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Assouad dimensions

Assouad dimensions

Let E ⊂ Rn and write d(E) = diam(E).

Consider all exponents λ ≥ 0 for which there is C > 0 such that
E ∩ B(x ,R) can be covered by at most C( r

R )−λ balls of radius r for all
0 < r < R (< d(E) ) and all x ∈ E .

The infimum of such λ is the

(upper)

Assouad dimension dimA(E).

Conversely: Consider all λ ≥ 0 for which there is C > 0 such that if
0 < r < R < d(E), then for every x ∈ E at least C( r

R )−λ balls of radius r
are needed to cover E ∩ B(x ,R).

The supremum of such λ is the lower (Assouad) dimension dimA(E).
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Assouad dimensions

Some comments on Assouad dimensions

(Upper) Assouad dimension was introduced by P. Assouad around 1980 in
connection to bi-Lipschitz embedding problem between metric and
Euclidean spaces. Equivalent (or closely related) concepts have appeared
under different names, e.g. (uniform) metric dimension.

A nice account on the basic properties and history of (upper) Assouad
dimension is given in [Luukkainen 1998].

Lower Assouad dimension has (essentially) appeared under names lower
dimension, minimal dimensional number, and uniformity dimension. An
early reference is [Larman 1967].

Some basic properties of this dimension have been discussed in [Fraser
2014] and [Käenmäki–L–Vuorinen 2013].
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Assouad dimensions

Minkowski and Assouad

Recall:
dimA(E) is the infimum of λ ≥ 0 s.t. E ∩ B(x ,R) can always be covered by
at most C( r

R )−λ balls of radius 0 < r < R < d(E)

dimA(E) is the supremum of λ ≥ 0 s.t. always at least C( r
R )−λ balls of

radius 0 < r < R < d(E) are needed to cover E ∩ B(x ,R).

For comparison, the upper and lower Minkowski (or box) dimensions of
a bounded set E ⊂ Rn can be defined as follows:

dimM(E) is the infimum of λ ≥ 0 s.t. E can be covered
by at most Cr−λ balls of radius 0 < r < d(E)

dimM(E) is the supremum of λ ≥ 0 s.t. at least Cr−λ balls
of radius 0 < r < d(E) are needed to cover E .

Thus dimA(E) ≤ dimM(E) ≤ dimM(E) ≤ dimA(E).
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Assouad dimensions

Examples
General idea: Assouad dimensions reflect the extreme behavior of sets
and take into account all scales 0 < r < d(E).

• Let E = {0} ∪ [1, 2] ⊂ R. Then dimA(E) = 0 and dimA(E) = 1
( dimM(E) = dimM(E) = 1 ).

• dimA(Z) = 0 and dimA(Z) = 1.

• Let
E = {( 1

j , 0, . . . , 0) : j ∈ N} ∪ {(0, 0, . . . , 0)} ⊂ Rn.

Then dimA(E) = 0 and dimA(E) = 1
(

dimM(E) = dimM(E) = 1
2

)
.

0 1/4 1/3 1/2 1
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Inhomogeneous self-similar sets

2. Assouad dimensions of inhomogeneous self-similar sets
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Inhomogeneous self-similar sets

Self-similar sets with condensation

Let {ϕi}N
i=1 be an iterated function system (IFS) of contractive similitudes

on Rn and let E be the assiociated self-similar set,

E =
N⋃

i=1

ϕi(E).

If C ⊂ Rn is compact, then there is unique compact set EC ⊂ Rn, called
the inhomogeneous self-similar set with condensation C, such that

EC =
N⋃

i=1

ϕi(EC) ∪ C.
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Inhomogeneous self-similar sets

Example

Let ϕ1, ϕ2 : R2 → R2,

ϕ1(x) = 1
3x , ϕ2(x) = 1

3x + ( 2
3 , 0).

Then E is the usual 1
3 -Cantor set (as a subset of the plane R2).

If C = +, centered at ( 1
2 , 0), we obtain an inhomogeneous self-similar set

EC as above.
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Inhomogeneous self-similar sets

Dimensions of self-similar sets with condensation
Typically dim(EC) = max{dim(E), dim(C)}.

For instance, by the countable stability it always holds that

dimH(EC) = max{dimH(E), dimH(C)}.

Olsen and Snigireva [2007] showed that under a strong separation
condition

dimM(EC) = max{dimM(E), dimM(C)}.

Fraser [2012] proved this under the open set condition (OSC) for the IFS,
and in [Baker–Fraser–Máthé 2017] the same was obtained under a weak
separation property.

Fraser [2012] also showed that under OSC

max{dimM(E), dimM(C)} ≤ dimM(EC) ≤ max{dimM(E), dimM(C)},

but that there is no hope of an equality under any separation condition.
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Inhomogeneous self-similar sets

COSC

The inhomogeneous self-similar set EC satisfies the condensation open
set condition (COSC), if there is an open set U such that ϕi(U) ⊂ U for
all i ,

ϕi(U) ∩ ϕj(U) = ∅ whenever i 6= j,

and

C ⊂ U \
N⋃

i=1

ϕi(U).

Without the last condition, this is the usual open set condition (OSC).

Roughly speaking, COSC guarantees that there is a lot of separation.
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Inhomogeneous self-similar sets

Assouad dimensions of sets with condensation

Under COSC we have:

Theorem 1 (Käenmäki–L, 2017).

Let {ϕi} be a similitude IFS satisfying the COSC with condensation C, and
let E be the associated self-similar set. Then

dimA(EC) = max{dimA(E), dimA(C)}.

Theorem 2 (Käenmäki–L, 2017).

Let {ϕi} be a similitude IFS satisfying the COSC with non-empty
condensation C, and let E be the associated self-similar set. Then

dimA(EC) = dimA(C).
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Inhomogeneous self-similar sets

Necessity of the COSC (Thm 2)
Theorem 2: dimA(EC) = dimA(C).

Inequality dimA(EC) ≥ dimA(C) is always valid.
(Note that this is not completely trivial since dimA is not monotone).

For the converse, COSC can not be removed (or replaced with OSC).

E ∪ C

Indeed, let E ⊂ [0, 1] be the usual 1
3 -Cantor set with dim(E) = log 2

log 3 ,
corresponding to IFS ϕ1, ϕ2 : R→ R, ϕ1(x) = 1

3x , ϕ2(x) = 1
3x + 2

3 .

Let C = [ 4
9 ,

5
9 ] ∪ {1

6}. Then dimA(C) = 0.

Note that EC does not satisfy
the COSC due to overlaps. When x ∈ EC and 0 < R ≤ 1, the ball B(x ,R)
contains an interval of length cR (with c independent of x and R), and
hence dimA(EC) = 1 > 0 = dimA(C).
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Inhomogeneous self-similar sets

Necessity of the COSC (Thm 1)
Theorem 1: dimA(EC) = max{dimA(E), dimA(C)}.

Inequality dimA(EC) ≥ max{dimA(E), dimA(C)} is always valid,
by the monotonicity of dimA.

E ∪ C

For the converse, COSC can not be removed (or replaced with OSC).
Indeed, let E be the 1

3 -Cantor set as before, corresponding to ϕ1, ϕ2, and
let

C =
{(

1 + 1
j+1

)
3−j : j ∈ N

}
∪ {0}.

Then EC does not satisfy the COSC. It is easy to see that dimA(C) = 0.
For each k ≥ 2, EC contains a dilated copy of the set
Wk = {1

j : j ∈ {2, 3, . . . , k}}, whence dimA(EC) ≥ dimA

(⋃∞
k=2 Wk

)
= 1.

Thus dimA(EC) = 1 > log 2
log 3 = max{dimA(E), dimA(C)}.
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Applications

3. Applications of Assouad dimensions
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Applications

Ap weights

Function w ∈ L1
loc(Rn) is a weight if w(x) > 0 for a.e. x ∈ Rn.

A weight w belongs to the Muckenhoupt class Ap, 1 < p <∞, if there is
C > 0 such that(∫

B
w(x) dx

)(∫
B

w(x)−
1

p−1 dx
)p−1

≤ C

for all balls B ⊂ Rn, and w is in A1 if there is C > 0 such that(∫
B

w(x) dx
)

ess sup
x∈B

1
w(x)

≤ C

for all balls B ⊂ Rn.

(Here
∫

B f (x) dx = 1
|B|
∫

B f (x) dx is the mean-value integral.)
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Applications

Properties of Ap weights
Consequences of the Ap condition (well known):

• A1 ⊂ Ap ⊂ Aq ⊂ A∞ =
⋃

1≤p<∞
Ap when 1 < p < q <∞.

• Duality: If 1 < p <∞, then w ∈ Ap if and only if w−
1

p−1 ∈ A p
p−1

.

• Hardy–Littlewood maximal operator M is bounded on Lp(w dx),
1 < p <∞, if and only if w ∈ Ap. This implies a rich theory of harmonic
analysis in Ap-weighted spaces.

• Ap weights satisfy a reverse Hölder inequality, and hence the Ap

condition is self-improving.

• Ap-weights are p-admissible, that is, they satisfy the basic assumptions
of analysis on metric spaces: the doubling property and a p-Poincaré
inequality.
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Applications

Ap properties of distance functions

Concrete examples of Ap weights? The following is well known:

Let w(x) = |x |−α in Rn, for α ∈ R.

Then

(a) w ∈ Ap, 1 < p <∞, if and only if (1− p)n < α < n.

(b) w ∈ A1 if and only if 0 ≤ α < n.

Here w(x) = |x |−α = dist(x , {0})−α.

More generally, we are interested in the Ap properties of weights

w(x) = dist(x ,E)−α for (closed) E ⊂ Rn, α ∈ R.
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Applications

Aikawa condition

The following property provides a link between the Ap condition and the
Assouad dimension:

A (closed) set E ⊂ Rn satisfies the Aikawa condition for α ∈ R, if there is
C ≥ 1 such that ∫

B(x ,r)
dist(y ,E)−α dy ≤ Cαr−α

for all x ∈ E and all r > 0.

(We use the convention that 00 = 1, and if α > 0 we require that |E | = 0.)

Let w(x) = dist(x ,E)−α. It is easy to see that if the Aikawa condition
holds with α ≥ 0, then w ∈ A1 ⊂ Ap for all 1 ≤ p ≤ ∞.

In addition, by duality, if α < 0 and 1 < p <∞ are such that the Aikawa
condition holds with −α

p−1 , then w ∈ Ap.
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Applications

Assouad and Aikawa

On the other hand, we have:

Theorem 3 (L–Tuominen, 2013).
Let E ⊂ Rn be a closed set and let α > 0. Then the Aikawa condition
holds for α if and only if dimA(E) < n − α.

The proof follows from rather simple covering arguments, but to get the
strict inequality also the self-improvement of the Aikawa condition is
needed.
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Applications

A characterization
The connection between Assouad and Aikawa implies sufficient conditions
for the inclusion w ∈ Ap in terms of the (upper) Assouad dimension.

Moreover, for porous sets we obtain even characterizations.

Theorem 4 (Dyda–Ihnatsyeva–L–Tuominen–Vähäkangas, 2017).

Assume that a closed set E ⊂ Rn is porous (equivalently dimA(E) < n).
Let α ∈ R and write w(x) = dist(x ,E)−α. Then

(a) w ∈ Ap, for 1 < p <∞, if and only if

(1− p)(n − dimA(E)) < α < n − dimA(E).

(b) w ∈ A1 if and only if 0 ≤ α < n − dimA(E).

Note: For instance here it is important that in the definition of dimA(E) all
radii 0 < r < R <∞ are considered if E is unbounded.

Juha Lehrbäck (University of Jyväskylä) Assouad type dimensions JYU. Since 1863. | 1.10.2018 | 21 / 26



Applications

Hardy–Sobolev inequalities

We say that an open set Ω ( Rn admits a (q, p)-Hardy–Sobolev
inequality if there is C > 0 such that(∫

Ω
|u(x)|q dist(x , ∂Ω)

q
p (n−p)−n dx

)1/q

≤ C
(∫

Ω
|∇u(x)|p dx

)1/p

for all u ∈ C∞0 (Ω).

These inequalities form a natural interpolating scale between the Sobolev
(case q = p∗ = np

n−p ) and Hardy inequalities (case q = p).

The p-Hardy inequality reads as∫
Ω
|u(x)|p dist(x , ∂Ω)−p dx ≤ C

∫
Ω
|∇u(x)|p dx .
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Applications

Sufficient conditions for Hardy–Sobolev inequalities
Using general machinery of Ap-weighted embeddings, due to
[Muckenhoupt–Wheeden 1974] and [Pérez 1990], together with the above
Ap-properties of distance functions, we obtain:

Theorem 5 (L–Vähäkangas, 2016).
Let 1 ≤ p ≤ q < np/(n − p) <∞ and let E ⊂ Rn be a closed set. Then
the global (q, p)-Hardy–Sobolev inequality(∫

Rn
|u(x)|q dist(x ,E)

q
p (n−p)−n dx

)1/q

≤ C
(∫

Rn
|∇u(x)|p dx

)1/p

holds for all u ∈ C∞0 (Rn) if and only if dimA(E) < q
p (n − p).

In particular, the open set Ω = Rn \ E admits a p-Hardy inequality if
dimA(E) < n − p.
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Applications

Sufficient conditions for Hardy inequalities
On the other hand, known sufficient conditions for the p-Hardy inequality,
such as uniform p-fatness of Ωc = Rn \ Ω, can be formulated in terms of
the lower Assouad dimension. Indeed, a set E ⊂ Rn is uniformly p-fat if
and only if E is unbounded and dimA(E) > n − p (observed in
[Käenmäki–L–Vuorinen 2013]).

Together with the sufficient condition dimA(Ωc) < n − p from the previous
slide we thus have

Theorem 6 (L, 2017).
Let 1 < p <∞ and let Ω ⊂ Rn be an open set. If

dimA(Ωc) < n − p or dimA(Ωc) > n − p,

then Ω admits a p-Hardy inequality;
in the latter case, if Ω is unbounded, then also Ωc has to be unbounded.
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Applications

Necessary conditions for Hardy inequalities

There are also necessary conditions complementing the above sufficient
conditions for p-Hardy inequalities. These are (essentially) due to
[Koskela–Zhong, 2003]; see also [L. 2008].

Theorem 7.
Let 1 < p <∞ and assume that Ω ⊂ Rn admits a p-Hardy inequality.
Then

dimA(Ωc) < n − p or dimH(Ωc) > n − p.

Recall that, by the previous theorem, dimA(Ωc) > n − p is sufficient for the
p-Hardy inequality, and that dimA(Ωc) ≤ dimH(Ωc) since Ωc is closed.

(However, it is not possible to change dimA(Ωc)↔ dimH(Ωc) in either of
these two, so we do not have a characterization.)

Juha Lehrbäck (University of Jyväskylä) Assouad type dimensions JYU. Since 1863. | 1.10.2018 | 25 / 26



Applications

Necessary conditions for Hardy inequalities

There are also necessary conditions complementing the above sufficient
conditions for p-Hardy inequalities. These are (essentially) due to
[Koskela–Zhong, 2003]; see also [L. 2008].

Theorem 7.
Let 1 < p <∞ and assume that Ω ⊂ Rn admits a p-Hardy inequality.
Then

dimA(Ωc) < n − p or dimH(Ωc) > n − p.

Recall that, by the previous theorem, dimA(Ωc) > n − p is sufficient for the
p-Hardy inequality, and that dimA(Ωc) ≤ dimH(Ωc) since Ωc is closed.

(However, it is not possible to change dimA(Ωc)↔ dimH(Ωc) in either of
these two, so we do not have a characterization.)

Juha Lehrbäck (University of Jyväskylä) Assouad type dimensions JYU. Since 1863. | 1.10.2018 | 25 / 26



DISCOVERING MATH
at JYU.Since 1863.


	Assouad dimensions
	Inhomogeneous self-similar sets
	Applications

