

Assouad type dimensions: Examples and applications

Juha Lehrbäck FGS6, 1.10.2018

< D >

JYU. Since 1863.

1. Assouad dimensions

Assouad dimensions

Let $E \subset \mathbb{R}^n$ and write d(E) = diam(E).

Consider all exponents $\lambda \ge 0$ for which there is C > 0 such that $E \cap B(x, R)$ can be covered by at most $C(\frac{r}{R})^{-\lambda}$ balls of radius *r* for all 0 < r < R (< *d*(*E*)) and all $x \in E$.

The infimum of such λ is the

Assouad dimension $\dim_A(E)$.

Assouad dimensions

Let $E \subset \mathbb{R}^n$ and write d(E) = diam(E).

Consider all exponents $\lambda \ge 0$ for which there is C > 0 such that $E \cap B(x, R)$ can be covered by at most $C(\frac{r}{R})^{-\lambda}$ balls of radius *r* for all 0 < r < R (< d(E)) and all $x \in E$.

The infimum of such λ is the (**upper**) Assouad dimension $\overline{\dim}_{A}(E)$.

Assouad dimensions

Let $E \subset \mathbb{R}^n$ and write d(E) = diam(E).

Consider all exponents $\lambda \ge 0$ for which there is C > 0 such that $E \cap B(x, R)$ can be covered by at most $C(\frac{r}{R})^{-\lambda}$ balls of radius *r* for all 0 < r < R (< d(E)) and all $x \in E$.

The infimum of such λ is the **(upper) Assouad dimension** $\overline{\dim}_A(E)$.

Conversely: Consider all $\lambda \ge 0$ for which there is C > 0 such that if 0 < r < R < d(E), then for every $x \in E$ at least $C(\frac{r}{R})^{-\lambda}$ balls of radius r are needed to cover $E \cap B(x, R)$.

The supremum of such λ is the **lower (Assouad) dimension** $\underline{\dim}_{A}(E)$.

Some comments on Assouad dimensions

(Upper) Assouad dimension was introduced by P. Assouad around 1980 in connection to bi-Lipschitz embedding problem between metric and Euclidean spaces. Equivalent (or closely related) concepts have appeared under different names, e.g. (uniform) metric dimension.

A nice account on the basic properties and history of (upper) Assouad dimension is given in [Luukkainen 1998].

Lower Assouad dimension has (essentially) appeared under names lower dimension, minimal dimensional number, and uniformity dimension. An early reference is [Larman 1967].

Some basic properties of this dimension have been discussed in [Fraser 2014] and [Käenmäki–L–Vuorinen 2013].

Minkowski and Assouad

Recall:

 $\overline{\dim}_A(E)$ is the infimum of $\lambda \ge 0$ s.t. $E \cap B(x, R)$ can always be covered by at most $C(\frac{r}{R})^{-\lambda}$ balls of radius 0 < r < R < d(E)

 $\underline{\dim}_{A}(E)$ is the supremum of $\lambda \geq 0$ s.t. always at least $C(\frac{r}{R})^{-\lambda}$ balls of radius 0 < r < R < d(E) are needed to cover $E \cap B(x, R)$.

For comparison, the **upper** and **lower Minkowski** (or **box**) **dimensions** of a bounded set $E \subset \mathbb{R}^n$ can be defined as follows:

 $\overline{\dim}_{\mathsf{M}}(E)$ is the infimum of $\lambda \ge 0$ s.t. *E* can be covered by at most $Cr^{-\lambda}$ balls of radius 0 < r < d(E)

 $\underline{\dim}_{\mathsf{M}}(E)$ is the supremum of $\lambda \ge 0$ s.t. at least $Cr^{-\lambda}$ balls of radius 0 < r < d(E) are needed to cover E.

Thus $\underline{\dim}_{A}(E) \leq \underline{\dim}_{M}(E) \leq \overline{\dim}_{M}(E) \leq \overline{\dim}_{A}(E).$

Examples

General idea: Assouad dimensions reflect the extreme behavior of sets and take into account all scales 0 < r < d(E).

- Let $E = \{0\} \cup [1,2] \subset \mathbb{R}$. Then $\underline{\dim}_A(E) = 0$ and $\overline{\dim}_A(E) = 1$ $(\underline{\dim}_M(E) = \overline{\dim}_M(E) = 1)$.
- $\underline{\dim}_A(\mathbb{Z}) = 0$ and $\overline{\dim}_A(\mathbb{Z}) = 1$.
- Let

 $\boldsymbol{E} = \{(\frac{1}{j}, 0, \ldots, 0) : j \in \mathbb{N}\} \cup \{(0, 0, \ldots, 0)\} \subset \mathbb{R}^n.$

Then $\underline{\dim}_{A}(E) = 0$ and $\overline{\dim}_{A}(E) = 1$ $(\underline{\dim}_{M}(E) = \overline{\dim}_{M}(E) = \frac{1}{2})$.

2. Assouad dimensions of inhomogeneous self-similar sets

Self-similar sets with condensation

Let $\{\varphi_i\}_{i=1}^N$ be an iterated function system (IFS) of contractive similitudes on \mathbb{R}^n and let *E* be the assiociated self-similar set,

$$E = \bigcup_{i=1}^{N} \varphi_i(E).$$

If $C \subset \mathbb{R}^n$ is compact, then there is unique compact set $E_C \subset \mathbb{R}^n$, called the **inhomogeneous self-similar set with condensation** *C*, such that

$${\sf E}_C = igcup_{i=1}^N arphi_i({\sf E}_C) \cup {\sf C}.$$

Juha Lehrbäck (University of Jyväskylä)

Example

Let $\varphi_1, \varphi_2 \colon \mathbb{R}^2 \to \mathbb{R}^2$,

$$\varphi_1(x) = \frac{1}{3}x, \qquad \varphi_2(x) = \frac{1}{3}x + (\frac{2}{3}, 0).$$

Then *E* is the usual $\frac{1}{3}$ -Cantor set (as a subset of the plane \mathbb{R}^2).

If C = +, centered at $(\frac{1}{2}, 0)$, we obtain an inhomogeneous self-similar set E_C as above.

Dimensions of self-similar sets with condensation Typically $\dim(E_C) = \max{\dim(E), \dim(C)}$.

For instance, by the countable stability it always holds that

 $\dim_{\mathsf{H}}(E_{\mathcal{C}}) = \max\{\dim_{\mathsf{H}}(E), \dim_{\mathsf{H}}(\mathcal{C})\}.$

Olsen and Snigireva [2007] showed that under a strong separation condition

$$\overline{\dim}_{\mathsf{M}}(E_{\mathcal{C}}) = \max\{\overline{\dim}_{\mathsf{M}}(E), \overline{\dim}_{\mathsf{M}}(\mathcal{C})\}.$$

Fraser [2012] proved this under the open set condition (OSC) for the IFS, and in [Baker–Fraser–Máthé 2017] the same was obtained under a weak separation property.

Fraser [2012] also showed that under OSC

 $\max\{\underline{\dim}_{\mathsf{M}}(E),\underline{\dim}_{\mathsf{M}}(C)\} \leq \underline{\dim}_{\mathsf{M}}(E_{C}) \leq \max\{\underline{\dim}_{\mathsf{M}}(E),\overline{\dim}_{\mathsf{M}}(C)\},$

but that there is no hope of an equality under any separation condition.

COSC

The inhomogeneous self-similar set E_C satisfies the **condensation open** set condition (COSC), if there is an open set U such that $\varphi_i(U) \subset U$ for all i,

$$\varphi_i(U) \cap \varphi_j(U) = \emptyset$$
 whenever $i \neq j$,

and

 $\mathcal{C} \subset \mathcal{U} \setminus \bigcup_{i=1}^{N} \overline{\varphi_i(\mathcal{U})}.$

Without the last condition, this is the usual open set condition (OSC).

Roughly speaking, COSC guarantees that there is a lot of separation.

Assouad dimensions of sets with condensation

Under COSC we have:

Theorem 1 (Käenmäki–L, 2017).

Let $\{\varphi_i\}$ be a similitude IFS satisfying the COSC with condensation C, and let E be the associated self-similar set. Then

 $\overline{\dim}_{A}(E_{C}) = \max\{\overline{\dim}_{A}(E), \overline{\dim}_{A}(C)\}.$

Theorem 2 (Käenmäki–L, 2017).

Let $\{\varphi_i\}$ be a similitude IFS satisfying the COSC with non-empty condensation C, and let E be the associated self-similar set. Then

 $\underline{\dim}_{\mathsf{A}}(E_{\mathcal{C}}) = \underline{\dim}_{\mathsf{A}}(\mathcal{C}).$

Juha Lehrbäck (University of Jyväskylä)

Necessity of the COSC (Thm 2) Theorem 2: $\underline{\dim}_A(E_C) = \underline{\dim}_A(C)$.

Inequality $\underline{\dim}_A(E_C) \ge \underline{\dim}_A(C)$ is always valid. (Note that this is not completely trivial since $\underline{\dim}_A$ is not monotone).

For the converse, COSC can not be removed (or replaced with OSC).

EUC

Indeed, let $E \subset [0, 1]$ be the usual $\frac{1}{3}$ -Cantor set with dim $(E) = \frac{\log 2}{\log 3}$, corresponding to IFS $\varphi_1, \varphi_2 \colon \mathbb{R} \to \mathbb{R}, \varphi_1(x) = \frac{1}{3}x, \varphi_2(x) = \frac{1}{3}x + \frac{2}{3}$. Let $C = [\frac{4}{9}, \frac{5}{9}] \cup \{\frac{1}{6}\}$. Then $\underline{\dim}_A(C) = 0$.

Necessity of the COSC (Thm 2) Theorem 2: $\underline{\dim}_A(E_C) = \underline{\dim}_A(C)$.

Inequality $\underline{\dim}_A(E_C) \ge \underline{\dim}_A(C)$ is always valid. (Note that this is not completely trivial since $\underline{\dim}_A$ is not monotone).

For the converse, COSC can not be removed (or replaced with OSC).

 $E \cup C \cup \varphi_1(C) \cup \varphi_2(C)$

Indeed, let $E \subset [0, 1]$ be the usual $\frac{1}{3}$ -Cantor set with dim $(E) = \frac{\log 2}{\log 3}$, corresponding to IFS $\varphi_1, \varphi_2 \colon \mathbb{R} \to \mathbb{R}, \varphi_1(x) = \frac{1}{3}x, \varphi_2(x) = \frac{1}{3}x + \frac{2}{3}$.

Let $C = [\frac{4}{9}, \frac{5}{9}] \cup {\frac{1}{6}}$. Then $\underline{\dim}_A(C) = 0$. Note that E_C does not satisfy the COSC due to overlaps. When $x \in E_C$ and $0 < R \le 1$, the ball B(x, R) contains an interval of length cR (with c independent of x and R), and hence $\underline{\dim}_A(E_C) = 1 > 0 = \underline{\dim}_A(C)$.

Juha Lehrbäck (University of Jyväskylä)

Necessity of the COSC (Thm 1) Theorem 1: $\overline{\dim}_A(E_C) = \max{\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}}.$

Inequality $\overline{\dim}_A(E_C) \ge \max\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}\$ is always valid, by the monotonicity of $\overline{\dim}_A$.

For the converse, COSC can not be removed (or replaced with OSC). Indeed, let *E* be the $\frac{1}{3}$ -Cantor set as before, corresponding to φ_1, φ_2 , and let

$$C = \left\{ \left(1 + \frac{1}{j+1}\right) \mathbf{3}^{-j} : j \in \mathbb{N} \right\} \cup \{\mathbf{0}\}.$$

Necessity of the COSC (Thm 1) Theorem 1: $\overline{\dim}_A(E_C) = \max{\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}}.$

Inequality $\overline{\dim}_A(E_C) \ge \max\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}\$ is always valid, by the monotonicity of $\overline{\dim}_A$.

For the converse, COSC can not be removed (or replaced with OSC). Indeed, let *E* be the $\frac{1}{3}$ -Cantor set as before, corresponding to φ_1, φ_2 , and let

$$C = \left\{ \left(1 + \frac{1}{j+1}\right)3^{-j} : j \in \mathbb{N} \right\} \cup \{0\}.$$

Then E_C does not satisfy the COSC. It is easy to see that $\overline{\dim}_A(C) = 0$. For each $k \ge 2$, E_C contains a dilated copy of the set $W_k = \{\frac{1}{j} : j \in \{2, 3, \dots, k\}\}$, whence $\overline{\dim}_A(E_C) \ge \overline{\dim}_A(\bigcup_{k=2}^{\infty} W_k) = 1$. Thus $\overline{\dim}_A(E_C) = 1 > \frac{\log 2}{\log 3} = \max\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}$.

Necessity of the COSC (Thm 1) Theorem 1: $\overline{\dim}_A(E_C) = \max{\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}}.$

Inequality $\overline{\dim}_A(E_C) \ge \max\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}\$ is always valid, by the monotonicity of $\overline{\dim}_A$.

For the converse, COSC can not be removed (or replaced with OSC). Indeed, let *E* be the $\frac{1}{3}$ -Cantor set as before, corresponding to φ_1, φ_2 , and let

$$C = \left\{ \left(1 + \frac{1}{j+1}\right)3^{-j} : j \in \mathbb{N} \right\} \cup \{0\}.$$

Then E_C does not satisfy the COSC. It is easy to see that $\overline{\dim}_A(C) = 0$. For each $k \ge 2$, E_C contains a dilated copy of the set $W_k = \{\frac{1}{j} : j \in \{2, 3, \dots, k\}\}$, whence $\overline{\dim}_A(E_C) \ge \overline{\dim}_A(\bigcup_{k=2}^{\infty} W_k) = 1$. Thus $\overline{\dim}_A(E_C) = 1 > \frac{\log 2}{\log 3} = \max\{\overline{\dim}_A(E), \overline{\dim}_A(C)\}$.

 $E \cup C \cup \varphi_1(C) \cup \varphi_1(\varphi_1(C))$

3. Applications of Assouad dimensions

A_{ρ} weights

Function $w \in L^1_{loc}(\mathbb{R}^n)$ is a weight if w(x) > 0 for a.e. $x \in \mathbb{R}^n$.

A weight *w* belongs to the Muckenhoupt class A_p , 1 , if there is <math>C > 0 such that

$$\left(\int_{B} w(x) dx\right) \left(\int_{B} w(x)^{-\frac{1}{p-1}} dx\right)^{p-1} \leq C$$

for all balls $B \subset \mathbb{R}^n$, and *w* is in A_1 if there is C > 0 such that

$$\left(\int_{B} w(x) \, dx\right) \operatorname{ess\,sup}_{x \in B} \frac{1}{w(x)} \leq C$$

for all balls $B \subset \mathbb{R}^n$.

(Here $\int_B f(x) dx = \frac{1}{|B|} \int_B f(x) dx$ is the mean-value integral.)

Properties of A_{ρ} weights

Consequences of the A_p condition (well known):

- $A_1 \subset A_p \subset A_q \subset A_\infty = \bigcup_{1 \le p < \infty} A_p$ when 1 .
- Duality: If $1 , then <math>w \in A_p$ if and only if $w^{-\frac{1}{p-1}} \in A_{\frac{p}{p-1}}$.
- Hardy–Littlewood maximal operator *M* is bounded on $L^{p}(w dx)$, $1 , if and only if <math>w \in A_{p}$. This implies a rich theory of harmonic analysis in A_{p} -weighted spaces.

• A_p weights satisfy a reverse Hölder inequality, and hence the A_p condition is self-improving.

• A_p -weights are *p*-admissible, that is, they satisfy the basic assumptions of analysis on metric spaces: the doubling property and a *p*-Poincaré inequality.

A_p properties of distance functions

Concrete examples of A_p weights? The following is well known: Let $w(x) = |x|^{-\alpha}$ in \mathbb{R}^n , for $\alpha \in \mathbb{R}$.

Then

(a) $w \in A_p$, $1 , if and only if <math>(1 - p)n < \alpha < n$. (b) $w \in A_1$ if and only if $0 \le \alpha < n$.

Here $w(x) = |x|^{-\alpha} = dist(x, \{0\})^{-\alpha}$.

More generally, we are interested in the A_p properties of weights

 $w(x) = \operatorname{dist}(x, E)^{-\alpha}$ for (closed) $E \subset \mathbb{R}^n, \ \alpha \in \mathbb{R}$.

Aikawa condition

The following property provides a link between the A_p condition and the Assouad dimension:

A (closed) set $E \subset \mathbb{R}^n$ satisfies the **Aikawa condition** for $\alpha \in \mathbb{R}$, if there is $C \ge 1$ such that

$$\oint_{B(x,r)} \operatorname{dist}(y,E)^{-lpha} dy \leq C_{lpha} r^{-lpha}$$

for all $x \in E$ and all r > 0.

(We use the convention that $0^0 = 1$, and if $\alpha > 0$ we require that $|\mathbf{E}| = 0$.)

Let $w(x) = \text{dist}(x, E)^{-\alpha}$. It is easy to see that if the Aikawa condition holds with $\alpha \ge 0$, then $w \in A_1 \subset A_p$ for all $1 \le p \le \infty$.

In addition, by duality, if $\alpha < 0$ and $1 are such that the Aikawa condition holds with <math>\frac{-\alpha}{p-1}$, then $w \in A_p$.

Assouad and Aikawa

On the other hand, we have:

Theorem 3 (L–Tuominen, 2013).

Let $E \subset \mathbb{R}^n$ be a closed set and let $\alpha > 0$. Then the Aikawa condition holds for α if and only if $\overline{\dim}_A(E) < n - \alpha$.

The proof follows from rather simple covering arguments, but to get the strict inequality also the self-improvement of the Aikawa condition is needed.

A characterization

The connection between Assouad and Aikawa implies sufficient conditions for the inclusion $w \in A_p$ in terms of the (upper) Assouad dimension.

Moreover, for porous sets we obtain even characterizations.

Theorem 4 (Dyda–Ihnatsyeva–L–Tuominen–Vähäkangas, 2017).

Assume that a closed set $E \subset \mathbb{R}^n$ is porous (equivalently $\overline{\dim}_A(E) < n$). Let $\alpha \in \mathbb{R}$ and write $w(x) = \operatorname{dist}(x, E)^{-\alpha}$. Then

(a) $w \in A_p$, for 1 , if and only if

 $(1-p)(n-\overline{\dim}_A(E)) < \alpha < n-\overline{\dim}_A(E).$

(b) $w \in A_1$ if and only if $0 \le \alpha < n - \overline{\dim}_A(E)$.

Note: For instance here it is important that in the definition of $\dim_A(E)$ all radii $0 < r < R < \infty$ are considered if *E* is unbounded.

Juha Lehrbäck (University of Jyväskylä)

Assouad type dimensions

Hardy–Sobolev inequalities

We say that an open set $\Omega \subsetneq \mathbb{R}^n$ admits a (q, p)-Hardy–Sobolev inequality if there is C > 0 such that

$$\left(\int_{\Omega} |u(x)|^q \operatorname{dist}(x,\partial\Omega)^{\frac{q}{p}(n-p)-n} dx\right)^{1/q} \leq C \left(\int_{\Omega} |\nabla u(x)|^p dx\right)^{1/p}$$

for all $u \in C_0^{\infty}(\Omega)$.

These inequalities form a natural interpolating scale between the Sobolev (case $q = p^* = \frac{np}{n-p}$) and Hardy inequalities (case q = p).

The *p*-Hardy inequality reads as

$$\int_{\Omega} |u(x)|^{
ho} \operatorname{dist}(x,\partial\Omega)^{-
ho} \, dx \leq C \int_{\Omega} |
abla u(x)|^{
ho} \, dx.$$

Sufficient conditions for Hardy–Sobolev inequalities

Using general machinery of A_p -weighted embeddings, due to [Muckenhoupt–Wheeden 1974] and [Pérez 1990], together with the above A_p -properties of distance functions, we obtain:

Theorem 5 (L–Vähäkangas, 2016).

Let $1 \le p \le q < np/(n-p) < \infty$ and let $E \subset \mathbb{R}^n$ be a closed set. Then the global (q, p)-Hardy–Sobolev inequality

$$\left(\int_{\mathbb{R}^n} |u(x)|^q \operatorname{dist}(x, E)^{\frac{q}{p}(n-p)-n} dx\right)^{1/q} \leq C \left(\int_{\mathbb{R}^n} |\nabla u(x)|^p dx\right)^{1/p}$$

holds for all $u \in C_0^{\infty}(\mathbb{R}^n)$ if and only if $\overline{\dim}_A(E) < \frac{q}{p}(n-p)$.

In particular, the open set $\Omega = \mathbb{R}^n \setminus E$ admits a *p*-Hardy inequality if $\overline{\dim}_A(E) < n - p$.

Sufficient conditions for Hardy inequalities

On the other hand, known sufficient conditions for the *p*-Hardy inequality, such as **uniform** *p*-**fatness** of $\Omega^c = \mathbb{R}^n \setminus \Omega$, can be formulated in terms of the lower Assouad dimension. Indeed, a set $E \subset \mathbb{R}^n$ is uniformly *p*-fat if and only if *E* is unbounded and $\underline{\dim}_A(E) > n - p$ (observed in [Käenmäki–L–Vuorinen 2013]).

Together with the sufficient condition $\overline{\dim}_A(\Omega^c) < n - p$ from the previous slide we thus have

Theorem 6 (L, 2017).

Let $1 and let <math>\Omega \subset \mathbb{R}^n$ be an open set. If

 $\overline{\dim}_{\mathsf{A}}(\Omega^c) < n-p \quad or \quad \underline{\dim}_{\mathsf{A}}(\Omega^c) > n-p,$

then Ω admits a p-Hardy inequality; in the latter case, if Ω is unbounded, then also Ω^c has to be unbounded.

Juha Lehrbäck (University of Jyväskylä)

Necessary conditions for Hardy inequalities

There are also necessary conditions complementing the above sufficient conditions for *p*-Hardy inequalities. These are (essentially) due to [Koskela–Zhong, 2003]; see also [L. 2008].

Theorem 7.

Let $1 and assume that <math>\Omega \subset \mathbb{R}^n$ admits a p-Hardy inequality. Then

 $\overline{\dim}_{\mathsf{A}}(\Omega^c) < n-p \quad or \quad \dim_{\mathsf{H}}(\Omega^c) > n-p.$

Recall that, by the previous theorem, $\underline{\dim}_A(\Omega^c) > n - p$ is sufficient for the *p*-Hardy inequality, and that $\underline{\dim}_A(\Omega^c) \leq \underline{\dim}_H(\Omega^c)$ since Ω^c is closed.

Necessary conditions for Hardy inequalities

There are also necessary conditions complementing the above sufficient conditions for *p*-Hardy inequalities. These are (essentially) due to [Koskela–Zhong, 2003]; see also [L. 2008].

Theorem 7.

Let $1 and assume that <math>\Omega \subset \mathbb{R}^n$ admits a p-Hardy inequality. Then

 $\overline{\dim}_{\mathsf{A}}(\Omega^c) < n-p \quad or \quad \dim_{\mathsf{H}}(\Omega^c) > n-p.$

Recall that, by the previous theorem, $\underline{\dim}_{A}(\Omega^{c}) > n - p$ is sufficient for the *p*-Hardy inequality, and that $\underline{\dim}_{A}(\Omega^{c}) \leq \underline{\dim}_{H}(\Omega^{c})$ since Ω^{c} is closed.

(However, it is not possible to change $\underline{\dim}_A(\Omega^c) \leftrightarrow \dim_H(\Omega^c)$ in either of these two, so we do not have a characterization.)

Juha Lehrbäck (University of Jyväskylä)

DISCOVERING MATH at **JYU.** Since 1863.

5900