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Abstract
The FrenchAcademy of Science decided in 1791 that the new unit of length, themeter,
is to be as one ten millionth part of the meridian quarter from the north pole to the
equator. In order to find out the numerical value for this length, the Academy equipped
two expeditions for measuring themeridian arc between Dunkirk and Barcelona. Then
bymathematical calculations one could derive the length of themeridian quarter. After
the expeditions had returned to Paris and their data had become available, Pierre-Simon
Laplace (1749–1827) estimated the flattening of the earth. He obtained the value
1/150.6, which cannot stand as regards known facts. This is a story about how Laplace
managed to save the meter project. Combining the new French arc measurements with
the older measurements made in Peru 1730–40 he estimated the flattening anew and
found the plausible value 1/334. With the help of this new flattening he calculated
the definitive length of the meter to be 443.296 Parisian lines. The final section of
the article tells the refinements of the meter’s definitions from the year 1799 to the
present.

Keywords Commission of weights and measures · Ellipticity · Flattening of the
earth · Meridian arc

Mathematics Subject Classification 86A32

1 Introduction

On March 19, in 1791 The French Academy of Science decided to establish a new
unit of length (Borda et al. 1791, p. 1)1:

“The idea of relating all measurements to a unit of length taken from Nature pre-
sented itself to mathematicians as soon as they knew of the existence of such a unit,

1 Author’s translation.
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and the possibility of determining it. They saw it was the only way of excluding all
arbitrariness from the system of measurements. [...] They felt that such a system not
belonging exclusively to any nation, could not flatter anyone at being adopted by all.”

The Academy considered three options:

1. The length of the simple pendulum at the 45◦ latitude.
2. The ten millionth part of the quarter of the equatorial circle.
3. The ten millionth part of the meridian quarter.

All three alternatives were carefully examined (Borda et al. 1791, pp. 4–5). The pen-
dulum length had many good qualities, but finally it was rejected, mainly because it
depended on the time unit, the second, that was an arbitrary division of a day. A better
choice would have been ten billionth (1010) part of the hypothetical pendulum that
makes one oscillation in one day. This length is equal to the length of the pendulum
making hundred thousand oscillations in a day. However, further considerations led
the academicians to conclude that it is more natural to base the new unit of length
on the measurements of the earth itself, which had also the advantage being perfectly
analogous to all current measurements taken in the daily life.

The quarter of the equatorial circle was rejected, because the measuring operations
ought to be performed in remote countries and therefore being too tedious and expen-
sive without compensating any benefits. Thus, the Academy finally decided to base
the new unit of measure on the meridian quarter. Additionally, the new invention of
physicist Jean-Charles Borda (1733–99) and instrument maker Étienne Lenoir (1744–
1832), the repeating circle, could be adapted to measure both terrestrial and celestial
angles. It promised to reduce errors nearly to zero (Alder 2002, pp. 13, 40, 45). Accu-
rate angle measurements were an important part in the method of triangulation used
in measuring the meridian arc as well as in determining the latitude.

In order to find the value of the meridian quarter, two expeditions were sent to
measure the meridian arc between Dunkirk and Barcelona. The main reasons for the
chosen arc were (Borda et al. 1791, p. 8):

1. It covered more than nine and a half degrees and was the longest meridian arc
measured until then.

2. The mid-latitude 45◦ of the meridian quarter was between the end points of the
measured arc.

3. The end points were at the sea level, which helped to extend the length of the
measured arc in a comparable manner.

The measuring expeditions were led by two astronomers, Jean-Baptist Delambre
(1749–1822) and Pierre-François-André Méchain (1744–1804). The northern part of
the arc from Dunkirk to Rodez, led by Delambre, was much longer (ca. 741km) than
the southern one, led by Méchain, from Rodez to Barcelona (ca. 331km), but the
northern part had already been measured twice (Delambre 1806 p. 22). This alleviated
Delambre in his task. In the southern part Méchain had to start from the scratch and
to overcome the problems with crossing the Pyrenees. In June 1792 both expeditions
left for their journey. After many difficulties and obstacles the measuring process was
finished in November 1798. A vivid account of all this is told by Alder (2002).

In September 1798 a number of men of science assembled in Paris for establishing
the metric system (Crosland 1969 p. 229). In addition to French participants a group
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of foreign scientists from Western Europe had been invited by Charles-Maurice de
Talleyrand-Périgord (1754–1838), the Minister of Foreign Affairs. The invitation was
reported in the official French newspaper, Le Moniteur, as follows2:

“Letter of the Minister of Foreign Affairs, Talleyrand, to all diplomatic agents,
transmitting to them a decree of the National Institute, of which the purpose is to
invite the governments of the allied and neutral powers to send to Paris scholars, who
would meet with the commissioners of the Institute for the definitive fixing of the
fundamental unit of new weights and measures.”

The list of all participants is given in Sect. 8. The representatives outside France
came from Denmark, Italy, the Netherlands, Spain and Switzerland.

The first meeting of the International Commission for Weights and Measures was
held on November 28, 1798 (Crosland 1969 p. 229), but not until about half a year
later on May 25 1799, the Commission was given the report of the new standards of
the meter and the kilogram (Van Swinden 1799). The meter was defined to be 443.296
Parisian lines. This length, given in six figures, was defined by the copper standard
called Toise du Pérou. On June 22 1799 the platinum bar, as the definitive meter made
by the aforementioned Étienne Lenoir (Alder 2002, p. 266), was presented to the
French legislative assemblies (Crosland 1969, p. 230). But before this important event
took place, there was a substantial problem to be solved.

As soon as Delambre and Méchain had published their data, Laplace estimated the
flattening of the earth. His estimate turned out to be 1/150.6 (Laplace 1799, p. 142),
which is absolutely too great. The flattening of the earth cannot be greater than 1/230,
the flattening of the homogeneous earth. Since Laplace had been the most eminent
proponent for the new metric system, he apparently felt responsible to find a way
out from this trouble. After some preliminary trials he decided to take advantage
of the older measurements carried out by Pierre Bouguer (1698–1758) and Charles-
Marie de La Condamine (1701–74) in Peru 1730–40. Combining these two data sets
Laplace succeeded to estimate the flattening anew and was happy to find the suitable
value 1/334. It also fitted well with his estimate 1/335.78 based on 15 pendulum
measurements (Laplace 1799, p. 150).

However, Laplace does not give any details on how he has combined the newFrench
arc measurements with those measured in Peru and obtained the flattening 1/334. In
order to find an answer to this question we need to take a look at the mathematical
description of earth’s size and shape.

2 Meridian arc length

Let us assume that the earth is an ellipsoid of revolution around the polar axis. The
length of the equatorial radius is denoted by a and the polar radius by b. The flattening
is defined as ρ = (a − b)/a and the first eccentricity as e = √

a2 − b2/a. Because ρ

is small

e2 = a2 − b2

a2
= (a − b)(a + b)

a2
= ρ(2 − ρ) ≈ 2ρ.

2 Author’s translation from the French original quoted by (Crosland 1969, p. 227).
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In the following we repeatedly use this approximation.
The meridian arc length from the equator to the latitude φ, given in radians and

denoted by A(0, φ), is expressible as the elliptic integral (Torge 2001, p. 97)

A(0, φ) = a(1 − e2)
∫ φ

0
(1 − e2 sin2 t)−

3
2 dt . (1)

The formula is perhaps first derived byLeonhard Euler (1707–83) (Euler 1755, p. 261).
As e2 is small, we have for all t

(1 − e2 sin2 t)−3/2 ≈ 1 + 3

2
e2 sin2 t .

Then with this approximation the arc length (1) is found by integration as

A(0, φ) = a(1 − e2)

[(
1 + 3

4
e2

)
φ − 3

8
e2 sin 2φ

]
, (2)

where the equal sign is used for simplicity. If it is not otherwise stated we follow this
convention in the following. The arc length between latitudes φ1 < φ2 is

A(φ1, φ2) = a(1 − e2)

[(
1 + 3

4
e2

)
(φ2 − φ1) − 3

8
e2(sin 2φ2 − sin 2φ1)

]
.

Write sin 2φ2 − sin 2φ1 = 2 sin(φ2 − φ1) cos(φ2 + φ1). Assuming that φ2 − φ1 is
small we have sin(φ2 − φ1) ≈ φ2 − φ1. Using this approximation and denoting
(φ2 + φ1)/2 = φ̄ and cos(φ2 + φ1) = cos(2φ̄) = 1 − 2 sin2(φ̄), then we can write
the average length of the short arc between φ1 < φ2 as

A(φ1, φ2)

φ2 − φ1
≈ a(1 − e2)

[
1 + 3

2
e2 sin2(φ̄)

]

≈ a(1 − e2)
[
1 + 3ρ sin2(φ̄)

]
. (3)

3 More accurate arc lengths

It is possible to compute the arc length from (1) as accurately as we wish. Start with
the convergent power series

(1 − x)−3/2 = c0 + c1x + c2x
2 + c3x

3 + · · · , |x | < 1.

As we have already seen c0 = 1 and c1 = 3/2. All coefficients are obtainable by the
recursion

c0 = 1, ck = 2k + 1

2k
ck−1, k = 1, 2, . . . . (4)

Because e2 < 1, we have the convergent series expansion also for the arc length (1),
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A(0, φ) = a(1 − e2)

(
φ +

∞∑
k=1

cke
2k

∫ φ

0
sin2k t dt

)
, (5)

where the integrals obey the recursions, verified by differentiating on both sides, as

∫ φ

0
sin2k t dt = − 1

2k
cosφ sin2k−1 φ + 2k − 1

2k

∫ φ

0
sin2k−2 t dt, k = 1, 2, . . . .

(6)

4 Meridian arc length—another parametrization

Laplace uses centesimal degrees, i.e. the common 90◦ at the poles corresponds to his
100◦. Using Laplace’s convention the mean length of the one degree arc is by (2)

s = A(0, π/2)

100
= a(1 − e2)

(
1 + 3

4
e2

)
π

200
.

With the parameters e2 and s we can write

A(0, φ) = s
A(0, φ)

s
= s

[
200φ

π
− 200

π

3
8e

2

1 + 3
4e

2
sin 2φ

]
. (7)

This formula yields additionally the (approximate) result that the mean arc length
between latitudes π/4 ± φ is also equal to s. This is seen as sin(2(π/4 + φ)) =
sin(2(π/4 − φ)), and then by (7)

A
(
0,

π

4
+ φ

)
− A

(
0,

π

4
− φ

)
= s

(
200 · 2φ

π

)
. (8)

Because 200·2φ/π is the arc length in centesimal degreeswefind that s is also themean
arc length between all latitudes symmetrically around the latitude π/4 or equivalently
around 50 degrees (as well as around the more commonly used 45 degrees). This
explains the importance of having the latitude 45◦ (in common degrees) between the
endpoints of the measured arc.

The transformation 200φ/π gives the latitude in centesimal degrees. For simplicity,
we continue to denote it by φ from now on. We also assume that all latitudes, if
not otherwise stated, are in centesimal degrees as well as all trigonometric functions
operate on centesimal degrees. The sequence of approximations

3
8e

2

1 + 3
4e

2
≈ 3

8
e2 ≈ 3

4
ρ

yields by (7)
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Table 1 The French meridian data. (Laplace 1799, p. 141)

Locations Latitudes in Distances from
centesimal degrees Montjoui in modules

Montjoui 45◦.958281
Carcassonne 48◦.016790 52749.48

Évaux 51◦.309141 137174.03

Panthéon à Paris 54◦.274614 213319.77

Dunkerque 56◦.706944 275792.36

A(0, φ) ≈ s

[
φ − 3

4
· 200

π
ρ sin 2φ

]
. (9)

Laplace writes 200ρ/π simply by ρ saying that it is expressed in degrees.
The arc length between latitudes φ1 < φ2 can now be written by (9) as

A(φ1, φ2) = s

[
φ2 − φ1 − 3

4
· 200

π
ρ(sin(2φ2) − sin(2φ1))

]

= s

[
φ2 − φ1 − 3

2
· 200

π
ρ sin(φ2 − φ1) cos(φ1 + φ2)

]
. (10)

Next we find another approximation to the mean of the one degree arc length in terms
of the parameters s and ρ from (10). Let φ2 − φ1, be small. Then sin(φ2 − φ1) ≈
π(φ2 − φ1)/200, because the latitudes are now in centesimal degrees. Then the mean
length of the one degree arc is by (10) as

A(φ1, φ2)

φ2 − φ1
≈ s

(
1 − 3

2
ρ cos(φ1 + φ2)

)
. (11)

5 Laplace’s analysis of themeridian data

In order to estimate ρ from the French meridian data shown in Table 1 , Laplace
used the model (9). He added measurements errors3 εi , to the observed latitudes φi ,
i = 1, . . . , 5, such that these together with the (unknown) arc lengths A1 < · · · < A5,
from the equator to the five stations from Montjoui to Dunkerque of Table 1 satisfy
the Eq. (9), i.e.

Ai = s

(
φi + εi − 3

4

200

π
ρ sin 2φi

)
, i = 1, . . . , 5.

Let the observed arc lengths or distances from Monjoui to other four locations of
Table 1 be a2 < · · · < a5. Then Laplace set ai = Ai − A1, i = 2, 3, 4, 5, in other

3 A referee noted that instead of “measurement error” the expression “measuring deviations” is used in
geodesy at present, but I hold on to the term “error”, because it is the term Laplace used in his writings.
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words, he assumed that all errors both in the observed latitudes and in the geodesic
measurements are put into εi , i = 1, . . . , 5 (Laplace 1799, p. 141). Moreover, the
errors are silently ignored in the trigonometric functions. Finally, Laplace gives the
four equations

ai
s

=
(

φi − φ1 + εi − ε1 − 3

4

200

π
ρ(sin 2φi − sin 2φ1)

)
, i = 2, 3, 4, 5, (12)

where the arc lengths ai aswell as the latitudesφi with the corresponding trigonometric
expressions are given numerically (Laplace 1799, cf. the equations (B), p. 142).

Laplace had developed procedures for finding the solution for twounknownsρ and s
such that the maximum absolute error, attains its minimum, i.e. procedures for solving
minimax problems. With his first method, explained in (Laplace 1799,pp. 126–128),
Laplace estimated

ρ = 1

150.6
and s = 25649.8,

(Laplace 1799, pp. 141, 142). The errors of the solution4 appeared to be

ε1 = ε4 = −ε3 = −ε5 = 4′′.43 and ε2 = −3.′′99,

(Laplace 1799, pp. 142). But unfortunately the flattening 1/150.6 cannot stand
(Bowditch 1832, p. 459)5:

“…the oblateness 1/150.6, which this combination of errors gives to the earth,
does not agree, either with the phenomena of gravity, or with the observations of the
precession and nutation; which do not allow us to suppose that the earth has a greater
oblateness than in the case of homogeneity, namely 1/230.”

Then Laplace proceeded as follows. He inserted ρ = 1/230 into the Eq. (12)
and estimated s with his second minimax method, where the error ε1 is assumed an
unknown constant (Laplace 1799, pp. 128–136). He found s = 25651.33 modules.
At this time Laplace found, for his disappointment, that the maximum absolute errors
were −ε1 = −ε5 = ε3 = −9′′, 98, and he stated (Bowditch 1832, p. 461)6:

“An error of 9′′, 98 is much greater than can be supposed to exist; therefore these
measures will not allow us to suppose the oblateness to be 1/230, and still less will
they agree with a smaller oblateness. It is therefore proved satisfactorily, that the
earth varies very sensibly from an elliptical figure. But it is very remarkable, that the
measures lately made in France, and in England, with great precision, in the direction
of the meridian, and in the perpendicular to the meridian, both indicate an osculatory
ellipsoid, in which the ellipticity is 1/150, and the mean length of a degree 25649,8
modules.”

4 Laplace’s solution is found by inserting the values of Table 1 into the formula (12), and then constructing
two equations from the restrictions ε1 = ε4 and ε3 = ε5.
5 Translation from (Laplace 1799, p. 142).
6 Translation from (Laplace 1799, p. 143).
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Using the values ρ = 1/150 and s = 25649.8, Laplace calculated the length
25837.6 modules for the one degree arc at the latitude 56◦.3144 and compared this
with the arc length of 25833.4 modules, measured in England at the same latitude
(Laplace 1799, p. 143). Since the difference was only 4.2 modules (16.4meters) he
concluded (Bowditch 1832, pp. 462–3)7:

“From this near agreement it appears, that the great oblateness does not depend on
the attractions of the Pyrenees, and the other mountains in the south of France; but
that it arises from much more extensive attractions, the effect of which is sensible in
the north of France and in England, as well as in Austria and in Italy. [...] The figure of
the earth is therefore very complex, as is natural to suppose it would be, when we take
into consideration the great inequalities of its surface, the different density of the parts
which cover it, and the irregularities in the shores and in the bottom of the ocean.”

As we see, Laplace had encountered unexpected problems. The longest arc mea-
sured until then produced unacceptable results. The form of the earth seemed not to
be what was expected. Nevertheless, something had to be done in order to convince
the scientists convened to establish the new unit of length, the meter, (Bowditch 1832,
p. 464)8:

“To determine the length of a quadrant of the terrestrial meridian, from the arc
comprised between Dunkirk andMontjoui, we must adopt some hypothesis relative to
the figure of the earth; and notwithstanding all the irregularities of its surface, the most
simple and natural supposition is that of an ellipsoid of revolution. Making use of this
hypothesis, a quadrant of the meridian will be nearly equal to one hundred times the
arc included between Dunkirk and Montjoui, divided by the number of its degrees, if
the middle of the arc correspond[s] to 50◦ of latitude9: but it is a little to the north of
it; therefore we must apply a small correction, depending upon the oblateness of the
earth. We have selected the ellipticity which results from the comparison of the arc
measured in France, with that at the equator. This last measure is preferred to any other,
on account of its distance, and extent; as well as for the care which several excellent
observers have taken in measuring it. The ellipticity derived from this comparison
turned out to be 1/334.”

Choosing the ellipticity 1/334 Laplace ignores his previous finding that the French
data does not allow to suppose the ellipticity 1/230 and even less any smaller values.
However, Laplace does not tell us how he made the comparison with those two arc
lengths. The next section gives the likely answer.

6 Finding the ellipticity

Laplace had the data set of seven arc measurements that contain the data of Table 2
(Laplace 1799, pp. 138,139). Equate now the ratios of the observed mean lengths of
one degree arcs with their theoretical counterparts. By the Eq. (3) we set

7 Translation from (Laplace 1799, pp. 143–144).
8 Translation from (Laplace 1799, p. 144–145)
9 The approximate formula (8) conforms Laplace’s assertion.
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Table 2 The Equatorial and
French meridian data

Locations Latitudes in Lengths of
centesimal degrees the degrees

Equator 0◦.0000 25538.85

France 51◦.3327 25658.28

25658.28

25538.85
= 1 + 3ρ sin2(51◦.3327)

1 + 3ρ sin2(0◦)
= 1 + 3ρ sin2(51◦.3327). (13)

Then sin2(51◦.33261) = 0.52093 given in (Laplace 1799, p. 139) yields ρ = 1/334.
There is also another attempt in the modern literature to reconstruct Laplace’s

solution (Hald 1998, pp. 116–118). Hald claims that the value 1/334 is found by
means of the formula (11) (Hald 1998,formula (2), p. 117). Let us try. By (11) write

25658.28

25538.85
= 1 − 3

2ρ cos(2 · 51◦.33261)
1 − 3

2ρ cos(0◦)
= 1 − 3

2ρ cos(2 · 51◦.33261)
1 − 3

2ρ
. (14)

Its solution appears to be 1/335.7, which differs from 1/334 toomuch. But if we follow
Bowditch’s derivation (Bowditch 1832, p. 464) and use the approximation

1

1 − 3
2ρ

≈ 1 + 3

2
ρ

and then neglect the square ρ2, we are led to the equation

25658.28

25538.85
= 1 + 3

2
ρ(1 − cos(2 · 51◦.3327)) (15)

given in (Bowditch 1832, the lines after [2033f] on p. 464). Due to the trigonometric
identity cos(2 · 51◦.3327) = 1− 2 sin2(51◦.3327), the Eq. (15) is exactly the same as
the Eq. (13). Hald’s claim in his book (Hald 1998, p. 118) that the formula (11) can be
used for deriving the ellipticity 1/334 is apparently based on Bowditch’s derivation,
since he quotes the same passage (Bowditch 1832, p.464) that is also given here at the
end of Sect. 5.

7 Determination of meter

The length of the meridian quarter can be found as follows. Let A2(φ1, φ2) be the
approximation given by the first two terms of the series in (5), when e2 = ρ(2 − ρ)

with ρ = 1/334. The theoretical ratio
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A2(45◦.958281, 56◦.706944)
A2(0◦, 100◦)

depends only on e2 and therefore is calculable numerically. Next, set it equal to the
ratio of the measured French meridian arc of length 275792.36 between latitudes
45◦.958281 and 56◦.706944 and the yet unknown length of the meridian quarter S.
Thus, we have an equation

A2(45◦.958281, 56◦, 706944)
A2(0◦, 100◦)

= 0.1075059 = 275792.36

S
.

The solution is S = 275792.36/0.1075059 = 2565370 modules (Laplace 1799,
p. 145), given with six significant figures, as the meter ought to be defined. One
module is 1728 lines, therefore the ten millionth part of the meridian quarter equals
443.296 lines. Bowditch has derived the same value S = 2565370 for the meridian
quarter by a slightly different route of approximations (Bowditch 1832, p. 465).

Finally, the commission considered two additional corrections that are not men-
tioned in van Swinden’s report (Van Swinden 1799 but explained in (Delambre 1810,
p. 138). The Parisian toise was equal to 864 lines, but the lengths of the rods, Toise
du Nord and Toise du Pérou used in the measurements, were only 863.99 lines long.
Therefore the obtained length 443.296 lines is too long and the corrected length is
443.296 · 863.99/864 = 443.291 lines. But the meter was defined at the temperature
16◦.25C and the arc measurements were standardized at 17◦.6C. This means that the
rod length 863.99 lines at 17◦.6 is too long compared to the length at 16◦.25. There-
fore the corrected length above is too short. The heat expansion due to the difference
17◦.6 − 16◦.25 = 1◦.35C gives the addition of 0.005 lines. Thus, the final length
agrees with the original one derived by Laplace: 442.291 + 0.005 = 443.296 lines
according to Toise du Pérou.

In a grand ceremony held on 22 June 1799 the platinum bar of length 443.296
Parisian lines made by Lenoir was presented to the French legislative assemblies and
deposited in the National Archives as the definite standard (Alder 2002, p. 266).

8 Themembers of the commission of weights andmeasures
1798–1799

The surnames and countries are based on (Van Swinden 1799, p. 23). The first names
as well as the the life spans are provided by the present author.
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Aeneae, Henricus (1743–1810), Batavian Republic,
Balbo, Prospero (1762-1837), Kingdom of Sardinia, (replaced by Vassalli)
Borda, Jean-Charles (1733–99), French Republic,
Brisson, Mathurin Jacques (1723–1806), French Republic,
Bugge, Thomas (1740–1815), Kingdom of Denmark,
Císcar, Gabriel (1760–1829), Kingdom of Spain,
Coulomb, Charles-Augustin (1736–1806), French Republic,
Darcet, Jean (1724–1801), French Republic,
Delambre, Jean-Baptist (1749-1822), French Republic,
Fabroni, Angelo (1732–1803), Tuscany,
Lagrange, Joseph-Louis (1736–1813), French Republic,
Laplace, Pierre-Simon (1749–1827), French Republic,
Lefévre-Gineau, Louis (1751–1829), French Republic,
Legendre, Adrian-Marie (1752–1833), French Republic,
Franchini, Pietro (1768–1827), Roman Republic,
Mascheroni, Lorenzo (1750–1800), Cisalpine Republic,
Méchain, Pierre-François-André (1744–1804), French Republic,
Multedo, Ambrogio, (1753–1840), Ligurian Republic,
Pederayes, Agustín (1744-1815), Kingdom of Spain,
Prony, Gaspard-Clair-François-Marie-Riche (1755-1839), French Republic,
Tralles, Johann Georg (1763–1822), Helvetian Republic,
Van-Swinden, Jan Hendrik (1746–1823), Batavian republic,
Vassalli-Eandi, Antonio (1761-1825), Provisional government of Piedmont.

9 Epilogue

1 In 1889 the 1st General Conference on Weights and Measures (Conférence
Générale des Poids et Mesures, CGPM) replaced the old bar with a new standard
of an alloy of platinum with 10% iridium and defined the meter as the distance
between two lines on a new standard measured at the melting point of ice, (CGPM
1890, pp. 33-40).

2 In 1927 the 7th CGPM redefined the meter as the distance, at 0◦C (273◦K),
between the axes of the two central lines marked on the prototype bar of platinum-
iridium, this bar being subject to one standard atmosphere of pressure and
supported on two cylinders of at least 10mm(1cm) diameter, symmetrically placed
in the same horizontal plane at a distance of 571mm (57.1cm) from each other,
(CGPM 1927, p. 49).

3 In 1960 the 11th CGPMdefined themeter as 1650763.73 wavelengths in a vacuum
of the radiation corresponding to the transition between the 2p10 and 5d5 quantum
levels of the krypton-86 atom, (CGPM 1960, p. 85).

4 In 1983 the 17th CGPM defined the meter as the length of the path travelled by
light in a vacuum during a time interval of 1/299792458 of a second, (CGPM1983,
p. 98).
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The circle has closed. In 1791 the French Academy of Science rejected the alterna-
tive of basing the new unit on the length of the simple pendulum, because it depended
on the time unit second that was an arbitrary division of a day. However, the modern
definition of second is defined as the duration of 9192631770 periods of the radiation
corresponding to the transition between the hyperfine levels of the unperturbed ground
state of the cesium-133 atom, (CGPM 1968, p. 103).

Since 2019 the magnitudes of all SI units (The International System of Units) have
been defined by declaring that seven defining constants have certain exact numerical
values when expressed in terms of their SI units (CGPM 2018, pp. 227, 472). Thus,
the project started by the French revolution in 1791–99 has been completed.

Acknowledgements The author gives special thanks to Tiia-Maria Pasanen for the help of finalizing the
manuscript and acknowledges Harri Högmander and Jussi Nyblom for useful comments on its earlier
version. Two referees and the editor deserve thanks for a thorough reading of the manuscript.

Funding Open Access funding provided by University of Jyväskylä (JYU). No funds, grants, or other
support was received.

Declarations

Conflict of interest The author has no competing interests to declare that are relevant to the content of this
article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alder, K.: The Measure of All Things. Abacus, London (2002)
Borda, J.C., Condorcet, J., Laplace, PS., Monge, G.: (1791) Rapport sur le choix d’une unité de mesure.

Paris: Impremirie National. https://www.e-rara.ch/zut/doi/10.3931/e-rara-28950
Bowditch, N.: Mécanique céleste. Vol. II. Boston: Hilliard, Grey, Little, and Wilkins. Translation

into English of Laplace’s Traité de Mécanique Céleste. (1832) https://www.archive.org/details/
mcaniquecles02laplrich

CGPM.: Comptes rendus des séances de la Première Conférence Générale des Poids et Mesures, Réunie a
Paris en 1889. Paris: Gauthier-Villars et Fils. (1890) https://www.bipm.org/en/committees/cg/cgpm/
publications

CGPM.: Comptes rendus des séances de la Septième Conférence Générale des Poids et Mesures, Réunie a
Paris en 1927. Paris: Gauthier-Villars et Fils. (1927) https://www.bipm.org/en/committees/cg/cgpm/
publications

CGPM.: Comptes rendus des séances de la Onzième Conférence Générale des Poids et Mesures, Réu-
nie a Paris en 1960. Paris: Gauthier-Villars. (1960) https://www.bipm.org/en/committees/cg/cgpm/
publications

CGPM.: Comptes rendus des séances de la Treizième Conférence Générale des Poids et Mesures, Réunie a
Paris en 1967 et en 1968. Paris: Bureau International des Poids et Mesures. (1968) https://www.bipm.
org/en/committees/cg/cgpm/publications

123

http://creativecommons.org/licenses/by/4.0/
https://www.e-rara.ch/zut/doi/10.3931/e-rara-28950
https://www.archive.org/details/mcaniquecles02laplrich
https://www.archive.org/details/mcaniquecles02laplrich
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications


GEM - International Journal on Geomathematics            (2023) 14:10 Page 13 of 13    10 

CGPM.: Comptes rendus des séances de la 17e Conférence Générale des Poids et Mesures, Réunie a Paris
en 1983. Paris: Édité par le BIPM, Pavillon de Breteuil, F-92310 Sévres, France. (1983) https://www.
bipm.org/en/committees/cg/cgpm/publications

CGPM.: Comptes rendus des séances de la 26e Conférence Générale des Poids et Mesures, Réunie a
Versailles en 2018. Versailles: Édité par le BIPM, Pavillon de Breteuil, F-92312 Sévres, France.
(2018) https://www.bipm.org/en/committees/cg/cgpm/publications

Crosland, M.: The congress on definitive metric standards, 1798–1799: the first international scientific
conference? Isis 60, 226–231 (1969)

Delambre, J.B.: Base du système du métrique décimal, Volume Tome I. Paris: Baudouin. (1806) https://
gallica.bnf.fr/ark:/12148/bpt6k110604s?rk=21459;2

Delambre, J.B.: Base du système du métrique décimal, Volume Tome III. Paris: Baudouin. (1810) https://
gallica.bnf.fr/ark:/12148/bpt6k1106055?rk=64378;0

Euler, L.P.: Élémens de la trigonométrie spheroïdique tirés de la méthode des plus grandes et plus petits.
Mémoires de Berlin 1753 IX: 258–293 (1755)

Hald, A.: A History of Mathematical Statistics From 1750 to 1930. Wiley, New York (1998)
Laplace, P.S.: Traité de Mécanique Céleste, Volume 2. Paris: Duprat. (1799) https://www.library.si.edu/

digital-library/book/traitdemcaniquec03lapl
Torge, W.: Geodesy. Berlin: Walter de Gruyter. (2001) http://fgg-web.fgg.uni-lj.si/~/mkuhar/Zalozba/

Torge-Geodesy(2001).pdf
Van Swinden, J.H.: Rapport sur la mesure de la méridienne de France, et les résultats qui en ont été déduits

pour déterminer les bases du nouveau systéme métrique.Memoires de l’Institut National des Sciences
and arts. Sciences Mathematiques et Physiques. Tome II, Histoire: 23–80 (1799)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://www.bipm.org/en/committees/cg/cgpm/publications
https://gallica.bnf.fr/ark:/12148/bpt6k110604s?rk=21459;2
https://gallica.bnf.fr/ark:/12148/bpt6k110604s?rk=21459;2
https://gallica.bnf.fr/ark:/12148/bpt6k1106055?rk=64378;0
https://gallica.bnf.fr/ark:/12148/bpt6k1106055?rk=64378;0
https://www.library.si.edu/digital-library/book/traitdemcaniquec03lapl
https://www.library.si.edu/digital-library/book/traitdemcaniquec03lapl
http://fgg-web.fgg.uni-lj.si/~/mkuhar/Zalozba/Torge-Geodesy(2001).pdf
http://fgg-web.fgg.uni-lj.si/~/mkuhar/Zalozba/Torge-Geodesy(2001).pdf

	How did the meter acquire its definitive length?
	Abstract
	1 Introduction
	2 Meridian arc length
	3 More accurate arc lengths
	4 Meridian arc length—another parametrization
	5 Laplace's analysis of the meridian data
	6 Finding the ellipticity
	7 Determination of meter
	8 The members of the commission of weights and measures 1798–1799
	9 Epilogue
	Acknowledgements
	References


