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Ap weights

Ap weights
Let X = (X , d , µ) be a metric space. (Can think of Rn with Euclidean
distance and Lebesgue measure.)

Function w ∈ L1
loc(X ) is a weight if w(x) > 0 for a.e. x ∈ X .

A weight w belongs to the Muckenhoupt class Ap, 1 < p <∞, if there is
C > 0 such that(∫

B
w(x) dµ

)(∫
B

w(x)−
1

p−1 dµ
)p−1

≤ C

for all balls B ⊂ X . Weight w is in class A1 if there is C > 0 such that(∫
B

w(x) dµ
)
ess sup

x∈B

1
w(x)

≤ C

for all balls B ⊂ X .

(Here
∫

B f (x) dµ = 1
µ(B)

∫
B f (x) dµ is the mean-value integral.)
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Ap weights

Properties of Ap weights
Consequences of the Ap condition (well known):

• A1 ⊂ Ap ⊂ Aq ⊂ Ã∞ :=
⋃

1≤p<∞
Ap when 1 < p < q <∞.

• Duality: If 1 < p <∞, then w ∈ Ap if and only if w−
1

p−1 ∈ A p
p−1

.

• In Rn, Hardy–Littlewood maximal operator M is bounded on Lp(w dx),
1 < p <∞, if and only if w ∈ Ap [Muckenhoupt, 1972]. This implies a rich
theory of harmonic analysis in Ap-weighted spaces.

• Ap weights satisfy a reverse Hölder inequality, and hence the Ap

condition is self-improving.

• Ap-weights (in Rn) are p-admissible, that is, they satisfy the basic
assumptions of analysis on metric spaces: the doubling property and a
p-Poincaré inequality.
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Ap weights

Ap properties of distance functions

Concrete examples of Ap weights? The following is well known:

Let α ∈ R and write w(x) = |x |−α for x ∈ Rn. Then

(a) w ∈ Ap, 1 < p <∞, if and only if (1− p)n < α < n.

(b) w ∈ A1 if and only if 0 ≤ α < n.

Here w(x) = |x |−α = dist(x , {0})−α.

More generally, we are interested in the Ap properties of weights

w(x) = dist(x ,E)−α for (closed) E ⊂ X , α ∈ R.

These have been studied e.g. in [Aikawa, 1991], [Horiuchi, 1989, 1991],
[Durán–López García, 2010] and [Aimar–Carena–Durán–Toschi, 2014].

Juha Lehrbäck (University of Jyväskylä) Ap -properties of distance functions JYU. Since 1863. | 4.2.2019 | 5 / 31



Ap weights

A characterization in Rn

The following is the Euclidean special case of the characterization from

Bartłomiej Dyda, Lizaveta Ihnatsyeva, Juha Lehrbäck, Heli Tuominen, Antti V.
Vähäkangas: Muckenhoupt Ap-properties of distance functions and applications
to Hardy-Sobolev -type inequalities, Potential Anal. 50 (2019), 83–105.

Theorem 1 (DILTV, 2019).

Assume that a closed set E ⊂ Rn is porous (equivalently dimA(E) < n).
Let α ∈ R and write w(x) = dist(x ,E)−α. Then

(a) w ∈ Ap, for 1 < p <∞, if and only if

(1− p)(n − dimA(E)) < α < n − dimA(E).

(b) w ∈ A1 if and only if 0 ≤ α < n − dimA(E).

Here dimA(E) is the Assouad dimension of E ⊂ Rn.

Juha Lehrbäck (University of Jyväskylä) Ap -properties of distance functions JYU. Since 1863. | 4.2.2019 | 6 / 31



Assouad (co)dimension
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Assouad (co)dimension

Assouad dimension

Definition 2.
Let E ⊂ X . The Assouad dimension dimA(E) is the infimum of all λ ≥ 0
for which there is C > 0 such that E ∩ B(x ,R) can be covered by at most
C( r

R )
−λ balls of radius r for all x ∈ E and all 0 < r < R (< diam(E) ).

[Sometimes this is called the upper Assouad dimension dimA(E). The natural
dual (“how many balls are needed at least”) can then be called the lower
(Assouad) dimension dimA(E).]

Assouad dimension was introduced by P. Assouad around 1980 in
connection to bi-Lipschitz embedding problem between metric and
Euclidean spaces; see e.g. [Assouad, 1983]. Equivalent (or closely
related) concepts have appeared under different names, e.g. (uniform)
metric dimension.
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Assouad (co)dimension

Assouad and Minkowski

So, dimA(E) = dimA(E) is the infimum of λ ≥ 0 such that E ∩ B(x ,R) can
always be covered by at most C( r

R )
−λ balls of radius 0 < r < R < d(E).

For comparison, the upper Minkowski dimension (or box dimension)
dimM(E) of a bounded set E ⊂ X is the infimum of λ ≥ 0 such that E can
be covered by at most Cr−λ balls of radius 0 < r < d(E).

Thus
dimH(E) ≤ dimM(E) ≤ dimA(E) for all E ⊂ X ,

where dimH(E) is the Hausdorff dimension. All these inequalities can be
strict.

For instance, let E =
{1

j : j ∈ N
}
∪ {0} ⊂ R.

Then dimH(E) = 0, dimM(E) = 1
2 , and dimA(E) = 1.
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Assouad (co)dimension

Assouad codimension
However, when examining Ap classes in the space (X , d , µ), we also need
to take into account the effect of the measure µ. Then the following is in
many instances a more suitable concept.

Definition 3.
Let E ⊂ X . The Assouad codimension co dimA(E) is the supremum of all
ρ ≥ 0 for which there is C ≥ 1 such that

µ(Er ∩ B(x ,R))

µ(B(x ,R))
≤ C

( r
R

)ρ
for all x ∈ E and all 0 < r < R < 2 diam(X ).

Here Er = {x ∈ X : dist(x ,E) < r} is the open r -neighborhood of E ⊂ X .

Note that if co dimA(E) > 0, then µ(E) = 0 by the Lebesgue density
theorem.
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Assouad (co)dimension

The Ahlfors regular case

The space X = (X , d , µ) is (Ahlfors) Q-regular, for Q > 0, if there is
C ≥ 1 such that

C−1rQ ≤ µ(B(x , r)) ≤ CrQ

for all x ∈ X and all 0 < r < diam(X ). This can be equivalently required to
hold for µ = HQ , the Q-dimensional Hausdorff measure.

If X is Q-regular, then it is not hard to see that

dimA(E) = Q − co dimA(E) for all E ⊂ X .

On the other hand, if E ⊂ X is Ahlfors λ-regular, then

dimH(E) = dimA(E) = λ.
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Assouad (co)dimension

Doubling
If the space X is not Ahlfors regular, we still need to assume the weaker
condition that µ is doubling: there is a C > 0 such that

µ(B(x , 2r)) ≤ C µ(B(x , r)) for all x ∈ X , r > 0. (1)

Iteration of (1) shows that there are σ > 0 and C > 0 such that

µ(B(y , r))
µ(B(x ,R))

≥ C
( r

R

)σ
whenever B(y , r) ⊂ B(x ,R) ⊂ X .

In some of our applications we also need the reverse doubling condition
that there are η > 0 and C > 0 such that

µ(B(y , r))
µ(B(x ,R))

≤ C
( r

R

)η
whenever B(y , r) ⊂ B(x ,R) ⊂ X . (2)

Note that (2) implies µ({x}) = 0 for all x ∈ X .
If X is unbounded and connected and µ is doubling, then there is some
η > 0 such that (2) holds.
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Assouad (co)dimension

Aikawa condition
The following property provides a link between the Ap condition and the
Assouad dimension.

Definition 4.
A closed set E ⊂ X satisfies the Aikawa condition for α ∈ R, if there is
C ≥ 1 such that ∫

B(x ,r)
dist(y ,E)−α dµ(y) ≤ Cr−α

for all x ∈ E and all r > 0.

Let w(x) = dist(x ,E)−α. It is easy to show (using doubling) that if the
Aikawa condition holds with α ≥ 0, then w ∈ A1 ⊂ Ap for all 1 ≤ p <∞.

On the other hand, by duality, if α < 0 and 1 < p <∞ are such that the
Aikawa condition holds with −α

p−1 , then w ∈ Ap.
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Assouad (co)dimension

Assouad and Aikawa
Connecting the Assouad dimension and the Aikawa condition, we have the
following result, essentially from [L–Tuominen, 2013].

Theorem 5.

Let E ⊂ X be a closed set and let α > 0. Then the Aikawa condition holds
with α if and only if co dimA(E) > α.

The proof is based on simple covering arguments, but to get the strict
inequality also the self-improvement of the Aikawa condition is needed.

Self-improvement follows from the so-called Gehring Lemma, since the
Aikawa condition for α > 0 implies a reverse Hölder inequality.

(This is due to the fact that for any β > 0

r−β ≤
∫

B(x,r)
dist(y ,E)−β dµ(y) for all x ∈ E , r > 0.)
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Ap distance weights in metric measure spaces

3. Ap distance weights in metric measure spaces
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Ap distance weights in metric measure spaces

Sufficiency
Theorem 6 (DILTV, 2019).

Let E ⊂ X be a closed (non-empty) set and let α ∈ R. Then the following
statements hold for w(x) = dist(x ,E)−α.

(a) If co dimA(E) > α ≥ 0, then w ∈ Ap for all 1 ≤ p <∞.

(b) If α < 0 and 1 < p <∞ are such that co dimA(E) >
α

1− p
,

then w ∈ Ap.

(c) If co dimA(E) > max{0, α}, then w ∈ Ã∞.

(a) follows using Theorem 5 and the Aikawa condition.
(b) follows from (a) by the Ap duality.
(c) follows from (a) and (b).

Note: Here it is important that in the definition of co dimA(E) all radii
0 < r < R < 2 diam(X ) are considered.
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Ap distance weights in metric measure spaces

Necessity for porous sets

For porous sets, we have also a converse to Theorem 6.

Recall that E ⊂ X is porous, if there is 0 < c < 1 such that for all x ∈ E
and all 0 < r < 2 diam(X ) there is y ∈ X satisfying B(y , cr) ⊂ B(x , r) \ E .
(If X is Q-regular, then E ⊂ X is porous if and only if dimA(E) < Q.)

Theorem 7 (DILTV, 2019).

Let E ⊂ X be a closed and porous (non-empty) set and let α ∈ R. Then
the following statements hold for w(x) = dist(x ,E)−α.

(a) If α > 0 and w ∈ Ap, for some 1 ≤ p <∞, then w ∈ A1 and
co dimA(E) > α.

(b) If α < 0 and w ∈ Ap, for some 1 < p <∞, then co dimA(E) >
α

1− p
.
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Ap distance weights in metric measure spaces

The general characterization
Combining Theorems 6 and 7 we obtain the following characterization for
porous sets.

Corollary 8 (DILTV, 2019).

Let E ⊂ X be a closed and porous (non-empty) set, let α ∈ R, and write
w(x) = dist(x ,E)−α. Then

(a) w ∈ Ap, for 1 < p <∞, if and only if

(1− p) co dimA(E) < α < co dimA(E).

(b) w ∈ A1 if and only if 0 ≤ α < co dimA(E).

Theorem 1 follows from this, since E ⊂ Rn is porous if and only if
dimA(E) < n, and co dimA(E) = n − dimA(E) for all E ⊂ Rn.

[For a non-porous sets E ⊂ X , both dist(x ,E)−α ∈ A1 and dist(x ,E)−α /∈ Ã∞
are possible, when α > 0.]
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Applications for Hardy–Sobolev inequalities

4. Applications for Hardy–Sobolev inequalities
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Applications for Hardy–Sobolev inequalities

Hardy–Sobolev inequalities
We say that a global (q, p, β)-Hardy–Sobolev inequality holds with
respect to a closed set E ⊂ Rn, with |E | = 0, if there is C > 0 such that(∫

Rn
|u(x)|q dist(x ,E)

q
p (n−p+β)−n dx

) p
q

≤ C
∫
Rn
|∇u(x)|p dist(x ,E)β dx

for all u ∈ C∞0 (Rn). Here β ∈ R, and the natural range of exponents is
1 ≤ p ≤ q ≤ np

n−p = p∗.

For β = 0, these inequalities form a natural interpolating scale between
the Sobolev (case q = p∗ = np

n−p ) and Hardy inequalities (case q = p).

For q = p, the global (p, β)-Hardy inequality reads as∫
Rn
|u(x)|p dist(x ,E)β−p dx ≤ C

∫
Rn
|∇u(x)|p dist(x ,E)β dx .
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Applications for Hardy–Sobolev inequalities

Hardy–Sobolev inequalities in metric spaces

In general metric spaces we consider compactly supported Lipschitz
functions u ∈ Lip0(X ) instead of C∞0 functions. The norm of the gradient
|∇u| is replaced by an upper gradient g of u.

A Borel measurable function g ≥ 0 is an upper gradient of u, if

|u(y)− u(x)| ≤
∫
γ

g ds

for all rectifiable curves γ joining x and y .

In addition to doubling, we assume for the rest of the talk that µ({x}) = 0
and B(x ,R) \ B(x , r) 6= ∅ for all x ∈ X and all 0 < r < R <∞.

Juha Lehrbäck (University of Jyväskylä) Ap -properties of distance functions JYU. Since 1863. | 4.2.2019 | 21 / 31



Applications for Hardy–Sobolev inequalities

Riesz potential

When s > 0, the Riesz potential Is(f ) of a measurable function f ≥ 0 is
defined by

Is(f )(x) =
∫

X

f (y)d(x , y)s

µ
(
B(x , d(x , y))

) dµ(y), x ∈ X .

Since µ({x}) = 0 for each x ∈ X , we can restrict the integration to the set
X \ {x}.

The following Theorem 9 yields an abstract two-weight embedding for the
Riesz potential. This is a reformulation of the results from
[Perez–Wheeden, 2003].

Here we use the notation w(B) =
∫

B w dµ.
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Applications for Hardy–Sobolev inequalities

General weighted embeddings

Theorem 9.

Let s > 0. Assume that the reverse doubling condition (2) holds with the
exponent η = s and that there is Q > s such that µ(B(x , r)) ≥ CrQ for all
x ∈ X and all r ≥ 1. Let 1 < p ≤ q <∞, and let w , v be weights such that

w ∈ Ã∞ and h = v
1

1−p ∈ Ã∞.

If there is K > 0 such that

r s w(B(x , r))
1
q h(B(x , r))

p−1
p

µ(B(x , r))
≤ K

for all x ∈ X and all r > 0, then the Riesz potential Is is bounded from
Lp(v dµ) to Lq(w dµ).
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Applications for Hardy–Sobolev inequalities

Poincaré inequalities

We say that the space X supports 1-Poincaré inequality if there are
C > 0 and τ ≥ 1 such that if u ∈ Lip(X ) and g is an upper gradient of u,
then ∫

B(x ,r)
|u − uB| dµ ≤ Cr

∫
B(x ,τ r)

g dµ

for all x ∈ X and all r > 0.

It follows from the Poincaré inequality and a chaining argument that if
u ∈ Lip0(X ) and g is an upper gradient of u, then

|u(x)| ≤ CI1(g)(x)

for all x ∈ X ; here C > 0 is independent of u and g.

This pointwise estimate, together with Theorem 9 and the Aikawa
condition, implies the validity of Hardy–Sobolev inequalities.
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Applications for Hardy–Sobolev inequalities

A sufficient condition for Hardy–Sobolev inequalities

Theorem 10.

Assume that X supports a 1-Poincaré inequality, that the reverse doubling
condition (2) holds with η = 1, and that there is Q > 1 such that
µ(B(x , r)) ≥ crQ for all x ∈ X and r > 0.
Let E ⊂ X be a closed set, and let 1 < p ≤ q ≤ Qp

Q−p <∞ and β ∈ R be
such that

co dimA(E) > max
{

Q − q
p (Q − p + β) , β

p−1

}
.

Then there is C > 0 such that the weighted Hardy–Sobolev inequality(∫
X
|u(x)|qd(x ,E)

q
p (Q−p+β)−Q dµ(x)

) p
q

≤ C
∫

X
g(x)pd(x ,E)β dµ(x)

holds whenever u ∈ Lip0(X ) and g is an upper gradient of u.
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Applications for Hardy–Sobolev inequalities

Idea of the proof 1

Assumption co dimA(E) > max
{

Q − q
p (Q − p + β) , β

p−1

}
implies that the

weights

w(x) = d(x ,E)
q
p (Q−p+β)−Q

, v(x) = d(x ,E)β, h(x) = d(x ,E)
−β
p−1

are in Ã∞. Moreover, if B = B(x , r) ⊂ B(z, 3r) for some z ∈ E , the Aikawa
condition implies

w(B)
p
q ≤ CrQ−p+β−Q p

qµ(B)
p
q

and h(B)p−1 ≤ Cr−βµ(B)p−1.

Hence

w(B)
p
q h(B)p−1 ≤ CrQ−p+β−Q p

qµ(B)
p
q r−βµ(B)p−1 = C

(
rQ

µ(B)

)1− p
q
(
µ(B)

r

)p
.

If B is far from E , this is easy to show.
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Applications for Hardy–Sobolev inequalities

Idea of the proof 2

So, w(B)
p
q h(B)p−1 ≤ C

(
rQ

µ(B)

)1− p
q
(
µ(B)

r

)p
for all balls. Since

µ(B(x , r)) ≥ crQ and p ≤ q, the assumption in Theorem 9, with s = 1, is
satisfied.

Hence (∫
X
|u(x)|qd(x ,E)

q
p (Q−p+β)−Q dµ(x)

) p
q

≤ C
(∫

X
I1(g)(x)qd(x ,E)

q
p (Q−p+β)−Q dµ(x)

) p
q

≤ C
∫

X
g(x)pd(x ,E)β dµ(x),

proving the claim.
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Applications for Hardy–Sobolev inequalities

Characterization for Hardy–Sobolev inequalities

If X is Q-regular, we have even a characterization in the unbounded case
β = 0. The necessity was shown in the case of Rn in [L–Vähäkangas,
2016], but the proof works in any Q-regular space.

Theorem 11.
Assume that X is Q-regular and supports a 1-Poincaré inequality. Let
1 < p ≤ q < Qp

Q−p <∞ and let E ⊂ X be a closed set. Then the global
(q, p)-Hardy–Sobolev inequality(∫

X
|u(x)|q dist(x ,E)

q
p (Q−p)−Q dµ

) 1
q

≤ C
(∫

X
gu(x)p dµ

) 1
p

holds for all u ∈ Lip0(X ) if and only if co dimA(E) > Q − q
p (Q − p), that

is dimA(E) < q
p (Q − p).
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Applications for Hardy–Sobolev inequalities

Fractional Hardy–Sobolev inequalities
Theorem 12 (DILTV, Fractional case).

Assume that X is connected, that the reverse doubling (2) holds with
η = s ∈ (0, 1), and that there is Q > 1 such that µ(B(x , r)) ≥ crQ for all
x ∈ X and r > 0. Let E ⊂ X be closed, and let 1 < p ≤ q ≤ Qp

Q−p <∞
and β ∈ R be such that

co dimA(E) > max
{

Q − q
p (Q − sp + β) , β

p−1

}
.

Then, if 1 ≤ t <∞, there is C > 0 such that for all f ∈ Lip0(X )(∫
X
|f (x)|q dist(x ,E)

q
p (Q−sp+β)−Q dµ(x)

) p
q

≤ C
∫

X

(∫
X

|f (y)− f (z)|t

d(y , z)stµ(B(y , d(y , z)))
dµ(z)

) p
t

dist(y ,E)β dµ(y)
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Applications for Hardy–Sobolev inequalities
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