delta}^{+} \delta^{d \gamma} \delta^{\beta \delta} \delta_{a \mu k}^{+} d_{b \nu p}^{t} d_{c \rho q}^{t}|0\rangle
$$

$$
\approx+i g\left(f^{a b c}\left(k_{\alpha} \delta^{\beta \mu}-k_{\beta} \delta^{\alpha \mu}\right) \delta^{\alpha v} \delta^{\beta p}\right.
$$

three different

$$
+f^{b c a}\left(p_{\alpha} \delta^{\beta \nu}-p_{\beta} \delta^{\alpha \nu}\right) \delta^{\alpha p} \delta^{\beta \mu}
$$ contractions. Always take $\left.+f^{\text {cab }}\left(q_{a} \delta^{\beta \rho}-q_{\beta} \delta^{\alpha \rho}\right) \delta^{\alpha \mu} \delta^{\beta \nu}\right)$ d from λ.

$$
\begin{aligned}
& =i g f^{a b c}\left[\delta_{\mu \nu}(p-k)_{\rho}+\delta_{\rho \mu}(k-q)_{\nu}+\delta_{\nu p}(q-p)_{\mu}\right] \\
& \equiv i g V_{\mu \nu \rho}^{a b c}(p, k, q)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore-g^{2} {\left[f^{e a b} f^{e c d}\left(\delta_{\mu \rho} \delta_{\nu \sigma}-\delta_{\mu r} \delta_{\nu \rho}\right)\right.} \\
&+f^{\text {each }} f^{\text {bd }}\left(\delta_{\mu \nu} \delta_{\rho \sigma}-\delta_{\mu r} \delta_{\nu \rho}\right) \\
&\left.+f^{e a d} f^{e b c}\left(\delta_{\mu \nu} \delta_{\rho \sigma}-\delta_{\mu \rho} \delta_{\nu \sigma}\right)\right] \quad \text { (Excurcixe) } \\
&=\quad g^{2} C_{\mu \nu \rho \sigma}^{\text {bcd }}
\end{aligned}
$$

Finally, there is the coupling to fermions $\bar{\psi}_{i} g T_{i j}^{a} A_{\mu}^{a} \gamma^{\mu} \psi_{j}$

$$
\frac{\xi^{a_{1 \mu}^{\mu}}}{j}=+g T_{i j}^{a} \tilde{\gamma}^{\mu}
$$

Pressure in QCD to order g^{2}.

$$
\begin{aligned}
& \int^{\text {fermions in fund. representation }} \\
& \xi^{*}{ }^{2}+\bigcirc=\left\{2\left(N_{c}^{2}-1\right)+\frac{7}{8} \cdot 4 N_{f} N_{c}\right\} \frac{\pi^{2}}{90} T^{4}=\underbrace{\left(16+\frac{7}{2} \cdot 6 \cdot 3\right.}_{=79}) \frac{\pi^{2}}{90} T^{4}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{8} g^{2} 2 \sum_{\text {a.cec }} f^{\text {abc parc }} \sum_{\mu^{\text {ab }}, \rho}\left(\delta_{\mu p} \delta_{\rho \rho}-\delta_{\mu \rho} \delta_{\mu \rho}\right)\left(f_{f}^{f} \frac{1}{k^{2}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { using fold } f^{b c d}=C_{2}(G) \delta_{a b}=N_{c} \delta_{a b}=\sum_{a b} N_{c} \delta_{a b}=N_{c} \sum_{a}=N_{c}\left(N_{c}^{2}-1\right) \\
& =-\frac{1}{4} g^{2} N_{c}\left(N_{c}^{2}-1\right) d(d+1)\left[I_{T}(0)\right)^{2}=-72 g^{2}\left(\frac{T^{2}}{12}\right)^{2}=-\frac{1}{2} g^{2} T^{4}
\end{aligned}
$$

This can be also computed contracting directly the vertex:

$$
\begin{align*}
& <01-\frac{g^{2}}{4} f^{a b c} f^{a d e} \hat{A}_{\mu}^{b} \hat{A}_{\nu}^{c} \hat{A}_{\alpha}^{d} \hat{A}_{\beta}^{e} \delta^{\alpha \mu} \delta^{\beta \nu} \\
& (\Delta(A) A(A))=I_{T}(x) \\
& -f \frac{1}{()} \frac{d^{n}}{d^{n}} \\
& =-\frac{g^{4}}{4} f^{\text {abc }} f^{\text {ale }}\left(\delta^{\text {bc }} \delta^{\text {de }} \delta_{\mu \nu} \delta_{\alpha \beta}+\delta^{\text {bal }} \delta^{c e} \delta_{\mu a} \delta_{V_{\beta}}+\delta^{b e} \delta^{c a} \delta_{\mu p} \delta_{v a}\right) \delta^{\alpha \mu} \delta^{\beta V}\left(\langle\vec{A} A\rangle^{2}\right)
\end{align*}
$$

$$
\begin{aligned}
& =-\frac{9^{2}}{4} N_{c}\left(N_{c}^{2}-1\right) d(d+1) I_{T}(0)^{2}
\end{aligned}
$$

For the rest, let us use the Feynman gange:

$$
\begin{aligned}
& V_{\mu \nu \rho}^{a b c}(p, k, q) V_{\mu \nu \rho}^{a b c}(-p,-k,-q)=-V_{\mu \nu \rho}^{a b c}(p, k, q) V_{\mu \nu \rho}^{a b c}(p, k, q) \\
& =-f^{a b c} f^{a b c}\left[\delta_{\mu \nu}(p-k)_{\rho}+\delta_{\rho \mu}(k-q)_{\nu}+\delta_{\nu p}(q-p)_{\mu}\right]\left[\delta_{\mu \nu}(p-k)_{\rho}+\delta_{\rho \mu}(k-q)_{\nu}+\delta_{\nu p}(q-p)_{\mu}\right] \\
& =-N_{c}\left(N_{c}^{2}-1\right)\{(d+1)(\underbrace{(p-k)^{2}+(k-q)^{2}+(q-p)^{2}})+\underbrace{2(p-k) \cdot(k-q)+2(p-k) \cdot(q-p)+2(k-q) \cdot(q-p)\}} \\
& =2\left(p^{2}+k^{2}+q^{2}\right)-2(k \cdot p+k \cdot q+q \cdot p)=2\left(p \cdot k-y \cdot q-k^{2}+k \cdot q+p / q-p^{2}-k \cdot q+k \cdot p\right. \\
& =2\left(p^{2}+k^{2}+q^{2}\right) \\
& \left.+k \cdot q-k \cdot p-q^{2}+q-p\right) \\
& -\left[(k+p)^{2}+(k+q)^{2}+(q+p)^{2}-2\left(k^{2}+p^{\prime}+p^{2}\right)\right]=2\left(-k^{2}-p^{2}-q^{2}+p \cdot k+q \cdot p+k \cdot q\right) \\
& =3\left(p^{2}+k^{2}+q^{2}\right) \\
& =-3\left(k^{2}+p^{2}+q^{2}\right) \\
& =-N_{f}\left(N_{f}^{2}-1\right) 3 d\left(p^{2}+\varepsilon^{2}+q^{2}\right) \\
& \Rightarrow \frac{1}{\beta v} \overbrace{}^{c o s} / 3, \frac{1}{4} N_{c}\left(N_{c}^{2}-1\right)\left(d^{2}-1\right) g^{2} \frac{f}{4}_{p k q} \overbrace{p^{2}+k^{2}+q^{2}}^{k^{2} p^{2} q^{2}} \delta^{4}(p+k+q) \\
& =\frac{1}{4} N_{c}\left(N_{c}^{2}-1\right) 3 d g^{2}\left(I_{T}(0)\right)^{2}=54 g^{2} \frac{T^{4}}{12^{2}}=\frac{9}{24} g^{2} T^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { q.b, }{ }^{\mu}=\frac{1}{2} g^{2} N_{c}\left(N_{c}^{2}-1\right) \frac{f}{f} \frac{k \cdot q}{k^{2} p^{\prime} q^{2}} \delta^{4}(k+p+q)=-\frac{1}{4} g^{2} N_{c}\left(N_{c}^{2}-1\right)\left(I_{T}(0)\right)^{2} \\
& =\frac{1}{2} \frac{(k+q)^{2}-k^{2}-q^{2}}{k^{2} p^{2} q^{2}}=\frac{1}{2} \frac{p^{2}-k^{2}-q^{2}}{k^{2} p^{2} q^{2}} \bumpeq-\frac{1}{2} \frac{1}{k^{2} q^{2}}=-\frac{g^{2}}{2 q} T^{4}
\end{aligned}
$$

Finally, the fermionic contribution is

$$
\begin{aligned}
& q^{2} \quad-\frac{1}{2}\left(k^{2}+q^{2}-(k-q)^{2}\right)=\frac{1}{2}\left(k^{2}+q^{2}-r^{2}\right) \\
& =\frac{g^{2}}{4} N_{f} N_{c} C_{2}(N) \dot{f}_{p, k \cdot q} \frac{\widehat{k \cdot q}}{p^{2} k^{2} q^{2}} \delta(k+p-q) \\
& =\frac{\frac{g^{2}}{4} N_{f}\left(N_{c}^{2}-1\right) \frac{\left(d^{2}-1\right)}{2}(\underbrace{\left.2 I_{T}^{-}(0) I_{T}^{+}(0)+I_{T}^{+}(0)^{2}\right)}_{=\frac{5}{4} I_{T}^{-}(0)^{2}}=24 g^{2}(y+1) \frac{T^{4}}{(2 y)^{2}}}{=}
\end{aligned}
$$

All together then, to arden g^{2}.

$$
\begin{aligned}
P_{Q c \alpha}= & \frac{\pi^{2}}{45}\left(N_{c}^{2}-1+\frac{7}{4} N_{c} N_{f}\right) T^{4}-g^{2}\left(N_{c}^{2}-1\right)\left(\left(3-\frac{9}{4}+\frac{1}{4}\right) N_{c}+\frac{5}{4} N_{f}\right) \frac{T^{4}}{(12)^{2}} \\
& =\left(\frac{79}{90} \pi^{2}-\frac{g^{2}}{144}\left(N_{c}+\frac{5}{4} N_{f}\right)\right)\left(N_{c}^{2}-1\right) T^{4}=\left(\frac{316}{45} \pi^{2}-\frac{7 g^{2}}{8}\right) T^{4} \\
= & \frac{316}{45} \pi^{2}\left(1-\frac{45}{316} \frac{7}{2 \pi} \alpha_{s}\right) T^{4}
\end{aligned}
$$

We still miss the sing correction. To compute this, we again need bo work out the Gluon mass.
Thermal gluon mass. We work in Feynman gauge
a)

(a)

$$
\pi_{a}=\frac{1}{2} g^{2} C_{\mu \nu \alpha \beta}^{a b c d} f \frac{\delta_{c \alpha} \delta_{\alpha \beta}}{k^{2}}=\frac{1}{2} g^{2} \sum_{c, \alpha} C_{\mu \nu<\alpha}^{a b c c} I_{T}(0)
$$

$$
\begin{aligned}
& =g^{2} \sum_{c, \alpha} f^{\text {eac }} f^{\text {cbc }}\left(\delta_{\mu \nu} \delta_{\alpha \alpha}-\delta_{\mu a} \delta_{v a}\right) I_{T}(0) \\
& =g^{2} N_{c} \delta_{a b} d \delta_{\mu \nu} I_{T}^{-}(0)
\end{aligned}
$$

b)

$$
\begin{aligned}
& \pi_{b}=-\frac{g^{2}}{2} \sum_{\substack{c, \beta}} \frac{f}{f_{k, q}} \frac{V_{\mu \alpha \beta}^{a c d}(p,-k,-q) V_{\nu \alpha \beta}^{b c \alpha}(-p, k, q)}{k^{2} q^{2}} \delta^{4}(p-k-q) \quad ; p \rightarrow 0 \\
& \stackrel{p=0}{\rightarrow} \frac{g^{2}}{2} \sum_{\substack{c, d \\
g_{\beta}}} \sum_{k}^{f} \frac{V_{\mu \alpha \beta}^{a c d}(0,-k, k) V_{\mu \alpha \beta \beta}^{b c d}(0, k,-k)}{k^{4}} \\
& \sum_{\alpha, p, c \alpha} V_{\text {rap }}^{a c d}(0,-k, k) V_{\text {rap }}^{b c \alpha}(0,-k, k) \\
& =\sum_{\alpha \beta, c \alpha}-f^{a c d} f^{b c d}\left[\delta_{\mu \alpha} k_{\beta}-2 \delta_{\alpha \beta} k_{\mu}+\delta_{\beta \mu} k_{\mu}\right]\left[\delta_{\nu \alpha} k_{\beta}-2 \delta_{\alpha \beta} k_{v}+\delta_{\beta v} k_{\alpha \alpha}\right] \\
& =-N_{c} \delta^{a b}\left\{2 \delta_{\mu \omega} k^{2}+(-2+1-2+4(d+1)-2+1-2) k_{\mu} k_{\nu}\right\} \\
& =-2 N_{c} \delta^{a b}\left\{\delta_{\mu \nu} k^{2}+(2 d-1) k_{\mu} k_{\nu}\right\} \\
& \Rightarrow \pi_{b}=-g^{2} N_{c} \delta^{a b}\left(\delta_{\mu \nu} \frac{f}{f} \frac{1}{k^{2}}+(2 d-1) \frac{f}{\xi} \frac{k_{\mu} k_{\nu}}{k^{4}}\right) \\
& =-g^{2} N_{c} \delta^{a b}\left(\delta_{\mu \nu}+\left(d-\frac{1}{2}\right)\left(\delta_{\mu i} \delta_{\mu}-\delta_{\mu 0} \delta_{\nu 0}\right)\right) I_{T}^{-}(0) \\
& \ddagger \frac{k^{k} k^{v}}{k^{4}} \\
& =\frac{1}{2}\left(\delta_{\mu} \delta_{x}\right. \\
& \left.-\delta_{\mu 0} \delta_{00}\right) I_{T}(0) \\
& \text { c) } \pi_{c}=-g^{2} f_{k, q} \frac{f^{\text {ac }} q_{\mu} f^{b c d} k_{\nu}}{k^{2} q^{2}} \delta^{4}(k+p-q) \\
& \text { ane } \\
& \xrightarrow{P \rightarrow 0} \quad g^{2} N_{c} \delta^{a b} \sum_{k} \frac{k_{\mu} k_{v}}{k^{4}}=\frac{g^{2}}{2} \delta^{a b} N_{c}\left(\delta_{\mu} \delta_{v_{i}}-\delta_{\mu_{0}} \delta_{\nu_{s}}\right) I_{T}^{-}(0)
\end{aligned}
$$

Then

$$
\begin{aligned}
\pi_{a}+\pi_{b} t \pi_{c} & =g^{2} N_{c} \delta^{a b}(d-1)\left(\delta_{\mu \nu}-\left(\delta_{\mu i} \delta_{\nu}-\delta_{\mu 0} \delta_{\nu 0}\right)\right) I_{T}(0) \\
& =4 g^{2} N_{c} \delta^{a b} \delta_{\mu 0} \delta_{\nu 0} I_{T}(0)=\frac{g^{2}}{3} N_{c} T^{2} \delta^{a b} \delta_{\mu 0} \delta_{\nu 0}
\end{aligned}
$$

Finally

$$
\begin{aligned}
\pi_{f} & =g^{2} N_{f} T_{i j}^{a} T_{j i}^{b} \sum_{k, q}^{f} \frac{T_{r}\left(\tilde{k}^{\sim} \mu^{\mu} \& \tilde{\gamma}^{\nu}\right)}{k^{2} q^{2}} \delta^{4}(k-q) \\
= & g^{2} N_{f} \frac{1}{2} \delta^{a b} 4 \sum_{k, F}^{\top} \frac{2 k^{\mu} k^{\nu}-k^{2}}{k^{4}}=4 \pi_{i j}^{2} \delta^{a b} \delta_{\mu 0} \delta_{\nu_{0}} I^{+}(0) \\
& =N_{f} \delta^{a b} \delta_{\mu 0} \delta_{v 0} \frac{T^{2}}{6} \\
\Rightarrow \pi_{\mu \nu} & =\frac{g^{2}}{G}\left(2 N_{c}+N_{f}\right) T^{2} \delta^{a b} \delta_{\mu 0} \delta_{v o}=m_{0}^{2}(T) \delta^{a b} \delta_{\mu 0} \delta_{v o}
\end{aligned}
$$

$$
\pi_{\mu u}^{\top} \sim \pi_{i j}^{\tau} \sim \delta_{i j} k^{2}-k_{j} b_{j}
$$

Slaviador

$$
k_{\mu}=(0, \tilde{E})
$$

The ring contribution then becomes

$$
\delta P_{\text {ring }}=\frac{2}{3 \pi}\left(\frac{N_{c}}{3}+\frac{N_{f}}{6}\right)^{3 / 2} g^{3} T^{4}
$$

and the full QCD pressure to order g^{3} is

$$
P_{\oplus C O}=\frac{316}{45} \pi^{2}\left(1-\frac{45}{316} \frac{7}{8 \pi^{2}} g_{s}^{2}+\frac{2 \sqrt{2}}{3 \pi} g_{s}^{3}\right) T^{4}
$$

