

Juha Lehrbäck

Jyväskylä, 4.2.2019

< D >

JYU. Since 1863.

1. Muckenhoupt *A*_p weights

Juha Lehrbäck (University of Jyväskylä)

A_p weights

Let $X = (X, d, \mu)$ be a metric space. (Can think of \mathbb{R}^n with Euclidean distance and Lebesgue measure.)

Function $w \in L^1_{loc}(X)$ is a weight if w(x) > 0 for a.e. $x \in X$.

A weight *w* belongs to the **Muckenhoupt class** A_p , 1 , if there is <math>C > 0 such that

$$\left(\int_{B} w(x) d\mu\right) \left(\int_{B} w(x)^{-\frac{1}{p-1}} d\mu\right)^{p-1} \leq C$$

for all balls $B \subset X$. Weight *w* is in class A_1 if there is C > 0 such that

$$\left(\int_{B} w(x) d\mu\right) \operatorname{ess\,sup}_{x \in B} \frac{1}{w(x)} \leq C$$

for all balls $B \subset X$.

(Here $\int_B f(x) d\mu = \frac{1}{\mu(B)} \int_B f(x) d\mu$ is the mean-value integral.)

Properties of *A*_p weights

Consequences of the A_p condition (well known):

- $A_1 \subset A_p \subset A_q \subset \widetilde{A}_\infty := \bigcup_{1 \le p < \infty} A_p$ when 1 .
- Duality: If $1 , then <math>w \in A_p$ if and only if $w^{-\frac{1}{p-1}} \in A_{\frac{p}{p-1}}$.
- In \mathbb{R}^n , Hardy–Littlewood maximal operator *M* is bounded on $L^p(w \, dx)$, $1 , if and only if <math>w \in A_p$ [Muckenhoupt, 1972]. This implies a rich theory of harmonic analysis in A_p -weighted spaces.

• A_p weights satisfy a reverse Hölder inequality, and hence the A_p condition is self-improving.

• A_p -weights (in \mathbb{R}^n) are *p*-admissible, that is, they satisfy the basic assumptions of analysis on metric spaces: the doubling property and a *p*-Poincaré inequality.

Juha Lehrbäck (University of Jyväskylä)

A_p properties of distance functions

Concrete examples of A_p weights? The following is well known:

Let $\alpha \in \mathbb{R}$ and write $w(x) = |x|^{-\alpha}$ for $x \in \mathbb{R}^n$. Then

(a) $w \in A_p$, $1 , if and only if <math>(1 - p)n < \alpha < n$. (b) $w \in A_1$ if and only if $0 \le \alpha < n$.

Here $w(x) = |x|^{-\alpha} = dist(x, \{0\})^{-\alpha}$.

More generally, we are interested in the A_{ρ} properties of weights

 $w(x) = \operatorname{dist}(x, E)^{-\alpha}$ for (closed) $E \subset X, \ \alpha \in \mathbb{R}$.

These have been studied e.g. in [Aikawa, 1991], [Horiuchi, 1989, 1991], [Durán–López García, 2010] and [Aimar–Carena–Durán–Toschi, 2014].

A characterization in \mathbb{R}^n

The following is the Euclidean special case of the characterization from

Bartłomiej Dyda, Lizaveta Ihnatsyeva, Juha Lehrbäck, Heli Tuominen, Antti V. Vähäkangas: *Muckenhoupt* A_p -properties of distance functions and applications to Hardy-Sobolev -type inequalities, Potential Anal. 50 (2019), 83–105.

Theorem 1 (DILTV, 2019).

Assume that a closed set $E \subset \mathbb{R}^n$ is porous (equivalently dim_A(E) < n). Let $\alpha \in \mathbb{R}$ and write $w(x) = dist(x, E)^{-\alpha}$. Then (a) $w \in A_n$, for 1 , if and only if

 $(1-p)(n-\dim_A(E)) < \alpha < n-\dim_A(E).$

(b) $w \in A_1$ if and only if $0 \le \alpha < n - \dim_A(E)$.

Here dim_A(*E*) is the **Assouad dimension** of $E \subset \mathbb{R}^n$.

2. Assouad (co)dimension

Assouad dimension

Definition 2.

Let $E \subset X$. The **Assound dimension** dim_A(*E*) is the infimum of all $\lambda \ge 0$ for which there is C > 0 such that $E \cap B(x, R)$ can be covered by **at most** $C(\frac{r}{B})^{-\lambda}$ balls of radius *r* for all $x \in E$ and all 0 < r < R (< diam(*E*)).

[Sometimes this is called the upper Assouad dimension $\overline{\dim}_A(E)$. The natural dual ("how many balls are needed **at least**") can then be called the lower (Assouad) dimension $\underline{\dim}_A(E)$.]

Assouad dimension was introduced by P. Assouad around 1980 in connection to bi-Lipschitz embedding problem between metric and Euclidean spaces; see e.g. [Assouad, 1983]. Equivalent (or closely related) concepts have appeared under different names, e.g. (uniform) metric dimension.

Juha Lehrbäck (University of Jyväskylä)

Assouad and Minkowski

So, dim_A(*E*) = $\overline{\text{dim}}_A(E)$ is the infimum of $\lambda \ge 0$ such that $E \cap B(x, R)$ can always be covered by at most $C(\frac{r}{R})^{-\lambda}$ balls of radius 0 < r < R < d(E).

For comparison, the **upper Minkowski dimension** (or box dimension) $\overline{\dim}_{M}(E)$ of a bounded set $E \subset X$ is the infimum of $\lambda \ge 0$ such that E can be covered by at most $Cr^{-\lambda}$ balls of radius 0 < r < d(E).

Thus

$$\dim_{\mathsf{H}}(E) \leq \overline{\dim}_{\mathsf{M}}(E) \leq \dim_{\mathsf{A}}(E)$$
 for all $E \subset X_{\mathbb{R}}$

where $\dim_{H}(E)$ is the Hausdorff dimension. All these inequalities can be strict.

For instance, let $E = \left\{\frac{1}{i} : j \in \mathbb{N}\right\} \cup \{0\} \subset \mathbb{R}$.

Then dim_H(E) = 0, $\overline{\dim}_{M}(E) = \frac{1}{2}$, and dim_A(E) = 1.

Assouad codimension

However, when examining A_{ρ} classes in the space (X, d, μ) , we also need to take into account the effect of the measure μ . Then the following is in many instances a more suitable concept.

Definition 3.

Let $E \subset X$. The Assouad codimension $\operatorname{codim}_A(E)$ is the supremum of all $\rho \ge 0$ for which there is $C \ge 1$ such that

$$\frac{\mu(E_r \cap B(x,R))}{\mu(B(x,R))} \le C\Big(\frac{r}{R}\Big)^{\rho}$$

for all $x \in E$ and all $0 < r < R < 2 \operatorname{diam}(X)$.

Here $E_r = \{x \in X : dist(x, E) < r\}$ is the open *r*-neighborhood of $E \subset X$.

Note that if $\operatorname{codim}_A(E) > 0$, then $\mu(E) = 0$ by the Lebesgue density theorem.

The Ahlfors regular case

The space $X = (X, d, \mu)$ is **(Ahlfors)** *Q*-regular, for Q > 0, if there is $C \ge 1$ such that

$$C^{-1}r^Q \leq \mu(B(x,r)) \leq Cr^Q$$

for all $x \in X$ and all 0 < r < diam(X). This can be equivalently required to hold for $\mu = \mathcal{H}^Q$, the *Q*-dimensional Hausdorff measure.

If X is Q-regular, then it is not hard to see that

 $\dim_A(E) = Q - \operatorname{codim}_A(E)$ for all $E \subset X$.

On the other hand, if $E \subset X$ is Ahlfors λ -regular, then

 $\dim_{\mathsf{H}}(E) = \dim_{\mathsf{A}}(E) = \lambda.$

Juha Lehrbäck (University of Jyväskylä)

Doubling

If the space X is not Ahlfors regular, we still need to assume the weaker condition that μ is **doubling**: there is a C > 0 such that

 $\mu(B(x,2r)) \le C\,\mu(B(x,r)) \quad \text{for all } x \in X, r > 0. \tag{1}$

Iteration of (1) shows that there are $\sigma > 0$ and C > 0 such that

 $\frac{\mu(\mathcal{B}(y,r))}{\mu(\mathcal{B}(x,R))} \geq C\Big(\frac{r}{R}\Big)^{\sigma} \quad \text{whenever } \mathcal{B}(y,r) \subset \mathcal{B}(x,R) \subset X.$

In some of our applications we also need the **reverse doubling condition** that there are $\eta > 0$ and C > 0 such that

 $\frac{\mu(B(y,r))}{\mu(B(x,R))} \le C\Big(\frac{r}{R}\Big)^{\eta} \quad \text{whenever } B(y,r) \subset B(x,R) \subset X. \tag{2}$

Note that (2) implies $\mu({x}) = 0$ for all $x \in X$. If X is unbounded and connected and μ is doubling, then there is some

 $\eta >$ 0 such that (2) holds.

Juha Lehrbäck (University of Jyväskylä)

Aikawa condition

The following property provides a link between the A_p condition and the Assouad dimension.

Definition 4.

A closed set $E \subset X$ satisfies the **Aikawa condition** for $\alpha \in \mathbb{R}$, if there is $C \ge 1$ such that

$$\int_{B(x,r)} \operatorname{dist}(y,E)^{-\alpha} d\mu(y) \leq Cr^{-\alpha}$$

for all $x \in E$ and all r > 0.

Let $w(x) = \text{dist}(x, E)^{-\alpha}$. It is easy to show (using doubling) that if the Aikawa condition holds with $\alpha \ge 0$, then $w \in A_1 \subset A_p$ for all $1 \le p < \infty$.

On the other hand, by duality, if $\alpha < 0$ and $1 are such that the Aikawa condition holds with <math>\frac{-\alpha}{p-1}$, then $w \in A_p$.

Assouad and Aikawa

Connecting the Assouad dimension and the Aikawa condition, we have the following result, essentially from [L–Tuominen, 2013].

Theorem 5.

Let $E \subset X$ be a closed set and let $\alpha > 0$. Then the Aikawa condition holds with α if and only if $\operatorname{codim}_A(E) > \alpha$.

The proof is based on simple covering arguments, but to get the strict inequality also the **self-improvement** of the Aikawa condition is needed.

Self-improvement follows from the so-called Gehring Lemma, since the Aikawa condition for $\alpha > 0$ implies a reverse Hölder inequality.

(This is due to the fact that for any $\beta > 0$

$$r^{-\beta} \leq \int_{B(x,r)} \operatorname{dist}(y,E)^{-\beta} d\mu(y) \quad \text{for all } x \in E, \ r > 0.)$$

3. A_p distance weights in metric measure spaces

Juha Lehrbäck (University of Jyväskylä)

Ap-properties of distance functions

JYU. Since 1863. | 4.2.2019 | 15/31

Sufficiency Theorem 6 (DILTV, 2019).

Let $E \subset X$ be a closed (non-empty) set and let $\alpha \in \mathbb{R}$. Then the following statements hold for $w(x) = \operatorname{dist}(x, E)^{-\alpha}$.

(a) If $\operatorname{codim}_{A}(E) > \alpha \geq 0$, then $w \in A_{p}$ for all $1 \leq p < \infty$.

- (b) If $\alpha < 0$ and $1 are such that <math>\operatorname{codim}_{A}(E) > \frac{\alpha}{1-p}$, then $w \in A_{p}$.
- (c) If $\operatorname{codim}_{\mathsf{A}}(E) > \max\{0, \alpha\}$, then $w \in \widetilde{\mathsf{A}}_{\infty}$.

(a) follows using Theorem 5 and the Aikawa condition.
(b) follows from (a) by the A_p duality.
(c) follows from (a) and (b).

Note: Here it is important that in the definition of $\operatorname{codim}_A(E)$ all radii $0 < r < R < 2 \operatorname{diam}(X)$ are considered.

Necessity for porous sets

For porous sets, we have also a converse to Theorem 6.

Recall that $E \subset X$ is **porous**, if there is 0 < c < 1 such that for all $x \in E$ and all $0 < r < 2 \operatorname{diam}(X)$ there is $y \in X$ satisfying $B(y, cr) \subset B(x, r) \setminus E$. (If X is Q-regular, then $E \subset X$ is porous if and only if $\dim_A(E) < Q$.)

Theorem 7 (DILTV, 2019).

Let $E \subset X$ be a closed and porous (non-empty) set and let $\alpha \in \mathbb{R}$. Then the following statements hold for $w(x) = dist(x, E)^{-\alpha}$.

(a) If $\alpha > 0$ and $w \in A_p$, for some $1 \le p < \infty$, then $w \in A_1$ and $\operatorname{codim}_A(E) > \alpha$.

(b) If $\alpha < 0$ and $w \in A_p$, for some $1 , then <math>\operatorname{codim}_A(E) > \frac{\alpha}{1-p}$.

The general characterization

Combining Theorems 6 and 7 we obtain the following characterization for porous sets.

Corollary 8 (DILTV, 2019).

Let $E \subset X$ be a closed and porous (non-empty) set, let $\alpha \in \mathbb{R}$, and write $w(x) = dist(x, E)^{-\alpha}$. Then (a) $w \in A_p$, for 1 , if and only if

 $(1-p) \operatorname{codim}_{A}(E) < \alpha < \operatorname{codim}_{A}(E).$

(b) $w \in A_1$ if and only if $0 \le \alpha < \operatorname{codim}_A(E)$.

Theorem 1 follows from this, since $E \subset \mathbb{R}^n$ is porous if and only if $\dim_A(E) < n$, and $\operatorname{codim}_A(E) = n - \dim_A(E)$ for all $E \subset \mathbb{R}^n$.

[For a non-porous sets $E \subset X$, both dist $(x, E)^{-\alpha} \in A_1$ and dist $(x, E)^{-\alpha} \notin A_{\infty}$ are possible, when $\alpha > 0.$] Juha Lehrbäck (University of Jyväskylä)

4. Applications for Hardy–Sobolev inequalities

Hardy–Sobolev inequalities

We say that a global (q, p, β) -**Hardy–Sobolev inequality** holds with respect to a closed set $E \subset \mathbb{R}^n$, with |E| = 0, if there is C > 0 such that

$$\left(\int_{\mathbb{R}^n} |u(x)|^q \operatorname{dist}(x, E)^{\frac{q}{p}(n-p+\beta)-n} dx\right)^{\frac{p}{q}} \leq C \int_{\mathbb{R}^n} |\nabla u(x)|^p \operatorname{dist}(x, E)^{\beta} dx$$

for all $u \in C_0^{\infty}(\mathbb{R}^n)$. Here $\beta \in \mathbb{R}$, and the natural range of exponents is $1 \le p \le q \le \frac{np}{n-p} = p^*$.

For $\beta = 0$, these inequalities form a natural interpolating scale between the Sobolev (case $q = p^* = \frac{np}{n-p}$) and Hardy inequalities (case q = p).

For q = p, the global (p, β) -Hardy inequality reads as

$$\int_{\mathbb{R}^n} |u(x)|^p \operatorname{dist}(x, E)^{\beta-p} dx \leq C \int_{\mathbb{R}^n} |\nabla u(x)|^p \operatorname{dist}(x, E)^\beta dx.$$

Hardy–Sobolev inequalities in metric spaces

In general metric spaces we consider compactly supported Lipschitz functions $u \in \text{Lip}_0(X)$ instead of C_0^{∞} functions. The norm of the gradient $|\nabla u|$ is replaced by an **upper gradient** g of u.

A Borel measurable function $g \ge 0$ is an upper gradient of u, if

$$|u(y)-u(x)|\leq \int_{\gamma}g\,ds$$

for all rectifiable curves γ joining x and y.

In addition to doubling, we assume for the rest of the talk that $\mu(\{x\}) = 0$ and $B(x, R) \setminus B(x, r) \neq \emptyset$ for all $x \in X$ and all $0 < r < R < \infty$.

Riesz potential

When s > 0, the Riesz potential $\mathcal{I}_s(f)$ of a measurable function $f \ge 0$ is defined by

$$\mathcal{I}_{\mathcal{S}}(f)(x) = \int_X rac{f(y)d(x,y)^s}{\muig|B(x,d(x,y))ig)}\,d\mu(y), \quad x\in X.$$

Since $\mu({x}) = 0$ for each $x \in X$, we can restrict the integration to the set $X \setminus {x}$.

The following Theorem 9 yields an abstract two-weight embedding for the Riesz potential. This is a reformulation of the results from [Perez–Wheeden, 2003].

Here we use the notation $w(B) = \int_B w \, d\mu$.

General weighted embeddings

Theorem 9.

Let s > 0. Assume that the reverse doubling condition (2) holds with the exponent $\eta = s$ and that there is Q > s such that $\mu(B(x, r)) \ge Cr^Q$ for all $x \in X$ and all $r \ge 1$. Let 1 , and let <math>w, v be weights such that

$$w\in \widetilde{A}_\infty$$
 and $h=v^{rac{1}{1-
ho}}\in \widetilde{A}_\infty.$

If there is K > 0 such that

$$\frac{r^{s} w(B(x,r))^{\frac{1}{q}} h(B(x,r))^{\frac{p-1}{p}}}{\mu(B(x,r))} \leq K$$

for all $x \in X$ and all r > 0, then the Riesz potential \mathcal{I}_s is bounded from $L^p(v d\mu)$ to $L^q(w d\mu)$.

Poincaré inequalities

We say that the space X supports 1-Poincaré inequality if there are C > 0 and $\tau \ge 1$ such that if $u \in Lip(X)$ and g is an upper gradient of u, then

$$\oint_{B(x,r)} |u - u_B| \, d\mu \leq Cr \oint_{B(x,\tau r)} g \, d\mu$$

for all $x \in X$ and all r > 0.

It follows from the Poincaré inequality and a chaining argument that if $u \in \text{Lip}_0(X)$ and g is an upper gradient of u, then

 $|u(x)| \leq C\mathcal{I}_1(g)(x)$

for all $x \in X$; here C > 0 is independent of u and g.

This pointwise estimate, together with Theorem 9 and the Aikawa condition, implies the validity of Hardy–Sobolev inequalities.

A sufficient condition for Hardy–Sobolev inequalities

Theorem 10.

Assume that X supports a 1-Poincaré inequality, that the reverse doubling condition (2) holds with $\eta = 1$, and that there is Q > 1 such that $\mu(B(x, r)) \ge cr^Q$ for all $x \in X$ and r > 0. Let $E \subset X$ be a closed set, and let $1 and <math>\beta \in \mathbb{R}$ be such that

$$\operatorname{\mathsf{codim}}_{\mathsf{A}}(\mathsf{E}) > \max \{ \mathsf{Q} - rac{q}{p}(\mathsf{Q} - \mathsf{p} + \beta), rac{\beta}{p-1} \}.$$

Then there is C > 0 such that the weighted Hardy–Sobolev inequality

$$\left(\int_X |u(x)|^q d(x,E)^{rac{q}{p}(Q-p+eta)-Q} d\mu(x)
ight)^{rac{p}{q}} \leq C\int_X g(x)^p d(x,E)^eta d\mu(x)$$

holds whenever $u \in Lip_0(X)$ and g is an upper gradient of u.

Idea of the proof 1

Assumption co dim_A(*E*) > max{ $Q - \frac{q}{p}(Q - p + \beta), \frac{\beta}{p-1}$ } implies that the weights

$$w(x) = d(x, E)^{\frac{q}{p}(Q-p+\beta)-Q}, \quad v(x) = d(x, E)^{\beta}, \quad h(x) = d(x, E)^{\frac{-\beta}{p-1}}$$

are in \widetilde{A}_{∞} . Moreover, if $B = B(x, r) \subset B(z, 3r)$ for some $z \in E$, the Aikawa condition implies

$$w(B)^{rac{p}{q}} \leq Cr^{Q-p+eta-Q^{rac{p}{q}}}\mu(B)^{rac{p}{q}}$$

and $h(B)^{p-1} \leq Cr^{-\beta}\mu(B)^{p-1}$.

Hence

$$w(B)^{\frac{p}{q}}h(B)^{p-1} \leq Cr^{Q-p+\beta-Q^{\frac{p}{q}}}\mu(B)^{\frac{p}{q}}r^{-\beta}\mu(B)^{p-1} = C\left(\frac{r^Q}{\mu(B)}\right)^{1-\frac{p}{q}}\left(\frac{\mu(B)}{r}\right)^{p}.$$

If *B* is far from *E*, this is easy to show.

Idea of the proof 2

So, $w(B)^{\frac{p}{q}}h(B)^{p-1} \leq C\left(\frac{r^Q}{\mu(B)}\right)^{1-\frac{p}{q}}\left(\frac{\mu(B)}{r}\right)^p$ for all balls. Since $\mu(B(x,r)) \geq cr^Q$ and $p \leq q$, the assumption in Theorem 9, with s = 1, is satisfied.

Hence

$$egin{aligned} &\left(\int_X |u(x)|^q d(x,E)^{rac{q}{p}(Q-p+eta)-Q}\,d\mu(x)
ight)^{rac{p}{q}} \ &\leq Cigg(\int_X \mathcal{I}_1(g)(x)^q d(x,E)^{rac{q}{p}(Q-p+eta)-Q}\,d\mu(x)igg)^{rac{p}{q}} \ &\leq C\int_X g(x)^p d(x,E)^eta\,d\mu(x), \end{aligned}$$

proving the claim.

Characterization for Hardy–Sobolev inequalities

If X is Q-regular, we have even a characterization in the unbounded case $\beta = 0$. The necessity was shown in the case of \mathbb{R}^n in [L–Vähäkangas, 2016], but the proof works in any Q-regular space.

Theorem 11.

Assume that X is Q-regular and supports a 1-Poincaré inequality. Let $1 and let <math>E \subset X$ be a closed set. Then the global (q, p)-Hardy–Sobolev inequality

$$\left(\int_X |u(x)|^q \operatorname{dist}(x,E)^{rac{q}{p}(Q-p)-Q} d\mu\right)^{rac{1}{q}} \leq C \left(\int_X g_u(x)^p d\mu\right)^{rac{1}{p}}$$

holds for all $u \in \text{Lip}_0(X)$ if and only if $\operatorname{codim}_A(E) > Q - \frac{q}{p}(Q - p)$, that is $\dim_A(E) < \frac{q}{p}(Q - p)$.

Fractional Hardy–Sobolev inequalities

Theorem 12 (DILTV, Fractional case).

Assume that X is connected, that the reverse doubling (2) holds with $\eta = s \in (0, 1)$, and that there is Q > 1 such that $\mu(B(x, r)) \ge cr^Q$ for all $x \in X$ and r > 0. Let $E \subset X$ be closed, and let $1 and <math>\beta \in \mathbb{R}$ be such that

$$\operatorname{\mathsf{codim}}_{\mathsf{A}}(\mathsf{E})>\maxig\{ \mathsf{Q}-rac{q}{\mathsf{p}}(\mathsf{Q}-s\!\mathsf{p}+eta)\,,\,rac{eta}{\mathsf{p}-1}ig\}.$$

Then, if $1 \le t < \infty$, there is C > 0 such that for all $f \in Lip_0(X)$

$$\begin{split} \left(\int_{X} |f(x)|^{q} \operatorname{dist}(x, E)^{\frac{q}{p}(Q-sp+\beta)-Q} d\mu(x)\right)^{\frac{p}{q}} \\ & \leq C \int_{X} \left(\int_{X} \frac{|f(y)-f(z)|^{t}}{d(y, z)^{st} \mu(B(y, d(y, z)))} d\mu(z)\right)^{\frac{p}{t}} \operatorname{dist}(y, E)^{\beta} d\mu(y) \end{split}$$

Some references:

H. AIKAWA. Quasiadditivity of Riesz capacity. Math. Scand. 69 (1991), 15-30.

H. AIMAR, M. CARENA, R. DURÁN, M. TOSCHI. Powers of distances to lower dimensional sets as Muckenhoupt weights. *Acta Math. Hungar.* 143 (2014), 119–137.

P. ASSOUAD. Plongements lipschitziens dans **R**^{*n*}. *Bull. Soc. Math. France* 111 (1983), 429–448.

R. DURÁN, F. LÓPEZ GARCÍA. Solutions of the divergence and analysis of the Stokes equations in planar Hölder- α domains. *Math. Models Methods Appl. Sci.* 20 (2010), 95–120.

T. HORIUCHI. The imbedding theorems for weighted Sobolev spaces. II. *Bull. Fac. Sci. Ibaraki Univ. Ser. A* 23 (1991), 11–37.

J. LEHRBÄCK, H. TUOMINEN. A note on the dimensions of Assouad and Aikawa. *J. Japan Math. Soc.* 65 (2013), 343–356.

J. LEHRBÄCK, A. VÄHÄKANGAS. In between the inequalities of Sobolev and Hardy. *J. Funct. Anal.* 271 (2016), 330–364.

B. MUCKENHOUPT. Weighted norm inequalities for the Hardy maximal function. *Trans. Amer. Math. Soc.* 165 (1972), 207–226.

C. PÉREZ, R. WHEEDEN. Potential operators, maximal functions, and generalizations of A_{∞} . Potential Anal. 19 (2003), 1–33.

Juha Lehrbäck (University of Jyväskylä)

Ap-properties of distance functions

DISCOVERING MATH at **JYU.** Since 1863.

5900