

JYVÄSKYLÄ STUDIES IN COMPUTER SCIENCE, ECONOMICS AND STATISTICS

47

Juha-Pekka Tolvanen

Incremental Method Engineering
with Modeling Tools

Theoretical Principles and Empirical Evidence

University of Jyväskylä
Jyväskylä 1998

Editors
Markku Sakkinen
Department of Computer Science and Information Systems, University of
Jyväskylä
Kaarina Nieminen
Publishing Unit, University Library of Jyväskylä

ISBN 951-39-0303-6
ISSN 0357-9921
Copyright © 1998, by University of Jyväskylä
Jyväskylä University Printing House, Jyväskylä and
ER-Paino Ky, Lievestuore 1998

ABSTRACT

Juha-Pekka Tolvanen
Incremental Method Engineering with Modeling Tools: Theoretical Principles
and Empirical Evidence
Jyväskylä: University of Jyväskylä, 1998, 301 p.
(Jyväskylä Studies in Computer Science, Economics and Statistics
ISSN 0357-9921; 47)
ISBN 951-39-0303-6
Finnish summary
Diss.

The main objective of this study is to improve the applicability of information
system development (ISD) methods supported by modeling tools. This is
carried out by examining and extending method engineering (ME) processes.
To draw on an analogy with software engineering, ME develops and improves
ISD methods. Instead of introducing a set of standardized methods in an ISD
project, we assume that its method requirements vary. ISD projects differ
greatly and are more situation-bound than is usually assumed. We suggest that
methods should be constructed according to the needs of particular ISD
situations and contingencies. To continue the analogy, just as software
engineering is guided by ISD methods, ME is guided by (meta)methods. In
order to develop ISD methods and improve their flexibility we develop
methodical guidelines that are founded on engineering principles. These
guidelines specify how knowledge related to methods should be described,
analyzed, and maintained for ISD projects, and how it should be adapted into
ISD tools. The topic of ME is important, since local method development is
common in organizations, and there is a lack of knowledge about the
development and use of local methods.

In this thesis we focus on incremental ME. Any organization that builds
ISs not only delivers systems, it also learns and creates knowledge about how
to carry out ISD, and thus crafts new ISD methods. An incremental approach
aims to make this experience systematic, leading to continuous method
improvement. Accordingly, methods are a part of organizational knowledge
which evolves and needs to be maintained in an organization. This thesis puts
forward three principles of incremental ME. First, constructs of method
modeling languages for carrying out efficient incremental ME are described.
Second, guidelines and mechanisms for collecting and analyzing modeling-
related experiences are defined, and their implications for method
improvements are explained. Third, the viability of the principles proposed is
demonstrated in two cases of incremental ME. The resulting ME principles can
be applied in organizations which are developing their own method and need
methodical guidelines for this task.

Keywords: Information system development methods, method engineering,
metamodeling, computer-aided systems engineering

ACM Computing Review Categories:
D.2.1 Software Engineering: Requirement/Specifications:

Languages, Methodologies, Tools
D.2.2 Software Engineering: Tools and Techniques:

Computer-aided software engineering (CASE)
D.2.10 Software Engineering: Design:

Methodologies, Representation
I.6.5 Simulation and Modelling: Model Development:

Modeling methodologies

Author’s Address:
Juha-Pekka Tolvanen
University of Jyväskylä
Department of Computer Science and Information Systems
P.O. Box 35
FIN–40351 Jyväskylä
Finland
Email: jpt@jytko.jyu.fi
Fax: +358 14 603011

ACKNOWLEDGEMENTS

For the realization of this dissertation I am indebted to many people and
organizations. The Academy of Finland, the Foundation for Economic
Education, and the Technical Research Center of Finland have provided
funding for the research. MetaCase Consulting Inc. provided vital connections
to the case studies and has greatly increased my research motivation by
allowing me to combine both the research and practice of method development.

The advice of my supervisor, Professor Kalle Lyytinen, has been inspiring
and significant. It was he who encouraged me into research in the first place,
and directed me towards the field of method engineering. I would like to
extend my thanks to the external reviewers of the dissertation, professors Juhani
Iivari and Richard Welke, and to Göran Goldkuhl, Matthias Jarke, Mauri
Leppänen, who have commented on this work as it has progressed.

While carrying out this research I have been fortunate to work in the
MetaPHOR project. In fact, the research problems addressed in this work would
not have been possible to study to such an extent without the work carried out
in the research group. My long term research colleagues, Steven Kelly, Pentti
Marttiin, Matti Rossi and Kari Smolander have given valuable comments on this
work and implemented the metaCASE tools applied in my research. Steven
Kelly also assisted with the correction of the English in this dissertation. The
other members of MetaPHOR project, including Janne Kaipala, Pentti Kerola,
Janne Luoma, Harri Oinas-Kukkonen, Minna Koskinen, Hui Liu, Risto
Pohjonen, Marko Somppi and Veli-Pekka Tahvanainen have all contributed in
creating the favorable conditions for research within the project.

I would like to express my thanks to the metamodeling language
developers, Arthur ter Hofstede, Michael Heym, Steven Kelly, Kari Smolander
and John Venable, who have provided comments about metamodeling
functionality and checked the metamodels I made. With respect to the practice
of method development, I would like to thank several method developers and
adapters, including Ari Jaaksi, Brian Henderson-Sellers, Harri Lindström, Hans
Nissen and Pirkko Vesterinen, for their valuable discussions and insights into
local method development.

Finally, I would like to thank my parents and my wife Marjut for
supporting me throughout the whole research process, and especially Marjut for
setting aside her own career to accompany me as I wrote up this thesis as a
visiting researcher in RWTH Aachen, Germany.

CONTENTS

1 INTRODUCTION...11

1.1 Problems in information system development................................. 11
1.2 Methodical support for information system development.............. 12
1.3 Local method development .. 14
1.4 Alternative strategies for local method development 18

1.4.1 Text-book approach..19
1.4.2 Contingency approach ...19
1.4.3 Method engineering ...20

1.5 Research questions and research methods .. 22
1.5.1 Research topic ...22
1.5.2 Research domains and related research23
1.5.3 Problem formulation ..26
1.5.4 Research methods ...28
1.5.5 Limitations of the study ...30

1.6 Outline of the thesis... 30

2 INFORMATION SYSTEM DEVELOPMENT: METHODS AND
TOOLS ...32

2.1 Information system development methods 32
2.2 Types of method knowledge .. 35

2.2.1 Conceptual structure ..37
2.2.2 Notation ...38
2.2.3 Processes ..40
2.2.4 Participation and roles ...41
2.2.5 Development objectives and decisions ...41
2.2.6 Values and assumptions...42
2.2.7 Summary of method knowledge...43

2.3 Information system development tools ... 43
2.3.1 Tool support for information system development.....................44
2.3.2 Method-tool companionship..46
2.3.3 Remarks on modeling tool support...48

2.4 Paradoxes of ISD methods.. 49
2.4.1 Low acceptance and use of methods...49
2.4.2 Popularity of local method development51

2.5 Re-evaluation of method use .. 53
2.5.1 Situation-bound methods...53
2.5.2 Tacit method knowledge..55
2.5.3 Method use is a learning process ..56
2.5.4 Evolution of methods explained ...57

2.6 Summary and discussion.. 64

8

3 METHOD ENGINEERING: METHODS AND TOOLS............................66

3.1 Defining method engineering .. 66
3.2 Method engineering approaches.. 69

3.2.1 Method engineering process..69
3.2.2 Types of method knowledge considered71
3.2.3 Criteria for constructing methods ...74
3.2.4 Implementation into ISD tools...78
3.2.5 Summary and discussion...80

3.3 Metamodels and metamodeling languages 81
3.3.1 Defining metamodeling and metamodels....................................81
3.3.2 Types of the meta-data modeling languages examined85
3.3.3 Modeling power of meta-data models ...86
3.3.4 Constructs of metamodeling languages99

3.4 Summary of method engineering approaches.................................. 99

4 MODELING METHOD KNOWLEDGE FOR MODELING TOOLS..... 101

4.1 Introduction ..101
4.2 Method selection and method modeling process............................103

4.2.1 Selecting methods for the study .. 103
4.2.2 Metamodeling process ... 105
4.2.3 Tool implementation .. 110

4.3 Metamodels for method knowledge...110
4.3.1 Business Systems Planning .. 111
4.3.2 Structured Analysis and Design.. 116
4.3.3 Unified Modeling Language ... 121
4.3.4 Summary ... 131

4.4 Requirements for metamodeling languages131
4.4.1 Modeling single techniques... 134
4.4.2 Modeling interconnected techniques and methods................... 142
4.4.3 Summary of the metamodeling constructs................................. 153

4.5 Evaluation of metamodeling languages...155
4.5.1 Other studies evaluating metamodeling languages.................. 155
4.5.2 Evaluation according to essential metamodeling

constructs .. 156
4.5.3 Limitations of metamodeling based on semantic data

models ... 164
4.6 Summary and discussion...166

5 EXPERIENCE BASED METHOD EVALUATION AND
REFINEMENT .. 168

5.1 Introduction into incremental method engineering........................169
5.1.1 Motivation and definition.. 169
5.1.2 Scenarios of method evaluation and refinement 172
5.1.3 Incremental versus “radical” method engineering 176
5.1.4 Summary ... 178

9

5.2 Evaluating the applicability of modeling techniques..................... 179
5.2.1 Evaluation and validation of text-book methods180
5.2.2 Evaluation of methods in the problem context181
5.2.3 Evaluation of methods as a part of a continuous ME

process ...184
5.2.4 Problems of a posteriori evaluation ..187
5.2.5 Summary and discussion of method evaluation

approaches ..189
5.3 Principles for incremental method engineering 190

5.3.1 Process of incremental method engineering190
5.3.2 Use of metamodels and method rationale in incremental

method engineering ...193
5.3.3 Type-instance matching ...196
5.3.4 Modeling the object system ...206
5.3.5 Supporting problem solving..209
5.3.6 Remarks on the a posteriori mechanisms212

5.4 Summary .. 213

6 AN EXAMINATION OF INCREMENTAL METHOD
ENGINEERING: TWO CASE STUDIES...216

6.1 Research method for method engineering cases 217
6.1.1 Action research method ...218
6.1.2 Using action research in studying method engineering219
6.1.3 Comparing action research and incremental method

engineering ...221
6.2 Case A: Wholesale company .. 222

6.2.1 Background of the study..223
6.2.2 Characteristics of the ISD environment224
6.2.3 Business modeling method constructed226
6.2.4 Method use ..229
6.2.5 The a posteriori method engineering..230
6.2.6 Method experiences and refinements ...237

6.3 Case B: Logistic processes and a cardboard mill 240
6.3.1 Background of the study..240
6.3.2 Constructed method ...243
6.3.3 Characteristics of the cardboard mill ..249
6.3.4 Method use ..250
6.3.5 The a posteriori method engineering..252
6.3.6 Method experiences and refinements ...259

6.4 Lessons learned.. 262
6.4.1 Local method development ...263
6.4.2 Method engineering ...264
6.4.3 Principles of incremental method engineering265

10

7 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 269

7.1 Modeling languages for method engineering269
7.2 Experience based method refinements...271
7.3 Directions for future research..273

REFERENCES.. 275

APPENDIX .. 297

YHTEENVETO (FINNISH SUMMARY) .. 301

1 INTRODUCTION

1.1 Problems in information system development

Though information has become one of the most valuable assets of modern
corporations, development of information systems (IS) faces many problems.
Among the most important are low productivity, a large number of failures,
and an inadequate alignment of ISs with business needs. The first problem, low
productivity, has been recognized in the term “software crisis”, as indicated by
the development backlog and maintenance problems (cf. Brooks 1975, Boehm
and Papaccio 1988, Jeffrey 1987). Simply, demands for building new or
improved ISs have increased faster than our ability to develop them. Some
reasons are: the increasing cost of software development (especially when
compared to the decreasing cost of hardware), the limited supply of personnel
and funding, and only moderate productivity improvements.

Second, IS development (ISD) efforts have resulted in a large number of
outright failures (cf. Lyytinen and Hirschheim 1987, Charette 1989). These
failures are sometimes due to economical mismatches, such as budget and
schedule overruns, but surprisingly often due to poor product quality and
insufficient user satisfaction. For example, one survey (Gladden 1982) estimates
that 75% of IS developments undertaken are never completed, or the resulting
system is never used. According to the Standish Group (1995) only 16% of all
projects are delivered on time and within their budget. This study, conducted as
a survey among 365 information technology managers, also reveals that 31% of
ISD projects were canceled prior to completion and the majority, 53%, are
completed but over budget and offer less functionality than originally specified.
Unfortunately this area has not been studied in enough detail to find general
reasons for failures. As a result, we must mostly rely on cases and reports on
ISD failures (e.g. Oz 1994).

12

Third, from the business point of view, there has been growing criticism of
the poor alignment of ISs and business needs (cf. Earl 1989). While an increasing
part of organizations’ resources are spent on recording, searching, refining and
analyzing information, the link between ISs and organizational performance
and strategies has been shown to be dubious (Smith and McKeen 1993). For
example, most managers and users are still facing situations where they cannot
get information they need to run their units (Davenport et al. 1992, Rockart and
Hofman 1992). Hence, ISD is continually challenged by the dynamic nature of
business together with the ways that business activities are organized and
supported by ISs.

All the above problems are further aggravated by the increasing
complexity and size of software products. Each generation has brought new
application areas as well as extended functionality leading to larger systems,
which are harder to design, construct and maintain. Moreover, because of a
large number of new technical options and innovations available  like
client/server architectures, object-oriented approaches, and electronic
commerce  novel technical aspects are transforming the practice of ISD. All in
all, it seems to be commonly recognized that ISD is not satisfying organizations’
needs, whether they are technical, economical, or behavioral. Consequently,
companies world-wide are facing challenges in developing new strategies for
ISD as well as in finding supporting tools and ways of working (Rockart and
Hofman 1992, Benjamin and Blunt 1992).

1.2 Methodical support for information system development

One widely acknowledged approach to solve these problems has been to
improve and apply systematic guidelines and procedures for ISD1. This type of
knowledge is typically incorporated into ISD methods, which we can briefly
define here as systematic and predefined guidelines for carrying out at least one
complete task of ISD effort2. As the considerable amount of effort poured into
the method development indicates (cf. Jackson 1976, Gane and Sarson 1979,
Lundeberg 1982, Rumbaugh et al. 1991, Booch 1994), the current paradigm
within the scientific community advocates methods. Maybe an analogy to the
use of methods and techniques in other engineering disciplines (e.g. electronics,
civil) or even in less engineering-oriented disciplines, such as recording and
composing (Jaaksi 1997), is so close that methods are sought for ISD as well. It is
a general opinion among both practitioners and academics that ISD failures are
resulting from the application of irrational approaches. ISD methods are viewed
as one solution to these problems (Fitzgerald 1996). In fact, the drive towards

1 Some other organizational and technical innovations include CASE (Computer Aided

Systems/Software Engineering), 4GL (fourth generation languages), application package-
based ISD, development and use of reusable designs and code, and quality assurance
programs.

2 ISD methods are defined and characterized in more detail in Chapter 2.

13

better methods and practices is common in all fields of systems development,
including business modeling and re-engineering (Bubenko and Wangler 1992,
Smith and McKeen 1993), development of IS architectures (Bidgood and Jelley
1991, Stegwee and van Waes 1993), system analysis and design (Olle et al. 1991),
and implementation (Jeffrey 1987). In particular, improvements in early phases
are believed to lead to higher productivity.

The goal of method development is to build up collective experience of IS
development and utilize it to craft systematic development practices. Such
experience is obtained through participating in ISD, evaluating methods, and
conducting studies on method use. Based on this experience, method
developers promote their own concepts, beliefs, modeling languages and
procedures. In general, methodical approaches are expected to lead to more
acceptable and successful solutions, and to a better-managed development
process.

As a result, we currently find hundreds of methods. By taking into account
organizations’ own “dialects”, i.e. methods developed in-house, we can assume
that thousands of more or less similar methods are available (Bubenko 1986,
Grant et al. 1992). In addition new or improved methods are being introduced
continuously. Similarly, there are thousands of tools available for automating
and assisting these methods. In fact, nearly all tasks of ISD are supported with
software products varying from business modeling tools (Spurr et al. 1994) and
CASE tools (Computer-Aided Systems Engineering, Chen et al 1989, Nilsson
1989) to programming environments. Most methods or techniques for ISD are
considered impractical or even impossible to use without automated support
(Wasserman 1980, Yourdon 1986, McClure 1989, Smolander et al. 1990). For
example, there is little point in writing first in some programming language and
then making a translation by hand into a machine language, or in checking the
correctness and consistency of system designs without tool support.
Accordingly, in this thesis our interest is in those method aspects that can be
supported with automated tools.

Paradoxically, despite the efforts poured into method development, there
seems to be no universal agreement on whether methods are useful in ISD
(Lyytinen 1987, Cotterman et al. 1992, Wynekoop and Russo 1993, Wynekoop
and Russo 1997). One major reason for this contradiction is the limitation and
narrow focus of research: there is surprisingly little empirical knowledge of
method use. The vast majority of research has concentrated on developing new
methods, or developing frameworks for method analysis (cf. Olle et al. 1982,
1983, 1986, 1988, Blum 1994), comparison (cf. Hackathorn and Karimi 1988,
Hong et al. 1993), and selection (cf. Davis 1982, Kotteman and Konsynski 1984)3.
Furthermore, most empirical studies on method development or method
comparison are based on cases, and on limited experiences of method use
(Fitzgerald 1991). Because we know so little about how methods are used in
practice, there are only shallow generalizations that could explain the success or
failure of method use.

3 Although the literature offers several approaches to classify, understand, compare and

select methods there has been no validation of these approaches.

14

Although we do not know the effects or usefulness of ISD methods, the
market has put a great emphasis on tool use and productivity. The market for
development tools, such as CASE tools and application generators, has grown
steadily during the last decade, and several new approaches have emerged,
such as object-orientation and business process re-engineering. As Welke and
Konsynski (1980) and Norman and Chen (1992) point out, tools for supporting
ISD have evolved together with technical and methodical innovations.
Likewise, vendors’ investments in building ISD tools have increased. As a
result, organizations world-wide have invested in new ISD tools (embodying
various methods) such as business modeling tools, CASE, 4GL’s (4th generation
languages), integrated programming environments etc. (Benjamin and Blunt
1992). Although the rate of diffusion of CASE tools has been slower than
expected, it is relatively widely recognized that the rate of diffusion of these
tools will continue to increase in the future (Conway et al. 1995, Hobby 1993,
Benjamin and Blunt 1992, Friedman and Cornford 1989). For example, a
prediction of the CASE world market in 1997 is $1.2 bn (Hobby 1993), and the
estimated annual rate of growth is 35% (Conway et al. 1995).

1.3 Local method development

Despite the plethora of ISD methods available, organizations are seldom
satisfied with existing methods. Surveys as well as case studies reveal that
organizations tend to develop their own local “variants” of methods, or adapt
methods available according to their situation-specific needs (Pyburn 1983,
Russo et al. 1995, Hardy et al. 1995, Wijers and van Dort 1990, Aalto 1993, Aaen
et al. 1992)4. This means that methods from outside an organization do not meet
the requirements for its ISD efforts, i.e. they are not considered applicable. As a
result, the only choices are to abandon the method, try another one, continue the
use of the method, or develop methods locally.

By local method development we mean organizations’ attempts to develop
their own method or methods. This means that the local method includes
aspects which are not included in any other single method. In our case of
modeling related methods these extensions can include whole modeling
techniques, new modeling concepts, or new constraints. Local method
development is often carried out by combining and modifying existing
methods. Surveys investigating the use of methods have shown that 38%
(Hardy et al. 1995) or 36% (CASE Research Corporation, cited in Yourdon 1992)
of the organizations used methods developed in-house. These, however, can
also be adapted to organization, project, or individual needs. Thus, the
difference between local method development and adaptation is noteworthy. By
method adaptation we mean attempts to modify available methods, including
local variants, for situational needs. On the adaptation side, a survey by Hardy

4 The empirical studies on method use and on local method development are discussed in

more detail in Section 2.4.

15

et al. (1995) showed that 88% of the organizations studied had adapted methods
in-house. In another study the percentage of method adaptation is similarly 88%
(Russo and Klomparens 1993, Russo et al. 1995).

Studies of CASE tool usage (Wijers and van Dort 1990, Aaen et al. 1992)
have obtained similar results. They show an obvious need for local method
support and indicate that although companies have introduced CASE tools with
particular methods, they face difficulties in CASE use due to the limited
possibility to adopt and develop situation specific methods (Wijers and van
Dort 1990). Different development situations, cultures, skill levels, and types of
IS require different ISD approaches. Accordingly, standard-like methods are
less common than expected, and less popular than their local variants. This is
interesting since tool markets have focused on fixed and method-dependent
tools. This may explain the relatively low acceptance of CASE tools which lack
method modification and adaptation possibilities (cf. Aaen et al. 1992).
Therefore, a need for more flexible and customizable tools has been emphasized
(cf. Forte and Norman 1992, Seppänen et al. 1996).

We can find in the literature some case studies of local method
development including extensions of current methods (cf. Aalto 1993, Nissen et
al. 1996). These describe how methods have been modified and explain reasons
for their evolution. There is, however, surprisingly little empirical knowledge
available on local method development and method use (Wynekoop and Russo
1993). In fact, most of the reported work has concentrated on developing new
standard methods. Though many organizations develop methods in-house or
adapt them, we know little as to why and how this is done, or whether local or
adapted methods work better. Some studies on method development indicate
that although many companies are “rolling their own”; the selection of
methods, their development and introduction seems to be done in an ad-hoc
manner by choosing tools and methods on a trial-and-error procedure
(Smolander et al. 1990). Although local method development is common there is
a lack of proven principles. These principles include how to construct and adapt
methods for particular needs, how to check the applicability of the method, and
how to organize method development efforts.

To understand local method development efforts in more detail we
distinguish five steps that every organization faces while developing methods
in-house. The identification of these steps is based on analyzing and
synthesizing the literature (e.g. Smolander et al. 1990, Tagg 1990, Tolvanen and
Lyytinen 1993, Brinkkemper 1996). These steps are illustrated in Figure 1-1 and
described in more detail in Section 3.2. It must be noted that the figure is an
assertion rather than a generally proven process model of local method
development.

16

Tool selection
and adaptation

Method use

Selection of
methods

Introduction of
methods

Method
construction

Method
refinements

Method
refinements

FIGURE 1-1 Steps of local method development.

1) Selection of methods. First, every organization or ISD project must
make a decision which methods to follow and use. Even an organization that
does not use methods at all has made some decision, either explicitly or
implicitly. Similarly, cases of local method development (cf. Jaaksi 1997) are
often based on a selection of a well-known “text-book” method which is
introduced first in its standard form, and later  after gaining experience about
its use  modified to better meet local needs.

2) Method construction is a task in which selected methods are composed
or new ones are created to meet specific objectives of ISD (Kumar and Welke
1992, Heym and Österle 1993). This task includes building, improving and
modifying a method by specifying its components and their relationships.

3) Tool selection and adaptation. Tool adaptation can be defined as a task
in which a given method is represented and implemented for an ISD tool in
such a way that the tool can support tasks as prescribed by the method
(Tolvanen and Lyytinen 1993). If such a tool modification is not possible,
organizations still face the question “which method-specific tools should be
selected?” A more detailed discussion about different selection strategies for
CASE can be found from Bubenko (1988).

4) Introduction of methods deals with various tasks for initiating method
use, such as teaching, carrying out possible pilot projects etc.

17

5) Method use refers to an actual ISD effort in which methods are utilized
together with supporting tools.

The transitions described show a succession of steps through the selection

of methods to their use, but it is also possible to omit some steps. For example,
local method development can be carried out without selecting or using any ISD
tool, or without proper method introduction. Similarly the steps can be
overlapping (Nuseibah et al. 1996). Other transitions are also possible or can
even be more common. For example, an organization does not necessarily use,
and thus need to select, a computer-aided tool, or an organization can start from
the middle step by choosing a CASE tool, and indirectly the accompanying
methods.

The specification of transitions suggests a “loop” to method refinements
which is of major interest in our study: At each step of method development
new experience can lead to method modifications. This part is illustrated by
arrows on the left and right sides. An organization or an ISD project not only
produces ISs, but also gains and creates knowledge about the ISD. Typically, at
least part of this knowledge can be incorporated into ISD methods.

The figure identifies several transitions for method refinements. Such
refinements can occur either before, during or after the use of a method. In the
former case, method refinements occur during method construction, tool
selection or adaptation, or method introduction. For example, the capabilities of
the tool for method adaptation can lead to new method modifications. In the
latter cases, situations that have taken place during method use are analyzed,
generating new insights on how to use methods. This experience-based method
refinement can be characterized using Schön’s term, reflection -in-action (Schön
1983). In this loop the situation “talks back” and the practitioner reframes the
situation. Depending on how experiences are externalized (Nonaka 1994),
refinements can take place during or after method use. Refinements which
occur during method use  “on -the-fly”  deal mostly with an individual’s
interpretations, and give new meaning to a constructed method. It must be
noticed that this type of refinement often occurs without any documentation,
and thus takes place in the dimension of tacit knowledge (Nonaka 1994). If
these experiences are made explicit, and thus available for other method users,
they can be related to the methods constructed and used to modify earlier
methodical understanding. In this thesis we mostly examine method
refinements, because we believe that the applicability of methods can only be
improved when experience is made explicit for future ME efforts.

According to this a posteriori view of ME, an important factor in local
method development is the capability of an organization or project to learn of
its method use, create knowledge about the applicability of a method, and
utilize this knowledge for refinements. This is true not only of method
development but also of organizational knowledge creation in general (Nonaka
1994). In this study our interest is not in how efficiently an organization
develops ISs, but in how it creates explicit knowledge of the ISD method. Our
focus will be on defining, refining, validating and discarding ISD knowledge.
Methods are seen as one part of organizational knowledge, which evolves and

18

needs to be collected, analyzed, maintained and purged. We believe that how
and to what extent this is done in different situations is of great importance to
the success of local method development and to the usefulness of methods.

1.4 Alternative strategies for local method development

Although local method development steps may seem straightforward, there are
great differences in how ISD methods are selected and developed locally, and
how they can be introduced. To highlight some of these differences we have
analyzed the literature on methods, their selection and development (Davis
1982, Sullivan 1985, Olle et al. 1991, Kumar and Welke 1992, Brinkkemper 1996,
Odell 1996, Harmsen 1997). Based on this analysis we distinguish three basic
strategies for local method development. These are: a text-book approach, a
contingency approach and a method engineering approach, either at the
organizational level or at the project level.

These strategies can be considered as ideal types in different situations.
They differ in the extent of the changes that are made to methods to meet the
situation specific needs (cf. Figure 1-2). In a text-book approach a whole method
is chosen; in a contingency approach selection is largely made by choosing
individual techniques from a large set; in method engineering selection is made
by choosing components of techniques (or methods) and by constructing unique
components. Hence, the method development strategy applied in an
organization can be identified by studying how different the resulting method
is when compared to other known methods. It must be noted that these
strategies are not mutually exclusive; indeed they are often combined. For
example, some modeling techniques may be chosen as text-book techniques
because they are considered de facto standards whereas other techniques are be
developed from scratch or by extending existing techniques (e.g. in Jaaksi 1997).
These differences will be discussed in more detail in Section 2.5.

Each method development strategy extends the scope of modifying
methods for local situations. Thus, the text book approach and contingency
approach portray a limited adaptation possibility whereas the ME approach
suggests that ISD methods should be constructed for the use situation. Hence,
organizations which apply text-book methods believe that development
situations are generally alike, and thus can be solved with standard solutions.
Standardization efforts of methods, like SSADM (CCTA 1995), IDEF (FIPS
1993a) and UML (Booch et al. 1997) are examples of this approach, although
they also aspire to other objectives such as communication between different
ISD tools. In contrast, organizations which develop their own methods are
examples of a different opinion. They believe that development situations in the
organization or in projects are very different and furthermore this difference
influences the applicability of methods. Different method development
strategies also have implications about the maturity of the organization’s ISD
process (Humphrey 1989) because ME and detailed modification and use of
methods necessitates that an organization is first able to understand its ISD

19

processes, and second measure them to develop better ISD procedures and
guidelines. This means that organizations which successfully modify their
methods to meet their situational requirements can not be at low maturity
levels. An organization must have at least defined their ISD process (Humphrey
1989): successful modification of methods in an organization or in its projects is
not possible if their use process is not known. In the following we shall study
these three strategies in more detail.

 Text-book Contingency Method engineering

low high

 Degree of modification

FIGURE 1-2 Strategies for local method development.

1.4.1 Text-book approach

The most common approach to select and introduce methods is probably simple
trial and error (Smolander et al. 1990). Organizations choose their methods,
either consciously by selecting one of the well known “text -book” methods
often backed by consultants, or indirectly by introducing a CASE tool that
applies a specific method. A new methodical approach is then introduced
without modification. The text-book approach offers a simple strategy for local
method development: the method construction and tool adaptation steps do not
take place.

The underlying rationale behind this approach is that situations and
problems in ISD are similar, or at least similar enough to be analyzed and
solved by applying general methods applicable to “almost” all situations. This
text-book approach to ISD methods can be characterized as what Schön (1983)
calls “technical rationality”. According to this approach, situations of practice
can be scientifically categorized, problems are firmly bounded, and most
importantly they can be solved by using standardized principles. From the
technical rationality point of view, we can see ISD methods as universally valid
techniques for instrumental problem solving. It must be noted that although the
need for flexibility is recognized in some methods (cf. Wood-Harper et al. 1985,
CCTA 1995, Booch 1994, Coleman et al. 1994), they do not include mechanisms
to modify them according to the various characteristics of ISD.

1.4.2 Contingency approach

An alternative approach for method selection is based on contingency theory. It
suggests that there is no universally acceptable method which is applicable in
all circumstances. Hence, a contingency approach is based on the observation
that situations of practice can be classified, but are more situation bound than
the text-book approach expects. Because current methods do not offer general

20

rules for considering situational expectations and deviations (Iivari and Kerola
1983, Vlasblom et al. 1995), contingency frameworks for method selection try to
establish this connection by relating methodical needs and available methods.
Researchers following a contingency approach (e.g. Davis 1982, Kotteman and
Konsynski 1984, Sullivan 1985, Naumann et al. 1980) have tried to identify
prominent characteristics (i.e. situation dependencies) which control outcomes
of the use of methods and predict their suitability. These characteristics can be
technical, such as the type of an IS or the programming language applied;
organizational, such as the development culture and maturity; or human, such
as the level of experience and learning.

Although the contingency approach in method research is mostly used to
analyze situational features of methods, it is also applied for method selection
and development (e.g. Vlasblom et al. 1995, Punter and Lemmen 1996,
Savolainen 1992). For example, a contingency framework developed in the
HECTOR project proposed several situational characteristics, like the type of
project activities, ISD environment properties and method/tool properties for
tool selection (Savolainen 1992). In contingency frameworks for method
selection new methods are not necessarily developed; rather they are selected
from those available. Thus, in contrast to the steps of local method development
(cf. Figure 1-1), the contingency approach focuses on the selection of an
available, appropriate method rather than on more detailed method
construction (Kumar and Welke 1992). This bias towards selecting methods
from those available leads to “bounded” construction and selection of methods.

1.4.3 Method engineering

Although contingency theory has considerably expanded our understanding of
methods suitability, its a priori assumptions, once applied as a method selection
framework, neglect possibilities for method choices other than those already
prescribed. Moreover, contingency-based method selection ignores the impact
of organizational learning. Both these problems are addressed in local method
development. The first one deals with the insufficient competence to find
situation dependencies (cf. Kumar and Welke 1992, Grant et al. 1992). This
observation is supported by empirical studies of method use (cf. Hardy et al.
1995, Russo et al. 1995, Wijers 1991, Fitzgerald 1995). They show that situations
at an organization, project or individual level often cause changes in methods.
Simply, understanding of methods increases while methods are being used.
However, this type of knowledge is not usually included in the contingency-
based method selection.

The second problem comes from selecting methods (Kumar and Welke
1992). Because varying contingencies will cause changes in methods during
their adaptation with new tools, their learning becomes expensive, or even
impossible. If research has indicated that ISD professionals do not have enough
knowledge and experience of methods (Aaen et al. 1992), how could they be
competent to choose between methods? Hence, method selection and
development should be considered in relation to both a priori contingencies and
cumulated organizational experience.

21

To complement contingency-based method selection researchers have
proposed an idea of a detailed method construction in close connection with the
use situations (cf. Brinkkemper 1996, Kumar and Welke 1992). Instead of
selecting a method purely from an available library according to contingencies,
ISD methods should be constructed to meet a particular IS development’s
needs. This approach is called method engineering (ME, Kumar and Welke 1992)
as it aims to construct or “engineer” an ISD method according to stakeholders’
requirements. Simply, the idea behind ME is the same as behind building any
system: just as ISD develops and maintains systems supporting business
processes, ME aims to develop and maintain systems for ISD. This is an
alternative approach since ME assumes that ISD can often not be carried out
solely according to a set of available methods. In fact, according to the ME
approach ISD methods should be adapted to local situations even if it requires
detailed modification of methods. Here, the fundamental assumptions are
uniqueness and difference in ISD situations which can not be solved solely by
using general and universally valid methods or general contingency-based
selection principles. This approach also necessitates more detailed and
systematic steps of method development (cf. Figure 1-1). In particular, the steps
of method construction and tool adaptation are emphasized.

ME approaches can be further distinguished by whether they aspire
towards an organization-specific or a project-specific method. This division can
be also found in practice as described in more detail in Section 2.5. The first one,
organization-based ME, is based on an assumption that development situations 
and thus also supported methods  are alike in an organization and the
method can be developed to meet these requirements. In the organization this
method is then believed to be appropriate for all projects. Baskerville (1996)
calls these methods contingency methods, as they are situation specific for
certain types of bounded organizational settings. Numerous examples of these
approaches can be found. For example, the Pandata corporation has developed
various versions of the SDM method and supporting tool (SDW) to be used in
the company (cf. Turner et al. 1988).

Another ME approach is project-based ME, which assumes that methods
should be “engineered” on a project basis. Because this approach copes with the
uniqueness of each ISD setting (Baskerville 1996), it focuses on advancing
method knowledge in the context of a single ISD project. Thus, it is believed
that development situations differ between various projects. An example of
local method development effort in this category is Nokia Telecommunications,
whose OMT++ internal method has been developed to be used for designing
network management systems for mobile phones (cf. Aalto and Jaaksi 1994,
Jaaksi 1997). Although this method might be applicable in other divisions or
projects of Nokia it has been developed from one application and a project point
of view.

Although there can be an in-house method in the organization, according
to project-based ME there is also a possibility to adapt it, or even to develop
various project variants. For example, a questionnaire based study (Wynekoop
and Russo 1993, Russo et al. 1995) claims that over 2/3 of the companies have
developed their methods in-house. It also shows that half of the respondents

22

believed that the organization should use a single method for all projects (i.e.
follow an organization-wide method). At the same time, however, 89% of
respondents claimed that methods should be adapted on a project level in
contrast to using the same method in the whole organization (i.e. follow project
based ME). These results clearly show a lack of knowledge of local method
development and adaptation. This may be due to the fact that the question of
whether an organization has or has not developed an in-house method can be
understood differently. Thus, the question should not only be whether or not
methods are developed in-house, but also to what extent they are modified, or
adapted, and how the modification is done. Unfortunately, the study neither
explains the variation to different answers, nor does it reveal whether
organizations that have purchased methods from outside are more willing to
follow the method than those which have developed a local method. However,
the study raises several questions that remain largely unanswered. For example,
to what extent do organizations adapt methods? How are these efforts
organized? Are ME efforts project-driven or organization-driven? How is
knowledge related to methods gathered and organized? How are method
refinements carried out, and what is the role of method-related tools in method
evolution. In the following section we shall analyze the state of ME research in
relation to these questions. This will lead us to formulate our research questions
and research approach.

1.5 Research questions and research methods

In this section we shall first describe the research approach adopted and relate it
to published research on method engineering. Second, we formulate the
research questions, and finally we describe the research method.

1.5.1 Research topic

In this thesis our topic is ME principles for local method development. Reasons
for selecting this topic are twofold: First, new situations and challenges of ISD,
such as client-server architectures, object-oriented approaches, or business
process re-engineering, necessitate the formulation of new methodical
approaches. Accordingly, instead of selecting methods from the collection of
available ones (e.g. by using contingency frameworks) organizations are facing
needs to modify and even to develop local variants of ISD methods (cf.
Seppänen et al. 1996). At the same time methods must be analyzed, constructed,
adapted into tools and maintained in a different fashion when compared to
other method development strategies.

Second, current approaches to method selection and development do not
provide adequate support for learning and creation of methodical knowledge.
Hence, in this study local method development is viewed as a knowledge
creation process which can not be done in a “one -shot” manner. As cases of
local method development (e.g. Turner et al. 1988, Aalto and Jaaksi 1994) reveal,
in-house methods do not remain fixed over time, rather they have a history with

23

various configurations: parts of the methods are modified, some parts are
excluded, and new ones are included. Therefore, methods must be seen as one
part of organizational knowledge, which evolves and needs to be collected,
maintained and shared. Based on this we argue that an important factor in local
method development is the capability of an organization or a project to learn
about method use and deploy this knowledge for method refinements. Thus,
our research approach is anchored on the one hand in beliefs underpinning
method engineering (Brinkkemper 1990, Kumar and Welke 1992) that focus on
developing situation-bound methods, and on the other hand in theories of
organizational learning and knowledge creation (Schön 1983, Nonaka 1994).

1.5.2 Research domains and related research

Before we formulate our research questions, we will conduct a survey of related
research. This allows us to position our research within the context of ME
research during problem formulation. In their prominent article Kumar and
Welke (1992) describe ME and suggest four domains that have to be addressed
in ME:

1) modular method construction,
2) stakeholder value based method composition,
3) need for computer aided support, and
4) organizational support for ME.

In the following each research domain is discussed in more detail and

related research is described5.
1) Modular method construction. Several researchers (cf. Kumar and

Welke 1992, Harmsen et al. 1994a, Heym 1993) suggest that ME can be carried
out by using pre-defined and tested method modules. These modules  often
called a component base (Kumar and Welke 1992), or method fragments
(Harmsen et al. 1994b)  help specify knowledge about ISD methods in two
ways. They either describe a method’s static part through its conceptual
structure, or the dynamic features of a method, i.e. its procedural part. The first
aspect is incorporated in meta-data models (Brinkkemper 1990) which describe
the conceptual structure of modeling techniques together with their
representations. The latter aspect is defined by meta-activity models
(Brinkkemper 1990), or by process models (Marttiin 1994, Jarke et al. 1994).
These models contain knowledge about the stages and tasks of a method.

Most research done in this domain has focused on developing
metamodeling languages (cf. Welke 1988, Wijers 1991, Smolander 1992, Heym
and Österle 1992, Rossi 1998, Marttiin 1994, Harmsen et al. 1994a). Principles for
using pre-defined modules and utilizing metamodels for method analysis and
refinement have been far less studied. Here research has focused on comparing
and combining metamodels (e.g. Hong et al. 1993, Henderson-Sellers and
Bulthuis 1996b) and developing metrics for metamodel-based method

5 A more detailed analysis of related research can be found from Tolvanen et al. (1996).

24

comparison (Rossi and Brinkkemper 1996). Moreover, advances in
metamodeling languages have mostly taken place in meta-data modeling (cf.
Welke 1988, Smolander 1992), though some process models (Verhoef et al. 1991,
Marttiin 1994, Jarke et al. 1994) as well as integrated meta-data models and
process models have been developed (Heym 1993, Marttiin et al. 1995, Harmsen
et al. 1994a). Major differences among these approaches can be found in their
modeling power and capability, degree of formality, and ways to represent
method knowledge. Because ME is a relatively new research field, there is a
lack of experience in applying metamodeling and modular method construction
principles. A few cases studying ME practices have focused on relatively small
methods and mostly on the adaptation of methods to modeling tools (cf. Tagg
1990, Tolvanen and Lyytinen 1993, Cronholm and Goldkuhl 1994). Also some
laboratory based experiments on representing method knowledge have been
carried out (e.g. Wijers 1991, Verhoef 1993). However, they focus on individual
aspects (i.e. how a single developer understands and uses a method) rather than
on the use of methods in the large and by many. Hence, most studies reported
on method modeling can be found from method comparisons and analysis (cf.
Song and Osterweil 1992, Hong et al. 1993). For these reasons, the essential
question: “How can we represent, criticize, analyze and refine method
knowledge adequately to support local method development in practice?” has
largely remained unanswered.

2) Stakeholder value based method composition. Because ME can be
regarded as a change process, it is relevant that constructed methods meet
users’ requirements. Hence, ME requires methods and guidelines to identify
stakeholders  such as designers, programmers, IS users and managers  and
their requirements (Kumar and Welke 1984, 1992). This, in fact, is an essential
factor in accepting constructed methods. It can be expected that method users
will more easily learn the methods, accept them, and use them if the methods
are based on their requirements, in contrast to the situation where introduced
methods are purely based on requirements outside the organization. The
involvement of method users has been emphasized in recent method
development efforts (e.g. UML, Booch et al. 1997) in which method user’s
requirements and comments are collected more extensively than ever before.
Although the participation is important it has not been studied as extensively:
identification of stakeholders, dealing with conflicting requirements, and
responsibilities in decision making are less studied in the ME literature.

In this research domain few empirical studies have been carried out.
Goldkuhl et al. (1992) studied five CASE tool adaptation projects and identified
different roles and needs for the tool adaptation. In this study, however, the
research focus was on technical issues dealing with customizable tools rather
than on local method development. Similarly, other studies of ME (e.g.
Tolvanen 1995) have focused on a limited number of stakeholders and a few
contingency factors.

3) Need for computer aided support. Another research stream in ME has
focused on developing tools for capturing method knowledge (cf. Heym 1993)
as well as building metamodeling-based tools that can be customized (cf.
Teichroew et al. 1980, Chen 1988, Sorenson et al. 1988, Bergsten et al. 1989,

25

Smolander et al. 1991, Rossi 1995, Kelly et al. 1996). These tools, often called
CASE shells (Bubenko 1988), metasystems (Sorenson et al. 1988), or metaCASE
tools (Kelly 1994), offer facilities to tailor CASE tools with desired methods.
Hence, as ISD methods are supported by CASE tools, similarly metamodeling
languages are increasingly supported by metaCASE tools. This symmetry has
naturally introduced a more general term CAME (Kumar and Welke 1992,
Computer Aided Methodology Engineering) to highlight the role of computer-
based tools in ME.

As in CASE research (cf. Wynekoop and Conger 1991) there is a bias in ME
research towards building metaCASE and CAME environments rather than
evaluating them. There are many articles that describe either principles and
requirements for such environments (cf. Marttiin et al. 1995, Harmsen et al.
1994a, Goldkuhl and Cronholm 1993, Heym 1993), or represent how one
particular system has been implemented and how it works (cf. Teichroew et al.
1980, Sorenson et al. 1988, Bergsten et al. 1989, Chen 1988, Smolander et al. 1991,
Rossi 1995). There is, however, a paucity of research that describes the use of
these tools in practice. Only two empirical studies addressing the capabilities of
adaptable environments was found6: Goldkuhl et al. (1992) studied method
adaptations carried out with four different tools and five methods. Marttiin et
al. (1993) made laboratory experiments by adapting the same method to three
different CASE shells. These studies reveal that CAME tool developers have
concentrated so far on techniques that allow tool adaptation rather than on
developing techniques and principles for utilizing tool based knowledge about
methods for example in method selection, method composition, construction,
and reuse. Yet, without proven ME principles, the development of advanced
tool support for ME will be slowed down.

4) Organizational support for ME. The use of ISD methods always
involves a supporting organizational structure and mechanisms that ensure
method selection, development, training, use, and maintenance. The key
research question here is: “How should ME be organized inside a company
together with its ISD efforts?”. This research domain is hardly tackled in the ME
literature although methods are actually developed, taught and used locally
(Wijers and van Dort 1990, Aaen et al. 1992, Aalto 1993): because organizations
develop their own versions of methods, these tasks are already being managed
somehow. Few discussions available (cf. Bubenko 1988, Tagg 1990, Tolvanen
and Lyytinen 1993, Tolvanen 1995, Nissen 1996) study the roles and tasks
needed for method engineering. Research in this domain has so far focused
mostly on proposing an organizational position of a method engineer. Studies
of the other people involved or tasks and organizational structures and
mechanisms needed to carry out ME in practice are missing.

6 Most articles related to use of metaCASE tools (e.g. Tagg 1990) describe only the current

adaptation product but do not evaluate the adaptation process.

26

1.5.3 Problem formulation

The goal of this thesis is to improve the situational applicability of ISD methods
that forms a part of a modeling environment. This objective is examined as a
problem of method engineering. Our special interest is in incremental aspects of
ME. Any organization that builds ISs not only delivers systems as an outcome,
but also learns and creates knowledge about ISD methods. In fact, knowledge
on ISD and ISD methods is one of the most valuable assets in ISD organizations:
methods can be seen as a part of organizational knowledge, which evolves and
needs to be collected and shared in an organization. Consequently, creation of
new knowledge about ISD methods can be characterized as an incremental
learning effort in contrast to selecting methods solely in a “one -shot” manner
and using them as readily applicable standards.

According to the incremental approach, an important factor in local
method development is the capability of an organization or a project to learn
about method use, externalize the experiences into explicit knowledge, and
utilize the experiences for method refinements and knowledge creation (cf.
Schön 1983, Nonaka 1994). In incremental ME method knowledge is managed
by using metamodels combined with method experiences and supported by
CAME tools. Our primary interest is not in how efficiently an organization
develops ISs, but in how it creates information and knowledge about the ISD
and about the ISD methods it applies. Our research objective can also be seen as
an aim to develop methodical guidelines for ME. Method engineering is driven
by a method, i.e. a metamethod. In fact, Kumar and Welke (1992) define ME
itself as a “method for designing and implementing ISD methods”.

The motivation for our problem formulation is based on two observations:
first, many organizations tend to develop their own methods, and second, there
is a lack of principles and guidelines to carry out local method development
(Russo et al. 1995). Although there is a plethora of methods available for ISD,
hardly any could be found for local method development and for method
engineering. To develop principles for method engineering the following
research problem is formulated:

How does metamodeling support the local development and adaptation
of ISD methods?

This question is divided into two more specific questions:
1) How completely can meta-data models represent knowledge about

ISD methods for modeling tools? This problem can be defined as a method
modeling (i.e. metamodeling) problem. It deals with the modeling power of
metamodeling languages and inspects semantic data models as a basis for
metamodeling. The problem is examined by seeking metamodeling language
constructs to specify detailed method knowledge. Thus, this research question
deals with extending support for metamodeling. We use the term meta-data
model to denote a description of static method knowledge, in contrast to the
dynamics of methods which are captured with process models or meta-activity

27

models (Tolvanen and Lyytinen 1993), or with other type of metamodeling
languages (cf. Section 3.2.2). Strategies for meta-data modeling include
modeling of a single technique (i.e. its conceptual structure and representations)
and integration of techniques into a method. We concentrate on meta-data
modeling because most customizable ISD tools focus on changing the static part
of method support, and similarly most reported cases of tool adaptation deal
with specifying static aspects of methods (e.g. Tagg 1990, Goldkuhl et al. 1992,
Nissen et al. 1996).

This question is important since appropriate metamodeling constructs are
needed to describe the methods being developed and adapted (Wijers 1991,
Brinkkemper 1996). Research in this area (cf. survey on ME research, Section
1.5.2) has focused so far on modeling single techniques or a relatively small
collection of techniques. Moreover, if we want to apply metamodeling as a
vehicle for method construction (Kumar and Welke 1992) and tool adaptation
(Tolvanen and Lyytinen 1993) this question is of great importance: a detailed
metamodel is a pre-requisite for developing tool support for a method. In terms
of the steps of local method development (cf. Figure 1-1), this research question
deals with method construction and tool adaptation.

2) How can experience of method use together with metamodels be
applied for method refinements? Because knowledge in general (Nonaka 1994,
Schön 1983) and of method use in particular is created by individuals, the
ability to build up and capture experience is important for local method
development. Our subject here is experience of method stakeholders (such as
designers, tool experts, method engineers) which can be used to improve in-
house methods. The question deals thus with principles of method refinement.
Method refinement is investigated through a process of organizational learning
(Schön 1983) in which experience about methods is obtained during method
use, and knowledge is created through a continuous dialog with the collected
experience and assessment of method use (cf. Nonaka 1994).

Two factors motivate this research question. First, method modeling has
not been studied from the viewpoint of incremental method development, i.e.
how experiences can be used for method refinement. The traditional approach
(cf. Brinkkemper 1996) has been to construct methods once in the beginning of
each ISD project rather than to provide mechanisms to gather experiences and
relate them to the available method specifications. To extend the ME process we
propose mechanisms for evaluating and improving the situational applicability
of methods applied in modeling tools. In terms of the steps of local method
development (cf. Figure 1-1), this question deals with advancing or refining
methods based on experience. Second, empirical studies on method modeling
and construction have been laboratory experiments or small cases (cf. Wijers
1991, Verhoef 1993, Tolvanen and Lyytinen 1993). Because of bias in individual
developers (e.g. Wijers 1991), we lack knowledge of how organizations or teams
develop their own methods. In this thesis we demonstrate the viability of the
proposed incremental approach in two cases of method engineering. Thus,
method development and method refinements are studied here in a
longitudinal rather than snapshot manner, and on a project level. One reason for

28

this can be found from our survey of ME research (cf. Section 1.5.2) which
reveals that we lack knowledge of how ME efforts can be organized.

To summarize, this thesis puts forward some principles for incremental
ME. These principles aim to systematize local method development. Our special
focus is on the evolutionary nature of method knowledge. We argue that an
important factor for the success of ISD methods is how an organization or a
project creates and maintains method knowledge. In incremental ME
metamodels can be used for capturing method knowledge, analyzing methods
used, and refining methods based on available experience of method use. By
finding answers to these questions, we can analyze available ME approaches
and extend the principles and methods of ME. By doing so we can improve the
flexibility of ISD methods and overcome the problems faced in the dominant
“one -shot” introduction and use of standardized methods. In terms of domains
of ME research (see Section 1.5.2), and the problems formulated above the thesis
focuses on the first research domain: construction of methods based on meta-
data models. The problem addressed, however, is also related to other research
domains of ME. In the domain of tool support CAME tools can implement the
proposed metamodeling capabilities as well as support experience gathering. In
the domains of organizational support and stakeholders’ roles the incremental
principles suggest how experiences can be collected and analyzed in an
organization. Finally, whereas most studies on ME have focused on developing
metamodeling languages and tools our study deals with the process of actual
method construction and development.

1.5.4 Research methods

Selection of research methods is always dependent on the research setting and
problem. At the same time, problem formulation can be done in favor of a
particular research method. In this thesis we apply two kinds of research
methods. The first research method, used to study the metamodeling related
question, “how completely can meta -data models represent knowledge about
ISD methods for modeling tools?”, is conceptual: we model 17 ISD methods and
validate their meta-data models by implementing methods in computer-aided
tools. These method specifications are then used to analyze method knowledge
as part of modeling tools and to extend languages for method modeling. This
type of inductive approach has rarely been applied to such an extent for
analyzing and developing metamodeling languages for ME (Tolvanen et al.
1996). Thus, the selected research method complements other research
approaches applied (cf. Tolvanen et al. 1996).

The second question, “how can experience of method use together with
metamodels be applied for method refinements?”, is studied both conceptually
and empirically. In the conceptual part we analyze the literature on ME and
relate it to the mechanisms of knowledge creation and organizational learning.
In the empirical part we follow an action research strategy (Rapoport 1970,
Susman and Evered 1978) also applied in IS research (Wood-Harper 1985,
Jönsson 1991, Checkland 1991). The need for empirical approach is obvious
because ME is a relatively new research area, and thus has received little

29

attention to theoretical and research methodical issues. Especially in
(meta)methods and ME efforts we could find neither reported cases nor
systematic studies which aim to develop metamethods7. This observation
implies that ME needs to be studied in its natural setting, i.e. in real life
organizations. In other words, we believe that it would be difficult and hard to
develop principles for ME in a purely deductive way.

In the study of incremental ME we examine two cases in which methods
were developed and adapted to local needs. Both of these cases cover all the
steps of local method development (cf. Section 1.3). They allow us to build a
rich understanding of method development, and demonstrate the feasibility of
the incremental approach. The main benefits of applying an action research
strategy is to gain in-depth and first-hand understanding of the processes that
take place in an organization in a natural setting. In the studies we gather
requirements related to methods and capture this information in meta-data
models. The data about an organization’s method development effort is
collected by interviewing method engineers and users, and by observing the
ME process. Also, the modified CASE tools are used to analyze the methods as
they are supported with tools. As an outcome of the data collection we obtain
different versions of methods (in terms of metamodels and adapted tools)
together with reasons for method refinements. On the data analysis side, the
explicit relation of method specifications to their changes offers a mechanism to
indicate and explain method evolution.

In principle, surveys, field studies and laboratory experiments are all
appropriate in studying method development. For example, in studying local
method development and use of in-house methods, Russo et al. (1995) used
surveys and Smolander et al. (1990) carried out a field study. Moreover, Wijers
(1991) performed three laboratory experiments to study method knowledge as
understood and used by ISD professionals. However, these approaches focus on
obtaining a snap-shot view of practice, or do not offer a possibility to analyze
the richness and detail of ME. Most importantly, they do not capture changes in
ISD methods as well as an action research method does. In our opinion, these
are of great importance when examining incremental ME.

The use of action research does not come without cost: The study does not
meet the standards of “positivist” research because the approach offers few
possibilities for statistical generalization and the researcher can not exercise
control over experimental conditions. However, several researchers have
advocated an action research approach in systems development research (cf.
Galliers and Land 1987, Galliers 1992, Wood-Harper 1985, Checkland 1991),
because the nature of method development and use of methods emphasizes a
close interaction between theory and practice.

7 Although the literature offers some metamethods which include aspects of ME in

addition to method construction, they focus on an a priori view of ME (cf. Section 3.2)
and have not been validated or even demonstrated in real-world ME efforts (Tolvanen et
al. 1996).

30

1.5.5 Limitations of the study

This study has several limitations. One notable limitation is the definition of an
ISD method. As the title of the thesis suggests our view of methods is limited in
how methods relate to modeling tools, such as CASE. We are interested only in
those parts of ISD methods that can be modeled, formalized, and supported in
computer-aided environments. Therefore, implicit or hidden parts of methods,
such as their value orientation, are excluded from the study.

The second limitation relates to the focus on meta-data models and use of
semantic data models. The former means that our interest in ME is only in static
aspects of the method, namely the conceptual structure behind modeling
techniques. The latter means that metamodels are developed on the basis of
semantic data models which by themselves have limitations in IS modeling and
presumably also in method modeling. The semantic data models are selected as
a basis for metamodeling because they provide support for incremental ME in
which maintainability, modularity, ease of use and support for communication
among stakeholders are important. Moreover, most large metamodeling efforts
(Hong et al. 1993, Heym 1993, Henderson-Sellers and Bulthuis 1996a, 1996b,
Hillegersberg 1997) apply semantic data models, and most repositories apply
semantic data models in their schema (CASE Outlook 1989).

The third limitation relates to the research method. Despite the benefits of
action research studies, such as its closeness to the real world and focus on
detail and change, the results can not be statistically generalized. Rather, they
allow us to suggest conjectures (Yin 1993) on an incremental basis. The studies
can demonstrate that the suggested ME approach can be useful rather than
justifying it to be universally beneficial. A thorough examination of incremental,
evolution based ME necessitates a longer time scale and larger samples than
applied here.

1.6 Outline of the thesis

The thesis is divided into seven chapters (cf. Figure 1-3). After this introduction
and problem formulation, Chapter 2 surveys major lines of research on ISD
methods, defines ISD, and characterizes the role of a method and tools in its
enactment. We shall also clarify mutual relationships between ISD methods and
computer-aided environments such as CASE tools. In Chapter 3 we survey the
literature on metamodeling and method engineering. Our goal here is first to
introduce some principle elements of ME, and second to examine what kind of
ME tasks and metamodeling languages have been proposed to address method
development. The limitations of current ME approaches, especially related to
representing method knowledge and improving methods in use, form a
motivation for the development of an incremental ME approach.

31

ISD methods
and method use

Chapter 2

Two action resarch
studies on ME

Modeling method
knowledge

Chapter 5

Chapter 4

Method
engineering and
metamodeling

Principles for
Incremental ME

Extended principles
for ME

Chapter 6

Chapter 7

Chapter 3

FIGURE 1-3 Structure of the thesis.

In Chapter 4 we study the issue of representing method knowledge, modeling
and implementing a large portion of ISD methods into a modeling tool. Thus,
our focus here is on studying the first research question, “how completely can
meta-data models represent knowledge about ISD methods for modeling
tools?”. We study what construct s are needed for metamodeling languages by
using content analysis to obtain method knowledge from 17 ISD methods. This
leads us to propose some extensions to ME and especially to the languages it
applies.

Chapters 5 and 6 concentrate on the second research question: “how can
experience of method use together with metamodels be applied for method
refinements?”. Chapter 5 puts forward principles of incremental ME, and
studies method development through experience-based method refinement. We
propose some ideas for understanding method evolution and the dynamic
nature of ME: how the applicability of methods can be evaluated and
maintained in changing ISD environments. These principles are applied in two
cases (Chapter 6) in which we study local method development in practice. We
apply the proposed ME principles together with existing tools to investigate the
incremental ME approach. In these studies our primary interest is not on how
efficiently an organization develops ISs, but on how they learn about methods
during their use, and how this knowledge can be incorporated back into
methods. Finally, in Chapter 7 we shall recapitulate major findings of the thesis,
and propose issues inviting future research.

2 INFORMATION SYSTEM DEVELOPMENT:
METHODS AND TOOLS

Two types of knowledge are essential in method engineering: knowledge of IS
development and knowledge of method development. In this chapter we focus
on the first of these, information system development, and especially on
development methods and tools.

In the following we shall first define ISD and characterize the role of
methods and tools in its enactment. Second, in Section 2.2 we shall survey
methods based on their characteristics and alternative structures of method
knowledge. Third, in Section 2.3 we shall clarify the mutual relationship
between modeling tools and ISD methods, referred to here as method-tool
companionship. Fourth, in Section 2.4 we shall discuss the paradoxes of method
use by looking at the acceptance of methods in general and commercial “t ext-
book” methods in particular. This leads us to propose an alternative view of
method development, which helps explain the reasons for local method
development.

2.1 Information system development methods

We define ISD as “a change process taken with respect to object systems in a set
of environments by a development group using tools and an organized
collection of techniques collectively referred to as a method to achieve or maintain
some objectives” (Welke 1981, Lyytinen 1987). ISD is understood to include
development of both manual and computerized parts of an object system. An IS
can therefore include both manual and computer-supported parts. Although the
definition emphasizes essential components of ISD, such as its social nature and
varying objectives, in this thesis we shall mainly focus on the italicized parts of
the definition, i.e. on the role of methods and techniques, and their supporting
tools.

33

By a technique we mean a set of steps and a set of rules which define how a
representation of an IS is derived and handled using some conceptual structure
and related notation (Smolander et al. 1990). Olle et al. (1991) and Wijers (1991)
call this knowledge a way of modeling. This definition is illustrated in Figure 2-
1. By using a technique, system developers perceive, define and communicate
on certain aspects of the current or desired object system. These aspects are
defined by the conceptual structure of the technique and represented by the
notation. By a tool we generally mean a computer-based application which
supports the use of a modeling technique. Tool-supported modeling
functionality includes abstraction of the object system into models, checking
that models are consistent, converting results from one form of model and
representation to another, and providing specifications for review (Olle et al.
1991).

Examples of modeling techniques are data flow diagrams and activity
models. Other techniques can be found from Table 4-1. As a technique, a data
flow diagram identifies and names the objects (e.g. process, store) and
relationships (e.g. data flow, control flow) which it considers important in
developing an IS. Other techniques include other sets of objects and
relationships. Modeling techniques also have a notation and a representation
form. In a data flow diagram the notation for a process is a circle, and for a data
flow a solid line with an arrow-head. The representation form of a data flow
diagram is a graphical diagram. Furthermore, a technique defines some
principles on how the models should be derived (e.g. decomposition of
processes while modeling with data flow diagrams). In other words, a modeling
technique specifies which kind of aspects of an object system need to be
perceived, in what notation each aspect is represented, and how such
representations should be produced.

A method can be considered as a predefined and organized collection of
techniques and a set of rules which state by whom, in what order, and in what
way the techniques are used (Smolander et al. 1990)8 to achieve or maintain
some objectives. In short, we call this method knowledge. Thus, our definition
of method includes both the product and process aspects, although dictionaries
define the term “method” as meaning “the procedure of obtaining an object”
(Baskerville 1996) and therefore emphasize the process rather than the
representation (i.e. product of the method use). In contrast, Wijers (1991) notes
that most ISD method text-books focus on feasible specifications rather than on
the process of how to develop such specifications. In addition, a method also
includes knowledge about method users, development objectives and values.
We will analyze the types of method knowledge in more detail in the next
section.

8 We aim to avoid the use of methodology altogether; the use of this term has become

confused as it originally means the study of methods, but is also used as a synonym for a
method.

34

Examples of methods include Structured Analysis and Design (SA/SD,
Yourdon 1989a), and the object-oriented methods of Booch (1991) and
Rumbaugh et al. (1991). A short example of method knowledge is in order. The
method knowledge of SA/SD can be discussed in terms of the techniques (e.g.
data flow diagram, entity-relationship diagram) and their interrelations. In
SA/SD the overall view of the object system is perceived through a hierarchical
structure of the processes that the system includes. This overall topology is
completed by data transformations; how data is used and produced by different
processes, how it is transformed between processes, and where it is stored.
Moreover, the data used in the system needs to be defined in a data-dictionary
and interrelations between data need to be specified with entity-relationship
diagrams. Thus, methods describe not only how models are developed but also
how they are organized and structured. Furthermore, since ISD methods aim to
carry out the change process from a current to a desired state they should also
include knowledge for creating alternative design solutions and provide
guidelines to select among them (Tolvanen and Lyytinen 1994).

FIGURE 2-1 The role of methods in ISD (based on Lyytinen et al. 1989).

SA/SD and other methods put forward a defined and a limited number of
techniques including their conceptual structures and notations. In the same way
as there is variety in techniques, there is also diversity among methods (Welke
and Konsynski 1980). Different methods include different types and sets of
techniques. Interrelations between techniques can be defined differently even
between methods which use the same techniques, and the procedures for
building and analyzing models can be different. Although there is diversity
among ISD methods they include similarities, e.g. they apply the same concepts

ISD group

Perceives

Uses
Represent

Technique

represents
 Concept ¨
structure

Method

Defines a
viewpoint on

Application
results in

 IS specifications

Notation

Object system

35

and notations. To understand these differences and similarities we shall analyze
several methods in more detail by describing types of method knowledge.

2.2 Types of method knowledge

The literature suggests many approaches to analyzing and characterizing
different facets of methods including their structure, content and use (e.g. Olle
et al. 1982, 1983, 1986, 1988, Lyytinen 1986, Hackathorn and Karimi 1988, Wijers
1991, Blum 1994, Krogstie and Sølvberg 1996). These different categorizations
are almost as numerous as the methods available. For the purposes of ME, we
combine some of them which have been applied in ME research (Wijers 1991,
Kronlöf 1993, Jarke et al. 1998) to analyze what type of knowledge ISD methods
contain.

The categorization applied here is illustrated in Figure 2-2, whose shape
leads us to call it a shell model. According to the model, methods are based on a
number of concepts and their interrelations. These concepts are applied in
modeling techniques to represent models of ISs according to a notation.
Processes must be based on the concepts and they describe how models are
created, manipulated, and used with the notation. The concepts and their
representations are derived, analyzed, corrected etc. by various stakeholders. In
addition, methods include specific development objectives about a ‘good’ IS,
and have some underlying values, “weltanschauung” and other philosophical
assumptions (Olle et al. 1991, Wijers 1991, Krogstie and Sølvberg 1996).

Conceptual
structure

Notation

Process

Participation and roles

Development objectives and decisions

Values and assumptions

FIGURE 2-2 Types of method knowledge.

36

The shape of a shell emphasizes that different types of method knowledge are
neither exclusive, nor orthogonal. Each type of knowledge complements the
others and all are required to yield a “complete” method, although many
methods focus only on the concepts and notations included in modeling
techniques. To illustrate relationships between different types of method
knowledge we can use the concept of functional decomposition as an example
(cf. Table 2-1). In the procedural guidelines of Structured Analysis (DeMarco
1979) this concept is described as a top-down refinement of the system starting
from the high level diagram. In the modeling technique this concept is
implemented as the possibility for every process to have a sub-diagram, and in
the balancing of the data flows between the decomposed process and its sub-
diagram. The concept of decomposition also affects other method knowledge in
several ways: the method should explain who identifies, specifies, and reviews
decompositions; the partitioning of the system into a hierarchical structure
dominates the design decisions and reveals the underlying assumptions of the
method, i.e. that an IS can be effectively designed by partitioning the system
based on its processes.

Because of these dependencies it is often impossible to focus only one type of
method knowledge. For this thesis, this means that metamodeling the
conceptual structures behind modeling techniques is not meaningful if other
parts of the method knowledge are not considered. Similarly, it is not
meaningful to use a modeling technique just to represent the designs if the
underlying values or design objectives are not known. Therefore, when
specifying functional decompositions we need to also consider aspects related to
the process, or how various design alternatives can be sought using data flow
diagrams.

Accordingly, in the following we shall analyze examples of method
knowledge using the shell model. The analysis of method knowledge is based

TABLE 2-1 Examples of method knowledge.

Type of method knowledge Examples of method knowledge

Conceptual structure Each process may have sub-processes

Notation Representing sub-diagrams for processes,
balancing the data flows between decomposed
process and its sub-diagram

Process Top-down modeling of processes

Participation and roles Division of labor based on sub-processes

Development objectives
and decisions

Design choices are made by partitioning the
system into sub-processes

Assumptions and values An IS can be effectively designed by
partitioning its processes

37

on the methods studied in Chapter 4 and on a method survey carried out by
Tolvanen and Lyytinen (1994). The analysis allows us to understand methods in
more detail as subjects of ME: the applicability of a method is determined partly
by how well its specific composition of method knowledge is suitable for the
ISD task at hand. By highlighting various aspects of methods, the shell model
also provides a clear delimitation of the types of method knowledge that
interest us (conceptual structures of modeling techniques). Consequently, the
shell model is also applied in Chapter 3, where we inspect what types of
method knowledge are addressed with available ME approaches.

2.2.1 Conceptual structure

During ISD it is impossible to analyze and represent the system to be built in its
full richness. It is therefore necessary to restrict attention to a smaller number of
concepts which are meaningful and sufficient to conceptualize and interpret the
relevant parts of the object system. Such a conceptualization consists of a set of
concepts, relationships between them and constraints applying to them, forming
a conceptual structure.

The conceptual structure forms the basis for other types of method
knowledge and therefore all ISD methods are based on a conceptual structure.
Some of the concepts are applied directly in notations, e.g. a class with a
rectangular symbol as in Rumbaugh et al. (1991), whereas some are related
more to the process, e.g. a top-down modeling approach via decomposition; or
to design objectives, e.g. clear responsibilities on data usage. Because of the
importance of the conceptual structure most arguments supporting a specific
ISD method deal with promoting specific concepts. Similarly, most research on
method analysis and comparison (e.g. CRIS-conferences, Olle et al. 1982, 1983,
1986, 1988) focus mainly on the conceptual structures of methods. It must be
noticed that while defining what aspects can and must be considered during
ISD, the conceptual structure of a given method also excludes some other
aspects as irrelevant. In this way methods can be seen as enforcing a particular
world view via their conceptual structure (Welke and Konsynski 1980). The
conceptual structures behind different methods differ for various reasons, but
most importantly they vary because of differences in the domain, levels of rigor,
and other types of method knowledge considered. These differences are
described in the following.

First, because of different ISD contingencies, and differences in the
systems being built (from business administration systems to automated
robots), a variety of fundamental concepts exist. This is also one of the main
reasons why so many methods have been developed. For example, methods
which aim to develop single systems (e.g. Yourdon 1989a, Jackson 1976, Ross
and Schoman 1977) include concepts such as local functions, data structures,
data flows, control flows, and functional decomposition. Methods for managing
system architectures (e.g. IBM 1984) focus on internal business processes, data
sharing and access rights. Methods for business modeling (e.g. Vepsäläinen
1988, Ciborra 1987, Macdonald 1991) include concepts such as organizational

38

structures and responsibilities, value adding, production and transaction costs
(cf. Tolvanen and Lyytinen 1994).

Second, conceptual structures can differ based on their rigor and degree of
formality. These explain how well and strictly the relationships between the
concepts, constraints and verification rules are defined mathematically. Some
less formal and general concepts of a method, such as flexibility in the face of
business changes, e.g. in BSP (IBM 1984), are loosely related to other concepts of
a method, whereas some other concepts can be defined in more detail. For
example, SA/SD (Yourdon 1989a, p 278) defines that each process must be
specified with a decomposition or process specification, but not with both.
Typically, methods which focus on earlier phases of the ISD life-cycle, such as
business modeling or requirements engineering, include less rigorous
conceptual structures compared with methods targeted for later phases, such as
software design. For example, in BON (Walden and Nerson 1995) the concept of
a class is related closely to the equivalent concept applied in a specific object-
oriented programming language called Eiffel (Meyer 1992). A more rigorously
specified method leads to more uniform descriptions and process, but it will
also limit the system developers’ freedom in method use situations by reducing
the opportunities for contextual modification of the method.

Third, conceptual structures differ among methods in how they cover
other types of method knowledge. For example, most methods, like UML
(Booch et al. 1997), focus only on the concepts behind modeling techniques. In
contrast, other methods like BSP (IBM 1984) also specify procedural guidelines,
different user roles, and even state which kinds of deliverables are considered
good. Thus, the conceptual structure of BSP also includes concepts which are
related to other types of method knowledge, such as processes, participants and
design objectives.

2.2.2 Notation

Concepts defined as part of the conceptual structure can be discussed and
represented only by using some kind of a notation. In a modeling technique, a
notation is always associated with a conceptual structure (cf. Figure 2-1). The
association between notation and the conceptual structure defines the semantics
of the notation. Notations can be characterized according to the degree of their
underlying formal semantics into formal (logic, rules), semi-formal (structured
and object-oriented methods), and free form (e.g. rich pictures in (Checkland,
1981)). The degree of formality reflects the underlying conceptual structure, and
methods apply modeling techniques with different degrees of formality in
different phases of the ISD life-cycle, typically moving from informal to formal
(Pohl 1996).

To understand the method knowledge behind notations, its relation to the
underlying conceptual structure must be clarified. This relationship is also
called the conceptual-representational dimension (Smolander et al. 1990).
Viewed from the notation point of view, each notational construct in a modeling
technique must be related to some part of the conceptual structure. Ideally, each
concept of the modeling technique has only one notational representation, e.g. a

39

symbol. This principle minimizes the overload of notational constructs, and
guarantees that all concepts can be represented in the technique. Accordingly,
the completeness of representations (Batani et al. 1992, Venable 1993) or
representational fidelity (Weber and Zhang 1996), i.e. availability of only one
notational construct for each concept, is a well-known criterion for dealing with
interpretations between modeling concepts and notations. For example, to
describe classes, a modeling technique must have a related construct (i.e. apply
the concept defined in the conceptual structure of the method) and define how
it is represented (e.g. the “cloud” symbol in Booch (1991)).

From the conceptual structure point of view, each concept does not
necessarily have a single notational construct, and may not be supported in the
notation at all. The former can be characterized as construct redundancy and the
latter as construct deficiency (Weber and Zhang 1996). Although these
situations can be considered undesirable they are typical: notations are not
necessarily designed to cover the whole conceptual structure, and object system
characteristics can be represented by using several notational constructs and
modeling techniques. Examples of the former are modeling techniques which
apply only a subset of the concepts defined in the conceptual structure. For
example, the graphical modeling technique EXPRESS-G is a subset of the
EXPRESS language (ISO 1991). An example of construct deficiency is the
concept of ‘object life-cycle’ which does not have any single modeling construct
or notational symbol, but can be perceived from a state model of a class (i.e.
through instances). Similarly, in BSP (IBM 1984) one key concept is to establish
clear data responsibilities. During modeling this is achieved by allowing only
one (or as few as possible) process to create a single data class. Therefore, a
concept of ‘clear data responsibility’ can be represented only by perceiving the
whole system architecture derived within BSP, as no single construct is
available in the modeling technique to represent that notion. In fact, one can
claim that ‘clear data responsibility’ is related to design objectives or to
underlying values of the method but not to the modeling technique. Although
this claim is true it must be noticed that the modeling technique and notation
should also support modeling of data responsibilities. Otherwise, such a design
objective can not be represented and alternative choices to achieve it can not be
analyzed (Tolvanen and Lyytinen 1994).

Furthermore, all aspects of an IS can not be represented with one modeling
technique, and so methods apply multiple techniques, sometimes even to the
extent of using several techniques to describe the same aspect. Such different
views can serve important goals including communication, analysis,
understanding and prediction. As a result, a concept can be perceived in
different ways via the different notations applied by different modeling
techniques. Hence, construct redundancy is typical in a whole method because
it allows the user to interrelate models.

First, different notations can be used to represent models based on the
same conceptual structure or the same concepts. An example of the former can
be found from UML (Booch et al. 1997) which applies two modeling techniques
with different notations yet based on the same underlying semantics, namely an
event trace diagram and a collaboration diagram. An example of the latter is the

40

concept of a class which can be represented as a graphical rectangle notation in
a diagram or as a string in a cluster chart table (e.g. Walden and Nerson 1995).
Second, a notational element may be related to more than one construct of a
technique. In this case, the interpretation of the notation depends on the context
in which the notation is used. For example, a rectangle can represent an entity
in the data modeling context, whereas it represents a terminator in the data flow
view. Therefore, the relationship between conceptual constructs of modeling
techniques and notations can be many-to-many. On the other hand, all
modeling related concepts do not necessarily have notational constructs at all.
In particular, concepts related to connections between models (and modeling
techniques) are often defined weakly, if at all (Tolvanen and Lyytinen 1994),
and thus often have no notation. For example, in most of the object-oriented
methods it is difficult to notice from a state model which states belong to
different objects (i.e. instances of a class). This limitation, of course, comes from
the limitations of representation-related completeness (Venable 1993) and shows
overload of notational constructs (Weber and Zhang 1996). In other words, the
notation does not distinguish all parts of the conceptual structure.

Independently of the notation, modeling techniques can be classified
according to their representation form, the type of format in which the model is
represented. The most frequently used representation forms include graphical
diagrams, which dominate most methods; matrixes, often used in methods for
IS planning (IBM 1984, Andersen 1991); tables, mostly used in methods for early
phases of ISD (e.g. Critical Success Factors (Rockart 1979) or Root Definition
(Checkland 1981)), indented lists (Goldkuhl 1993); text related to other
representations or as separate textual specifications (e.g. Class Description
(Coleman et al. 1994), or mini-specs (Yourdon 1989a)) and hyper-text (Isakowitz
et al. 1995). Independence of the notation means that the same model can be
described in different representation forms but still have the same notational
constructs. For example, a graphical data flow diagram can also be represented
in a matrix, and the notation elements, e.g. symbols for processes, can be the
same (Kelly 1997). The representation form also implies some mappings to a
technique and its underlying conceptual structure: For example, a graphical
representation with nodes and links implies that a conceptual structure
distinguishes between objects and relationships. The modeling techniques
analyzed in this thesis are mostly graphical, but include also matrix and tabular
representation forms.

2.2.3 Processes

Method knowledge also covers procedural guidelines which describe how an
ISD effort should be carried out. The process aspect of the method can be
distinguished based on several criteria, but most often it includes modeling
related processes (way of working) and management related processes (way of
controlling, Olle et al. 1991). The former describes how the ISD method
produces its results, the outcomes of the method use, and the latter how the
project is planned, organized, and managed. For this thesis, the former is of

41

greater importance, since it is related more closely to the modeling techniques
studied here.

Based on our definition of a modeling technique, processes define in what
order, and in what way the techniques are used to produce the desired models.
To be useful, processes must be based on the conceptual structure of the
method. For example, in SA/SD (Yourdon 1989a) a concept of decomposition is
reflected in a modeling process as a top-down refinement of the system starting
from the context diagram. The possibility to add one sub-diagram for every
process must also be supported by the conceptual structure. In contrast, a
conceptual structure can also restrict some selections to be made in process. For
example, it can include some process-related rules, e.g. that every data flow
diagram, except the context diagram, must have a higher level process defined.

The process aspect of the method, however, can not be found explicitly
from every method. For example, methods may claim to cover the whole life-
cycle of ISD, but actually they offer support for only a few tasks, and are based
on limited views of ISD (Kronlöf 1993). The processes can be further divided
into those which manipulate elements of the conceptual structure and those
which manipulate notations (Lyytinen et al. 1998). Thus, the latter actions deal
mostly with the “cosmetics” of the models, such as placing external entities on
the border of data flow diagram, or placing super-classes above sub-classes.

2.2.4 Participation and roles

ISD is a group activity in which multiple people participate in different roles,
e.g. managers, programmers, designers, and end-users (Olle et al. 1991). Some
methods also aim to describe these group aspects, such as organizational
structures, responsibilities, and roles that the participating people have. For
example, BSP (IBM 1984) defines the stakeholders and different roles needed to
define system architectures.

It must be emphasized that most methods do not describe organizational
structures related to method use or roles. In fact, most of the methods analyzed
in Chapter 4 implicitly assume that they are used only by IS professionals, and
mainly by analysts and designers. Partly the participation is implicitly defined
according to the intended domain of use: methods which aim to develop a
single system naturally have a more restricted set of stakeholders than methods
which aim to manage multiple systems or re-design business processes
(Tolvanen and Lyytinen 1994). Those which identify roles and other
participation-related issues are usually tied to specific ISD tasks in which the
participation of end-users or domain experts is important.

2.2.5 Development objectives and decisions

Methods are not only used to describe the current system, they also help to
improve the current situation by carrying out the change process. To this end
methods also describe how feasible specifications can be sought or alternative
solutions generated (Tolvanen and Lyytinen 1994). This is based on the
method’s implicit or explicit rationale on how a “good” I S should be developed.

42

Development objectives are general statements about types of solutions
considered desirable, whereas development decisions are more explicit and
closely related to method use. Examples of the former are the formulation of a
system architecture so that it is flexible (e.g. IBM 1984), or re-designing business
processes so that hierarchical structures are flattened (Hammer and Champy
1993). The latter are more concrete and describe how the objectives can be
obtained. In IS integration methods (e.g. Kerner 1979, IBM 1984, Katz 1990) the
main development decision is made based on the degree of (de-)centralization
in the organization, and this choice then provides a basis for determining
application boundaries. Some IS design methods recognize technical issues,
such as hardware capacity, available database management system, and
operating mode (Tolvanen and Lyytinen 1994), which should be considered
while seeking design solutions.

Development objectives and decisions are related to other types of method
knowledge. For example, it is hard to achieve an objective if it can not be
perceived, represented and assessed within the method. Therefore,
development objectives and decisions should be closely related to the process,
notation and the conceptual structure. Sometimes the biggest differences
between methods are found in the development objectives: the conceptual
models can be partially or even totally alike, but the underlying development
objectives can be different. For example, both architecture planning methods
(Kerner 1979, IBM 1984, Katz 1990) and BPR methods (Harrington 1991) apply
the same concept of a ‘business process’, yet architecture planning methods
consider business process structures largely as immutable, while BPR methods
aim to change them.

Unfortunately, the link between the objectives and notations and processes
often remains unclear. It is rare that all important development decisions are
described explicitly, and if described they relate to specific tasks considered
problematic by the method developer. For example, Rumbaugh et al. (1991)
describe four different approaches which could be chosen to create a schema for
a relational database from class diagrams, mainly based on how an inheritance
relationship should be transformed into a relational model.

2.2.6 Values and assumptions

Methods are always based on some underlying philosophical assumptions or
“Weltanschauung”. These can also be called the “invisible” or “hidden”
assumptions behind methods (Wijers 1991), or the way of thinking (Olle et al.
1991). For example, Krogstie and S� lvberg (1996) differentiate methods based
on three views, constructivistic, objectivistic and mentalistic, based on how
reality (in ISD the system to be developed) is observed and what kind of
relationship it has with the models.

The distinction between development objectives and underlying values is
important since many methods claim to have specific values, but they remain
hidden in the method. Another situation is that two methods can aim for the
same development objective but with different types of decisions and concepts.

43

In fact, most of the methods do not explicitly define or even recognize the
underlying assumptions.

2.2.7 Summary of method knowledge

In this section we described method knowledge using the shell model. The
distinction of different types of method knowledge is relevant for our study to
restrict our view of modeling techniques while seeing their role in context. This
means that we can focus on those parts of the conceptual structure which are
applied in IS modeling.

The shell model also emphasizes the dependencies between different types
of method knowledge. Because of these dependencies it is impossible to focus
on only one type of method knowledge. In this thesis this means that modeling
of conceptual structures behind modeling techniques is not meaningful if other
parts of the method knowledge are not considered. Most noteworthy is the
conceptual-representational dimension: the dependency between a conceptual
structure and a notation. While the notation itself is not one of our interests, the
modeling of notational constructs is needed because both the development and
use of modeling techniques is difficult without notations and representational
forms.

2.3 Information system development tools

The shell model allows us to illustrate the tool support addressed in this thesis:
ISD tools include at least a part of method knowledge. Typically tools contain
parts of the conceptual structure as their schema definition, support modeling
with certain notations, or support the process definition and management
(Odell 1996). Tool support is important for our research questions because tools
can ensure that method knowledge is also applied and does not remain only as
method descriptions (i.e. described method vs. method in use).

While the shell model concentrates mainly on the “deep -structure” of the
method knowledge behind ISD tools, the tools also provide support for the
surface and physical structures of methods (Wand 1996)9. Deep structure
denotes those aspects of method knowledge which reflect the domain under
development, whereas surface structure and physical structure deal with
properties of modeling tools. Surface structure describes user-interface
characteristics of an ISD tool, such as how method knowledge behind a
modeling technique is visible in dialogs, menu commands and reports. This
resembles the notational part of method knowledge. Physical structure denotes
the technical means applied in the implementation of the ISD tool.

In this section our focus is on tools which support the use of methods, i.e.
way of supporting (Wijers 1991). This formed the third italicized part in our

9 Originally Wand (1996) used the taxonomy of deep, surface and physical structures to

identify aspects of IS, but because ISD tools are also ISs, we use it here to define method
knowledge in ISD tools.

44

definition of ISD (cf. Section 2.1). First, we briefly characterize ISD tools in terms
of how they support different phases and tasks of ISD. Second, we describe
relationships between methods and tools in more detail through the concept of
method-tool companionship. This allows us to explain how tools can support
modeling techniques. This is relevant for our research questions, since we seek
to apply metamodels in specifying modeling techniques enacted by ISD tools.
Thus, it is possible to describe the underlying elements of methods (i.e. a
metamodel) on which these tools are based (Teichroew et al. 1980). This focus
also means that we believe that the use of metamodeling in local method
development is most beneficial when related to customization of tools.
Naturally, metamodeling can be applied for reasons other than local method
development (cf. Brinkkemper 1990), but local method development aiming
only to specify and compare methods takes us only half-way, because the
usefulness of a method is realized only when it is applied. Using metamodels
without considering their support in ISD tools would be the same as designing
an IS without implementing it.

2.3.1 Tool support for information system development

Since the 1970’s numerous attempts have been made to support methods via
computer tools (i.e. software applications) (Bubenko et al. 1971, Waters 1974,
Teichroew and Hershey 1977). Technological developments have lead to a large
number of tools that cover nearly all tasks of ISD. At the same time the term
CASE (Computer-Aided System Engineering) has been extended to denote all
types of computer tools from business modeling and requirements capture to
implementation tools.

The concept of CASE is broad and it includes compilers, project
management tools, and even editors10. In this thesis we examine CASE tools
(and methods) in the context of modeling. These modeling tools are usually
used to support early phases of ISD. As already mentioned, the term method is
restricted in this thesis to mean that part of the method knowledge that it is
possible to capture into a formalized part of a tool. Types of methods and tools
deployed during different phases of ISD are described in Table 2-2.

As shown in the table, support for business process re-engineering and
development include both methods and tools (cf. Spurr et al. 1994). On the
method side, process maps, workflow models, task structures and action
diagrams are applied (Harrington 1991, Goldkuhl, 1992, Lundeberg, 1992). On
the tool side, computing power is applied for example to benchmark, compare,
and simulate business processes through models. GDSS (Group Decision
Support Systems), CSCW (Computer Supported Cooperative Work) and
requirements engineering tools can be used in gathering information and

10 The need to identify characteristics of different CASE products has lead to several

classifications (cf. Chen et al. 1989, Nilsson 1989, McClure 1989) where boundaries are
quite fuzzy, like upper- (front-end), lower- (back-end) and mid-CASE as well as toolkits,
workbenches and integrated CASE environments. It is also possible to classify tools
based on the level of integration: drawing tools without a repository support, project
repository-based tools, and organization-wide repository-based tools.

45

organizing it into a structured format so that it can be used in later phases of
ISD. The methodical aspects of these tools rely on brain-storming, interviews
and cooperation. In the system analysis and design phases the upper-CASE
tools support methods such as conceptual data modeling (ER models and
derivatives) and structured analysis and design (e.g. data flow diagrams,
decomposition diagrams and state transition diagrams). Most CASE products
nowadays focus on supporting object-oriented methods, and recently tool
support has been extended towards business modeling (Wangler et al. 1993). In
this thesis we also concentrate on business modeling methods which, to a large
extent, lack computer support (Stegwee and Van Waes 1993).

The relationship between methods and tools is most obvious in the construction
phase: program code written in a high-level language is compiled into machine
code. The availability of compilers renders programming methods and
languages practicable, because there is little point in writing first in some
programming language and then making a translation by hand. During
construction and maintenance, computer aided tools can support version
control, configuration management, and reverse engineering.

2.3.2 Method-tool companionship

Though the technical realization of the companionship between tools and
methods can vary, the need to integrate tools and methods is obvious (Forte and

TABLE 2-2 Examples of methods and tools in the phases and tasks of ISD.

Phase Type of methods Type of tools
Business process re-
engineering and
development

business modeling, process
modeling, work flow
modeling, task structures

work flow modeling tools,
simulators, business
modeling tools

Requirements engineering brain-storming,
interviews, requirements
definition and design
techniques

GDSS, CSCW,
requirements
engineering tools

System analysis data modeling, structured
analysis, object-oriented
analysis

upper-CASE,
interface design tools

System design data modeling, structured
design, object-oriented
design

upper-CASE,
interface design tools

Construction mapping from high-level
language to machine
language, version control

editors and compilers,
debuggers, 4GLs, code
generators, verifiers,
performance analyzers

Operation and
maintenance

version control, reverse
engineering, configuration
management

documentation and
reporting tools, reverse
engineering tools

46

Norman 1992). On the one hand, tools mechanize operations prescribed by
methods by storing system representations, transforming representations from
one type of model to another, and displaying representations in varying forms.
On the other hand, tools empower users by enhancing correctness checking and
analytical power, by freeing them from tedious documentation tasks, and by
providing multi-user coordination (access and version control). None of these
features could be easily available in manual method use. The companionship
between tools and methods has also evolved in response to technical
innovations (Norman and Chen 1992). These require extensions to existing
methods or entirely new types of methods to support their development (e.g. to
cope with distributed systems (Olle 1994)), or then allow new types of methods
because technical innovations can be applied (e.g. simulation of state models).

CASE tools do not provide the same level of support for all types of
method knowledge. For example, there are more tools that support model
building, representation and checking than there are tools that guide processes
or provide group support (Tolvanen et al. 1993). Naturally, some aspects of
methods lend themselves more easily to automation than others (Olle et al.
1991). Nevertheless some method knowledge need to be present in an ISD tool.
The presence of methods can also be viewed using CASE tool support
functionality, i.e. each type of functionality necessitates different method
knowledge. In the following these are discussed based on support for four
different design steps (Olle et al. 1991): abstraction, checking, form conversion
and review. Olle et al. (1991) also include a step for decision making, but since it
can only be supported through other steps and can not be automated (cf. Olle et
al. 1991) we exclude it from the analysis of method-tool companionship.

1) Abstraction deals with CASE tool support for capturing and
representing aspects of object systems. The majority of steps in design deal with
abstractions, and thus it is also the most supported step (Olle et al. 1991). On the
level of method-tool companionship this requires that a tool includes all the
modeling related parts of the conceptual structure and employs notational
representations for them in modeling editors.

2) Checking of system descriptions is needed to ensure that models are
syntactically consistent with method knowledge. Hence, this design step can be
carried out only after some aspects of the object system have been abstracted
into models. Checking operates mostly on the conceptual structure and deals
with constraints and rules of the method (also called verification rules (Wijers
1991)). Although some checking activities can be carried out by using
alternative representation forms, such as matrixes for cross-checking, checking
operates mostly on the non-notational concepts. Therefore, to achieve
companionship this requires that the conceptual structure of the method
includes not only concepts related directly to representation (i.e. abstraction)
but also include information to carry out checking. For example, in most object-
oriented methods, the link between a state model and a class in a class model is
vaguely defined (one good exception is Embley et al. 1992): A state model can
include states from several classes and therefore a tool can not analyze whether
all attributes of the class have values during its life-cycle. To carry out this type
of checking, the method specifications should include a reference from each

47

state to a corresponding class, or have state models that are used for instances
(i.e. objects) of a single class only (as in Embley et al. 1992).

These type of rules concerning the conceptual structures of methods are
largely absent, because most methods are developed from a “pen -and-paper”
mindset. As a result, we do not have many methods which are developed
specially for CASE environments and take full advantage of automation.
Furthermore, in methods which apply multiple modeling techniques, the need
for checking is stressed. Also, if multiple tools are used, method integration is a
prerequisite of successful tool integration.

3) Form conversion deals with transforming results from one phase or task
to another, e.g. analysis models to design models. During a form conversion an
underlying conceptual structure, a notation, or a representation form changes.
Examples of such conversions, found in many CASE tools, are model analysis,
reporting functions, and code generation. To support these, the conceptual
structure should include types and constraints which are not necessarily
required for the abstraction or checking steps. For example, to generate program
code (e.g. C++ or Java) from a class model each operation representing a
method in generated code should include return types as well as access levels
(i.e. public, private, protected). These constructs are often missing from
conceptual structures of text-book methods. As a result, CASE vendors need to
extend methods in order to provide additional tool functionality. It should be
noted that not all conversions can be fully automated, but rather often require
human interaction.

4) Review deals with semantic validity of system descriptions, whereas
checking focuses on syntactic properties of the model. Because the review step
is often carried out together with the users or experts in the object system
domain, the notation part of method knowledge is emphasized here. To ensure
that models describe all relevant parts of the system, the notation should be
sufficient to represent them. Naturally, the adequate support of the notation
reflects the underlying conceptual structure.

Since the effectiveness of the tool is always dependent on the method it is
important how a method or its parts are implemented in a tool. In other words,
which aspects and which level of detail of method knowledge are supported. In
our research, this means that the applicability of methods is partly dictated by
how well the tool supports their techniques. Hence, method-tool
companionship is based mainly on supporting the conceptual structure and its
related notation, and secondly the modeling process and design objectives. The
modeling process is relevant because the user interface (i.e. interface structure
(Wand 1996)) dictates how the tool can be used and thus affects processes
related to modeling: how models are created, how they are accessed, etc. The
design objectives are relevant to method-tool companionship because tools
should also support generation of design alternatives or produce solutions
automatically.

48

2.3.3 Remarks on modeling tool support

In the majority of current CASE tools method integration has been implemented
only partially. Tool developers have concentrated more on producing technical
solutions such as repositories and intelligent knowledge-based support in their
products, while the methodical part has been given a lower priority. Hardly any
CASE tool developers have introduced methods which have been developed
especially for CASE environments (Tolvanen and Lyytinen 1993). Furthermore,
methods which have been coded as a part of a tool, what we call method-
dependent CASE, do not allow the further development or extension of
methods according to the situation specific needs. We believe that this
technically-driven development of CASE has partly led to the rigidity and weak
support of users’ native methods.

In our opinion the promise of CASE tools does not lie in the long run in
the automated support of old “pen and paper” methods, but in innovative and
new uses of computer based methods. Against this backdrop the surprisingly
slow diffusion of CASE tools is also more understandable. Research into
introducing CASE in an organization reveals that the main problems in the
introduction are not the technical changes, but the methodical and cultural
changes which the use of the new tool will inevitably cause (Aaen et al. 1992,
Aaen 1992, Loh and Nelson 1989, Smolander et al. 1990). These observations are
obvious, because the effective use of CASE tools is not possible without an
adequate experience and knowledge of method use (Humphrey 1989).
Introducing method-dependent CASE tools causes changes in the way of
working and in the use of methods. Limited possibilities to adapt the tool into
an organization’s own standards has often led to growing dissatisfaction among
users (Wijers and van Dort 1990).

In contrast to the tool-driven approach, one should select tools so that they
fit into the local domain and ISD situations. Several studies of CASE tools (see
e.g. Marttiin et al. 1995, Smith et al. 1990) speculate that tool development will
lead to method-independent CASE tools, instead of tool-driven development. In
the same vein, Bubenko (1988) examines several alternative strategies for
selecting CASE tools and introduces seven possible ways to exploit CASE. Four
of these, building your own CASE tool, ordering your own CASE tool,
integrating several tools and experimentations with research prototypes, (others
are wait and see, limited experimentation and buying a method specific CASE
tool) allow the adaptation of organizations’ methods with the tools. Whereas
these researchers have pointed out the demand for flexible CASE support, the
technological point of view has still been dominant. Therefore, the opportunities
for flexibility in CASE-supported ISD is still at most modest. This problem is
discussed from the viewpoint of tool adaptation in Chapter 3.

2.4 Paradoxes of ISD methods

Despite the efforts poured into method development and research, there seems
to be no universal agreement whether methods are useful in ISD at all (Lyytinen

49

1987, Cotterman and Senn 1992, Wynekoop and Russo 1993). For example,
Wynekoop and Russo (1993) summarize several fundamental questions on ISD
methods which are largely unanswered. Of these questions two are especially
important to our study: “are methods actually used in practice?” and “why are
local methods developed?” The importance of these questions is further
emphasized because of the contradiction between the great efforts made to
promote text-book methods and their surprisingly low use in practice. In short,
there are thousands of methods available (Bubenko 1986) and new ones are
continually developed, but at the same time empirical research reveals that
many companies do not use them, and if they do then they have developed
their own variants (Hardy et al. 1995, Russo et al. 1995, Fitzgerald 1995, Flynn
and Goleniewska 1993).

As a result, it seems that method development is relatively easy since so
many of them exist, but methods developed by others do not meet method
users’ requirements. We can find reports and studies about organizations which
have found their local methods applicable or even reported success stories of
method use (Jaaksi 1997, Nissen et al. 1996). These observations lead us to
analyze two paradoxes of methods in more detail, namely the low acceptance of
methods and the popularity of local methods. These paradoxes are important to
our research objective of supporting the development of methods through
incremental ME.

2.4.1 Low acceptance and use of methods

Although the capability of methods to improve the productivity and quality of
ISD has commonly been acknowledged, systematic use of methods is still
surprisingly low (Chikofsky 1988, Danzinger and Haynes 1989, Necco et al.
1987, Smolander et al. 1990, Aaen et al. 1992, Fitzgerald 1995). Thus, there is a
paradox here between the claimed advantages of methods, which should
indicate high use, and the empirical observations revealing low acceptance of
methods. This paradox is further emphasized when we consider the amount of
work both industry and academics put into the development and study of
methods.

The low acceptance of methods is reported by many professionals,
confirmed by empirical research and recognized in many studies focusing on
the use of tools. For example, Yourdon has estimated (reported in Chikofsky
1988) that only 10% of software professionals have actively used structured
methods in their daily practice, and 50% of organizations have tried them at
some time. Nevertheless, 90% of developers are familiar with structured
methods, emphasizing the low acceptance of methods.

In addition, several empirical studies on the use of methods or tools
confirm the estimations on the low use of methods. A study by Fitzgerald (1995)
into 162 organizations observe that only 40% of them apply methods. Another
study by Necco et al. (1987) into 97 organizations shows that 62% of companies
used a structured approach. A study by Hardy et al. (1995) indicates that
method use can be as high as 82%. As can be seen, these studies have different
or even conflicting results. One reason for the variety lies in the selection of the

50

sample and in the definition of ‘method use’. First, samples are not
homogeneous. For example, Fitzgerald (1995) included small companies which
did not have large ISD projects, companies which applied packaged software,
and companies which had outsourced ISD. These companies were also found to
be less favorable to the use of methods, which explains the lower use rate
found. On the other hand, studies concentrating on method use normally show
higher rates of method use, e.g. 82% in Hardy et al. (1995). Nevertheless, a
study by Russo et al. (1995) which focused on organizations using methods still
found that 7% of organizations which had claimed in an earlier survey to have a
method did not use it. Hence, even if the sample organizations would be the
same, respondents can have a different understanding of what methods and
method use mean.

Second, distinctions between levels of method use is important, especially
the borders between systematic, ad-hoc, and no use of methods. What does it
actually mean when ISD professionals say that they follow some method? For
example, how fully should method use be defined and documented, how
completely should they be followed, and how widely spread and obligatory
method use should be in an organization before we can make a judgment that
methods are actually used. For example, although in the survey by Hardy et al.
(1995) 82% of organizations claim to use methods, it does not mean that they
always follow them. In a partial solution to this problem, Fitzgerald (1995)
suggests a distinction between formalized and non-formalized methods: a
formalized method denotes a commercial or a documented method, and a non-
formalized a non-commercial or an undefined method. An organization’s own
methods could fall into both categories. By considering only the use of
formalized methods the rate of method use drops considerably: from 40% to
26% (Fitzgerald 1995). A field study by Smolander et al. (1990) partly confirms
these findings by showing that the methods applied were mostly a collection of
loosely coupled informal techniques. Moreover, Russo et al. (1996) characterizes
method use based on frequency — used always, seldom or occasionally — to
find out the adherence to methods. This categorization shows that most
organizations having a method actually apply them (66%).

Thus, the diversity of the meaning of method use and the lack of
knowledge regarding how methods are actually used explains differences in
survey results. It seems that the use of surveys to study method use and
commitment to methods and their actual usage is difficult. As a result,
researchers (Wynekoop and Russo 1993, Galliers and Land 1987) have
advocated diversity of research approaches. In the case of method use this
would generally indicate field studies, case studies, and action research.

Empirical studies, however, reveal the major benefits and drawbacks of
method use. Major benefits include enhanced documentation, systematized ISD
process, meeting requirements better, and increased user involvement
(Smolander et al. 1990, Hardy et al. 1995). Organizations which do not use
methods consider the improvements caused by methods to be modest: methods
are considered labor-intensive, difficult to use and learn, and as having poorly
defined and ambiguous concepts (McClure 1989, Brinkkemper 1990). Methods
are also seen as limiting and slowing down development, generating more

51

bureaucracy and being unsuitable (Smolander et al. 1990). Hence, introduction
of a method changes the prevailing practices of ISD to such an extent that the
method is abandoned or at least its use is made voluntary.

To summarize, method developers have partly failed in introducing
methods which would be acceptable by the ISD community at large. There is
some empirical evidence which explains which aspects of methods and their use
situations influence their success (or failure) (Wynekoop and Russo 1993). The
research focus seems to be more on the internal properties and characteristics of
methods than on their use situations (Tolvanen et al. 1996). Of course, one may
state that the idea of methods is not to apply them as given. In reality, most
methods are proposed as universal, i.e. to design inventory systems, automatic
teller machines, or mobile phones without considering situational characteristics
(Fitzgerald 1996).

2.4.2 Popularity of local method development

A second paradox is related to the use of local methods in contrast to applying
third-party methods (i.e. commercial or text-book methods). Surveys
investigating method use in organizations (Pyburn 1983, Smolander et al. 1990,
Flynn and Goleniewska 1993, Hardy et al. 1995, Fitzgerald 1995, Russo et al
1995) as well as case studies and descriptions of organization specific methods
(Kronlöf 1993, Aalto 1993, Jaaksi 19 97, Vlasblom et al. 1995, Nissen et al. 1996,
Kurki 1996, Tollow 1996) reveal that organizations tend to develop their own
local “variants” of methods, or adapt them (Nandhakumar and Avison 1996) to
their specific needs. Hence, there is a paradox here between method developers
proposing situation-independent methods and method users who have
developed situation-bound methods.

Surveys indicate that local methods are more popular than their
commercial counterparts (Fitzgerald 1995, Russo et al. 1995). This partly
explains the low acceptance of CASE tools which normally necessitate the use of
a fixed method (Wijers and van Dort 1990, Aaen et al. 1992). Among the
surveys, both Russo et al. (1995) and Fitzgerald (1995) show that 65% of the
organizations which use methods have developed them in-house: their own
method is preferred over a third-party one. Other studies obtain similar figures:
62,5% (Flynn and Goleniewska 1993), 42% (Russo et al. 1996), 36% (CASE
Research Corporation cited in Yourdon 1992), and 38% (Hardy et al. 1995) of
organizations have developed their own methods. Hardy’s study, furthermore,
claims that 88% of the organizations adapted the methods in-house; the same
percentage was found in the study by Russo et al. (1995). Thus, although
organizations develop their own methods, methods need to be adapted to
different use situations in the same way as with third-party methods. This
means that organizations’ own methods do not completely fit with the use
situations in their projects. Some studies (Hardy et al. 1995), however, have
found that organizations which have developed their own methods are more
satisfied with them than users of third-party methods. This is quite obvious,
since otherwise the local method would hardly have been developed and
maintained. On the other hand, few would announce that they have developed

52

a bad method. Thus, it seems natural that methods developed locally are
considered better than third-party methods.

Unlike surveys of method use, surveys of local method development get
surprisingly similar results, although it would be expected that the distinction
between local and external methods as well as between levels of adaptation
would be more difficult to make. However, since surveys do not go into details,
they do not provide answers about what local method development actually
means, or what aspects of method knowledge are modified.

To examine local method development more closely, other research
methods such as case studies and field studies are required (Tolvanen et al.
1996). Although local methods are typical in organizations that actually use
methods, their selection, development, and applicability is less studied
(Wynekoop and Russo 1993). With alternative research methods the
modifications of ISD methods could be inspected in detail, e.g. what the
development of local method or method adaptation means, as well as how in-
house methods differ from third-party ones and how extensive the
modifications are. These questions are only partly answered in case studies and
reports on local method development (cf. Aalto 1993, Jaaksi 1997, Vlasblom et
al. 1995, Nissen et al. 1996, Kurki 1996, Tollow 1996) as they mostly focus on
outcomes rather than on differences between local and text-book methods, or
how the local method is developed. However, these results are important as a
motivation for our aim to develop means for carrying out local method
development efforts.

To sum up, many of the organizations or projects which apply methods do
not use the methods proposed by others. Commercial methods are modified for
example by simplifying or by combining them with other methods (e.g. Jaaksi
1997), or then organizations develop their own methods. This is noteworthy
since commercial methods claim to have a well-thought out conceptual
structure together with process models and guidance which have worked
successfully in other ISD efforts. These methods are furthermore backed by
manuals, training programs, tutorials, and tools, necessary when introducing
methods. The reason for local method development can not be simply a
negative attitude towards something developed outside the organization (i.e.
‘not invented here’ attitude). Development of a local method requires significant
expenditure of resources which would not be needed if commercial methods
were applied. The relatively high costs, need for resources and recognized ad-
hoc method development practices (Smolander at al. 1990) would also
discourage local method development efforts. Thus, it seems that the need for
more applicable methods is so great that it leads organizations to develop their
own methods, either organization specific or project specific.

2.5 Re-evaluation of method use

The two paradoxes above raise several questions about the acceptance and
applicability of methods in general, and commercial text-book methods in

53

particular. For example, why develop commercial methods or yet another
modeling approach (known as the YAMA syndrome, Oei et al. 1992) if hardly
anyone is going to use it? Based on the paradoxes we take a different starting
point and re-evaluate the prevailing view of method use. Instead of viewing
methods as universal, fixed, and readily applicable mechanisms for
instrumental problem solving we view methods more as being situation-bound
and describing only part of the knowledge necessary for ISD. Methods are
related to an organization’s current level of expertise, and they are under
constant evolution in organizations which apply them. Thus, the re-evaluation
of method use describes a new understanding of methods and seeks to explain
the popularity of local methods.

The re-evaluation does not mean that methods should not be standardized
or situation-independent, or that commercial text-book methods should not be
developed. At least 14% of organizations are still using text-book or commercial
methods as specified and without adaptation (Fitzgerald 1995). These methods
also provide a starting point for development of local methods. In this study we
are, however, concerned with the rest of the organizations: those which develop
their own methods, those which adapt available methods, and those
organizations which could benefit from methodical support once methods have
been defined and constructed to meet their contingencies. Accordingly, in the
two following sections we shall define and discuss methods from a different
angle suggesting a complementary view of methods  especially of their
development and use.

2.5.1 Situation-bound methods

Instead of viewing methods as universally applicable, we advocate that method
knowledge is situational. Deriving partially from the popularity of local method
development, this is by no means a new claim: several researchers (Wood-
Harper 1985, Checkland 1981, Parkinson 1996) also emphasize the importance
of situational awareness. For example, Wood-Harper (1985) claims that since
method use takes place in real-life situations “a method can not be separated
from the problem situation and the analyst’s intention and beliefs”. As a result,
the applicability of method knowledge is always determined in the use
situation.

Similarly several method developers (e.g. Yourdon 1992, Walden and
Nerson 1995, Booch et al. 1996) argue for situation-dependency and
modifiability of methods. Yourdon (1992) supports user-driven method
selection by proposing that each developer should use the method that best
supports the given situation. Walden and Nerson (1995, p 122) make remarks on
extending the use of object-oriented methods to enterprise modeling:
“enterprise modeling needs more than the basic object -oriented concepts to be
expressive enough. This may very well be true for complicated cases, but the
additional needs are probably quite different for different types of
organizations”. Similarly, although UML (Booch et al. 1996) seeks to
standardize object-oriented modeling techniques, its developers have
recognized the need to modify the techniques, in particular to better serve

54

different target programming languages. This is especially relevant to UML
since it seeks to provide a design-oriented language that provides one level of
abstraction over programming languages. Also, methods which are maybe best
known for their fixed and standardized approach, namely IDEF (FIPS 1993a,
1993b) and SSADM (CCTA 1995), have abandoned the idea of applying them
strictly as specified, and even recommend modifications (Fitzgerald 1996).

Similarly, organizations which have introduced methods have found
situational adaptation a necessity. It must be noted that situations affecting the
applicability of a method can occur at different levels of an ISD organization:
organization, project, or even individual level. For example, in the context of IS
planning, Pyburn (1983) states that IS planning must be adapted to the specific
organizational context. In the context of software development and use of
object-oriented methods Jaaksi (1997, p 71) claims that “every method needs
adaptation when taken into use”. This means that ISD projects should not be
considered as all being the same, as in practice each is to some degree unique
(Parkinson 1996). Finally, at the individual level, Wijers (1991) conducted
laboratory studies on method use and showed that individual developers tend
to change the method while using it.

Although the situations in which methods are used can be different and
even opposite between the levels of an ISD organization, the more general levels
set conditions on the situational adaptability at the lower levels. For example,
an organization-wide method can influence the adaptations made at the project
or at the individual level. Unfortunately, there is not much knowledge on how
situations at different levels influence local method development. We
acknowledge situations from different levels, but like in most ME literature, we
emphasize situations which are project specific. This does not mean that we
exclude other type of situations; rather the project focus is stressed for relating
the developed ME principles to other ME approaches. As discussed in Section
3.2, most ME approaches start by defining methods for the ISD project.

A main problem addressed in this thesis is how to make method
development happen according to situational requirements. Methods as
described in the literature offer few “built -in” possibilities for modification, and
do not provide mechanisms for carrying out required modifications. For
example, the methods analyzed in Chapter 4 do not define how customization
can be carried out, which are the situational dependencies having an bearing on
method modifications, and which parts of method knowledge (e.g. technique,
process, etc.) should be a target for modifications. For example, one major
difference in the newest version of SSADM (CCTA 1995) compared to its
predecessors is that it allows and even recommends method adaptation (earlier,
adaptation was not allowed). However, little if any guidance is given on how
different parts of the method knowledge should be modified. Typically, guided
adaptation includes selecting a full or a limited version of a method (e.g. Booch
1994). This approach offers, however, very limited adaptability in terms of
method knowledge. This is not a criticism of “standard” methods, but shows
how difficult it is to adapt a standard. One can also claim that build-in
adaptation guidelines would not solve the problem because they would make

55

methods even more complex, difficult to learn, introduce and use, and thus
decrease their acceptance even further.

To summarize, situation-independent and universal methods are not
possible because ISD situations are so different. Applicability of a method in
one situation does not mean that it provides successful results in other
situations. Similarly, contingency theories (Davis 1982, Kotteman and
Konsynski 1984, Sullivan 1985) suggest that the creation of a method which can
give the best support in all situations is impossible. This also partly explains
why text-book methods are not widely used and why organizations use their
own locally developed methods. As a result, the YAMA syndrome, mostly used
in a negative meaning, is a natural consequence of the need for situation-
dependent methods. If organization or project-specific methods work better and
their users are more satisfied with them (cf. Hardy et al. 1995) then why apply
third-party methods? In fact, one could even state that we should have more
methods and variety in method knowledge to cover various situational
characteristics of ISD. It must be noticed that different situations do not
necessarily explain all local method development efforts and the YAMA
syndrome, since organizations can develop their own methods for marketing
purposes, or then because they do not have time to learn from outside.
Similarly, an organization’s own methods can be promoted to sell consulting or
tools (e.g. Frost 1994).

2.5.2 Tacit method knowledge

The underlying paradigm behind many ISD methods is scientific reductionism
(Baskerville et al. 1992). This rests on the assumption that the solution can be
achieved through a sequence of steps, decisions, and deliverables pre-defined in
the method knowledge (Fitzgerald 1996). The expectation of a complete and
explicit set of methodical knowledge is, however, too narrow.

The dominant approach underpinning many methods can be characterized
as what Schön (1983) calls “technical rationality”: situations in practice can be
scientifically categorized, problems are firmly bounded, and they can be solved
by using standardized principles (Tolvanen 1995, Fitzgerald 1996). This view of
development and use of methods is by no means wrong or “bad”: it has
produced a great deal of knowledge about ISD and led to the development of
useful routine procedures which are generally known and used (Fitzgerald
1995). In fact, the main principle of method development can be said to be to
provide knowledge about ISD which is explicit and applicable for future ISD
efforts. However, not all tasks of ISD fit the view of scientific reductionism. In
other words, it is not possible to have full knowledge about the problem (and
thus the applicable method) beforehand, nor can pre-defined method
knowledge cover all possible situations. Moreover, part of the knowledge
related to ISD in general and to methodical knowledge in particular is tacit and
thus can not be expressed. Therefore, we claim that the technical rationality is
too narrow to address and explain the use of methods as it takes place in
practice. As a result, it is our belief that system development can not be
completely carried out by following pre-defined methods.

56

A liberating perspective to support method development is what Schön
(1983) calls “reflection -in-action”. Her e, the fundamental assumptions are
uniqueness of situations and tacit, intuitive knowledge (Nonaka 1994). Part of
our knowledge of ISD is based on our reflection on the situations in which we
find ourselves, rather than being found solely by using predefined methods.
Thus, methods need to be maintained based on reflections from practice,
transforming tacit knowledge into explicit knowledge. The importance of tacit
knowledge partly explains the low acceptance and use of methods, and why
successful ISD efforts can be carried out a-methodically (Baskerville et al. 1992)
without the use of any “explicit” method. Hence, method is not everything. On
the other hand, all ISD efforts can not be carried out based on pure intuition and
tacit knowledge (Jaaksi 1997). Therefore, we see the views of reflection-in-action
and technical-rationality as complementary views of method development and
use: both explicit and tacit knowledge are necessary and useful for successful
ISD. Accordingly, a good method should take both aspects into account, on the
one hand, providing knowledge which can be rigidly followed as routines, and
on the other hand allowing human creativity and spontaneous.

2.5.3 Method use is a learning process

The other assumption behind scientific reductionism (Fitzgerald 1996) is that
the developer can obtain detailed knowledge about the problem situation and
about applicable methods. This view expects that all necessary knowledge
about the method, whether it is tacit or explicit, is available beforehand. In
addition to this expectation of complete and explicit methodical knowledge the
introduction of methods as readily available “routines” is seen as being easy,
and the use of a method assumed to lead to solutions which are repeatable. For
example, one of the goals of JSD (Cameron 1989) is to eliminate personal
differences and even creativity from the development process. According to this
view the key problem for IS developers would be to select the right method
rather than to use it.

We question this by emphasizing that method use is a learning process in
which the current level of expertise is crucial to successful ISD (Curtis 1992,
Hughes and Reviron 1996). The learning process occurs at two levels; in the
domain of IS, and in the domain of ISD. The former means learning about
successful (or unsuccessful) ISs. The latter means that any organization that
builds ISs, not only delivers systems  they also learn how to carry out ISD,
and use methods. This learning about methods means that they gain experience
about the applicability of methods. This experience can complement the method
knowledge they already possess.

The importance of learning about ISD and methods over time was already
recognized by Vitalari and Dickson (1983) and Davis and Olsen (1985).
According to Argyris and Schön (1978, p 2 -3) this forms a double loop of
learning in which “error is detected and corrected in ways that involve the
modification of an organization’s underlying norms, policies and objectives”.
Single-loop learning is related to immediate tasks, in which error detection
“permits the organization to carry on its present policies”. In the context of ISD

57

the double-loop learning means modification of the ISD methods. Because ME
aims to improve ISD methods, it can be viewed as a learning process in which
an individual (Schön 1983), or even an organization (Nonaka 1994), creates new
knowledge about methods and how to apply them. Similarly, Curtis et al. (1988)
have suggested that both the developer and user learn through the dialectic
approach, and Floyd (1987) has advocated a second-order learning process in
which past experiences are guidelines for using a method.

The emphasis on learning is important in our discussion because it allows
us to explain the low acceptance and use of methods. Although experience is
known to be crucial to ISD it is not easy to build up and maintain. In fact, we
claim that knowledge about methods can be mostly achieved only by using
them. This means that a long time is needed for introducing methods into
organizations (Bubenko 1986, Lundeberg et al. 1981), which partly explains why
organizations do not use methods: the introduction of methods is a long
standing investment which bears fruit only after a relatively long time. For
example, Lundeberg et al. (1981) estimated that at least one year is required to
introduce a method into an organization. In fact, the first projects where
methodical principles are used can often show a decrease in productivity (Aaen
et al. 1992).

Another factor explaining the low use of methods is organizations’
surprisingly shallow knowledge and experience of methods (see Aaen et al.
1992), and their poor capability to manage ISD (see Humprey 1988). For
example, a survey by Aaen et al. (1992) observed that more than half of the
organizations considered their knowledge and experience of methods small.
Similar results have been found in other surveys (cf. Smolander et al. 1990).
Research on software process maturity (Humprey 1988) has shown that
understanding of one’s own work must precede any further steps in method
definition and improvement.

2.5.4 Evolution of methods explained

Instead of viewing methods as finished articles, a view which few method
promoters take, methods must be viewed from an evolutionary perspective.
Shifts in method knowledge are known (Joosten and Schipper 1996) and an
examination of current developments in the field of object-oriented methods,
workflow methods or business process re-engineering methods gives no reason
to expect that this would change in the near future. An indication of method
evolution is that organizations must deal with different method versions, as for
example with SSADM (CCTA 1995), introduce new method types, such as
object-oriented methods, and abandon old methods which have been found
inapplicable for new technologies and applications (Bubenko and Wangler
1992).

Basically, two different types of evolution exist: those reflecting general
requirements of technical evolution and business needs, and those relevant to
the ISD situation at hand. The former deals with the general historical
perspective and the latter with how these general requirements are adapted into
local situations and how they affect the method evolution.

58

2.5.4.1 Historical perspective

The method literature includes several reviews of the development and use of
ISD methods (e.g. Welke and Konsynski 1980, Bubenko 1986, Norman and Chen
1992, Moynihan and Taylor 1996). Most of these explain method evolution
though an interaction with available or emerging technologies which are used
either in the developed systems or in the ISD tools.

Bubenko (1986) analyzed methods from a historical perspective: the need
for methods has grown while the complexity and size of ISs has increased. The
earliest methods were developed in the 1960’s when the first large scale batch
and transaction-processing systems were developed. Furthermore, the
emergence of databases in the 1970’s lead to the introduction of data modeling
techniques. At the same time structured design and analysis methods derived
their origins from structured approaches and from the evolution in
programming languages. Similarly, Welke and Konsynski (1980) characterize
advances in technologies, such as database management systems, which were
reflected in ISD methods. Likewise, today these surveys could be extended to
object-oriented technologies, mobile phones, business process changes, and
multimedia. As a result, Welke and Konsynski emphasize that method
developers should be aware of technological developments, as they form one
key factor in improving and maintaining methods.

Likewise, Norman and Chen (1992) explain method evolution in terms of
an evolution of applications developed. They also relate method evolution to
CASE tools. Although they primarily discuss the evolution of CASE, a close
connection to parallel advances in methods are recognized. For them new
applications drive the creation of methods and later lead to the development of
CASE tools. Thus, method developers should follow advances in technologies
which could support new forms of ISD methods. For example, the emergence
of graphical user interfaces and CASE tools supported the introduction and use
of methods (Chikofsky and Rubenstein 1988).

Another indication of a method’s historical evolution can be found by
studying different versions of commercial methods such as SDM (Turner et al.
1988), and SSADM (CCTA 1995). These were developed over long periods of
time. For example, SDM (System Development Method), has been developed
and updated since 1974 because of the changes in software tools, organizational
impact of ISs, and the need to support system maintenance (Turner et al. 1988).
Even the newer object-oriented methods have a history of different versions,
such as OOD/UML by Booch (1991, 1994, Booch et al. 1997) or MOSES
(Henderson-Sellers 1992, Henderson-Sellers and Edwards 1994). Accordingly,
some efforts have been made to identify evolution paths between different type
of methods, or even to construct a family tree of methods (Smolander et al.
1989). Similarly, there are plenty of studies available which extend methods to
support some useful or required design or analysis task, such as distribution
(Olle 1994), client-server architecture (Frost 1994), or information systems
planning (Stegwee and van Waes 1993).

59

2.5.4.2 Method evolution in organizations

Another viewpoint on method evolution can be taken by analyzing how
organizations develop their methods. This viewpoint is also relevant to our
research question about incremental ME. Although organizations’ local methods
are relatively common we do not know why and how organizations develop
their methods, or how frequently methods are refined or updated (Wynekoop
and Russo 1993). Since ME is not studied empirically enough (Tolvanen et al.
1996) we must rely on reported cases (cf. Aalto 1993, Jaaksi 1997, Kronlöf 1993,
Vlasblom et al. 1995, Russo et al. 1995, Nissen et al. 1996, Tollow, 1996, Kurki
1996, Cronholm and Goldkuhl 1994, Bennetts and Wood-Harper 1996).

In the following the evolution of local methods is inspected by analyzing
the “end -products” of ME efforts. This analysis is carried out by focusing on
two dimensions of method evolution: the first dimension analyzes how much
the locally developed method has changed, and the second dimension how
often the method modifications have taken place. These dimensions are
illustrated in Figure 2-3 and their measures are discussed below. These
dimensions along with the analyzed ME cases allow us to partly explain what
method development or adaptation involves.

High

Frequency of
modifications

Low

Low High
 Degree of modifications

FIGURE 2-3 Characterizing local method development: the degree and frequency of
modifications.

2.5.4.2.1 Degree of modifications

The degree of modifications defines how large the changes are that are made to
the local method to improve its applicability. These modifications can be (cf.
Harmsen et al. 1994):

1) tied to the selection paths provided by a method,
2) based on combining methods, or
3) based on the development of an organization’s own method.
This classification allows us to distinguish how much a method used in an

organization differs from other methods. The degree of modifications could also

60

compare two changes at different times in the same local method by analyzing
the number of method components changed at each time. This alternative
dimension is excluded here because ME cases are not reported in such detail
that categories could be formed. Hence, in the following each degree of method
modifications is discussed by analyzing the current method in use (instead of
the current changes).

1) Selection paths within a method describe one extreme of ME. Here the
only possible modification alternatives are those provided by the method (i.e.
built-in flexibility), and thus are limited to a few contingency factors. Examples
of these contingencies include development of small versus large systems, the
use of prototyping, and the use of application packages (e.g. in SDM, Turner et
al. 1988). It is, however, unrealistic to expect that methods should include a
much larger set of contingencies and condense them into modification
guidelines (Hardy et al. 1995). One clear reason for this is the vast amount of
possible contingencies, and even if these could be identified, the growing size of
methods.

2) A combination of methods for internal use occurs when a chosen
method, and its possible selection paths, do not meet the situational
contingencies. In a combination (or integration as defined in Krönlof 1993) the
local method is based on the constructs offered by several commercial methods,
and partly based on modified or totally new constructs. A study by Russo et al.
(1996) shows that 37% of the methods used in organizations are combinations of
commercial and in-house methods. Accordingly, the adaptation can be carried
out either by combining available methods (or method parts, sometimes called
fragments, e.g. Harmsen 1997), or by modifying a single method for internal use
(e.g. Bennetts and Wood-Harper 1996, Nuseibah et al. 1996). An example of the
former is Object-TT (Kurki 1996), which is a company specific method
developed by combining available techniques from a larger set of text-book
methods. As Object-TT focuses on modeling, it is heavily dictated by the
available notations and their underlying concepts. An example of the latter is
the modification of the Information Engineering (Martin and Finkelstein 1981)
method reported in Russo et al. (1995).

3) An organization or a project which develops its own methods faces
situations which are outside the set of situations to which known methods are
suited. Minor modifications into known methods are no longer sufficient, and
thus the developed method does not have any close “relative” among other
methods. Ryan et al. (1996) characterizes this category as an effort to develop
new conceptual structures (models in their terminology) and related notations.
An example of a company which has developed its own methods is USU, a
consulting company (reported in Nissen et al. 1996). The method developed,
called PFR, focused on rapid requirements capture in team workshops and
individual interviews.

Locally developed methods are often considered propriety and
information about them is difficult to obtain. Many of the methods which can
today be characterized as commercial have a background in an organization’s
internal needs. For example, Business Systems Planning (IBM 1984) was
originally developed to solve the problems which IBM noticed in the

61

management of its own ISs. Similar histories are shared by Objectory (Jacobson
1992) and Octopus (Awad et al. 1996).

2.5.4.2.2 Frequency of method modifications

The second dimension, the frequency of method modifications, explains how
often a method is changed (Hardy et al. 1995). More specifically, it measures
how often changes in ISD situations are reflected in methods. From the
available cases four basic categories can be found:

1) advances and changes in external methods,
2) changes in an organization’s ISD situations,
3) a project-by-project basis (once ISD project starts), or
4) continuous refinements within a project.
In the following each category is discussed in more detail.
1) Method modifications based on advances in external method

knowledge are typical in organizations where methods follow a national or
industry standard (e.g. SSADM (CCTA 1995), IDEF (FIPS 1993a), OMG-UML
(OMG 1997)), or a method-dependent CASE tool. Thus, new versions are the
result of externally decided modifications. Because of the slow standardization
process such modifications are carried out infrequently, and do not necessarily
relate to organization specific situations. Similarly, if the method is supported
by a method-dependent CASE tool, the vendor can dictate the frequency of new
versions. Method changes in this category do not normally occur more often
than once a year.

2) Method modifications based on changes in an organization’s ISD
situations deal with local method development in which contingencies related
to the whole organization change and are reflected in methods. Examples of
such changes are outsourcing ISD, introducing new technologies (e.g. Bennetts
and Wood-Harper 1996), or starting to develop new type of IS. Hence, the
relevant contingencies here are the same for the whole organization. Examples
of organization-wide ME initiatives are reported in Cronholm and Goldkuhl
(1994) and Kurki (1996). This type of organization-wide method change can
occur many times a year. The possibility for in-house method modifications
may also be restricted by the CASE tool, as most tools demand a one-shot
adaptation (Cronholm and Goldkuhl 1994). Partly for this reason larger
organizations have also implemented their own tools (e.g. SDW in Pandata
(Turner et al. 1988)) or even applied metamodels to achieve flexibility in
changes (e.g. the TDE environment in Nokia (Taivalsaari and Vaaraniemi
1997)).

3) Method modifications on a project-by-project basis are considered in
ME research to be the most typical. Each project is characterized by individual
features which need to be mapped to methods. Modifications are not made
during the method use but only at the beginning of every project11. Because

11 It must be noted that organizational units other than a whole company or an ISD project

can be identified, such as a department, teams related to developing and maintaining a
certain IS, and an individual. Because of the lack of empirical studies on local method
development already mentioned, we can not focus here on method modifications

62

each project is dealt with individually this approach is relevant to project-based
ME (cf. Section 1.4.3). For example, in a case reported by Bennetts and Wood-
Harper (1996) the successful use of a local method has encouraged an
organization to adapt methods for individual projects. Hence, the changes in
methods are always based on the schedules of the projects (i.e. a timeframe of
months in general).

4) Continuous method refinement happens when ISD contingencies are
uncertain or change rapidly, e.g. when a new method or methods are used in a
new area. Although methods are typically introduced as a whole, the ME efforts
analyzed show that method adaptations occur frequently during an ISD project.
These modifications do not occur only at the individual level, but also in ISD
projects, and in the longer run in the whole organization.

Studies on individual developers’ method use (e.g. Wijers 1991) show that
methods are gradually changed during their use: e.g. new concepts and new
rules are added to the modeling techniques. These personal modifications are,
however, often tacit and not shared with other developers. Method
modifications are also performed in team-based method use. In this case
method modifications are documented and available for others. For example, in
Nissen et al. (1996) method modifications related to a supporting tool caused
modifications to the method, to the supporting tool, or to both: after the initial
method was developed, modifications were made based on feedback from
method introduction during internal workshops, during and after the pilot
project, and finally after running a few application projects. Third, method
modifications also occur in organizations’ methods, although not as frequently
as in project-dependent methods. For example, clear method modification
phases can be found from the ME practices related to the development of one
method in Nokia (Aalto 1993, Aalto and Jaaksi 1994, Jaaksi 1997): OMT as a
text-book version in 1991, modifications resulting in OMT+ in 1993, and further
modifications to create OMT++ in 1994. Moreover, the OMT variant had several
smaller and more frequent modifications which were made during its
development (Jaaksi 1997).

2.5.4.2.3 Examples of method development efforts

Table 2-3 summarizes the analysis of ME efforts based on the two dimensions
discussed above: degree and frequency of method modifications. The table
includes ME cases which have been reported adequately enough to be
classified. It would be of great interest to also analyze the degree and
comprehensiveness of each individual method modification step, rather than
looking at the end-product. Unfortunately this is not possible because most of
the cases do not describe the method development processes. Furthermore, they
usually describe only one or two types of method knowledge which have been
modified, like the modeling technique or the ISD process. This naturally makes
the classification of ME cases in the Table 2-3 difficult. For example, the method
engineers can describe the method developed as a combination of available

occurring in organizational units other than a whole organization or an individual ISD
project.

63

methods (e.g. Jaaksi 1997), but a more detailed analysis of method knowledge
can reveal that the method includes many aspects which are not covered by
other methods. A simple combination of methods would not lead to such a
large modification.

TABLE 2-3 Examples of local method development efforts.

continuous Aalto 1993/Jaaksi
1997, Nissen et al.
1996

project-by-project
basis

Frequency of

 Bennetts and Wood-
Harper 1996

Tollow 1996

modifications
organization

contingency based

 Kronlöf 1993, Kurki
1996, Cronholm and
Goldkuhl 1994

external method

based

FIPS 1993a, CCTA
1995

 within a method combine methods own method
Degree of modifications

The analysis of the cases reveals that different approaches for local method
development are applied. It must be noted that the sample of ME cases is small
and thus no firm conclusions can be made, but the analysis does provide some
hints about local method development. In some cases it seems to be applicable
to follow a standard method and limited adaptation, whereas in other cases
larger and more frequent method changes are required. Because of the paucity
of empirical research on local method development, the reasons behind these
choices are largely unknown. The analysis of method development practices,
however, reveals which approaches are not used at all, and can be considered
unlikely in ME. None of the organizations has developed its own and radically
different method in a short period of time. All the reported cases indicate a
more gradual method development process. This is also a reason for developing
principles for incremental ME.

64

2.6 Summary and discussion

In this chapter we have defined ISD, and described methods and tools. First, for
the purposes of metamodeling, methods were seen to consist of different types
of method knowledge. This analysis focused on method knowledge related to
modeling techniques, i.e. on the conceptual structure and notations. Thus, we
excluded other aspects of methods and their development. Second, we have
described the relationship between modeling tools and methods: the method-
tool companionship. This allowed us to show what type of computer support is
needed to develop tool support (i.e. abstraction, checking, form conversion and
review).

Third, we discussed method use through the notion of method paradoxes.
The analysis of method use revealed that the applicability of existing methods is
not at all clear, because many ISD organizations do not use the available
standard-like methods at all, and have developed their own partially or
completely new methods. As a result, the IS research community must admit
that we do not know well enough how methods are actually used in
development situations, and how important the role of methods is in the success
(or failure) of ISD efforts. These paradoxes led us to refine the currently
dominating view of methods: we defined methods to be situation-bound
instead of universal and standard. We acknowledged that a method is not the
sum total of ISD knowledge, as much knowledge about ISD is tacit and can not
be provided as readily applicable routines. We emphasized expertise and
learning, and viewed methods as evolutionary.

Based on the IS research literature, there appear to be at least three
possible ways to research method use. The first is to continue the widely
followed research approach to develop new situation-independent and
universal methods, compare them conceptually (e.g. frameworks), and use them
in cases. However, this approach, despite its use in multiple studies, has proven
to be inadequate for resolving problems related to the wider acceptance of
methods. The second option is to pursue comprehensive empirical studies on
methods in realistic environments (e.g. as proposed by Wynekoop and Russo
1993). Although this proposition is basically correct, it is not a realistic approach
for today’s organizations. First, they can not stop their ISD efforts and wait for
the results. Second, the results of these empirical studies can become obsolete
even before they are ready, because of the rapid evolution of the business world
and technology. For example, there is not much empirical evidence on the
usefulness of object-oriented methods, although this is one of the challenges for
ISD in many organizations today. Similarly, there is a paucity of research
examining the usefulness of metaCASE tools (Tolvanen et al. 1996).

The third option is method engineering: to focus on mechanisms that
support local method development and use. Although many companies are
“rolling their own”, using local, in-house methods, method development seems
to be carried out in an ad-hoc manner by selecting tools and methods on a trial-
and-error base. Organizations do not have any principles to guide ME efforts:
selecting and constructing methods for particular needs, checking the

65

completeness of methods, or organizing method development efforts.
Moreover, organizations face problems in finding and developing tool support
and collecting experience of method use. All these reasons motivate the
development of systematic principles for ME. In the following chapter, we shall
describe approaches or strategies for method selection, construction, and tool
adaptation.

3 METHOD ENGINEERING: METHODS AND
TOOLS

Two types of knowledge are essential in method engineering: knowledge of
information system development and knowledge of method development. In
this chapter we focus on the latter, method engineering and especially on the
methods, modeling languages and tools of method engineering.

The chapter is organized as follows. In Section 3.1 we define ME and in
Section 3.2 we analyze different ME approaches based on their ME process, the
types of method knowledge they consider, and the factors or criteria driving
ME. These must be described to understand the principles of incremental ME
(cf. Chapter 5) necessary to extend the current ME principles. Moreover, tool
adaptation as a mechanism to obtain method-tool companionship leads us to
explain the role of CAME, metaCASE and CASE tools. In short, we shall focus
on creating and maintaining knowledge about modeling techniques in ISD
tools. Accordingly, in Section 3.3 we describe metamodeling languages by
focusing on how to specify the conceptual structures of modeling techniques.
The presentation of metamodeling languages is accompanied with a
metamodeling example. This presentation is needed to understand the
constructs of metamodeling languages and the evaluation of the metamodeling
languages carried out in Chapter 4.

3.1 Defining method engineering

The need for systematic principles to develop situation-specific methods has led
to the emergence of method engineering (Bergstra et al. 1985, Kumar and Welke
1992). In a similar vein to ISD, we define method engineering (ME) as a change
process taken with respect to an ISD object system in a set of ISD environments by
a method engineering group using a metamethod and supporting tools to achieve or
maintain methods for ISD. Figure 3-1 illustrates the relationship between method

67

engineering and ISD. In the following we describe this relationship and define
ME in more detail by explaining each italicized key concept of the definition.

Perceives

Uses

ISD methods
and CASE tools

Instantiate to

 IS specifications,
 ISs

ME group

Metamethods
and CAME tools

Perceives

Uses

Define a
viewpoint on

Represent

ISD level

ME level

ISD object
system

Object system

Define a
viewpoint on

Instantiate to

FIGURE 3-1 Method engineering and information systems development.

Both ISD and ME are social processes, in which a number of people act and
have an interest. At the level of ME, method engineers form a group which
perceives the current state of ISD. They are in charge of defining, choosing,
modeling and producing method specifications and customizing tools in a
similar way to the ISD group creating IS specifications and implementing them.
This also distinguishes method engineers from researchers, since the latter are
more interested in studying methods (even with metamodels and metamethods)
rather than implementing methods for the organization. Method engineers can
therefore be considered as developers of ISs for ISD. Often they can be the same
group as those carrying out ISD. Furthermore, because the end-users of ISD
applications include ISD professionals, they can be expected to be more aware
of technical possibilities and thus more demanding than end-users of other type
of ISs. This partly explains the importance of stakeholder value based ME
(Kumar and Welke 1984, 1992) which emphasizes the role of method users in
ME efforts. By stakeholders we mean people who have an interest in method
development and method use. These include method experts, tool experts,
managers of ISD, IS developers, and IS users. Studies in ME, however, have so
far concentrated on developing concepts and principles for ME (Brinkkemper
1990, Heym and Österle 1992), whereas only a few discussions (see e.g.
Bubenko 1988, Tagg 1990, Nissen 1996) study the role of method engineers and
other stakeholders.

Both ISD and ME aim to deliver an IS, often a computerized one. Method
engineers carry out a change process resulting in methods and tools which

68

support some tasks of ISD. An example of such a system is a CASE tool
customized to support a specific method. During the ME process, a method, or
its part, is created, modified, and removed to achieve or improve situation-
specific methods. Thus, the goal of ME is to improve ISD by providing better
methods and supporting tools. In the ME literature situation-specific needs are
understood as a closer relationship between the method and the characteristics
of ISD situations (Vlasblom et al. 1995), required problem solving capabilities
(Punter and Lemmen 1996), or stakeholders’ values (Kumar and Welke 1984,
1992). The “better” in turn implies that the constructed method can be
compared in detail with other alternative situation-bound methods or their
parts. Each of these approaches to achieve the objectives related to methods is
discussed in more detail in the next section.

Both ISD and ME can be supported by methods. To differentiate methods
between these two levels we use the prefix meta to denote methods and tools at
the metalevel, e.g. metamethods, metamodeling and metaCASE. This
distinction is also important for this thesis since we focus on studying ME rather
than ISD. Like ISD methods, metamethods can be viewed through the
taxonomy of method knowledge (cf. Section 2.2). First, a conceptual structure of
a metamethod includes concepts specific for engineering ISD methods. Second,
the specifications of an ISD method are communicated with a metamodeling
notation. Together, the metamodeling concepts and notation form a
metamodeling language. As in the term metamethod, the prefix “meta” means
that the metamodeling language represents parts of the ISD method in terms of
a model of a method, i.e. a metamodel (Brinkkemper 1990, van Gigch 1991).
Third, a metamethod includes procedures for metamodeling and constructing
methods, and a set of criteria to meet the situational requirements of methods.
However, other types of knowledge necessary to carry out ME supported by a
metamethod, like the participation and different roles, have been studied far
less in ME literature (cf. Tolvanen et al. 1996).

Like ISD, ME too can be supported by tools. This symmetry has
introduced the term CAME, Computer Aided Methodology Engineering
(Kumar and Welke 1992) to highlight the role of tools in ME. In this thesis we
regard the supporting tools of method engineers as metaCASE tools (Kelly 1997),
also called metasystems (Sorenson et al. 1988), or CASE shells (Bubenko 1988).
These tools offer facilities to tailor CASE tools to specific methods.

Finally, an ME process is not performed just once because the ISD
environment changes. This is emphasized in the definition by the inclusion of the
maintenance of methods into ME. The environment also includes stakeholders,
who have different, changing, or even conflicting objectives. For example,
developers can require methods which minimize errors in a developed IS,
managers want the method to improve productivity, and IS users want
understandable design documents. The changes and experiences of the
method’s use raise new requirements for methods and their tool support. As a
result, a method constructed at one point of time is not necessarily applicable in
the next similar project, or even later in the same project. Therefore, methods
have to be maintained and revised. This observation leads to an evolution-based

69

approach where methods are developed incrementally for local and changing
needs.

3.2 Method engineering approaches

In working towards more complete principles for ME it is necessary to place
this work in the context of similar work reported in the literature. Accordingly,
in the following subsections we describe the currently prevailing view of
“ideal” ME in term s of its process, criteria, and deliverables. This allows us to
analyze alternative ME approaches and describe their underlying assumptions,
as well as their weaknesses and strengths. Moreover, and most importantly, the
view of current ME principles allows us to describe what are their differences in
relation to our focus on ME, namely to engineer modeling techniques for tools.

3.2.1 Method engineering process

The general structure of a ME process (cf. Smolander et al. 1990, Tolvanen and
Lyytinen 1993, Brinkkemper 1996, Cronholm and Goldkuhl 1994, Grundy and
Venable 1996, Harmsen 1997) is illustrated in Figure 3-2. The model follows the
notation of data flow diagrams (Yourdon 1989a) in which processes are circles,
external entities are rectangles, and data stores are rounded rectangles. The
arrows describe data flows between processes, externals and stores.

CAME toolISD
environment

ME criteria

1

Method
selection

2

Method
construction

3

Tool
adaptation

CASE tool

ISD project

ME criteria on
- contingencies
- development

problems
- stakeholder’s

values

characteristics

new specifications

available method
specifications

selected method constructed
method

tool related
specifications

constructed
method:
- manuals
- tutorials
- etc.

method
supporting
tool

FIGURE 3-2 A data flow diagram specifying ME process.

In the following we outline the ME process by describing each step, namely
method selection, method construction and tool adaptation. These are described

70

as processes in the figure. It must be noticed that the figure does not include all
steps of local method development (cf. Figure 1-1), such as method
introduction, use, or collection of experiences, since the ME literature does not
provide any systematic principles for these, although the tasks are usually
acknowledged.

In the method selection process the ISD environment is analyzed
according to ME criteria. The criteria for methods can be divided into situation-
independent and situation-dependent parts. The former criteria are considered
desirable for most methods regardless of the situation for which they are
developed. Examples of these universal criteria are: easiness to learn, simplicity
of use, good support for communication between stakeholders and good
support for transitions between different tasks or phases of ISD. These criteria
cover more than one type of method knowledge, but can also be specific only to
certain types of method knowledge. In our case of constructing modeling
techniques examples of general criteria include readability and easy to use.

The latter type of criteria are relevant when we want to increase the
applicability of a method for a given situation. Jarke et al. (1998) call these
method adaptation criteria, and they are of primary interest for incremental ME.
They include classifications of relevant aspects of methods which should be
considered to satisfy the objectives for the method. For example, in carrying out
IS planning, the degree of centralization of the target organization is suggested
as one criteria (Sullivan 1985). If the organization is centralized, IS planning can
be performed better with BSP (IBM 1984), whereas de-centralized organizations
can be analyzed better with CSF (Rockart 1979). Among the ME criteria we can
distinguish between criteria which relate to contingencies, development
problems, and stakeholders’ values. These criteria are reviewed in more detail
in Section 3.2.3.

The selected method (or methods) which meet the ME criteria are
constructed, possibly with new method components. This means combining
method knowledge from different methods as well as from different types of
method knowledge. By focusing on method components (or fragments,
Harmsen 1997), and therefore introducing smaller changes, methods can be
maintained or even integrated (e.g. Kronlöf 1993) if required. For example, if
the programming language changes from C++ to Smalltalk, the method
knowledge is modified slightly: it is no longer permissible to use multiple
inheritance. Since all criteria are not necessarily met with existing methods, new
method knowledge needs to be defined, and some of the method components
may need to be removed. The new method configuration is stored into a
repository for future selections.

Finally, the method constructed needs to be adapted into a CASE tool.
Generally speaking tool adaptation deals with customizing or building a tool
for the method, or choosing a set of tools which cover all the method knowledge
(for selection strategies see Bubenko 1988). If this adaptation is not carried out
then the contribution of the method construction is limited, because a tool could
ensure that the method is used as intended. ME without tool adaptation would
be the same as developing IS specifications without implementing associated
computer-based support. Method introduction also involves non-computer

71

supported parts, such as production of manuals, tutorials, etc., which are not
included into the adapted tool. Basically, tool adaptation includes building
method-tool companionship, namely the support for abstractions, model
checking, form conversion and review (cf. Section 2.3.2). This adaptation
requires that the constructed method is modeled with a modeling language
offered by the customizable CASE tool. If the CAME tool provides translation of
the metamodels into a CASE tool (e.g. Rossi et al. 1992), or method use can be
tested in the same tool where the tool adaptation is performed (e.g. Kelly 1997),
the tool adaptation becomes easier and faster. Hence, an outcome of a successful
ME process is a fully functional computer-based IS for ISD. This defines what
developers can store into the repository of an ISD tool, how system descriptions
can be represented, retrieved, checked, transformed, and how descriptions are
managed.

3.2.2 Types of method knowledge considered

Ideally speaking all sorts of method knowledge and their relationships can be
subject to ME: from the underlying conceptual structure to the assumptions and
value-orientations of a method. Practically speaking, methods usually only
address a few types of method knowledge (Jarke et al. 1998), and methods can
be modified by changing only one or a few types of method knowledge (e.g.
Kronlöf 1993).

Although the types of method knowledge are related, each type can be
viewed independently and represented using a number of alternative
representation schemes and mechanisms resulting in different kind of
metamodels. Clearly, no method construction is possible without some sort of
(explicit or implicit) metamodeling. Thus behind all approaches there are some
metamodeling formalisms (cf. Section 3.3). In the following a set of ME
approaches are analyzed based on their focus on different types of method
knowledge. These ME approaches are taken from a survey of ME research
(Tolvanen et al. 1996) and the approaches are summarized in Table 3-1. It must
be noticed that a single approach may belong to more than one category, as they
typically cover at least modeling of conceptual structures, even if only as the
foundation for the modeling notation, procedural guidelines, participation or
values.

Because all methods are based on some concepts, ME approaches address
the conceptual structure, at least those concepts related to the other type of
method knowledge addressed. There are, however, ME approaches which focus
mainly on conceptual structure, such as Mercurio et al. (1990), Essink (1988),
Olle et al. (1991), and Heym and Österle (1992). In general, these frameworks
present conceptual structures or suggest reference models of methods. Hence,
here the objective of ME is to identify and establish relevant concepts of ISD and
include them in the conceptual structure of the method. A short example of a
conceptual structure is now in order. For example, the conceptual structure of
most object-oriented methods includes the concept of inheritance, its relation to
other concepts, and possibly constraints, such as single inheritance or
recursivity. Although this conceptual structure also includes relationships to

72

notations, or to processes, they are often too general to define methods in such a
detailed and formal manner that computer support can be built based solely on
such a conceptual structure.

The most studied ME approaches are those operating at the notational level, but
related to conceptual structures (Tolvanen et al. 1996). These approaches define
modeling techniques (e.g. Teichroew et al. 1980, Sorenson et al. 1988, Welke
1988, Smolander 1991, Saeki and Wenyin 1994, Venable 1993). Some of them
(e.g. Sorenson et al. 1988, Welke 1988, Smolander 1991, Kelly et al. 1996) are also
used as a conceptual schema for modeling tools. Notation-based ME is more
concise than those based on conceptual structures: it focuses only on the
concepts related to modeling. For example, it defines how the concept of
inheritance is represented, related to the representations of other concepts, and
how the constraints of the inheritance are supported in a modeling technique.
Hence, while focusing on modeling techniques they address the conceptual-
representational dimension (Smolander et al. 1990) by defining how concepts
are represented. This is typically achieved by relating conceptual structures to
their representation definitions (e.g. Smolander et al. 1991, Wijers 1991). For
example, Smolander et al. (1991) link the conceptual content of a method into a
graphical, diagram-oriented representation. In Kelly (1994) this approach is
extended into a matrix representation. As a result, these method definitions can
be applied at the ISD level as a modeling technique. The metamodels
representing modeling techniques are often characterized as meta-data models
(Brinkkemper 1990). This thesis investigates notation-based ME, and therefore

TABLE 3-1 Method engineering approaches and types of method knowledge

Type of method knowledge Method engineering approaches

Conceptual structure Essink 1988, Mercurio et al. 1990, Olle et al.
1991, Heym and Österle 1992

Notation Teichroew et al. 1980, Sorenson et al. 1988,
Welke 1988, Bergsten et al. 1989, Smolander
1991, Wijers 1991, Bommel et al. 1991, Venable
1993, Hofstede 1993, Tolvanen et al. 1993,
Saeki and Wenyin 1994, Oei and Falkenberg
1994, Bronts et al. 1995, Kelly et al. 1996,
Grundy and Venable 1996, Harmsen 1997

Process Wijers 1991, Hofstede and Nieuwland 1993,
Tolvanen et al. 1993, Marttiin 1994, Jarke et al.
1994, Rolland et al. 1995, Rolland and Prakash
1996, Harmsen 1997

Participation and roles Tolvanen et al. 1993, Harmsen 1997

Development objectives
and decisions

Jarke et al. 1994, Rolland et al. 1995, Oinas-
Kukkonen 1996

Assumptions and values Kumar and Welke 1984, 1992

73

we describe in Section 3.3 only those metamodels and metamodeling languages
which support a notation-based approach.

ME approaches that concentrate on the processes of method use are less
developed than those that concentrate on the conceptual structure and notations
of methods12 (Tolvanen et al. 1996). They can be divided into those that specify
the relationships among the modeling tasks (e.g. Wijers 1991, Hofstede and
Nieuwland 1993, Rolland and Prakash 1996, Jarke et al. 1994) and those that
emphasize the specification of modeling products and the tasks needed to make
them change (e.g. Marttiin 1994). The former can be used to describe, for
example, when and how inheritance structures are identified, and the latter also
in which technique it is represented. These processes are represented in process
or meta-activity models (Brinkkemper 1990). A process model is always related
to the conceptual structure of a method, but it can also be related to the notation
based metamodels, as in the latter example. The manipulation of models is
always dictated by tasks and decisions, whether or not these are defined in an
explicit process model. In this thesis, we do not consider the process-based
approaches to modeling techniques. The strategies of integrating a meta-data
model and a process model are discussed in Wijers (1991), Marttiin et al. (1995),
Tolvanen et al. (1993), and Kinnunen and Leppänen (1994). Classifications of
process models can be found from Dowson (1987) and surveys from Curtis et al.
(1992) and Finkelstein et al. (1994).

Other types of method knowledge are more poorly addressed in the ME
literature. One reason is the absence of such descriptions in the method books.
At the level of ISD participation, ME approaches define the stakeholders
involved and the organizational structures related to method use. The
metamodel of Tolvanen et al. (1993) includes agent models which specify the
activities performed and the agents involved. The Method Engineering
Language (MEL) of Harmsen (1997) allows the entry of different roles, such as
responsibility, for method components. Therefore, a participation model of ISD
defines, for example, who is responsible for finding and creating inheritance
hierarchies with class diagrams.

At the level of modeling decisions a variety of design rationale approaches
are proposed. These aim to record the design decisions made based on a
predefined schema (Ramesh and Edwards 1993). Originally the decision-
oriented models focused on decisions behind designs not behind methods, e.g.
why an inheritance between two classes is defined as virtual. Design rationale
can be also modeled in two other ways which are beneficial to ME: decisions
related to method use and decisions related to method construction. An
example of the former could be an IS developer’s justification why a concept of
virtuality is used in inheritance structures. Approaches of this type focus on
decisions related to the ISD process. The proposal of Rolland et al. (1995)
focuses on the specification of successive transformations of the modeling
product, from the viewpoint of the consequences of decisions. Jarke et al. (1994)

12 Although numerous process models have been proposed for software engineering (cf.

Armense et al. 1993), some of which can be used in principle to specify method-related
processes, we restrict our attention here to those explicitly developed for ME.

74

propose a traceability model for tracing processes defined in a guidance model.
An example of the latter would be a method engineer’s justification of why a
metamodel includes a concept of inheritance. Oinas-Kukkonen (1996) proposes
metamodel-related rationale, but does not explain its use in more detail. For
example, to which types of method knowledge should the decisions on method
use be related? Should it be used for recording why a certain concept was used,
why it was represented in a specific diagram, or why it was specified in a
certain phase of ISD, etc.

Finally, to our knowledge only Kumar and Welke (1984, 1992) have
directly focused in the ME literature on the development objectives and values
underlying methods. They proposed an ISD-Personal Value Questionnaire (ISD-
PVQ), consisting of 86 value concepts, with which a method stakeholder’s
values can be collected and their relevance can be assessed within three
different groups, addressing technical values, such as timeliness of information;
economical values, such as ISD costs; or socio-political-psychological values,
such as system responsiveness to people.

Although all types of method knowledge can be modeled with ME
approaches, it does not mean that all types of method knowledge are modeled
fully. First, there are many activities like brainstorming sessions, meetings, etc.
which are not even considered to be modeled with current ME approaches.
Second, part of the knowledge applied in carrying out ISD is tacit and therefore
not expressible. As a consequence, aspects of method knowledge which can not
be made explicit can not be improved through method engineering principles,
nor supported by ISD tools. Finally, it must also be noticed that there are
dependencies between different types of method knowledge (cf. Figure 2-2).
Therefore, in local method development it is not meaningful to focus solely on
one or a few types of method knowledge. For example, the balancing rules
(Yourdon 1989a) necessitate that a notation-related metamodel can recognize
mappings between data stores and entities, although these mappings do not
have a notational counterpart. Hence, it must be noticed that metamodeling is
difficult, if not impossible, to perform meaningfully without considering other
types of method knowledge.

3.2.3 Criteria for constructing methods

ME approaches must be also characterized according to the driving factors or
criteria used to engineer methods: it is not useful to perceive and model method
knowledge if you do not know how it should be analyzed, constructed and
maintained. Accordingly, most important to the success of ME is not how well a
method can be represented, but how the applicability of a method is improved.

In the following, ME approaches are analyzed based on which kind of
criteria they apply to achieve the methodical requirements of ISD. In principle,
these approaches fall into three categories, namely those describing the method
use environments, also known as contingency frameworks; those emphasizing
the importance of problems at hand to be solved by the method; and those
focusing directly on method users’ requirements. These approaches are
summarized in Table 3-2.

75

TABLE 3-2 Method engineering approaches and criteria.

Criteria Method engineering approaches

Contingency based Heym 1993, Vlasblom et al. 1995, Hoef and
Harmsen 1995, Punter and Lemmen 1996, van
Slooten and Hodes 1996, Harmsen 1997,
Brinkkemper 1996

Problem based Jarke et al. 1994, Punter and Lemmen 1996

Stakeholder value based Kumar and Welke 1984, 1992

It must be noticed that the three categories are not necessarily the same
approaches as those addressing types of method knowledge. Many of the
approaches discussed earlier focus mostly on metamodeling but do not
explicitly describe what should be done with the metamodels. Compared to
research on metamodeling languages, the criteria for engineering methods seem
to be less studied. It must also be noticed that they can overlap. For example, a
contingency framework can also include some criteria related to different type
of problem situations or aspects of the stakeholders’ values. Moreover, the same
criteria can be recognized with more than one type of method engineering
approach.

Each approach focuses on different aspects of ME, and they are therefore
limited to some extent. Below, we discuss their weaknesses and strengths as
principles for carrying out ME.

3.2.3.1 Criteria based on contingencies

The majority of ME approaches apply contingency frameworks (cf. Section
1.4.2) to characterize an ISD environment and to find situational requirements
for methods. This characterization is performed through an analysis of the
project’s context (Slooten and Hodes 1996), its environment (Harmsen 1997,
Harmsen et al. 1994b) or the profile of the situation (Vlasblom et al. 1995). The
content and objective of these approaches, however, are the same. The
applicability of a method is understood as the closest possible relationship
between the characteristics of the ISD situation and the characteristics of the
method.

The approaches analyzed use either an external contingency framework
(e.g. van Slooten and Hodes 1996), or relate some situation characteristics
directly to metamodels (Heym 1993, Heym and Österle 1991, Harmsen 1997).
An example of the former is the work of Punter and Lemmen (1996), who aim to
apply a contingency checklist to define project strategies and method objectives.
An example of the latter is Heym and Österle’s (1992) work where they collect
characteristics of a method into a metamodel based on fixed classification
schema. This classification includes parts focusing on the method (e.g. project
management, risk management, system development), application type (e.g.
expert, office or real-time system), and life-cycle of ISD (e.g. analysis,

76

maintenance). The advantage of relating contingency factors to the metamodels
is the close relation between factors and method components, whereas the
external contingency lists are often not explicitly related to method knowledge.

The advantages of using contingency frameworks are obvious. They
provide a high-level view of methods, and by covering several characteristics
they help identify characteristics of methods which might not otherwise be
noticed at all. Also, research has identified a wide variety of different ISD
characteristics. However, the use of the contingency approach in great detail is
costly as it requires a large amount of resources and skills to manage different
methods and situational characteristics (Avison 1996, Kumar and Welke 1992).
Its effective use is difficult, because it is almost impossible to classify, or to
identify, relevant contingencies beforehand. Moreover, and general to all
method development efforts, a combinations of various methods might be
impossible because of different and possible conflicting underlying
philosophies (Avison 1996).

To cope with the cost part, Punter and Lemmen (1996) aim to provide a
ready-made contingency list. However, such a list operates at the general level
of method knowledge, and does not allow other method choices than those
already prescribed. Examples of the use of contingency frameworks deal with
method knowledge in general, such as how much analytic modeling should be
used instead of prototyping, or whether methods should be customized (e.g.
Slooten and Hodes 1996). As a result, they can not be applied effectively in the
detailed construction of methods. For example, it is unclear how factors like the
stability of goals (in Slooten and Hodes 1996) or the amount of resistance can be
related to the construction or even selection of modeling techniques. Similarly,
most of the contingency-based ME criteria do not identify method knowledge in
detail. As an example, the concept of inheritance is not addressed in any of the
frameworks, although some of the mappings are relatively straightforward;
such as single inheritance in class diagrams when a specific programming
language is used. Because method knowledge is not addressed in detail,
construction and maintenance of methods is not possible with the contingency
frameworks discussed above.

Similarly, the cases related to detailed ME, such as customization of
techniques or tasks of the ISD process, discussed in Section 2.5.4 (e.g. (Russo et
al. 1996, Jaaksi 1997, Aalto 1993, Nissen et al. 1996, Kurki 1996, Tollow 1996,
Cronholm and Goldkuhl 1994) or field studies about ME (Smolander et al. 1990)
reveal that contingency frameworks for method selection are not used.
Similarly, the reported cases of ME (cf. Section 2.5.4) did not apply any
contingency frameworks. This does not mean that contingencies do not describe
characteristics of applicable methods. Instead it indicates how difficult they are
to use in the detailed engineering of methods. Finally, and maybe most
importantly, it should be noticed that none of the contingency criteria have been
validated for the task they have been proposed for. Although some of them
have been recognized to be relevant in past projects (e.g. Slooten and Hodes
1996), their usability in method construction has not been clarified. As a
consequence, we do not know whether they are relevant for method
construction, which deals with detailed method knowledge.

77

3.2.3.2 Criteria based on problem solving

An alternative and more detailed approach is to seek applicable methods or
their parts based on their description and problem solving capabilities. This
approach is closely related to the method knowledge behind modeling
techniques: how can relevant aspects of the object system be adequately
described with modeling techniques, and how they allow us to find alternative
solutions. This approach is more widely applied in practice (e.g. Jaaksi 1997,
Tollow 1996) because it is simpler and does not require as much knowledge and
resources to carry out as the contingency approach. As emphasized by Jaaksi
(1997, p 76), ME efforts take place under financial pressure to solve practical
problems. Accordingly, work done by other method developers is considered as
a contribution to the method only when it can be expected to produce a
significantly better solution (Jaaksi 1997). As March and Simon (1958) have
recognized, organizations tend to find satisfactory rather than optimal solutions.
The significance of a method solution is evaluated based on the problems at
hand, not only by characterizing contingency factors and their changes.

The use of problem-driven ME criteria in practice does not mean that it is
better. It has, however, some other advantages in addition to those mentioned.
First, since it is problem-focused and derives method requirements from the
current case, it is not so idealistic as the contingency-based approach. Second, it
is more open to new concepts of methods, because it is not restricted to
applying existing method-related situation characterizations. For example, in
Tollow (1996) difficulties in developer and end-user communication led to the
development of more readable and understandable notations. The resulting
modeling techniques were not available in other methods and thus had new
concepts and rules. Third, it is more open to the requirements of detailed
method knowledge. For example, in Jaaksi (1997) the interest in the modality of
dialogs of the user interface was added to the dialogue diagram. This modeling
technique was constructed by using the notation of state diagrams with added
new concepts, e.g. to describe which of the windows is the main window,
which are modeless, and what kind of tasks the user performs with the
windows.

Problem-driven ME also has shortcomings. It focuses only on problems
identified at the moment and provides little generalization possibilities through
frameworks. As with contingencies, the formulation of a problem-driven
method construction framework is difficult because of their generality and loose
connections to detailed method knowledge. For example, the framework of
Essink (1988), used by Punter and Lemmen (1996) in their MEMA model,
characterizes the problem domain according to four levels of abstraction (i.e.
object system, conceptual IS, data system and implementation) and eight aspects
(e.g. goals, dynamics, process structures). Methods are then allocated to the
same MEMA model for selection and construction. This approach would, for
example, locate ER diagrams and class diagrams under the same problem
solving situation. Thus, no distinction can be made between these modeling
techniques, or between different dialects of them. Instead, an inductive
approach has been proposed (Jarke et al. 1994): a framework should be

78

developed from expected problems and applied to method refinements. This
aspect is analyzed in more detail in Chapter 5.

3.2.3.3 Criteria based on stakeholders’ values

Kumar and Welke (1984, 1992) address the importance of stakeholders’ values
or design ideals as requirements of methods. A major difference and strength of
their ISD-PVQ technique is the emphasize on participation in ME: the users’
requirements are the most important aspect of ISs and therefore also of ISD
environments. Thus, the applicability of a method is considered according to
how well it supports the method stakeholders’ (developers, end-users,
managers, etc.) values and expectations of ISD. Simply, the methods developed
are more easily accepted if they satisfy the requirements of the method users.

ISD-PQV has also been applied in practice (Kumar and Welke 1984),
revealing the domination of technical and economical aspects of ISD at the
expense of other values. The need to change the focus of methods from technical
aspects of ISs is also noted by several other researchers (e.g. Lyytinen 1986,
Avison 1996). The traditional perspective has been to see an IS as a technical
innovation and focus less on behavioral and social consequences (Lyytinen
1986). The implication for ME is twofold: on the one hand, methods should
include participative and social components to compensate for the bias towards
technical and economic issues. Thus, stakeholder-driven ME approaches could
be used to move the focus of the ISD group towards other values and design
ideals. On the other hand, the current values of stakeholders are also major
reasons for the dominance of “hard” valued methods.

3.2.4 Implementation into ISD tools

The steps of ME can be supported by CAME tools. This means that the
deliverables, metamodels and ME criteria, can be stored in and retrieved from
the CAME repository, and methods can be compared, versioned, and adapted
into a CASE tool. The most studied tool functions have been capturing method
knowledge (cf. Heym and Österle 1993 , Harmsen et al. 1994a, Verhoef et al.
1991), and building generic CASE toolkits which can be customized for different
methods (cf. Teichroew et al. 1980, Chen et al. 1989, Sorenson et al. 1988,
Bergsten et al. 1989, Smolander et al. 1991, Rossi 1995, Grundy and Venable
1996, Kelly et al. 1996). The latter type of tools also interest us since we believe
that the results of ME efforts should be applied in ISD as a situational method.
Because of this focus, we view both the method and the supporting tool as an
end-product of the ME process.

The ISD tools can be further divided into two broad categories based on
how they model the object systems (Lyytinen 1987). These categories include
data-oriented and process-oriented approaches. In ME a similar division can be
also observed: there is a variety of metalanguages and CAME tools that model
the methods and support the storage of IS models made according to method
definitions (Sorenson et al. 1988, Smolander 1991, etc.). In the process camp 
with fewer representatives than the data-oriented camp  research has focused
on process representations and tools which support the enactment of defined

79

processes (Hofstede, et al. 1993, Wijers 1991, Hidding et al. 1993, Pohl 1996).
Since our focus is on the conceptual structure behind modeling techniques we
focus on data-oriented CAME tools.

In practice CAME technology is quite new. This can be observed from
CAME research which focuses mostly on tool building rather than investigating
their usefulness or usability (Tolvanen et al. 1996). For example, to our
knowledge only Marttiin et al. (1993) have analyzed metaCASE tools more
systematically in terms of their capabilities for establishing method-tool
companionship. The earliest pioneer SEM, (Teichroew et al. 1980) was
introduced only at the beginning of the 1980’s. Most current CAME tools are
outcomes of research projects, including MetaView (Sorenson et al. 1988),
MetaEdit (Smolander et al. 1990a, MetaCase 1994), RAMATIC (Bergsten et al.
1989), Quickspec (Meta Systems 1989), MetaPlex (Chen 1988), IPSYS Toolbuilder
(Alderson 1991), and MetaEdit+ (Kelly et al. 1996). During the last years
commercial CAME tools, such as IPSYS Toolbuilder, MetaEdit+ (MetaCase
1996a, 1996b) and Paradigm+ have also begun to appear in the market.
Commercial CAME tools are called metaCASE tools13 and we apply this term
because of its wider use. Marttiin et al. (1996) present a framework for
comparing and evaluating CAME functionality. Isazadeh and Lamb (1997) and
Kelly (1997) review and make partial comparisons of sets of CAME and
metaCASE tools.

MetaCASE tools use a set of primitives, which allow them to describe a
given method quickly and provide a set of mechanisms to implement tool
support for the modeled method. To establish method-tool companionship (cf.
Section 2.3.2) the method must be described using the metamodeling language
the tool applies. Ideally the metamodeling language used in method
construction is the same as that required by the tool, but often the tool-related
metamodeling language limits the adaptation (Cronholm and Goldkuhl 1994),
or other less formal metamodeling languages are used during the construction
and design phase. The result of a ME process is a customized CASE tool which
can assist ISD. The customized CASE tool is expected to produce, through its
support for the situation-specific method, positive effects on the resulting IS or
on the process of its development. In this sense metaCASE tools provide a new
approach to establish symbiosis between methods and tools, and offer more
degrees of freedom in method and tool selection (Tolvanen and Lyytinen 1993).

The CASE tools developed should not be viewed only as tools for making
abstractions. They should also include other functionality which are affected by
the method: checking, form conversion and review (cf. Section 2.3.2) are all
design steps which need to be taken into account during adaptation. First,
checking of the models is always dictated by the underlying metamodel.
Because some rules of the method knowledge can not be guaranteed or even
checked at modeling time, but only after models are made, the tool adaptation
also includes the implementation of consistency checking reports. Second, form

13 The terms CASE shell (Bubenko 1988) and metasystem (Sorenson et al. 1988) have also

been used. These terms usually refer only to functions which allow the implementation
of CASE tool support for a selected method.

80

conversions between different IS models (Fraser et al. 1991) or to programming
languages are driven by the underlying metamodel. In fact, requirements to
change metamodels often occur because of the demands to generate certain
programming code or analysis reports (cf. Section 5.1.2). Third, review of ISD
deliverables with end-users is largely carried out via the IS representations (i.e.
notations). This may require the use of less formal notations, or simplified
versions of the modeling techniques applied by IS developers (e.g. Tollow
1996).

Finally, an additional advantage of using metamodel-based tools is that
we can apply them to collect information on method use. In other words, using
metamodels we can examine in a systematic and rigorous fashion how
developers perceive the IS, in what notation the system is described, and how
the models are checked. For example, in relation to experience gathering the
metaCASE tools can be used to find which method knowledge is used or not
used during ISD. This aspect is discussed in more detail in Chapter 5.

3.2.5 Summary and discussion

The ME approaches described are proposed for representing various aspects of
method knowledge and for constructing this knowledge to meet different kinds
of situational requirements. The survey reveals a mechanistic view of ME
approaches: ME aims to develop methods by specifying and constructing them
like machines, and little attention, at least in the published ME literature, is
given to the introduction and use of methods. The approaches analyzed (cf.
Tables 3-1 and 3-2) also have a narrow view of the ME process and examine
method knowledge only at a coarse granularity. Regarding the types of method
knowledge at the metalevel (i.e. knowledge behind the methods of ME), most
research has only focused on metamodeling languages and conceptual
structures, and little effort has been expended on other domains, such as what is
the ME process in greater detail or what decision and criteria are relevant to
ME. Other more specific limitations of the ME approaches are discussed below.

First and foremost, almost all approaches assume a priori construction of
methods. Although some of the metamethods (e.g. Brinkkemper 1996, Punter
and Lemmen 1996, Harmsen 1997) acknowledge the importance of experiences,
they do not propose principles for identifying, collecting, and analyzing
experience-based method knowledge. If learning from method use is ignored,
methods can not be maintained or redefined based on experiences. This shows
that the approaches assume either explicitly or implicitly that contingencies and
problems are known beforehand and they are stable during the use of the
method constructed. Any changes after method construction, e.g. during tool
adaptation, method introduction, or method use, are not incorporated into the
methods. Although some of the ME approaches acknowledge the changes, they
do not include any steps or provide any mechanisms for refining methods.
These approaches do not fit with our view of method knowledge as
evolutionary (cf. Section 2.5.4): methods have evolved and changed in general
and in organizations, and there is no reason to expect that they would not
evolve in future. To our knowledge, only Jarke et al. (1994) focus on analyzing

81

method use as a part of ME. They propose a traceability model to record
process-related experiences. Yet their a posteriori ME approach does not consider
the refinement of other types of method knowledge based on such feedback.

Second, most of the ME approaches are biased towards the selection of
ready-made method components (or fragments). Their construction phases
mostly consist of composing existing method knowledge, and method choices
other than those already available are not considered. As a result, the ME
approaches expect that someone has already proved a method or its component,
and it is known to be applicable in specific ISD contingencies or problem
solving situations. This is paradoxical, since there has been little research
evaluating methods according to criteria used in method construction.

Third, the criteria (i.e. contingencies, problem characteristics, or values)
used in the ME approaches are far too general to direct detailed method
construction. Because of this, the proposed situation characterizations do not
support detailed analysis, construction, and refinement of method knowledge.
At best, the characterizations can be used to “prefer” a certain collection of
techniques and methods. For example, the approaches do not distinguish
techniques of object-oriented methods from techniques of structured methods.
Although these general driving factors of ME are important in understanding
and structuring method knowledge, the examples of local method development
show that methods are developed at a far more detailed level. Similarly, the
studies on individual designers’ understanding and use of methods indicate
that method knowledge is different at the detailed level (Wijers 1991): for
example, method knowledge is applied differently even at the level of single
concepts of a modeling technique.

To summarize, none of the ME frameworks provide explicit principles for
collecting and analyzing methods a posteriori and therefore do not explain how
method refinements can be carried out. In this sense, they aim to deliver a
method in terms of a constructed method, while little attention is paid to
analyzing how the method is used and whether it has been successful.

3.3 Metamodels and metamodeling languages

This section discusses metamodels and metamodeling languages as used in this
thesis to describe tool-supported modeling techniques. This discussion is
important because all ME is based on some formalism and because it deals with
our research question on modeling method knowledge. Accordingly, in the next
subsections we shall define metamodels and metamodeling. This is followed by
a representation of different types of metamodels, and especially metamodels
which are based on semantic data models.

3.3.1 Defining metamodeling and metamodels

Models play a crucial role in ME, as in all engineering. Only those aspects of a
method can be engineered which can be made explicit through a representation.
Modeling of methods is not important only in constructing methods, but has

82

also proven to have advantages in systematizing and formalizing weakly
defined methods (Tolvanen and Lyytinen 1993), providing a more “objective”
approach to comparing methods (Hong et al. 1993, Rossi and Brinkkemper
1996), supporting standardization efforts (e.g. Booch et al. 1997, OMG 1997),
and examining linkages between ISD methods and programming languages
(Hillegersberg 1997). Metamodeling is also successfully used in building
flexible modeling tools (Kelly 1997, Kelly and Smolander 1996), interfaces
between tools (CDIF 1997), and repository definitions (CASE Outlook 1989).
Metamodels can differ greatly based on their purpose and the type of method
knowledge considered. For example, Brodie (1984) analyzed various semantic
data models and showed that there is a need for application-specific data
models. Similarly, the ME frameworks and underlying metamodels focus on
different types of method knowledge (cf. Section 3.2.2).

In its simplest form we can say that a metamodel is a conceptual model of
an ISD method (Brinkkemper 1990). Metamodels can be further divided into
different types depending on what type of method knowledge is modeled.
Hereafter, we use the term metamodel to refer to a meta-data model which
describes the static aspects of a method. Consequently, metamodeling can be
defined as a modeling process which takes place one level of abstraction and
logic higher than the standard modeling process (van Gigch 1991). The
relationships between modeling and metamodeling are illustrated in Figure 3-3.

In metamodeling, the focus is on method knowledge applied in modeling. In
the case of meta-data modeling this means the conceptual structure and
notation of the method. Accordingly, the resulting metamodel captures
information about the concepts, constraints, rules and representation forms used
in modeling techniques. IS developers use this knowledge — although often
unconsciously — in IS modeling tasks (see Smolander et al. 1990). Clearly, no
modeling is possible without some sort of (explicit or implicit) metamodel. The

Develops

Develops

Represents

Instantiates to

Represents

Metamodeling

Modeling

An object system to
be modeled

Model of an object
system

Model of a method,
metamodel

Perceives

Perceives

FIGURE 3-3 Metamodeling and modeling (after Brinkkemper 1990).

83

same is also true for metamodeling as it also uses its own methods and tools
which, in turn, can be described one level higher in metametamodels (and so ad
infinitum).

Kotteman and Konsynski (1984) show that at least four levels of
instantiation are necessary to integrate the modeling of the usage and evolution
of ISs. A similar observation underlies the architecture of the ISO IRDS
(Information Resources Dictionary Standard, (ISO 1990)), and in the universal
framework for information activities by Auramäki et al. (1987). The levels and
their hierarchy are illustrated in Figure 3-4.

The application level includes application data and program execution. An
example of the former could be “Juha -Pekka Tolvanen” and an example of the
latter the procedure by which this data has been added or removed in the
application. This level corresponds to the instances of class-based languages and
to instantiations of an IS model.

The IRD level includes database schemata and application programs, plus
any intermediate specifications, and also specifications of non-computerized
activities (e.g. business processes and work flows). This corresponds to the class
level of class-based languages and instantiations of a metamodel (i.e. IS
models). An example of the information at this level would be a definition of
“customer” information as part of the database schema.

The IRD definition level specifies the languages in which schemata,
application programs, and specifications are expressed. It may also contain the
specification of possible static and dynamic inter-relationships between these
languages, for instance how various design models are linked. This corresponds
to the metaclass level of languages such as Smalltalk, and instantiations of a
metametamodel (i.e. metamodels). An example of the information at this level
would be the specifications of the ER diagram technique and its component
types, such as “entity” or “cardinality”.

}

IRD schema level

IRD definition
level

IRD level

Application
level

ME level

ISD level

IS use level

}}

FIGURE 3-4 ISO IRDS repository framework.

84

Finally, the IRD Definition Schema Level specifies a metametamodel
according to which the IRD Definition level objects can be described and
interlinked. An example would be ‘concept’ (Wijers 1991) or OPRR’s ‘Object’
metatype (Smolander 1992).

As the right side of the figure illustrates, these four levels can be grouped
into interlocking level pairs. The interlocking is necessary since making sense of
instances is not possible without type level information. To illustrate the
interlocking pairs in Figure 3-4 the boxes are joined, and to represent that the
number of instances is normally greater than the number of types the figure is
in the shape of a pyramid. Thus, the hierarchy can be understood as being
instantiations in which the higher level forms the type definitions for the lower
level instances, in the same way as classes define objects, and metaclasses define
classes. A level pair can also be intuitively understood as a database where the
upper level is the schema and the lower level the database state.

The lowest pair, IS use, corresponds to application databases, consisting of
a schema and of a database state used in daily business. At the database state
level the data element “Juha -Pekka Tolvanen” is useless if its type information
is not known (e.g. row in a customer table of a database). The middle pair, ISD,
corresponds to data dictionaries or CASE tool repositories used to store models
of IS. IS modeling tools also operate at this level. For example, an ER diagram
describes a “customer” as an entity. The topmost pair, ME , corresponds to meta
databases, such as metaCASE tools or CAME tools which store models of
methods, i.e. metamodels. Here the metamodeling language plays the role of
type information and modeling technique metamodels are viewed as instances.
For example, an “entity” is described as an object type, an instance of the
metatype ‘Object’, in an ER diagram metamodel. On the ISD level, types
included in a metamodel determine what one can observe or describe about the
application level while using the method.

Our research questions focus on the topmost pair of the IRDS framework.
The first question on metamodeling constructs seeks to find applicable concepts
and constraints for metamodeling languages, i.e. to define metametamodels. In
other words, metametamodels provide constructs for metamodeling languages.
The second research question on incremental ME deals with how the applicable
instances of the ME level, i.e. metamodels can be recognized and constructed for
ISD. Hence, the research itself can be placed above the IRD schema level, i.e. on
a fifth level.

Although we mostly operate with concepts of the ME level we sometimes
need to refer also to instances on the ISD level. To distinguish the concepts and
the level on which we currently operate we use the following naming
conventions. On the IRD schema level, we use the term metatype to denote any
of the concepts used in a metamodeling language. On the IRD definition level,
one of these metatypes is instantiated to describe a certain method component,
resulting in what we call a type (i.e. an instance in a metamodel). Hence, in ME,
an entity object type refers to an instance in a metamodel. This then itself plays
the role of type on the ISD level, when it is instantiated to an entity used as an
element in a model of the object IS.

85

Since some of the metamodeling constructs refer to instances of models,
i.e. to the IRD level we need to refer to them also. For example, to refer to all
entities described in an ER model we use the term instances of an entity object
type. Because the naming becomes complicated we use apostrophes to refer to
things on the IRD definition level. Hence ‘entity’ means the type described in a
metamodel. This means the same as an entity object type although the latter is
more precise, since it mentions also the metatype. Because in most cases the
metatype is clear, e.g. it is clear that ‘class’ is an object type not a relationship
type, we normally use the shorter naming version.

3.3.2 Types of the meta-data modeling languages examined

Starting from Teichroew et al. (1980), most of the meta-data modeling languages
rely on some existing semantic data model (Hull and King 1987). Two types of
semantic models, ER-based models and NIAM-based models, have been
investigated in particular. Extensions of the ER model (Sorenson et al. 1988,
Welke 1988, Smolander 1991, Venable 1993) seek to improve its expressive
power by suggesting new integrity constraints (Welke 1988, Smolander 1991,
Kelly and Tahvanainen 1994) and verification rules (Wijers 1991), and by
representing complex objects (Venable 1993). The NIAM-based conceptual
metamodeling formalisms (Bommel et al. 1991, Hofstede et al. 1993, Hofstede
and Weide 1993) pursue similar goals, but are often founded on a more formal
basis than the ER-based modeling languages.

The reasons for applying semantic data models in ME are the same as in
ISD. They are easy to use, support communication, and yet are powerful and
formal enough to describe methods and implement them in customizable ISD
tools. Moreover, methods in CASE tools are largely based on semantic data
models and thus their users are familiar with them. Some models, like ER or
NIAM, are even applied at both levels. Because of the symmetry between
models in ME and ISD the semantic data model based metamodels should be
easy to use and understand for method users. This is especially relevant for
incremental ME in which metamodels are constantly used to refine ISD
methods. The requirement for ease of use is further highlighted if the users of
the modeling tool or their customizers are not familiar with a specific
programming language.

Second, support for communication is especially important when multiple
method stakeholders need to agree on and participate in ME. Also, metamodels
can be applied for teaching (Mathiassen et al. 1996) and method related helps
can be generated from metamodels (e.g. MetaCase 1994). Support for easy use
and communication are achieved by the use of graphical representation in
metamodeling languages. Although some metamodeling languages seek to
model methods totally with graphical constructs (e.g. CoCoA (Venable 1993)),
in practice they all include some graphically “invisible” metamodeling
constructs. In other words, not all constructs of the metamodeling language
have notational support. Most of the approaches aim to add extra constraints
(Smolander 1992, Ebert et al. 1996), or whole constraint languages (e.g. ter
Hofstede 1993) to existing graphical metamodeling languages. Another

86

approach is to apply graphical metamodeling languages to describe only a
subset of the metamodeling constraints (e.g. Harmsen 1997).

From the method user point of view, easiness and support for
communication could be better achieved with a natural language, rich pictures,
or with other similar techniques, but they would not satisfy the third
requirement of formality. Moreover, these do not reflect any knowledge specific
to ME and metamethods: they do not explicitly describe or implicitly provide
guidance on which components, rules, or constraints of methods should be
considered during ME. In addition to pure representation of methods,
metamodeling languages should provide a formal basis for building tool
support. This means that all essential method knowledge must be captured into
the formal metamodel.

The modeling power and formality of metamodeling can also be
supported by other types of metamodeling languages. For example, for this
purpose Saeki and Wenyin (1994) adapted an object-oriented modeling
language called Object-Z. Ahituv (1987) introduces a formal metamodel which
views an information system as the data flow that moves from one state to
another, and by which some existing methods can be modeled. The work of
(Oei et al. 1992, Oei and Falkenberg 1994, Oei 1995) introduces a formal
language for modeling methods and transforming them into a method
hierarchy. Also set-theoretical constructs (Bergsten et al. 1989), and predicate-
logic (Brinkkemper 1996, Harmsen 1997) have been applied to metamodeling.
However, these fail in other criteria as they neither support communication nor
are they as easy to use as semantic data models (although some of them like
MEL have close connections with the data modeling side). Semantic data
models provide better modularity and maintainability, which are particularly
important for incremental ME. Moreover, the development of metamodeling
languages mainly to satisfy the modeling power aspect is questionable because
this requirement can already be supported with programming languages.
Hence, if we concentrate only on achieving the greatest possible modeling
power, assembler or C++ is close to the ultimate metamodeling language.

The requirements formulated above are important for incremental ME and
direct us to focus on semantic data models. Additional reasons for this focus are
the popularity of semantic data models as repository schemas (CASE Outlook
1989), and the dominance of their use in large metamodeling efforts (Hong et al.
1993, Heym 1993, Henderson-Sellers and Bulthuis 1996a, 1996b, Hillegersberg
1997) when compared to other types of metamodeling languages. The former
reason allows us to test and validate the metamodels in a tool environment (cf.
Section 4.2.3), and the latter reason to compare the metamodels.

3.3.3 Modeling power of meta-data models

Like other modeling languages, metamodeling languages focus on specific
aspects of the domain to be modeled, and therefore lead to different types of
representations. One major difference between these languages is therefore how
well they describe various types of method knowledge. This is related to our
first research question, since our aim is to improve the metamodeling power of

87

semantic data models. Ideally, a metamodeling language should capture
method knowledge as completely as possible (Griethuysen 1982, Welke 1988,
Brinkkemper 1990, Tolvanen et al. 1993). By complete we mean the 100%
principle suggested by Griethuysen (1982) in the context of metamodeling, and
Welke’s (1988) “no loss” criterion in the context of a repository metamodel.

In the following we consider a small example to illustrate the use of
different semantic data models in metamodeling. This allows us to describe
different approaches to define method knowledge and to introduce them for
later evaluation (cf. Section 4.5). We focus mostly on widely-known
metamodeling languages. These are summarized in Table 3-3 and illustrated in
the following subsections together with an example. The metamodeling
languages mostly follow ER-based models, except NIAM which can be
considered as an object-relationship model (Kim and March 1995), and MEL
which is based on first-order predicate logic, but uses an ER-based graphical
notation.

TABLE 3-3 Examples of metamodeling languages.

Acronym Metamodeling language name References

ASDM ASDM Heym and Österle 1992,
Heym 1993

CoCoA ComplexCoveringAggregation Venable 1993, Grundy and
Venable 1996

ER Entity-Relationship model Chen 1976

GOPRR Graph-Object-Property-Relationship-
Role model

Marttiin et al. 1995, Kelly et
al. 1996

MEL/MDM Method Engineering Language Harmsen 1997

NIAM Nijssen’s Information Analysis Method Nijssen and Halpin 1989,
Hofstede 1993

OPRR Object-Property-Relationship-Role model Welke 1988, Smolander 1992

The metamodeling example is based on a small piece of method knowledge as
follows:

In object-oriented design the life-cycle of class instances must be

specified with one or more state models. A state model contains states
and transitions between two states. A state must be specified by a name
and a class may have only one state with a given name. Each transition
must be specified with an action which is executed when a transition
occurs. An action is specified as an operation of a class.

This example deals mainly with knowledge related to a single modeling

technique, but also includes a connection to class diagrams. The example is
quite common in object-oriented methods (e.g. Coad and Yourdon 1991a,
Rumbaugh et al. 1991) but is made more explicit than is often possible to find
from method text-books.

88

The metamodels made were reviewed by the users or developers of
metamodeling languages, except the metamodel made with ASDM and MEL.
Users of these metamodeling languages were not available, and their
developers did not respond to our inquiries.

3.3.3.1 Entity-Relationship model

The ER model has been commonly applied as a schema for repositories (CASE
Outlook 1989), and most of the meta-data modeling languages originate from
the ER model. Therefore, several versions and dialects of ER modeling exist.
They vary based on whether attributes are allowed only for entities, whether
inheritance of entities is allowed, etc. (cf. Batani et al. 1992). Here we apply a
version of the ER model which allows the definition of attributes attached to
entities, and recognize cardinality constraints between entities (in an ER model
this constraint defines how many times instances of an entity can participate in
a relationship).

The reasons for extending the ER model for metamodeling are the same as
in extending it for IS modeling  its limited modeling power. Figure 3-5
illustrates limitations of the ER model with two versions of our state model
example.

State

Transition

State name State name

Action
Class name

Attributes

Operations

Class

State model State

Transition SourceDestination

Includes

Has

M

M 1

M

M

1
1

M

M

1

FIGURE 3-5 Two metamodels of state model defined with the ER model.

In the figure, entities are illustrated with a rectangle, relationships with a
diamond, and attributes with an ellipse. The cardinality constraints (1 or M in
the metamodel) are shown side-by-side with the related entity. The metamodel
on the left defines that each state can participate in several transition
relationships, and that states have state names. No information is given for
example on the state model itself, nor that transitions must be specified with an
action.

89

To specify all rules in the example, the metamodel could be defined
differently. For example, to specify that transitions are defined with an action, a
transition could be defined as an entity instead of a relationship. The larger
metamodel on the right illustrates this possibility. The cardinality constraint
value one defines furthermore, that a transition can not be an n-ary relationship.
However, when an entity type is used to represent a transition no distinction
can be made between design elements that can exist independently (i.e. states)
and design elements which exist between independent design elements (i.e.
transitions). Thus, in the latter version of the metamodel, there is no explicit
constraint (cf. Brodie 1984) to distinguish between transitions and states.
Moreover, the metamodel does not specify method knowledge adequately
because it allows transitions which are “unconnected” to states. This distinction
between states and transitions could be made with the first version of the
metamodel since in the ER model relationships can exist only when related to
entities. This constraint is thus inherent in the ER model (a basic semantic
property of the ER model, Brodie 1984). Moreover, other method knowledge
related to state modeling with object-oriented methods is not defined
adequately in either of the versions. For example, mandatory action names,
unique state names, and the requirement that every class must be specified with
state models are not captured with the ER model.

3.3.3.2 ASDM and the reference model of information system development

ASDM is a semantic data model developed at the University of St. Gallen and it
has been used to describe the reference model of ISD (Heym and Österle 1992,
Heym 1993). ASDM has also been used for metamodeling according to the rules
defined in the reference model (Heym 1993). The reference model includes the
widest range of method knowledge as it aims to cover other knowledge in
addition to that defined in modeling techniques (part of deliverable model of
the reference model). These extensions, excluded here, deal with the ISD
process, versioning of metamodels, guidelines for integrity, and method related
contingencies. Each of these is also represented with different metamodeling
languages. Based on the reference model another, existing, metaCASE tool was
used to develop a tool called MERET (Heym and Österle 1993), which could
represent and compare methods, but not implement them into a CASE tool.

ASDM is used as a notation to metamodel modeling techniques (cf. Heym
and Österle 1992). The notation of the language follows the ER model and
initially Chen’s (1976) version of ER model was used to define methods. The
extensions in ASDM deal with inheritance, aggregation and identifying
different concepts in the modeling techniques. These concepts are subtyped
from an entity type. Because of these extensions, our state model example can
be specified more adequately than with the standard ER model (cf. Figure 3-6).

90

Transition

State name

Action

Class name Attribute

Operation

State

Executes/ is
executed by

Has/
belongs to

N

1

1

1

1N

N

N 1

Class

Is in/ has
successor

Is in/ has
predecessor

N N

1 1

Operation
name

Attribute
name

1

N

1

1

N

N

1

FIGURE 3-6 A metamodel of a state model defined with ASDM (adapted from Heym 1993,
p 210).

Although the same entity symbol of ASDM is applied for most of the method
concepts, the reference model classifies them into meta-entity types, meta-
relationship types and meta-attribute types. Hence, a ‘transition’ is considered
as a relationship type and an action as an attribute type. Furthermore, meta
entity types are subtyped into fundamental entity types (i.e. state) and
structural entity types (class name) although this can not be easily noticed from
the graphical metamodel. Typically, structural entity types are results of an
aggregation relationship.

The metamodel based on the reference model shares some of the
limitations already discussed for the ER model. Links between modeling
techniques are not defined, uniqueness of state names is not defined, and
because minimum cardinalities can not be specified we can not define
mandatory relationships. Although the reference model distinguishes
techniques and their components, the “explains” (Heym and Österle 1992, p 11)
relationship does not allow the definition of any rules of the technique-related
connections other than the maximum cardinality. Hence, for example, the rule
that each class must be specified in one or more state models can not be
included in the metamodel. Moreover, the metamodels developed in Heym
(1993) do not include these types of connections. The focus of the reference
model, as reflected in its name, is on more general method knowledge and
therefore it lacks detailed metamodeling capabilities. In fact, Heym and Österle
(1993) aim to describe all method related knowledge at a high level of
granularity to understand and compare methods.

3.3.3.3 Object-Property-Relationship-Role model

The OPRR model has been developed by Welke (1988) and Smolander (1992).
The focus of the OPRR model has been from the beginning to specify single
modeling techniques. It extends the largely unspecified ‘role’ concept of the ER

91

model to clarify the way in which objects participate in a certain relationship. In
other words, the role defines what “part” an object plays in a relationship
(Smolander 1992). A role can have also properties. OPRR applies the same
representation as the ER model and the role type is represented by a circle.

This model forms a specification language for graphical method
representations in the MetaEdit tool (Smolander et al. 1991). MetaEdit can be
applied as a CASE tool (MetaCase 1994), metaCASE tool (Smolander et al. 1991),
or even to customize other metaCASE tools (Rossi et al. 1992). To better address
tool implementation and formalization of OPRR Smolander (1992) has added
additional constraints into OPRR, namely identifying properties, a duplication
policy for object types (whether homonyms are allowed), direction for
relationships and modeling technique related data types. A useful feature of
MetaEdit is that a graphical OPRR representation can be built up, and compiled
in this environment at any time during metamodeling. Therefore the
implementation of the CASE tool is easy and straightforward after the graphical
representation of the method in OPRR has been achieved (see Tolvanen and
Lyytinen 1993). This possibility allows testing the metamodel (cf. Figure 3-7) as
a “specification” for IS modeling.

M0
Transition from

M0
Transition to

State

Action

Name

Transition

FIGURE 3-7 A metamodel of a state model defined with OPRR.

Regarding extensions to the ER model, the transition now has an action, and
states are identified based on their names (double lined ellipse). The duplication
policy is also used for states (although not represented in the graphical notation
of OPRR): there can not be two different states with the same name. In modeling
this means that copies of the same state are allowed, and changing the name of
one state is reflected in all copies of that state. The uniqueness of states would
make better sense if a state had other properties, like actions executed in the
state (as in OMT, Rumbaugh et al. 1991).

Because OPRR focuses on specifying single techniques, a connection
between a class and a state model can not be specified. Of course, the
relationship could be specified with a normal OPRR relationship (like with the

92

second version of the ER-based metamodel) but no distinction could be made
between relationships between techniques and within a technique. Moreover,
mandatory actions can not be specified, nor actions referring to operations of a
class, nor that state names are dependent on the class they belong to. Thus,
according to the OPRR metamodel a state model of another class can not use the
same names for states (referring to different states).

3.3.3.4 Method Engineering Language

MEL is a language for describing and manipulating (i.e. selecting and
assembling) parts of ISD methods. It is designed specifically to support ME
(Brinkkemper 1996, Harmsen 1997). Because of its general focus on supporting
all ME tasks, MEL describes both product (i.e. conceptual structure and
notation) and process aspects of method knowledge. In this sense it is very
similar to ASDM (Heym 1993) although MEL has not been applied so
extensively to model ISD methods. Like ASDM MEL too has a supporting tool,
called Decamerone, for describing methods and customizing a third-party
repository (Maestro II). The selected repository, however, limits the number of
possible methods supported. Therefore Decamerone is limited to combining
existing methods which can be already stored with Maestro II (e.g. the support
for object-oriented concepts has only later been added into Maestro II).

Although MEL is founded on first order predicate logic, its relation to
semantic data models can be easily detected. Moreover, MEL also includes a
graphical modeling language which is a subset of MEL and very similar to the
ER and OPRR models. Figure 3-8 illustrates the metamodel of our example,
both with a textual and a graphical part of MEL. Parts of the metamodel which
are related to guiding the method selection and modeling process are excluded.

PRODUCT StateModel;
IS_A Product;
LAYER Diagram;
(- State;
 - Transition
).

PRODUCT State;
LAYER Concept;
PART OF StateModel;
ASSOCIATED WITH {(StateTransition_1, source),
(StateTransition_2, target)}.

PRODUCT Transition;
LAYER Concept;
PART OF StateModel;
ASSOCIATED WITH {(StateTransition_1,
has_source), (StateTransition_2, has_target)}.

ASSOCIATION StateTransition_1;
ASSOCIATES (State, Transition);
CARDINALITY (0,n; 1,1).

ASSOCIATION StateTransition_2;
ASSOCIATES (State, Transition);
CARDINALITY (0,n; 1,1).

FIGURE 3-8 A metamodel of state model defined with textual and graphical part of MEL.

State name

Action

State

Transition

StateTransition_2StateTransition_1

Target 0,n

has_target 1,1

has_source 1,1

Source 0,n

93

As the metamodels illustrate the textual and graphical part are largely
equivalent. Since the graphical part is only a subset of MEL it is not adequate to
define all the method knowledge of our example. The limitations are similar to
the limitations of OPRR. In MEL additional constraints can be specified with
predicate logic. For example, the following constraint to deny recursion could
be added to a transition relationship:

Rule1: forall T1 in transition forall A1, A2 in
State [has_source (T1, A1) and has_target (T1, A2)
implies not (A1=A2)];

These types of additions are possible for all metamodeling languages, but

they provide limited help for method modeling since they do not guide towards
modeling relevant aspects of methods. In other words, aspects which are not
required in ME at all can be defined as well. This is paradoxical because the aim
of methods is to focus attention on relevant aspects of IS, but on the metalevel
(i.e. metamethods) this requirement is often ignored. Moreover, as already
discussed, these extensions do not support maintainability, ease of use and
communication as well as semantic data models.

By inspecting the definition of MEL and example metamodels it is unclear
how all method knowledge related to the example can be specified with the
predicate logic extensions. These include identity and different scopes: for
example that each state must have a unique name among states of the class, and
that actions must refer to operations defined for the related class. Unfortunately,
the metamodels made to illustrate the use of MEL include only a few examples
of detailed metamodels of modeling techniques.

3.3.3.5 ComplexCoveringAggregation

CoCoA (ComplexCoveringAggregation) has been developed to support
conceptualization and data modeling of complex problem domains (Venable
1993). As stated in the name of the model, its extensions deal with modeling
aggregations which cover entities and named relationships, n-ary relationships,
alias naming, and entity categories (through the named roles they participate
in). CoCoA has also been applied in metamodeling (Venable 1993) and method
integration, and is intended to be used as a metametamodel for a modeling tool
(Grundy and Venable 1996). Most of the metamodeling efforts carried out with
CoCoA have focused, however, on data modeling techniques, and larger
metamodeling efforts including whole methods have not, to our knowledge,
been reported.

Since method knowledge can also be considered as a complex object, i.e. as
involving shared method elements and multiple levels of granularity, CoCoA
performs better than the earlier metamodeling languages (cf. Figure 3-9). The
metamodel specifies most of the method knowledge, such as identification of
modeling techniques and their components: that more than one state model for
a class is possible; and that transition relationships are binary. Furthermore, a
covering aggregation is used to describe the components of the modeling
technique (large gray box), and that a class can have several attributes and
operations. Moreover, an “action” alias is used to denote that class operations

94

are applied in transitions. This means that actions which are not described as
operations should not be possible. However, the dependency to operations of a
state model related class (or its superclasses) can not be specified.

Specify

Transition

State model

State

From To

Source (0,M)

Transition (1,1)

Destination (0,M)

Transition (1,1)

Specifies (1,1)

Is specified (0,M)

Action

State name Class

 Class model

 Class name

Name

Attribute

Name
"Action“

Operation

0,MO,M

FIGURE 3-9 A metamodel of a state model defined with CoCoA.

All method knowledge related to our example, however, is not specified even
with CoCoA. First, no possibility exists to define which attribute values are
mandatory: it should not be possible to define states without state names, or
transitions without actions, but the CoCoA metamodel does not distinguish
between mandatory and optional values. One possibility would be to model
mandatory properties with a single aggregate, like an attribute of a class, with
multiplicity value of one-to-one (1,1). Second, as in the ER model, the distinction
between a transition and a state is not clear since they are not sub-typed as in
ASDM (Heym 1993). However, with a minimum cardinality the mandatory
participation of each transition in both possible roles is guaranteed. The
difficulty to distinguish types which refer to a modeling technique (e.g. state
model) and its components (e.g. state) also exists because both are represented
as entities. Moreover, if the state model applied n-ary roles, the number of role
instances a relationship instance can or must have can not be specified with
CoCoA. Third, there is no specification of the requirement that a class can not
have several different states with the same name. Implicitly, we can expect that
each name must be unique, but CoCoA does not restrict the scope of instances
in which the uniqueness should be valid. For example, along all class diagrams,
classes with the same name typically denote the same class (e.g. Booch 1991),
but several classes can have states named similarly but which still refer to
different states.

95

3.3.3.6 Nijssen’s Information Analysis Method

NIAM (Nijssen’s Information Analysis Method) has been developed primarily
to support information analysis (Verheijen and Van Bekkum 1982, Nijssen and
Halpin 1989) but it has also been applied in several metamodeling efforts (e.g.
Wijers 1991, Hofstede 1993). It is also a good example of method evolution since
several versions of NIAM exist with a wide variety in the terminology. In the
metamodeling effort we have applied basic NIAM with the PSM extension
(Hofstede 1993). To our knowledge, no modeling tool using NIAM as a
metametamodel is available.

The NIAM/PSM based metamodel of the state model example is
illustrated in Figure 3-10. A state, a transition, a class, an attribute and an
operation are defined as object types and illustrated with circles. As with the ER
model, NIAM does not distinguish between relationships and objects. Although
transitions could be modeled as a relationship, the constraints could not be
specified as it is defined with an object type. Attributes, also called label types
(ter Hofstede 1993) or slots (Verheijen and Van Bekkum 1982) are similarly
represented with circles but the name of an attribute is described in brackets.

Class diagram

Class

(Class name)
Attribute Operation

Has

Of

Contains

Of

Provides

Of

(Operation
name)

(Return type)

Has

Of

Has

Of

State Transition

(State name) (Action)

has input is-input-of
State model

Has

Of

Has

Of

has output is-output-of

Is-
explosion-

of

Is-exploded-
into

FIGURE 3-10 A metamodel of a state model defined with NIAM.

The linkages between attributes and object types are described with
relationships (also called a bridge type or a fact type) although one-to-one
relationships (e.g. between a class and a class name) could also be defined by
adding the attribute name in brackets below the name of the object type. The
use of relationships has the advantage of illustrating different constraints. A

96

total role constraint, illustrated as a black dot on the object or attribute type part
of the relationships, specifies a mandatory role. For example, each state must be
described with a state name and all state names must belong to at least one
state. The uniqueness constraint, illustrated with arrows in role symbols, shows
which instances of a role or concatenation of roles must be unique. For example,
only one instance of a class name can appear in the relationship between classes
and class names. The uniqueness constraint is also used to define that each state
can have only one state name, and the same state name can be used as a value
for many states. The rule of the example that a class may have only one state
with a given name could be added to the metamodel as a relationship with a
uniqueness constraint, but then no difference could be made between different
kinds of relationships (i.e. those defined between states and transitions of STD
and those defined for describing constraints). The total role constraints in input
and output roles define that each state has an input or an output of a transition
and that each transition has a state as an input or output. This specification can
not be used as a metamodel for guiding modeling actively. According to the
constraints, creation of the first state would require creation of a transition
which could not be possible because other states are not available.

Although NIAM can support most constraints of a state model it does not
address multiple interconnected techniques. Therefore, the metamodel includes
PSM extensions (ter Hofstede 1993). Modeling techniques are defined as schema
types and illustrated as rounded boxes around technique related types. The
linkage between state models and classes is described as a NIAM relationship.
This relationship can be distinguished from other relationships because it is
drawn outside the schema types. The total role constraint and the uniqueness
constraint are used to define that each state model must be related to only one
class (i.e. other classes can not refer to the same state model). Finally, linkages
between the values of actions and operation names can not be defined with the
graphical constraints of PSM/NIAM. As with MEL, additional grammars like
LISA-D (Hofstede et al. 1993) have been proposed and could be used. For
example, a correspondence between an operation name of a class and an action
of a transition would then be:

Action of Transition PART-OF State model is-explosion-of
Class has THAT Operation name EQUALS Action.

3.3.3.7 Graph-Object-Property-Relationship-Role model

GOPRR (Graph-Object-Property-Relationship-Role) has been developed from
the OPRR data model (c.f. Smolander 1991, Marttiin et al. 1995, Tolvanen et al.
1993, Kelly et al. 1996, Kelly 1997). It has been developed specifically for
metamodeling. The GOPRR model is implemented in a MetaEdit+ metaCASE
tool (Kelly 1997, MetaCASE 1996a) which enables GOPRR-based metamodels to
be instantiated at any time in the same tool as a model.

We will apply GOPRR in method analysis and metamodeling in Chapter
4. Therefore, the GOPRR model is described in more detail in the appendix.
Here we briefly define the main extensions to OPRR. As the extra G in the
acronym indicates, the main extension is a graph metatype. It is a collection of

97

all other GOPRR types (including the graph type) chunked together into a
modeling technique. The GOPRR model also offers three semantic relationship
types between graphs and other non-property types (i.e. object, relationship and
role types): inclusion, decomposition, and explosion. Inclusion means that a
graph may consist of instances of particular object types, relationship types and
role types. Moreover, an object type in a graph type may be either decomposed
or exploded into another graph.

In addition to the graph metatype, GOPRR extends OPRR with an
abstraction mechanism to generalize and specialize non-properties. It applies
single inheritance, where an ancestor can contain a number of descendants, but
each descendant can have only one ancestor. Cartesian aggregation is defined so
that non-property types can contain any number of property types; in the other
direction, a property type can be shared by many non-property types. GOPRR
also applies cardinality constraints in a different way than in OPRR. In GOPRR,
cardinality defines a minimum and a maximum number of instances of a role
type a relationship type instance may have. In other words, this defines whether
relationships are binary, specific n-ary, or whether some roles are optional.
Other additions of GOPRR include local names for properties and a collection
data type14. These are described in the example and in the appendix.

Because of these extensions GOPRR can capture almost all the method
knowledge related to our example. GOPRR does not have a standardized
graphical notation (Kelly 1997). Rather, metamodels are specified through forms
represented as windows in MetaEdit+ tool (e.g. Rossi and Tolvanen 1995). One
main reason for this choice is the relatively large number of constraints which
are not best represented with a graphical notation. If they were added to
increase the picturability (cf. Venable 1993) it would make GOPRR-based
metamodel representations inherently complex. Graphical notations have,
however, been implemented for metamodel representations. Following Kelly
and Tahvanainen (1994) and Hillegersberg (1997) we have defined a similar
graphical notation to make metamodels readable and more comparable with
notations of other metametamodels. This notation is used to illustrate the
example metamodel in Figure 3-11.

In the GOPRR representation used, a technique is defined as a graph type
represented with a window symbol. Inclusion is described by drawing
components (i.e. types) inside the window symbol of a technique (i.e. graph
type). The relationship between a property and a non-property includes the
local name of the property in that non-property, whether it is unique there, and
whether it is the identifying property. For example, a class name is defined as
an identifier and is unique among all classes. These constraints are not added to
the property type because GOPRR supports reusability of types and these
constraints may be different in other places where the property type is used
(Kelly 1997). The data type of operations of a class is ‘collection’, and this is
illustrated with a double-lined ellipse. Hence, the metamodel specifies that each
class can have a collection of operations and each operation can be defined

14 Recently GOPRR has been extended with multiplicity constraints, and with checking of

property values through a constraint specification language (Kelly 1997).

98

through its name and return type. More generally, a property type can also be
linked to GOPRR types other than an object type.

String
State name

String
Class name

String
Operation name

Attributes Operations

State

State modelClass diagram

Class

1,1
Transition from

1,1
Transition toTransition

id

Name

id
Unique

Name

Action

Return type Operation
id

Name

id

FIGURE 3-11 A metamodel of a state model defined with GOPRR.

Property sharing is used in the metamodel to define that both transitions and
operations refer to the same operation name. For the purpose of state modeling,
an operation is called an action by defining the local name. Modeling the life-
cycle of classes with state models is specified with an explosion link represented
as a dotted line with a cross in a box and an arrowhead from the class to the
state model.

The GOPRR metamodel, however, does not define all method knowledge.
Mandatory actions and state names can not be defined because the metamodel
does not differentiate between optional and mandatory values. A recent
addition to GOPRR for checking property values, however, can support the
definition of mandatory properties. The uniqueness of state names depending
on the class can not be specified because the uniqueness constraint is relevant
among all instances (as with class names). Mandatory explosions (i.e. each class
has at least one state model) and that only one class can refer to a single state
model can not be specified. Moreover, although operation name and action refer
to the same property type, similarly to the CoCoA alias, no restriction can be
defined on the population of property type values. Hence, an action in a state
model can refer to any operation defined for any class. The correct definition
should be that an action can refer to any of the operations of the related class or
its superclasses.

3.3.4 Constructs of metamodeling languages

In this section we defined metamodeling in the context of ME and described a
set of metamodeling languages. Our focus is on semantic data models because

99

of their support for communication, ease of use, and a formal enough basis to
enable metamodel-based tool adaptation.

The set of metamodeling languages is illustrated by modeling a small
example of method knowledge. With respect to our first research question of
representing method knowledge “completely”, the metamodeling exercises
were used to analyze the modeling power of the metamodeling languages. This
revealed both similarities and differences among the constructs provided for
metamodeling, although the example was so small that not all limitations or
strengths could be described. This would require modeling a larger sample of
ISD methods, as performed in Chapter 4. The metamodeling exercises, however,
clearly showed the limitations of the basic ER model and showed how
additional constraints are used to model methods.

In this thesis our main interest is on finding essential metamodeling
constructs which could be used as predefined and generalized
(meta)knowledge about modeling techniques. In other words, constraints like
cardinality in the ER model and explosions in GOPRR already guide engineers
to identify, capture and construct certain aspects of method knowledge (i.e. for
each relationship at least the maximum cardinality must be examined). The
currently used constraints, however, are not adequate as the metamodeling
example clearly demonstrates. Hence, instead of applying programming
languages or additional grammars (e.g. Harmsen 1997, (ter Hofstede et al. 1993,
Saeki and Wenyin 1994) we seek constructs which are relevant in metamodeling
with semantic data models. The limited number of metamodeling constructs
will help method engineers to focus on perceiving known rules about method
knowledge, speed up the metamodeling process, and support communication
among the participants in ME efforts. Hence, our aim is to find constructs
specific to our domain of metamodeling, in the same way as developers of ISD
methods try to find constructs specific to their domains of application.

3.4 Summary of method engineering approaches

In this chapter we defined method engineering and placed our research in the
context of ME research. We analyzed the current understanding of ME in terms
of its process, the type of method knowledge “engineered”, and the criteria
used in method construction. First, related to the ME process, the analysis
shows the dominating a priori approach. Most principles are targeted toward
method selection and construction, and little attention is paid to analyzing
whether the constructed method is applicable in the task for which it has been
promoted, or could the method be improved. Hence, information about
methods and ISD contingencies is expected to be known completely in advance.
Moreover, learning from method use and the evolution of methods are ignored.

Second, we surveyed the ME criteria that have been proposed to construct
methods. These explain how the situational applicability of methods can be
improved. Of these approaches, we discussed those based on contingencies,
problems, and stakeholders’ values. Each of these approaches is limited in its

100

ability to guide method construction in detail. They are too general to provide
guidelines for constructing techniques or their parts for situational needs; they
rely on existing problems and contingencies; and they do not support the
creation of new knowledge originating from an organization’s own experiences.
Finally and maybe most importantly, none of these approaches seems to be
used systematically in an organization’s local method development efforts. This
is especially important since empirical studies of local method development
reveal that few organizations apply systematic customization processes
(Smolander et al. 1990, Cronholm and Goldkuhl 1994), but rather follow ad-hoc
practices (Hardy et al. 1996, Hughes and Reviron 1996).

Third, based on the shell model (cf. Section 2.2) we analyzed which types
of method knowledge are identified and subject to ME. We focused on
metamodeling languages targeted to representing the conceptual structures
behind modeling techniques. These are also most widely studied in the ME
literature. Since conceptual models describing methods should be based on
some knowledge representation scheme, we furthermore described a set of
metamodeling languages. We illustrated, through a small example, various
grammatical and notational constructs applied in metamodeling languages.
This example showed some differences and limitations in the metamodeling
constructs, and it serves as the background for a more detailed analysis of their
metamodeling support in the next chapter.

4 MODELING METHOD KNOWLEDGE FOR
MODELING TOOLS

4.1 Introduction

One part of engineering, and therefore also of method engineering, is concerned
with model building, analysis, and implementation tasks. Accordingly, it is of
great importance to understand how knowledge about model building,
analysis, and implementation can be captured, represented, and analyzed
(Welke 1988, Wijers 1991, Brinkkemper 1996). Therefore, in this chapter we shall
focus on our first research question (cf. Section 1.5.3) dealing with constructs of
metamodeling languages:

Metamodeling constructs are needed to model method knowledge as
completely as possible. By completely we mean the 100% principle suggested
by Griethuysen (1982), which has also been applied to the metalevel by
Brinkkemper (1990). The principle states that a metamodel should describe all
relevant aspects of a method. According to this ideal, a metamodeling language
should be capable of modeling all aspects of the method knowledge. It must be
noticed, however, that our focus is on meta-data models (i.e. on the static
conceptual structure behind modeling techniques, cf. metamodels in Section
3.3.3), and therefore we exclude the modeling of other types of method
knowledge (e.g. such as processes in Brinkkemper (1990), or participation in

“How completely can meta -data models represent knowledge about ISD
methods for modeling tools?”

102

Tolvanen et al. (1993)). Instead of focusing on general data modeling constructs
like classification, generalization, and aggregation provided by semantic data
models (Brodie 1984), we shall focus on specific constructs in metamodeling
languages that are essential in modeling methods. These constructs extend
available data modeling languages in several ways and provide a basis for
modeling method knowledge more completely. The proposed constructs are not
necessarily essential in other modeling domains, as some deal with specifying
knowledge about single techniques (i.e. their conceptual structures, rules and
constraints), and some with integrating multiple techniques into a method.

In seeking essential constructs for meta-data modeling we will follow an
inductive approach. We shall analyze in detail what kind of knowledge ISD
methods in computer-aided modeling tools include, as well as how and to what
extent this knowledge can be included into a metamodel which is based on a
semantic data model. The analysis of 17 ISD methods carried out as a
metamodeling task also includes tool adaptation for each method. This allows
us to obtain a detailed understanding of the structure and content of method
knowledge. The resultant patterns, categories and rules of a method, defined
here as part of method knowledge, are used to derive requirements for
metamodeling (Patton 1990). To our knowledge (cf. Tolvanen et al. 1996) this
kind of approach has not been applied to such an extent for analyzing and
developing languages for method engineering15. Because of the inductive
research approach, the proposed requirements for metamodeling can not be
claimed to be complete, but rather they represent an essential set of constructs
needed to model the modeling techniques of the selected “sample”. Additional
requirements for metamodeling languages may be found if more ISD methods
were included in the study.

We will assess the metamodeling capabilities of available metamodeling
languages based on the derived requirements: how do they satisfy the essential
need to capture and specify method knowledge and serve as a metametamodel?
Hence, this assessment extends the analysis of metamodeling languages
described in Section 3.3.3. It must be noted that our aim here is not to develop a
new metamodeling language, but rather determine a set of constructs applicable
for metamodeling, and which are necessary for “good” metamodeling
languages. The results of the assessment can be applied by developers of
metamodeling languages to improve their languages, and also by metamodelers
to specify methods more completely. These extensions will also be applied to
specify metamodels in the action research studies reported in Chapter 6.

The chapter will proceed as follows. In the next section we describe the
research method in more detail and discuss the metamodeling process. In
Section 4.3 we describe some of the metamodels which were developed and
CASE tools which were modified. Section 4.4 defines the essential
metamodeling constructs needed to model a single technique as well as a

15 A typical research approach is based on the selection of one (or a few) ISD methods as

examples, and on studying how they can be represented with the proposed
metamodeling language (e.g. Smolander 1992, Welke 1988, Hofstede 1993, Saeki and
Wenyin 1994).

103

complete method. In Section 4.5 a set of metamodeling languages is assessed in
terms of how they support metamodeling. Based on this assessment we identify
some limitations in the modeling power of semantic data models and highlight
aspects of method knowledge which can not be captured with their data
modeling constructs. This provides motivation for further research to extend
semantic data models with additional constructs. Section 4.6 summarizes the
chapter.

4.2 Method selection and method modeling process

Before analyzing and describing requirements for metamodeling languages we
shall first clarify our research method. We discuss how ISD methods were
selected for the study, how they were modeled, and how they were adapted
into a modeling tool. Each of these steps is described in the following
subsections in more detail.

4.2.1 Selecting methods for the study

In the selection of ISD methods we used several criteria. First, we chose
methods which are well-known or widely-used. This criterion ensures that the
metamodeling constructs are needed for modeling most of the methods used
today. Second, because we focus on representing method knowledge in
modeling tools, only those methods that could be supported through computer-
aided modeling tools were selected16. In fact, the selected methods are already
supported by another computer-aided environment, either in a method-
dependent CASE tool or in a metaCASE environment. Availability of tool
support also shows that the selected methods are known, and that they have
users. Otherwise there would hardly be such tools available.

Third, the primary criterion for method selection was to find a set of ISD
methods which represent diverse approaches and exploit different kinds of
conceptual structures. This selection criterion ensures that the metamodeling
constructs identified are valid for a wide variety of methods, not just, for
example, for modeling object-oriented methods. Therefore the chosen methods
include data modeling techniques, IS planning techniques, structured design
and analysis methods, object-oriented methods, and business modeling
methods. The relatively large number of object-oriented methods included can
be explained by the fact that they include more techniques and have richer
conceptual structures than other methods (Rossi and Brinkkemper 1996). As a
consequence, it is expected that the modeling of object-oriented methods will
necessitate the use of more powerful metamodeling languages. Table 4-1
provides a summary of the selected methods together with their individual
modeling techniques (i.e. each method consisting of one or more techniques).

16 The excluded methods typically focus on early phases of ISD, such as blackboard and

brainstorming based methods. Similarly, methods related to project management,
configuration management etc. are excluded from our study.

104

TABLE 4-1 Methods selected for metamodeling.

Methods analyzed Individual techniques

Activity Model
(Goldkuhl 1992, 1989)

Activity model
Goal list
Problem list

Demeter (Lieberherr et al. 1994) Demeter

BON, Business Object Notation
(Walden and Nerson, 1995)

System chart
Cluster chart
Event chart
Scenario chart
Creation chart
Static model
Dynamic model

BSP, Business Systems Planning
(IBM 1984)

Problem table
Process/entity matrix
Process/organization matrix
Process/system matrix
System/entity matrix
System/organization matrix

EXPRESS (ISO 1991) EXPRESS-G

Fusion
(Coleman et al. 1994)

Object model
Operation model
Object-interaction graph
Visibility graph
Inheritance graph

IDEF, Integration Definition
(Ross and Schoman 1977, FIPS 1993a, 1993b)

IDEF0
IDEF1
IDEF3

ISAC, Information Systems Work and Analysis of
Changes
(Lundeberg et al. 1981, Lundeberg 1982)

A-graph
I-graph
Problem table
Table of problem groups
Table of needs for changes
Table of interest groups
C-graph
D-graph

JSD, Jackson’s System Development
(Jackson 1976, Cameron 1989)

Data structure diagram
Program structure diagram

 (continues)

TABLE 4-1 (continues).

105

OMT, Object Modeling Technique
(Rumbaugh et al. 1991)

Class diagram
Data flow diagram
State transition diagram
Use case model

OOA/OOD, Object-Oriented Analysis and Design
(Coad and Yourdon 1991a, 1991b)

Object diagram
State transition diagram
Service chart

Moses
(Henderson-Sellers and Edwards 1994)

O/C model
Event model
Inheritance model

OODA, Object Oriented Design
(Booch 1994)

Class diagram
State Transition diagram
Object diagram
Module diagram
Process diagram

OODLE, Object-Oriented Design Language
(Shlaer and Mellor 1992)

Information model
State model
Action data flow diagram
Object access model
Process table

OSA, Object-Oriented Systems Analysis
(Embley et al. 1992)

Object-relationship model
Object-behavior model
Object-interaction diagram

SA/SD, Structured analysis and design
(Gane and Sarson 1979, Yourdon 1989a, Ward and
Mellor 1985)

Data flow diagram
RT data flow diagram
Entity relationship diagram
Structure chart
State transition diagram

UML, Unified Modeling Language
(Booch and Rumbaugh 1995, Booch et al. 1996,
Booch et al. 1997)

Class diagram
Use case diagram
Operation table
Collaboration diagram
State diagram
Composite diagram
Component diagram
Deployment diagram

4.2.2 Metamodeling process

The structure of the metamodeling process is summarized in Figure 4-1. The
universe of discourse is that of the selected methods, in contrast to modeling the
“real world”. Each method was examined and modeled using a metamodeling
language in a metaCASE tool. The outcome of the metamodeling effort, i.e. the
metamodel produced, was adapted into a tool environment and validated by
trying out the method in system modeling.

106

Method engineer
Perceives

Uses

viewpoint on

supports
Metamodeling

Defines a

Are used
to produce

 Metamodels

72 modeling
techniques

Universe of methods

language
MetaCASE

MetaEdit
MetaEdit+

tool

OPRR
GOPRR

Represent

FIGURE 4-1 Structure of method modeling.

Like any modeling task, metamodeling is driven by a number of objectives. In
our case metamodeling was based on a content analysis of the published
method literature. We tried to follow as closely as possible the method
descriptions given in the reference books (cf. Table 4-1) rather than deviating
slightly to better suit an envisaged use situation. Content analysis can be
defined as a process of identifying, coding and categorizing primary patterns in
data (Patton 1990). In our metamodeling study, relevant data about methods
was first collected and identified through the method literature. The method
literature basically describes the concepts, languages, notations and possible
requirements in building tool support for a method. Second, the data was
classified into distinct types, allowing us to simplify and systematize the
conceptual structure of methods. In our case the classification was based on the
metamodeling languages. Naturally, a metamodeling language with a given
classification schema restricts our view of methods. Third, the methods were
documented as completely as possible via the metamodels.

Another objective for the metamodeling task was the method-tool
companionship: the metamodeling task was conducted by examining how
selected methods could be supported by a tool. Therefore, the metamodels were
“executable” and implemented into a modeling tool (see Section 4.2.3).

The actual method modeling was conducted in two phases. In the first
phase, winter 1992-1993, we analyzed a set of methods and developed a set of
tentative metamodels (reported in Tolvanen and Rossi 1996). The second phase
took place in 1995-1996, when we analyzed and modeled the same methods in
more detail. We thus modeled the methods twice. During the first round, we
limited our focus to modeling individual techniques and their conceptual
structures, whereas in the second phase we focused on method integration, i.e.
how different techniques could be combined to form a “whole” method.
Because of our interest in tool-supported methods we applied two

107

metamodeling languages that are supported by metaCASE tools, OPRR (Welke
1988, Smolander 1992) and GOPRR (Marttiin et al. 1995, Kelly et al. 1996)
respectively17. These metamodeling languages were applied because of the tool
support available for metamodeling and testing the metamodels (cf. Section
4.2.3), because they succeeded relatively well in the metamodeling exercise (cf.
Section 3.3), and because our own metamodeling experience was mostly with
these languages.

During method modeling we distinguished the following set of tasks that
OPRR (Tolvanen and Lyytinen 1993) and GOPRR related metamodeling must
follow. These tasks, applied in several successful metamodeling efforts (cf.
Tolvanen and Lyytinen 1993, Rossi and Brinkkemper 1996, Hillegersberg et al.
1998), provided a more detailed view of the classification process of content
analysis as adapted to metamodeling. These tasks are:
1) Identification of the techniques in the method. Because each method can

consist of one or more techniques we first need to identify them (as listed in
Table 4-1). Most often an ISD method proposes a number of separate
techniques with different concepts and supporting notations, but a technique
can also include concepts that are shared with other techniques. For example,
in Embley et al. (1992) an object-behavior model (used for describing a life-
cycle of a single object through state transitions) can include interaction
relationships which are also applied in object-interaction models. Some
techniques can also be subsets of other richer and more complex techniques
in the same method. For example, in Fusion (Coleman et al. 1994) and in
MOSES (Henderson-Sellers and Edwards 1994) an inheritance graph includes
only a subset of the concepts used within an object model.

2) Identification of object types. The modeling of an individual technique
starts with resolving what kind of object (or entity) types a technique
recognizes. Object types can be defined as basic elements of a technique that
can exist independently of other types in a technique. Examples of object
types in a data flow diagram are ‘process’, ‘store’, and ‘external’.

3) Determination of properties for each object type. Each object type has zero
to many properties that characterize object type instances. Since object types
typically account for the majority of properties of a technique and properties
can be shared with other types (Rossi and Brinkkemper 1996), this task is
distinguished as a separate task. Identification of properties that belong to
types other than object types are discussed in task 6. Examples of property
types are ‘identifier’ and ‘name’ for an object type ‘process’.

 It must be noted that in GOPRR a property type can have an internal
structure, an identity constraint, and a local name. For example, the property
type ‘operations’ is of collection data type, and refers to the ‘operation’ object
type which it contains. This object type in turn consists of other property
types such as an ‘operation name’ and a ‘return type’ (cf. Figure 3-11). In
addition to defining a set of property types, one of them can be defined as an
identifying property type. In GOPRR, the identifying property defines which

17 These languages are discussed in Section 3.3.3, in the appendix, and in Tolvanen and

Rossi (1996).

108

property type is used as the non-property type’s name. For example, a name
of a class comes from its ‘class name’ property type, rather than from e.g. its
attributes (i.e. the ‘attributes’ property type). When attached to non-
properties, a property type can be re-labeled in the context of the attached
non-property. This allows to define property sharing between non-property
types: instances of two or more non-property types can refer to the same
property values (cf. Kelly 1997).

4) Determination of relationships. Object types are connected to each other
through a number of relationship types. This task deals with the
identification of those relationship types that connect object types. Examples
of relationship types are ‘data flow’ in a data flow diagram and ‘inheritance’
in a class diagram. It must be noted that these can not be defined as an object
type in GOPRR because that would lead to incorrect method definitions: in
the context of data flow diagrams this would allow data flows which are
unrelated to processes.

5) Determination of roles. After object and relationship types have been
identified, connections between these types need to be established. In the
metamodeling languages we applied, these connections are specified by
using role types. Examples of the role types are ‘sender’ and ‘receiver’
connected to the ‘data flow’ relationship type, and ‘subclass’ and ‘superclass’
connected to the ‘inheritance’ relationship type.

6) Allocation of properties to relationship types and role types. As with object
types, relationship and role types can also have properties. These can
typically be allocated to relationship or role types after all types have been
identified.

7) Determination of metamodels for individual techniques deals with making
all possible connections between the object, relationship and role types in a
single technique. The connections can be further specified according to the
cardinality: a minimum and a maximum number of instances of a role type a
relationship type instance can have.

8) Determination of linkages between separate techniques is needed to form a
whole method. Thus, the previous steps are carried out for each technique
individually. In general, these linkages define interactions between
techniques in two directions: horizontal and vertical (Lyytinen et al. 1991). In
the horizontal direction connections or constraints between types or instances
in different techniques are specified. For example, data stores in data-flow
diagrams are redefined for cross-checking with ER models. The vertical
direction refers to linking semantically equivalent descriptions at two
consecutive levels of abstraction, such as connecting an ER model with its
representation in a relational schema, or transforming a data flow diagram
into a structure chart (Yourdon 1989a).

9) Determination of the representational part of the method. The use of
methods in modeling tools necessitates the specification of notations such as
graphical symbols. The representations are needed because the descriptions
derived using the method are created, compared, and communicated by
humans (Harel 1988). Accordingly, we must define symbols and location
information for the elements of the method. Examples of symbols are bubbles

109

for processes (Yourdon 1989a), and a cloud for classes (Booch 1991).
Examples of location include placing elements in the horizontal axis of a
matrix and drawing superclasses above subclasses in a diagram. Typically
representations are expected to correspond one-to-one to the types specified
in a metamodel (Venable 1993). The representation aspect in a modeling tool
also includes dialogs, menus, and toolbars: to be used in a tool these must be
defined for the method as well.

10)Analysis and evaluation of the metamodel. Because method specifications
in the literature are often inconsistent, ambiguous and informal there are
several alternative ways to model a method. At this step different modeling
alternatives, or even versions of metamodels, are analyzed and assessed
based on the available method descriptions and modeling tools developed, to
ensure that all knowledge of a method is captured in the metamodel. At the
same time, we also discuss limitations of the metamodel and point out
constructs for modeling ISD methods more completely with a metamodeling
language.

Metamodeling, however, is not as straightforward a process as described

above. Rather it is an iterative process in which alternative ways to model
method knowledge are tried out, analyzed and compared on the basis of their
results (Tolvanen and Lyytinen 1993). For example, when several options for
understanding and modeling methods were available (e.g. because of poor or
imprecise descriptions of methods) we often tried several alternatives. This
naturally led to iteration between metamodeling tasks, and developing and
testing many versions of metamodels (at least two versions of each technique
were developed). Some of these metamodeling alternatives are discussed in
Section 4.3, in which the metamodels of three methods are represented. Also
some pieces of the methods already modeled by others (such as in Olle et al.
1991, Welke 1988, Brinkkemper 1990, Smolander 1992, ter Hofstede 1993,
Venable 1993, Hong et al 1993, Kinnunen and Leppänen 1994, Marttiin et al.
1993, Ebert and Süttenbach 1997, Süttenbach and Ebert 1997, Booch and
Rumbaugh 1995) were used to suggest alternative metamodeling decisions and
help validate that all parts of the method knowledge were captured.

Although the inductive research approach followed allows us to
generalize requirements for metamodeling languages, it also raises some
problems. The first one deals with the expressive power of the chosen
metamodeling languages (i.e. OPRR and GOPRR). Their predefined
classification schemata will influence our view of methods. Second, the
metamodeling languages applied could not describe all method knowledge.
However, those parts of the method knowledge which we were not able to
classify according to the metamodeling language, and thus not described in the
metamodels, were recorded into a diary. These additional descriptions were
attached into the metamodels as free-form descriptions and are also partly
discussed in Section 4.3 when we evaluate the metamodels. In fact, most aspects
of methods which could not be modeled are generalized as requirements for
metamodeling languages in Section 4.4. Because the tools were driven by the

110

metamodels developed, these unclassified aspects of methods were not taken
into consideration during the tool implementation.

4.2.3 Tool implementation

As mentioned above, method modeling included an examination of how the
selected methods could be modeled and supported by a modeling tool.
Consequently, methods were adapted into two metaCASE tools, called
MetaEdit (Smolander et al. 1990, MetaCase 1994) and MetaEdit+ (Kelly et al.
1996, MetaCase 1996a, 1996b). By adaptation we mean a representation of a
given method in a tool in such a way that the CASE tool can support modeling
tasks as prescribed by the method (Tolvanen and Lyytinen 1993). In the selected
metaCASE tools the adaptation is relatively easy and straightforward since
metamodels are almost directly applicable as method specifications in the tool.

More important than the tool support, however, was the possibility to
validate the metamodels. In every modeling task, the lack of correspondence
between the real-world and the model raises a question of validity.
Correspondence between ISD methods and metamodels is no exception. In our
case, tool-related metamodeling offered mechanisms to ensure an equivalence
between the metamodels at the type level (i.e. IRD definition level) and system
models at the instance level (i.e. IRD level) by modeling with the method: each
element in a model must have a corresponding element in the metamodel. In
this sense, the metamodels include only those concepts that are essential, and
can be supported by a modeling tool. This also confirms that the metamodels
are as complete as possible. Accordingly, the method examples shown in the
following sections include both the type level definitions (i.e. metamodels) as
well as some instance level descriptions (i.e. models). Similarly, Wijers (1991)
claims that complete metamodels are so complex that a full verification of them
without tool support is unmanageable. Tool support allowed us to check that
metamodels were complete in terms of the metamodeling language used, and to
make queries on the metamodels (e.g. what kind of relationships are possible
between selected objects, what properties are shared between elements of a
technique, etc.). The method specifications described in the following section
were produced by querying the metamodels that were stored in the repository.

4.3 Metamodels for method knowledge

In this section we shall analyze what kind of knowledge ISD methods include
and how this knowledge can be represented. This provides a basis for
identifying essential metamodeling constructs. Method modeling is illustrated
by representing metamodels of three methods, namely Business Systems
Planning (IBM 1984), Structured Analysis and Design (Yourdon 1989a) and
Unified Modeling Language (Booch and Rumbaugh 1995, Booch et al. 1996,
1997). These methods were selected as examples because of their different
nature and area of use, and because they demonstrate various kinds of
knowledge incorporated into methods. Metamodels of other methods are

111

available through the CASE tools adapted (cf. appendix), and can be found in
Tolvanen and Rossi (1996).

In the following, method knowledge is inspected on two levels. First, on
the metalevel, we apply the ten phases of metamodeling by specifying
individual techniques and by showing how techniques of a method are
interconnected. Second, we briefly demonstrate tool support by showing
instance level models as they are represented in a modeling tool.

4.3.1 Business Systems Planning

The modeled BSP was based on IBM’s Guide on Information Systems Planning
(IBM 1984).

4.3.1.1 Metamodel of BSP

In the following the metamodel is discussed based on the metamodeling steps
and the use of the GOPRR metamodeling language.

1) Identification of techniques. BSP includes six techniques: five matrix-
based techniques that focus on relationships between business processes, data
classes, systems, and organizational structures of a company, and a problem
sheet to analyze the business problems faced during the development of IS
architectures. Although the method also includes other project management
oriented techniques such as GANTT diagrams, study work plans, and product
lifecycle models, we focus here on design-related techniques. The techniques of
the BSP are defined as graph types with the GOPRR language, and can be
defined as follows (cf. appendix):

Graph types = { Process/Organization Matrix, Process/System
 Matrix, Process/Entity Matrix, System/Entity
 Matrix, System/Organization Matrix, Problem
 Table}

2) Identification of object types. In BSP, we distinguish five object types,
namely: ‘business process’, ‘data class’ (or entity), ‘organizational unit’,
‘system’, and ‘problem’18. A business process is defined as “a group of logically
related decisions and activities required to manage resources of the business”. A
data class denotes “a logical grouping of data related to things that are relevant
to the organization” (IBM 1984, p 29). An organizational unit denotes
departments involved in the study, and a system either existing or planned
information system. The object types can be defined as a set:

Object types = { Business process, Organization, Entity, System,
 Problem}

3) Determination of properties for each object type. Each object type is
described with its naming property, that conveys the meaning of an instance.
Because the name identifies all instances of an object type it is supposed to be
unique in order to avoid homonyms. As a result, it is not possible to have for

18 Hereafter we use apostrophes in the text to denote the types of a method.

112

example entities or systems with the same name (i.e. values). The ‘problem’ is
further characterized with six properties: a ‘problem cause’ to specify the reason
for the problem, a ‘problem result’ to specify what is the outcome of the
problem, e.g. how an organization must currently perform because of the
problem, a ‘value’ to relate estimated costs to the problem, a ‘causing process’ to
attach a business process that is related to the problem, a ‘causing entity’ to
attach an entity related to the problem, and a ‘suggested solution’ to describe a
proposed strategy for solving the problem.

4) Identification of relationships. Each of the matrix-based techniques
focuses on specifying some relationships between two different object type
instances. Accordingly, a relationship called ‘data usage’ defines the
information needs of processes. A ‘system support’ relationship defines the
systems that each process uses, and it is also applied in another technique to
define units of an organization that use systems. Thus, this relationship type
describes similar kinds of connections of systems in two different techniques,
reducing the number of concepts in the metamodel. A ‘responsibility’ is used to
relate stakeholders to processes: which units of an organization are involved
with the process. Finally, a ‘usage’ relationship specifies the entities managed
by the systems.

Relationship types = {Responsibility, System support, Data usage,
 Usage}

5) Determination of roles. In BSP all relationships are binary relationships
with two different object types. In GOPRR these relationships are defined
together with the role types and their cardinality rules. The role types identified
are ‘uses’ and ‘used’ for the ‘data usage’ relationship; ‘uses’ and ‘supports’ for
the ‘system support’ relationship; ‘performs’ and ‘is part of’ for the
‘responsibility’ relationship; and ‘system part’ and ‘data part’ for the ‘usage
relationship’. Although each object type could have their own role types, and
thus we could minimize the number of role types in the metamodel, we choose
separate role types for each relationship type. According to the GOPRR data
model, each role has a cardinality when bound to object and relationship types
(cf. Kelly 1995), defining the minimum and maximum number of role type
instances a relationship can have. In BSP all role cardinalities are one to one
(1,1): a relationship must be connected to only one instance of each role type.
The role types can be defined as a set:

Role types = { Uses, Used, Supports, Performs, Is part of,
 System part, Data part }

6) Allocation of properties to relationship types and role types. In BSP
all information related to connections between object types is related to
relationship types. The ‘data usage’ relationship type has a property type called
‘type of use’ since data use can be based on creation in which a process creates
an instance of an entity, or on using the information contents of an existing
entity (more specific usage types, such as update or read, can also be used).

A ‘responsibility’ relationship type specifies responsible organizational
units for each process. This involvement can be as a major responsible decision

113

maker in a process, having a major involvement in a process, or having some
involvement in a process. The ‘support’ relationship type has a property called
‘status’ describing whether the system support for the organizational unit or
process is current, planned, or hybrid (i.e. current and planned). Finally, the
‘usage’ relationship type does not carry additional properties. The allocations of
property types to other types can be defined as follows:

Properties = { Name, Organization name, Entity name, System name,
Relationship name, Type, Owner, Costs, Value adding, Value,
Problem result, Suggested solution, Problem cause, Causing
process, Causing entity, Responsibility type, Support
 status, Data usage}

Properties of types = {
 <Organization, {Organization name, Owner}>,
 <Business process, {Name, Type, Value adding, Costs}>,
 <System, {System name}>,
 <Entity, {Entity name}>,
 <Problem, {Problem cause, Problem result, Value, Causing
 process, Causing entity, Suggested solution}>,
 <Responsibility, {Responsibility type}>,
 <System support, {Support status}>,
 <Data usage, {Data usage}>,
 <Usage, {Relationship name}>}

7) Determination of metamodels for individual techniques builds up the
individual techniques by defining the bindings (Kelly 1995, Kelly 1997) from the
relationship types as follows:

Process/Entity Matrix = {<Data usage, {<Used, {Entity}>,
 <Uses, {Business process}>}>}

Process/Organization Matrix = {
 <Responsibility,{<Performs,{Organization}>,
 <Is part of, {Business process}>}>}

Process/System Matrix = {<System support, {<Uses, {Business process}>,
 <Supports, {System}>}>}

System/Entity Matrix = {<Usage, { <Data part, {Entity}>,
 <System part, {System}>}>}

System/Organization Matrix = {
 <System support, {<Uses, {Organization}>,
 <Supports, {System}>}>}

8) Determination of linkages between separate techniques. Since the
data gathered with BSP is interrelated, each object type except a ‘problem’ is a
part of several other techniques. Because the instances of object types are the
same in the matrices, i.e. an instance of the ‘organization’ object type can exist in
two modeling techniques, no actual linkages are defined in the meta-data
model. In fact, the use of the same instances between the techniques is more
dependent on the process in which the matrices are built, and thus should be
represented with a process model.

9) Determination of the representational part of the method. BSP
presumes a matrix and a table for representing models. Each object is
represented through its name shown on the axis of a matrix. The relationships
are located in the cells and only two relationship types have symbols according

114

to the value of their properties: the ‘responsibility’ property can be denoted
with different types of cross (i.e. X, X with a dot, and /), a ‘usage’ relationship
between the ‘data class’ and the ‘system’ object types is shown with an X, and
the rest of the relationships show the value of the relationship’s property.

10) Analysis and evaluation of the metamodel. The described metamodel
of BSP has some limitations because of the restrictions made to BSP, and
because of the metamodeling language applied. Naturally, BSP could be
modeled differently. To gather information on the distribution of processes and
data classes19, a ‘process’ could be further characterized with additional
properties, namely ‘security’, ‘auditability’, ‘volume’, and ‘responsiveness’. For
distribution analysis each ‘data class’ could be specified with its ‘use’, ‘audit’,
‘security’, ‘occurrence’ and ‘currency’ properties. These properties could be
attached to the ‘process’ and ‘data class’ types in the process/data class matrix,
or a separate matrix (i.e. a new technique) could be created. The definition of
data classes could also be supported by attaching a new property for
categorization: a data class denotes a person, a place, a thing, a concept, or an
event. Furthermore, to allow a description of each business process and data
class a ‘description’ property could be attached to the corresponding object
types. It must be noticed that the search for new method alternatives can lead to
modifications of a method or even to the creation of a wholly new technique.

The metamodeling language also caused limitations to the specifications of
BSP. Only those concepts of the method that could be described by the GOPRR
model (and can be supported by the CASE tool) were specified20. First, we
could not describe that each instance of an object type in a matrix must
participate at least in one relationship and can participate in many relationships.
This rule requires a constraint type for object type multiplicity in the
metamodeling language, as discussed in more detail in Section 4.4.1.6. Later
extensions of GOPRR include, however, such a multiplicity constraint (Kelly
1997). Second, we did not describe that a data class can not be created by more
than one process although it could be possible to divide the data usage
relationship into two different types, i.e. ‘create data class’ and ‘use data class’
relationship types, and a ‘create data class’ could have only one connected
process.

Third, the metamodel does not specify the grouping of a set of processes,
and the composition of a set of data classes, processes, and their connections
into a module of an architecture plan. This would require a constraint for
describing a composite of objects and relationships as discussed in Section
4.4.2.2. The main reason for excluding these rules of the method was the limited

19 The analysis of distributed information systems is an extension of a basic BSP and thus

excluded from our method analysis. For the same reason, an optional technique for
analysis of critical success factors was also excluded. Similarly, techniques for ranking
development priorities and project management were not included.

20 It must be noted that not all method knowledge described with the GOPRR model is
included into the set-based definitions. These include cardinality constraints of roles,
data types of properties, identifiers of types, and uniqueness of property types. These
are, however, implemented in the tool-based metamodels and contained into the
discussion of the essential constructs of metamodeling languages in Section 4.4.

115

tool support: the tool used did not provide support for representing these
constructs of a model in a matrix form as described by the method.

Fourth, we could not describe mandatory properties, so it was not possible
to define for example that each business process must have a non-empty name.
The specification of mandatory properties would require an additional
construct in the metamodeling language (cf. Section 4.4.1.3). Finally, we could
not describe the heuristic rules of the method. An example of these rules is the
recommended population of 30-60 data classes that could be found in an
average organization and specified within the matrix models (i.e. modeling of
data classes should not be more detailed in system architecture plans).
Similarly, the capturing of multiplicity of types would require an additional
metamodeling constraint as discussed in Section 4.4.1.9.

4.3.1.2 Instance models of BSP

Because the methods modeled were also adapted in a modeling tool we can
demonstrate the tool support by showing instance level models made with the
metamodel developed. The examples of BSP include two matrixes, namely
process/entity and system/ organization. Both contain instances of all types of
the techniques. In the ‘process/entity’ matrix the horizontal axis contains
entities, and the vertical axis contains processes. The cells of this matrix include
data usage relationships: how each process uses each data class. In the
‘system/organization’ matrix units of an organization and systems are shown.
The former on the vertical axis and the latter on the horizontal axis. The cells
describe the current status of the system support for each organization.

FIGURE 4-2 Instance models described with BSP.

116

These examples show that the metamodel is complete, because it can represent
matrixes as described in the method book, and also follow the constraints of the
method. For example, it is not possible to relate two business processes directly
through a ‘system support’ relationship type. Both of the matrixes show
instances of all types found from these techniques, expect role instances which
do not have any explicit representation in BSP. All in all, the correspondence
between the elements of the metamodel and the instance level is clear.

4.3.2 Structured Analysis and Design

Although there are several structured methods available (e.g. DeMarco 1978,
Gane and Sarson 1978, Yourdon 1989a) we selected Yourdon’s (1989a) version
with the original ER model (Chen 1976) for closer analysis. It includes more
individual techniques than other dialects with a structured approach and
describes the linkages between different techniques in more detail.

4.3.2.1 Metamodel of SA/SD

As with BSP, the metamodel of SA/SD is discussed following the
metamodeling steps and documented with the GOPRR metamodeling language.

1) Identification of techniques. The main techniques for analysis and
design include a data flow diagram (DFD) for describing a network of
functional processes, an entity relationship diagram (ERD) for specifying the
stored data layout of a system, a structure chart (SC) for describing data
interfaces between components, and a state transition diagram (STD) for
specifying the time-dependent behavior of a system. According to the GOPRR
language these techniques can be defined as the following graph types:

Graph types = { Data Flow Diagram, Entity Relationship Diagram,
 Structure Chart, State Transition Diagram}

2) Identification of object types. Unlike BSP, in SA/SD each individual
technique has separate object types. DFDs have three object types, ‘process’,
‘store’ and ‘external’ (sometimes also called a terminator). ERDs contain three
object types, ‘entity’, ‘attribute’ and ‘relationship’, and both SCs and STDs
include only one object type, ‘module’ and ‘state’ respectively.

Object types = { Process, Store, External, Attribute, Entity,
 Relationship, Module, State}

3) Determination of properties for each object type. Because of the pen-
and-paper mentality of SA/SD each object type is described with only a few
properties, shown also in the diagrams: only a naming property type is used for
most of the object types. The name must be unique among all components to
avoid homonyms in the data dictionary. In GOPRR a property type can be
renamed with a local name, hence the same property type (i.e. the ‘name’) can
be labeled with a ‘store name’ and a ‘process name’ but they still refer to the
same property type. Because Yourdon and some other method developers have
proposed the use of numbering for processes a ‘process ID’ is also defined.
Other modeling information on object type instances is typically added into an

117

additional data dictionary including, for example, a definition and examples of
each instance. Therefore, in the metamodel a ‘documentation’ is added for each
object type. The ‘attribute’ object type is furthermore characterized with two
additional property types: ‘type of data’ (e.g. integer, Boolean) and ‘constraints’
(e.g. primary key, not null).

4) Identification of relationships. Since each technique includes different
object types the relationship types are separate between techniques as well. In
DFDs, SCs and STDs only one relationship type exists. A ‘data flow’ describes
the movement of chunks or packets of information between the object types of
DFDs; a ‘call’ specifies a synchronous hierarchy of modules in SCs; a ‘transition’
describes possible changes between states. In ERDs two different types of
relationships exist, one between an ‘entity’ and a ‘relationship’, called ‘in
relationship’, and one between an ‘attribute’ and the other object types called
‘attribute of’. In other words, both entities and relationships can have attributes.

Relationship types = { Data flow, In relationship, Attribute of,
 Call, Transition}

5) Determination of roles. In SA/SD all relationships except the ‘data
flow’ are binary with two instances of role types. According to our GOPRR
definition of roles, a ‘data flow’ has two roles called ‘sends’ and ‘receives’. Since
data flows can diverge, a cardinality constraint for a receiving role is one-to-
many (1,M). In GOPRR, a cardinality constraint defines how many instances of
a given role type can exist for a relationship type instance (Kelly et al. 1996). The
other role types identified are listed in set form below. The ‘sends’ and
‘receives’ roles are also used for the ‘transition’; an ‘owner part’ and an
‘attribute part’ are used for an ‘attribute of’ relationship type; an ‘entity part’
and a ‘relationship role’ is used for the ‘in relationship’; and a ‘call from’ and a
‘call to’ for the ‘call’ relationship type. The minimum and maximum
cardinalities for the other roles are one-to-one (1,1): an instance of a role type
must be connected to only one instance of a relationship type. The set of role
types is:

Role types = { Receives, Sends, Entity part, Owner part, Attribute
 part, Relationship role, Call from, Call to}

6) Allocation of properties to relationship types and role types. In ERD
relationship types do not have any explicit properties: they just relate object
types together. A ‘data flow’ can be characterized with its name and
‘documentation’ property type, a ‘call’ has a ‘call name’ and a ‘parameters’
property type to specify the parameters sent in the subroutine calls. A
‘transition’ relationship type is characterized with three property types: a
‘condition’ that must be met to change the state, an ‘action’ that the system takes
when the state is changed, and ‘documentation’ for adding a textual description
of the transition into the data dictionary.

Role types have properties only in the ERD technique. The ‘entity part’ has
a ‘cardinality’ property for specifying how many times an instance of the
‘entity’ can relate to another instance of the ‘entity’ through a relationship. The

118

properties and their allocation to object, relationship, and role types are
specified in GOPRR as follows:

Properties = {Process name, Process ID, Documentation, Name, Flow
 name, Cardinality, Constraints, Type of data, Attribute
 name, Relationship name, Entity name, Module name,
 Parameters, Call name, Action, Store name, Condition,
 State name}

Properties for types = {
 <Process, {Process ID, Process name, Documentation}>,
 <Store, {Store name, Documentation}>,
 <External, {Name, Documentation}>,
 <Data flow, {Flow name, Documentation}>,
 <Attribute, {Attribute name, Type of data, Constraints,
 Documentation}>,
 <Entity, {Entity name, Documentation}>,
 <Relationship, {Relationship name, Documentation}>,
 <Entity part, {Cardinality}>,
 <Module, {Module name, Documentation}>,
 <Call, {Call name, Parameters}>,
 <State, {State name, Documentation}>,
 <Transition, {Condition, Action, Documentation}>}

7) Determination of metamodels for individual techniques. Types in
each individual technique are defined by mappings from the relationship types
as follows:

Data Flow Diagram ={<Data flow,{<Sends, {Process}>,
 <Receives,{Process, Store, External}>}>,
 <Data flow,{<Sends, {Store, External}>,
 <Receives, {Process}>}>}

This definition follows the rules of DFDs preventing data flows between
stores and externals. Real-time extensions to the DFD could be included by
defining the related types and bindings as follows:

Real-time Data Flow Diagram = {
 <Signal flow, {<Event from, {Control}>,
 <Signal to, {Process, External, Control,
 Buffer}>}>,
 <Signal flow, {<Event from, {Process, External, Buffer}>,
 <Signal to, {Control}>}>,
 <Discrete data flow, {<Sends, {External, Store, Buffer}>,
 <Receives, {Process}>}>,
 <Discrete data flow, {<Sends, {Process}>,
 <Receives, {Process, Store, External,
 Buffer}>}>,
 <Deactivation flow, {<Event from, {Control}>,
 <Deactivated, {Process}>}>,
 <Continuous data flow, {<Sends, {Process}>,
 <Continuous, {Process}>}>,
 <Activation flow, {<Event from, {Control}>,
 <Activated, {Process}>}>}

Entity Relationship Diagram = {
 <Attribute of, {<Owner part, {Entity, Relationship}>,
 <Attribute part, {Attribute}>}>,
 <In relationship, {<Entity part, {Entity}>,
 <Relationship role, {Relationship}>}>}

Structure Chart = {<Call, {<Call from, {Module}>,
 <Call to, {Module}>}>}

119

State Transition Diagram = {<Transition, {<Sends, {State}>,
 <Receives, {State}>}>}

8) Determination of linkages between separate techniques. Unlike in
BSP, techniques of SA/SD model a system using techniques that do not share
types, i.e. use the same type in several techniques. Thus, each technique focuses
on separate types in describing the system. Instance information can, however,
be shared as discussed below. In the following the top-down approach and
balancing rules of SA/SD are modeled with GOPRR using explosion and
decomposition based linkages. First, because the DFD forms the dominant view
of the system, each process can be decomposed into a submodel of a DFD (i.e.
functional decomposition). Processes can also be exploded into a SC to specify
subroutines and modules of a process, and into a STD to specify which
transitions change the state of the controlling process and send or receive data
flows from other processes. Second, as data stores of DFDs and entities of ERDs
must be balanced, each data store in a DFD can be exploded into an ERD to
specify the schemas of the database. Matching store names to entity names on
the instance level is achieved in GOPRR by using the same property type for
both types. Only their local name may differ (i.e. the metamodel definition
shows local names for store and entity, but they refer to the same property
type). Third, the STD allows decomposition to partition states. The same
partitioning could be applied for the SC as well. It is not defined here, because a
single SC should not include modules of several processes. Instead, according to
SA/SD the process should be decomposed into subprocesses that have a
simpler structure in terms of a number of modules and their subroutines.

Data Flow Diagram:
Explosions = { <Store, {Entity Relationship Diagram}>,
 <Process, {Structure Chart, State Transition Diagram}>}
Decompositions = {<Process, {Data Flow Diagram}>}

State Transition Diagram:
Decompositions = {<State, {State Transition Diagram}>}

9) Determination of the representational part of the method. In SA/SD
all techniques are graphical notations except the process specification. During
method implementation all graphical representations were defined as
illustrated in Figure 4-3. Notational aspects that were not possible to define
during the adaptation are the representation of relationships in a functional
decomposition (i.e. relationships mapping to parent diagram and represented as
“dangling” links with one connected object type only), and the tree structure of
the SC diagram (i.e. each calling module should be located above the modules
called). Other techniques do include similar location recommendations though.
For example, in DFD externals are most often placed on the sides of a diagram.

10) Analysis and evaluation of the metamodel. Because of the several
informal definitions of SA/SD, it is possible to model techniques in many ways.
For example, a ‘decision’ in the SC could be included into the metamodel either
by specifying a new role type, such as a ‘decision’, by adding a relationship
type, such as a ‘call based on decision’, or by adding a property type for the
‘call’ relationship (see also Welke 1988). Moreover, supertype/subtype

120

relationships and indicators for associative object type in ERD are not
modeled21. Also, the data dictionary and process specification are not included,
although one can form a dictionary by using information entered into the
documentation properties attached to types (i.e. using form conversion
mechanisms, cf. Section 2.3.2).

A more important aspect of evaluation is how completely the SA/SD
method is modeled and therefore implemented into a CASE tool. Because of
limitations in GOPRR and OPRR, some aspects of SA/SD were not captured
and supported by tools. First, in a data flow diagram a process should be
described in more detail either with an additional subdiagram or with a
structure chart, but not by using both techniques. Such a restriction between
explosion and decomposition can not be specified with GOPRR. These require a
more detailed definition (cf. Section 4.4.2.3). Second, iteration calls between the
modules could not be restricted with GOPRR, requiring an additional
metamodeling constraint (cf. Section 4.4.1.8). Third, transformations that could
be automated, such as transformations from a DFD into a SC at the same level,
are not supported. Fourth, and similarly to the BSP metamodel, identifiers and
uniqueness of property values were not defined adequately. It was not possible
to restrict these to the scope of a single diagram. For example, according to the
metamodel each name of a state is unique among all diagrams, not just inside
one diagram as required. To model these rules a metamodeling language
should allow the specification of different scopes for the method rules (cf.
Section 4.4).

Fifth, the metamodel does not support all the balancing rules of SA/SD,
such as a correspondence of data stores to entities (based on their names) or
correspondence of conditions in state transition diagrams to data flows.
Furthermore, dependencies of the property values should be included into the
metamodel as well: the possible values for a condition in a state transition
diagram can be only those defined in data flows that a related control process
receives. Modeling of the balancing rules and dependencies of related instances
would require additional metamodeling constructs as discussed in Section
4.4.2.4. Finally, the metamodel does not include multiplicity rules defining the
number of roles an object can participate in (cf. Section 4.4.1.5).

21 Modeling of these concepts, however, is taken into account and specified in the

metamodel of UML (cf. Section 4.3.3).

121

4.3.2.2 Instance models of SA/SD

Figure 4-3 illustrates an example of the use of two techniques in the modeling
tool. The upper window shows some processes and data flows of a sales system.
To show instances of property definitions and a decomposition, a process called
verify orders is viewed with its properties, and the status bar of the window
shows that the process is decomposed into a subdiagram. The lower window
shows a structure chart.

FIGURE 4-3 Two instance models of SA/SD: a data flow diagram and a structure chart.

4.3.3 Unified Modeling Language

After modeling two relatively simple methods we shall next model one of the
most complex methods found, the Unified Modeling Language (UML). Because
the standardization of UML was under development at the time of
metamodeling, the metamodels discussed here are based on several

122

publications about the method and its versions (cf. Booch and Rumbaugh 1995,
Booch et al. 1996, 1997).

4.3.3.1 Metamodel of UML

As with the earlier metamodeling cases, specification of UML follows the
metamodeling process described in Section 4.2.2.

1) Identification of techniques. UML includes as its main techniques a
class diagram, a collaboration diagram and a use case diagram. Other diagram
types22, mentioned below as graph types, have a simpler structure and they are
not applied as often. We also make some simplifications in techniques by
joining the category diagram and class diagram as they include the same types.
The only difference is that a category diagram shows instances of a ‘category’
only, whereas class diagrams can include instances of both a ‘class’ and a
‘category’. The composite diagram has been included in the graph types to
support context diagrams for instances of classes (called composites in UML). In
a later extension (Booch et al. 1996, 1997) all techniques are expected to use
categories, renamed now as package, for organizing large models.

Graph types = { Class diagram, Use case diagram, Collaboration diagram,

State diagram, Component diagram, Deployment diagram,
Operation table, Composite diagram}

2) Identification of object types. Because of the unfinished documentation

and relatively complex conceptual structure of UML, several alternative
interpretations and consequent modeling decisions of object types can be made.
First, template classes are not distinguished as a separate type because template
parameters denoting generic classes are not mandatory, i.e. a ‘class’ without
defined template parameters is considered to be an ordinary class. Second, a
utility class is not identified as its own object type. Rather it is distinguished
with a property attached to each class (discussed in the next task).

In addition to the object types of a class diagram, the GOPRR metamodel
includes some constraints of UML modeled as object types, such as an
alternative association (i.e. ‘or-constraint’) and ‘parallel inheritance’. Parallel
inheritance hierarchies, however, could also be described with a property type
referring to another hierarchy of the same superclass (i.e. to another inheritance
relationship). The fourth major modeling alternative would be to distinguish
objects of a class diagram and a collaboration diagram into separate types
instead of using a single type in both techniques. Overall, the following set of
object types describes one possible outcome of object type identification.

Object types = { Class, Instantiated class, Object, Category, Or-

constraint, Parallel inheritance, Actor, Use case,
Operation specification, Note, Node, Specification,
Main program, Body, State, Stop, Start}

22 We also excluded the event trace diagram since it is based on the same underlying

semantics as the collaboration diagram (Booch and Rumbaugh 1995).

123

3) Determination of properties for each object type. Compared to other
types of methods, object-oriented methods in general, and UML in particular,
have more property types. For this reason they are specified here distinct from
other metatypes. In contrast to the methods above, in UML some properties are
atomic, single valued, whereas others consist of a set of other property types.
For example, an attribute of a class has a more detailed internal structure with
its own property types (such as an initial value and a data type of an attribute).
In the following we first define the properties of object types and later the non-
atomic properties.

A class is identified by its name and by the name of a possible category to
which it belongs. Although class names must be unique in the enclosing
category, the same class name can be used as a type of a parameter. In GOPRR
this is modeled by using both global and local names for property types (see
also the metamodel of state diagrams in Section 3.3.3). For example, a property
type ‘class name’ can be renamed with a local name for describing a data type
of a parameter.

An ‘Is utility?’ property type is used to define global attributes and
operations; ‘overridability’ (e.g. deferred, leaf, extensible, virtual) is used to
define how a class may be overridden by a subclass. ‘Template parameters’ is
used for defining generic classes called templates in UML. An object type
‘instantiated class’ refers to a template class in two ways: properties of
‘instantiated class name’ refer to a name of a template class, and ‘values’ is a set
of template parameter values. An ‘instantiated class’ can not have its own
attributes or operations as these are derived from the template class. Categories
are identified by a ‘category name’ and it has an additional ‘documentation’
property type. These are also added to ‘class’ and to ‘instantiated class’.

A ‘class name’ is the same property for ‘object’ and ‘class’ object types,
showing that an object can not belong to other classes than those defined.
Hence, objects are dependent on the existence of classes. Other property types
for an ‘object’ are a ‘multiplicity’ type for specifying the number of instances a
related class can have at a time; and ‘values’ which denotes instances of an
attribute of a class. Notes are specified by one property type only, named here
‘description’.

Other object types of UML are identified and described just by their name
and additional ‘documentation’ property type. Only a ‘node’ object type can
have a ‘multiplicity’ property type, and a ‘state’ object type has ‘attribute
values’ and ‘operations’ property types. The name spaces of identifying
properties are distinguished by using separate property types for identifiers of
object types, except in a dependency diagram. Here, the metamodel uses the
same property type ‘name’ for identifying several object types. By defining the
instances of this property type as unique we can specify that the same value for
a property can not be used to identify other instances of object types in a
deployment diagram. Thus, instances of ‘specification’ and ‘body’ can not have
the same value for this property.

124

Properties for object types = {
<Class, {Class name, Is utility?, Category, Stereotype,

 Overridability, Attributes, Operations, Documentation,
 Template parameters}>,

<Category, {Category name, Documentation}>,
<Instantiated class, {Instantiated class name, Values,

 Documentation}>,
<Object, {Object name, Class name, Values, Multiplicity}>,
<Note, {Description}>,

 <Use case, {Use case name, Documentation}>,
 <Actor, {Actor name, Documentation}>,
 <State, {State name, Attribute values, Operations,

 Documentation}>,
 <Operation specification, {Name, Responsibilities, Inputs,
 Returns, Modified objects, Preconditions, Postconditions}>,
 <Specification, {Name, Documentation}>,
 <Main program, {Name, Documentation}>,
 <Body, {Name, Documentation}>,
 <Node, {Name, Stereotype, Multiplicity, Documentation}>}

In UML, some property types have an internal structure. Each attribute has
a basic format requiring property types for an ‘attribute’, namely an ‘attribute
name’, a ‘data type’, an ‘attribute type’, and an ‘initial value’. Similarly, an
‘operation’ has an ‘operation name’, ‘parameters’ and a ‘return value’. The
‘parameters’ property type is a collection consisting of parameters each having
three property types, namely a ‘parameter name’, a ‘parameter type’ and a
‘default value’. To support specific programming language constructs some
additional property types are attached for both attributes and operations. These
include ‘constraints’ and ‘visibility’ (e.g. public, private, protected in C++).
Moreover, ‘overridability’ (applicable for both classes and operations) and
‘method body’ are also attached for operations. Finally, parameters for template
classes have a name and a type.

Derived property types = {

<Attributes, {<Attribute, {Attribute name, Data type, Attribute
type, Initial value, Constraints,
Visibility}>}>,

<Operations, {<Operation, {Operation name, Parameters, Return
 value, Constraints, Visibility,
 Overridability, Method body}>}>,

<Parameters, {<Parameter, {Parameter name, Parameter type,
 Default value}>}>,

<Template parameters, {<Template parameter, {Parameter name,
 Parameter type}>}>}

4) Identification of relationships. In UML, there is a clear distinction
between methods which apply several relationship types, and those using only
one or two relationship types. More specifically, class diagrams and use case
diagrams apply more relationship types than other techniques. In the following
definition the number of necessary types is reduced by applying a
‘dependency’, a ‘note connection’ and an ‘inheritance’ relationship types in
several techniques instead of having their own variants in each technique.

Relationship types = { Association, Ternary association, Aggregation,

Instantiation, Dependency, Note connection,
Inheritance, Connection, Message link, Uses,
Extends, Participation, Transition}

125

5) Determination of roles. As in other methods, binary relationships
dominate in UML. Some of the relationships are, however, n-ary at the instance
level and some also at the type level. At the instance level, an ‘inheritance’ and
an ‘association’, like their subtypes ‘aggregation’ and ‘ternary association’,
necessitate roles with a maximum cardinality greater than one. For example, a
‘specialization’ role type in an ‘inheritance’ relationship can have more than one
instance. Hence the maximum cardinality for a ‘specialization’ role type is
many. At the type level, UML has optional role types connected to the
relationship types which already have two other role types. Hence the
minimum cardinality constraint of GOPRR is defined here as one for mandatory
roles and zero for optional role types. Since all optional role types (i.e. ‘link
attribute’, ‘or’ and ‘parallel’) can occur only once in a related relationship type
instance, the maximum cardinality defined for them is one.

As with relationships the same role types are used in several techniques,
such as ‘specialization’ and ‘note part’, reducing the size and complexity of the
metamodel. The set of role types is:

Role types = {Instantiates, Is instantiated, Note part, Object part,

Has dependents, Is dependent, Associates, Qualified
association, Link attribute, Specialization,
Generalization, Parallel, Or, Part, Whole, Sends,
Receives, Uses, Participates, Is used, Extends, Is
extended, Receive message, Send message, Connected}

6) Allocation of properties to relationship types and role types.

Compared to the earlier methods, UML relationship and role types have many
properties. This is also highlighted by adding some additional programming
language specific property types. For example, the ‘inheritance’ relationship
type has property types ‘visibility’ and ‘virtual?’ denoting inheritance structures
in C++. In addition, associations can be defined as derived, messages have a
‘sequence’ for numbering, ‘arguments’ sent and values returned along the
message, an ‘indicator’ for describing exclusive iteration and condition
indicators of a message, and a ‘link type’ for typing message links (e.g.
association, argument, global, variable).

Association role types have several property types. These include a
description of the role names, their visibility (i.e. public, private, protected), the
existence of an explicit order of the set of classes associated with a single object,
how the role outside the class is accessed (i.e. read, write, both or none), and
how many instances of the class can be associated with one instance in another
class with ‘multiplicity’. Multiplicity is also needed for describing how many
components an aggregate class can have, and how many aggregates a
component class can be part of.

In the ‘state diagram’, the ‘transition’ is also specified with several
property types: an ‘event’ triggering a state transition, a ‘condition’ to be met
before the state transition can occur, and an ‘action’ resulting in a change in the
state of the object. The action is realized by sending a message to an object or
modifying a value of an attribute. Both events and actions have arguments,
which refer to a specific value corresponding to a parameter. Finally, a role type
‘receive message’ has an additional ‘adornment’ property.

126

Properties for relationship and role types = {
<Inheritance, {Visibility, Virtual?, Discriminator}>,
<Association, {Association name, Is derived?}>,
<Ternary association, {Association name, Is derived?}>,
<Aggregation, {Name}>,
<Associates, {Role name, Visibility, Access, Multiplicity,

 Ordered?}>,
<Part, {Multiplicity}>,
<Qualified association, {Role name, Visibility, Access,

 Multiplicity, Ordered?, Qualifier}>,
<Whole, {Multiplicity}>,
<Message link, {Sequence, Name, Arguments, Return type, Link

 type, Indicator}>,
<Receive message, {Role name, Adornment}>,
<Transition, {Event name, Arguments of event, Condition, Action,

Arguments of action, Documentation}>,
<Connection, {Name}>}

7) Determination of metamodels for individual techniques. In the
following bindings for each technique are described. In the class diagram, both
associations have four roles, of which a ‘link attribute’ and ‘or’ constraint are
optional. Inheritance hierarchies between categories and classes are
distinguished. Thus, inheritance hierarchies between these object types can not
be mixed. Both of these hierarchies have an optional ‘parallel’ role showing to
simultaneous specializations. A use case diagram also allows inheritance among
categories, although use cases could also be considered as classes with their
own inheritance hierarchy. Moreover, use cases can be related with ‘uses’ and
‘extends’ relationships and connected to actors with ‘participation’
relationships.

Other graph types have simpler bindings: a composite diagram is used for
describing the associations and aggregations of objects in the context of a class,
and a collaboration diagram focuses on message sending between the objects. A
state model is similar to that modeled with SA/SD and an ‘operation table’ has
no bindings. Finally, the component and deployment diagrams describe the
physical design and apply a dependency structure among all object types as
described below.

Class Diagram = {
 <Instantiates, {<Instantiates, {Class}>,
 <Is instantiated, {Instantiated class, Object}>}>,
 <Dependency, {<Has dependents, {Category, Class}>,
 <Is dependent, {Class, Category, Object,

 Instantiated class }>}>,
 <Note connection, {<Note part, {Note text}>,
 <Object part, {Object, Class, Category}>}>,
 <Inheritance, {<Specialization, {Class}>,
 <Generalization, {Class}>,
 <Parallel, {Parallel inheritance}>}>,
 <Inheritance, {<Specialization, {Category}>,
 <Generalization, {Category}>,
 <Parallel, {Parallel inheritance}>}>,
 <Inheritance, {<Specialization, {Instantiated class}>,
 <Generalization, {Instantiated class}>,
 <Parallel, {Parallel inheritance}>}>,

<Aggregation, {<Whole, {Class}>,
 <Part, {Class}>}>,
 <Association, {<Associates, {Class}>,
 <Associates, {Class}>,
 <Or, {Or-constraint}>,
 <Link attribute, {Class}>}>,

127

 <Ternary association, {<Associates, {Class}>,
 <Associates, {Class}>,
 <Or, {Or-constraint}>,
 <Link attribute, {Class}>}>}

Use case diagram = {
 <Dependency, {<Has dependents, {Category}>,
 <Is dependent, {Category}>}>,
 <Uses, {<Uses, {Use case}>,
 <Is used, {Use case}>}>,
 <Note connection, {<Note part, {Note text}>,
 <Object part, {Actor, Use case, Category}>}>,
 <Extends, {<Extends, {Use case}>,
 <Is extended, {Use case}>}>,
 <Inheritance, {<Specialization, {Category}>,
 <Generalization, {Category}>}>,
 <Participation, {<Participates, {Actor}>,
 <Participates, {Use case}>}>}

Composite diagram = {

<Aggregation, {<Whole, {Object}>,
 <Part, {Object}>}>,
 <Association, {<Associates, {Object}>,
 <Associates, {Object}>}>}

Collaboration Diagram = {
 <Message link, {<Send message, {Object}>,
 <Receive message, {Object}>}>,
 <Note connection, {<Note part, {Note text}>,
 <Object part, {Object}>}>}

State Diagram = { <Transition, {<Sends, {Start, State}>,
 <Receives, {Stop, State}>}>,
 <Note connection, {<Note part, {Note text}>,
 <Object part, {State}>}>}

Component Diagram = {

<Dependency, {<Has dependents, {Category, Specification, Main
 program, Body}>,

 <Is dependent, {Category, Specification, Main
program, Body}>}>,

<Note connection, {<Note part, {Note text}>,
 <Object part, {Category, Specification, Main
 program, Body}>}>}

Deployment Diagram = {
 <Connection, {<Connected, {Node}>,
 <Connected, {Node}>}>,
 <Dependency, {<Has dependents, {Node}>,
 <Has dependents, {Node}>}>,
 <Note connection, {<Note part, {Note text}>,
 <Object part, {Node, Category}>}>,
 <Dependency, {<Has dependents, {Category}>,
 <Is dependent, {Category}>}>}

8) Determination of linkages between techniques. Because UML
suggests several modeling techniques, linkages between them are vital to
integrate models. The following explosion and decomposition operators were
specified: categories can be attached to class diagrams which can also contain
other categories. A class can also be exploded to a collaboration diagram
showing the interaction between its objects, to an operation table for describing
a functional model (also applicable for actors, use cases, states and for objects of
a collaboration diagram), and to a state model for describing the temporal
evolution of an object of a given class. A class can also be decomposed into a

128

composite diagram to describe a specific context for its instances. Similarly
classes, actors and use cases can have related state models through an explosion
link. State models can be nested through decompositions of states into substates.
Finally, a decomposition of categories into instances of the same graph type is
added to class, use case, component and deployment diagrams.

Class Diagram:
Explosions = {

<Class, {Collaboration diagram, Operation table, State diagram}>}
Decompositions = {<Class, {Composite diagram}>,

<Category, {Class diagram}>}

Use Case diagram:
Explosions = {<Actor, {Operation table, State diagram}>,
 <Use case, {Operation table, State diagram}>}
Decompositions = {<Category, {Use Case diagram}>}

Collaboration Diagram:
Explosions = {<Object, {Operation table}>}
Decompositions = {}

State Diagram:
Explosions = {<State, {Operation table}>}
Decompositions = {<State, {State diagram}>}

Component Diagram:
Explosions = {}
Decompositions = {<Category, {Component diagram}>}

Deployment Diagram:
Explosions = {}
Decompositions = {<Category, {Deployment diagram}>}

9) Determination of the representational part of the method. On the
notational side, the following aspects could not be represented. First, nested
forms could not be specified in the same diagram with categories, composites
and state diagrams. As the definitions show this was partly solved by using
explosion and decomposition structures, even though the relationships between
the components of two or more categories can not then be represented. Second,
concurrent substates could not be represented by partitioning the state symbol.
Third, different symbols for classes could not be defined based on the values of
their properties, such as an additional box above the class symbol if parameters
are defined (i.e. a symbol for the parameterized class).

10) Analysis and evaluation of the metamodel. In addition to the
representation dependent aspects, the metamodel of UML could have been
made differently. Some aspects of the textual method description were not
included, since they were not supported by the parallel metamodel definition
given by Booch and Rumbaugh (1995). Metamodels could also include
additional programming language specific constructs. In fact, Booch and
Rumbaugh, even though seeking for a standard notation for object-oriented
methods, recommend situation-bound modifications to align concepts closer to
a specific programming language (e.g. Booch and Rumbaugh 1995, p. 4).

A more important aspect of evaluation is how completely UML could be
adapted in a CASE tool. This aspect is discussed in the following. The modeling
of UML emphasizes the need of scopes for identity and uniqueness of

129

properties. An identifier consisting of two property type instances could not be
modeled, nor could the dependency between partial identifiers: the same
category should not have more than one class with the same name, and the
same class should not have more than one instantiated object with the same
name. Modeling of these would require additional constructs in the
metamodeling language.

The design orientation of UML and its close relationship to programming
languages necessitates support for the naming policy of attributes and
operations, such as the naming of classes in Smalltalk with a capitalized first
letter (Hopkins and Horan 1995). Some of these syntax definitions would
require dynamic changes in other property types. For example, if a parameter is
not defined a colon should be omitted from the operation specification. These
would require a specific syntax for property values and for checking of
property type values (cf. Section 4.4.1.4). The GOPRR model could not describe
the multiplicity rules which were applied in the OPRR metamodel. For
example, the UML metamodel does not include restrictions on multiple
inheritance (i.e. a class can participate several times in a specialization role) or
that a class can be part of multiple classes through the aggregation relationship.
To model multiplicity rules of methods an additional metamodeling construct
would be needed (cf. Section 4.4.1.6).

Because of the wide variety of different graph types, the modeling of UML
also highlights requirements to model interconnected methods and complex
objects. In interconnections, the metamodel does not allow an operation to be
exploded into an operation table. Instead this is carried out by exploding the
whole class. Nor can we represent that each state diagram needs to be
connected to a class diagram (through an explosion), or to a higher-level state
(through decomposition). Modeling of these would necessitate a more detailed
specification of interconnections (as discussed in Section 4.4.2.3). In a similar
vein, complex objects could not be specified adequately with a decomposition,
or an explosion. An example of such a situation is when a component in a
complex object (e.g. a substate) can belong to many aggregate objects (e.g. to
composite states). Among states, the substates can belong only to one composite
state, whereas an object can belong to more than one composite class (Booch and
Rumbaugh 1995, p 11, 33). Modeling these complex objects completely would
require additional constructs in metamodeling languages (as discussed in
Section 4.4.2.2). Finally, modeling UML requires a specification of related
properties; i.e. two or more property instances have the same value. An
example of this is the requirement specifying that a state model should not have
an action that is not defined as an operation in the related class, or that a state
should not have attribute values that are not equivalent to those defined in a
related class. Similarly, an operation in a class diagram and a message in a
collaboration diagram can have several common values, such as name and
arguments, which refer to the same property instances. To model this sharing of
the same values among different types would require additional constructs in
the metamodeling language(cf. Section 4.4.2.4).

130

4.3.3.2 Example models

Part of the tool adaptation for UML is shown in Figure 4-4. The figure illustrates
a class diagram for a banking application in which all classes belong to a
stereotype interface that enables code generation for Corba IDL (Iona 1997). The
cardinalities of the aggregation relationship are shown between classes named a
bank and an account: a bank has multiple accounts, but each account must
belong to only one bank. Inheritance relationships based on single and multiple
inheritance are shown as lines with an arrowhead. Multiple inheritance is
illustrated as the class named premium account inherits both current account
and deposit account.

Since UML includes more complex data types than earlier methods, we
show dialogs below the class diagram to illustrate the properties of a class and
an attribute. The property dialog of an attribute newAccount refines the
instance selected from the attribute list of the bank class.

FIGURE 4-4 An example class diagram of UML.

131

4.3.4 Summary

Metamodeling, if properly performed, leads to a detailed understanding of the
phenomena under examination. In this section we inspected the conceptual
structure of methods in computer-aided modeling tools. Of all 17 methods
modeled, three were taken into a closer examination. The structures of the
methods were identified, classified and represented with meta-data models.
Moreover, CASE tool support was created using the metamodel to validate the
method specifications. These efforts form the background for our study of
requirements for method modeling languages in the next section.

4.4 Requirements for metamodeling languages

In this section we shall investigate requirements for metamodeling languages
using an inductive method. In the inductive analysis (Patton 1990) the
underlying patterns, categories and rules of modeling techniques are used to
identify and generalize metamodeling requirements. In our case the
identification of method knowledge was based on an examination of 17 ISD
methods.

Although we could examine general requirements for (meta)modeling,
like simplicity and ease of reading (cf. Brinkkemper 1990, Venable 1993), our
emphasis is on constructs which increase the modeling power of meta-data
models: what constructs are needed to extend available semantic data models to
capture and represent method knowledge. Our focus is on providing explicit
constraints which deal with a combination of mechanisms provided by the data
modeling language (Brodie 1984). Because our focus is on semantic data
models, and mostly on ER extensions, the inherent constraints are the basic
properties of the semantic data model. For example, there is a distinction
between entities and relationships.

Table 4-2 summarizes the proposed metamodeling constructs derived
from our inductive analysis. In the following each construct is described in
more detail: in section 4.4.1 we describe constructs essential for modeling single
techniques, and in section 4.4.2 constructs related to modeling multiple
interconnected techniques and complete methods. When describing each
metamodeling construct, we show examples of method knowledge that indicate
the need for that construct. The examples of method knowledge are based on
the methods summarized in Table 4-1.

In addition to the metamodeling constructs, modeling methods requires
specifications of the checking mode and recognition of the different scopes for
the constraints. These are described in more detail below.

132

By checking mode we mean the strategy to guarantee that the rules of the
method defined are followed. The checking is performed on the instance level
data either actively or passively. In active checking the rules of a method are
mandatory and must be satisfied at all times. In practice actively checked rules
are verified each time rule-related instances are created, changed, or removed.
An example of active checking is the identifier of a process in a data flow
diagram. Because processes must always have identifying numbers, the
construct of a metamodeling language describing an identity must be an active
constraint. Passive checking, on the other hand, refers to rules of a method
which are not mandatory, and are only checked at the modeler’s request.
Typically, passive constraints are applicable only for completed models. Table
4-2 summarizes which checking types are useful with the proposed
metamodeling constructs. In addition to supporting computer-aided checking, a
passive constraint type is needed to model methods which allow the modeler to
specify incomplete or conflicting models, or when active checking is not
possible in practice, e.g. because of the heavy demands on computational
resources if the rule was checked. Typical examples of method rules which are
passively checked are instructions and recommendations, such as the number of

TABLE 4-2 Essential constructs of a metamodeling language.

Metamodeling construct Checking Scope of metamodeling constructs

 Passive or
active

method model dependent
type

Identifying property a x x x

Unique property a x x x

Mandatory property a x

Data type of properties a x

Cardinality a x

Multiplicity a & p x x

Multiplicity over several role types p x x

Cyclic relationship a x

Multiplicity of type a & p x x

Inclusion a x

Complex objects a x x

Explosion a & p x x

Polymorphism a & p x x x

133

activities in ISAC graphs (Lundeberg et al. 1982), or that each data class in BSP
should have only one relationship which creates it. In practice, a data class in
BSP may be created by several processes. Hence, to allow the latter situation the
‘data usage’ relationship type in the metamodel should be specified as being
passively checked (IBM 1984). Instead of rigidly enforcing consistency rules,
passive constraints can provide some advantages by providing information
about possibly conflicting data (Nuseibah et al. 1993).

The scope of method knowledge denotes the instance space in which the
rules of the method are relevant. In contrast with what is assumed in most
metamodeling languages, not all rules of method knowledge can be specified
within a single scope. For example, the uniqueness of a class name and a state
name have different scopes (see also the example metamodels in Section 3.3.3):
the former is usually unique among all classes defined in all models, even
among different techniques (e.g. Henderson-Sellers and Edwards 1994), but the
latter need only be unique within a single state model (cf. Embley et al. 1992), or
in the context of the dependent class (cf. Booch et al. 1997). The need for
different scopes of capturing method knowledge is also recognized by other
metamodelers (Hochstettler 1986, Hofstede 1993, Süttenbach and Ebert 1997).
Among the methods analyzed we identified three different kind of scopes for
metamodeling constructs: a method, a model and a dependent type.
Accordingly, a metamodeling language should recognize these scopes. In the
following, each scope is described in more detail using uniqueness of properties
as an example.

1) A method is the largest scope used. It refers to rules that are relevant in
all instances of a method used in an ISD project. For example, in many object-
oriented methods the name of a class must be unique within all the models
made (e.g. Booch 1991): Two classes with the same name can not refer to
different classes. Also, if two or more models (e.g. an object model and an
inheritance graph (Coleman et al. 1994)) describe a class which has the same
name they must denote the same class, even if some of their property types, or
the relationships that they participate in are different. As a result, in a
metamodel a ‘name’ of a ‘class’ must be specified uniquely within the scope of a
whole method.

2) A model refers to rules that are enforced for all instances within the
scope of a single model (based on one technique, or schema types (as in
Hofstede 1993). For example, inside a single state transition diagram the names
of states must be unique, but other diagrams can have states with the same
name which, however, refer to different states. Thus, a uniqueness constraint
within the scope of a whole method would be too restrictive and would not
describe the method knowledge adequately.

3) A dependent type is the smallest scope which focuses on constraints
that are relevant for instances that are dependent on the existence of other
instances (i.e. masters). An example of a dependent uniqueness rule can be
found from an entity relationship diagram in which an entity can not have two
different attributes with the same name. However, attributes with the same
name denoting different instances are allowed within the scope of a model and
a method. For example, another entity can have an attribute with the same

134

name, but denoting still to a different attribute. Thus, naming of attributes is
dependent on the master element (i.e. in our example of an instance of the
entity).

The scopes are embedded within each other, and therefore a more general
scope includes limited scopes: if a scope is defined for the whole method it
includes also scopes for a model and for a dependent type. For example, a
constraint for unique class names within the method scope prevents also the use
of the same class names inside a model. Any scope, however, does not exclude
the possibility of defining other scopes for the same metamodeling construct.
Consider a multiplicity construct as an example. At the scope of a model a data
store does not need to participate in instances of both ‘receive’ and ‘send’ role
types of the ‘data flow’ relationship type, but in the scope of a whole method,
each ‘data store’ must participate in instances of both role types. This means that
among IS models an instance of the ‘data store’ object type must have both
updating and reading data flows but in a single diagram at least one data flow
must be connected to the data store (i.e. unconnected data stores should not be
included). Hence, the multiplicity rule can be defined separately for each scope.
The use of method scopes are summarized in Table 4-2, and discussed in more
detail in the following subsections.

4.4.1 Modeling single techniques

In this section we shall describe the metamodeling constructs that were needed
to model the 72 individual techniques selected (cf. Table 4-1). The first four
constructs will focus on specifying characteristics of property types, and the
next four on connections between object types. Finally, the last construct
address the multiplicity of types.

4.4.1.1 Identifying property constraint

Once types of a method have been introduced, their instances must be identified
by using an identifier inside the scope. For example, in a class diagram a ‘class’
has a ‘name’ (e.g. Rumbaugh et al. 1991), in a data flow diagram a ‘process’ has
a ‘process ID’, and in BSP (IBM 1984) an ‘entity’ has an ‘entity name’ as an
identifying property. The identity of instances is typically based on an
identifying property. Relationship type instances can be identified based on the
participation with object type instances and/or its properties. In the former
case, relationships do not have identifying properties, or in many cases they
have no properties at all. An example of the latter case is message passing
diagrams (e.g. Coleman et al. 1994) in which messages are distinguished by a
number specifying timing and the sequence of message passing because several
messages can be exchanged between the same object type instances.

Because some object types, like ‘start’ and ‘end’ states (e.g. in Booch 1991,
Booch et al. 1996) do not have properties they must be identified based on the
context (e.g. a start state of a given state transition model), or have an internal
identifier. The former means that the context forms another part of the
identifier. The latter one is typically used in CASE tools. Text-book methods,

135

however, do not recognize internal identifiers because of their ‘pen and paper’ -
mentality.

In the methods analyzed all three types of scope were used. First, in most
object-oriented methods (e.g. Rumbaugh et al. 1991, Coad and Yourdon 1991a)
the ‘name’ of a ‘class’ and the ‘number’ of a ‘process’ form identifiers inside all
models of a project (i.e. method scope). Second, the ‘name’ of a ‘state’ identifies
states inside a single state transition diagram, but not within a whole method,
since two or more state transition diagrams can have states with the same name
(referring to different states). Third, an identifier can be dependent on other
instances. For example, in UML (Booch and Rumbaugh 1995) classes can have a
scope according to the enclosing category: the identity of a ‘class’ object type is
dependent on the ‘category’ object type it belongs to. Similarly, in ISAC
(Lundeberg et al. 1981) the code of an elementary information set recognizes the
instances only as a subset of a non-elementary information set. Therefore, the
master (i.e. a category in the former and a non-elementary information set in the
latter example) also has an identifier, and it forms part of the identifier for
instances of dependent type.

The identity constraint can be characterized as an active constraint since in
modeling tools they can be analyzed each time an instance of the property type
(i.e. value) is created, changed, or deleted. Active checking, however, can lead
to time consuming computation and usually CASE tools can not analyze
identifiers actively. For example, active checking at the level of the whole
method necessitates that all models and their instances are inspected.

4.4.1.2 Unique property constraint

A unique property constraint specifies that an instance of a property type has a
unique value inside the enclosing scope. The unique constraint prevents the
homonym problems which almost every method warns against: the use of the
same value for different instances of a property type. Typically an identifier
must be unique, but also other properties may need to have unique values.

Among the methods analyzed a unique constraint is needed in all method
scopes. A unique property based on the dependent type can be found from class
diagrams (e.g. Rumbaugh et al. 1991) in which a class can have only one
attribute with the same name. Similarly, in the ER model (Chen 1976) a name of
an attribute must be unique among the attributes connected to an entity. A
unique property constraint within a model is relevant for example in data flow
and state transition diagrams in which names of processes and states must be
unique inside the diagram. Among relationship types a unique property for a
message passing sequence (Coad and Yourdon 1991a, Coleman et al. 1994) is
relevant inside a single model. In the method scope the identifying number
should be unique among all instances of a ‘process’ object type.

In addition to different scopes, a metamodeling language should be able to
specify uniqueness of the same property types for several object types. For
example, in Coad and Yourdon (1991a) both abstract classes (i.e. a ‘class’) and
classes with instances (i.e. a ‘class-&-object’) must share the same property type.
Similarly in Booch (1991) a ‘metaclass’ and an ordinary ‘class’ can not have the

136

same value for class names (i.e. class name values are unique among both
types).

A uniqueness constraint can be considered as being passively checked at
least in the scope of a method, since all values of a given property type are not
necessarily available and thus can not be checked instantly. In contrast, a model
and a dependent type have a limited number of instances and thus can be
checked actively.

4.4.1.3 Mandatory property constraint

Some methods include rules which state that properties must have values at all
times (i.e. null values are not accepted). Accordingly, a metamodeling language
must distinguish mandatory and optional instances for property types.
Generally, properties are optional, but identifying properties are mandatory.
For example, a ‘number’ as an identifier and the ‘name’ of a ‘process’ object
type in a data flow diagram are mandatory, but in UML (Booch and Rumbaugh
1995) the ‘name’ of a ‘state’ is optional. To ensure that data dictionaries can be
formed parallel to modeling (as proposed in Yourdon 1989a), a documentation
property type used in the metamodel of SA/SD for creating a dictionary must
be defined as mandatory.

The mandatory constraint is not restricted to any specific scope, such as
being dependent on instances of other types, or used in a model. Thus, we
expect that the only scope for mandatory instances of property types is the
whole method. Furthermore, this constraint can be checked actively in a
computer-aided environment each time the property value is changed, or a new
instance of a property type is created. In practice a need for passive checking
would most likely arise because all properties are not necessarily known while
creating models, leading to undefined property values.

4.4.1.4 Data type of properties

Design information captured in properties of other types are specified with
various data types. From a metamodeling point of view, data types are needed
to restrict the possible values of properties. Recent methods, such as most of the
object-oriented ones, tend to have complex data types. One explanation for this
is CASE tool support, which on the one hand demands data type definitions to
implement the tool support, and on the other hand offers mechanisms to
manage larger models and more complex data types.

Among the most typical data types are integer, string, text, and Boolean. A
number is commonly used as identifying property or for describing the order
among relationships (e.g. Coleman et al. 1994, Coad and Yourdon 1991a). A
string is used for short descriptions; a text for a larger body of specifications
such as definition in a data dictionary or pseudo code (Yourdon 1989a). Boolean
describes single-value “on -off” or “true -false” characteristics such as the
persistence of a class (Henderson-Sellers and Edwards 1994). In addition to
plain data types, some methods, such as ISAC (Lundeberg et al. 1981) and BON
(Walden and Nerson 1995) include more detailed specifications for the internal
structure of each data type. For example, in ISAC, only one-digit numbers can

137

be used for identification of activities, and in UML (Booch and Rumbaugh 1995)
the possible values for visibility are limited to three (i.e. public, private,
protected) and access of attributes into four (i.e. writeread, write, read and
none). Some methods have more complicated rules for the textual description:
in IDEF (FIPS 1993a, p 11) arrow labels can not consist of reserved words, and
in ISAC the numbers of information sets also include the number of the activity
creating the set. In BON (Walden and Nerson 1995) the structure of textual
properties is the most extreme: there is a whole language for defining instance-
related assertions through properties related to other instances. Thus, a
metamodeling language should provide, together with the method-related data
types, the possibility to specify the syntax of data types, and for checking the
syntax. This requirement, however, goes beyond the typical use of data
modeling languages as discussed in Section 4.5.3.

In addition to the property types which can be understood of having one
value only as above, a metamodeling language must also identify collections.
Collections are mostly used in object-oriented methods. For example, a class can
have multiple attributes and operations.

Property type definitions can also be extended by defining default values
and predefined values. These mean that a metamodel defines some instance
values for property types. A default value defines a single instance for a
property type to be applied if nothing is added. Thus, it is usually applied with
property types defined as mandatory. Predefined values are typical in the
cardinality constraints used in data models because they apply different naming
policy for cardinality values. Some expect symbols instead of numbers: some
describe cardinality with number only (typically a maximum value), whereas
others describe cardinality as a pair of values (i.e. minimum and maximum).
Checking a data type can be done actively. Because data types do not focus
specifically to any scope of the constraint, the method scope as most general
seems to be most applicable.

4.4.1.5 Cardinality constraint

A cardinality constraint defines a minimum and a maximum number of
instances of a role type a relationship type instance can have. A role construct,
used either explicitly or implicitly in all major semantic data models, defines the
part played by an object in a relationship, such as in NIAM, (Nijssen and
Halpin 1989, ter Hofstede 1993), OPRR (Welke 1988, Smolander 1991), or
CoCoA (Venable 1993). The minimum number is typically 1 in the roles of
binary relationships, since a relationship can not normally exist independently
without connected objects. For example, a ‘message passing’ relationship in an
object diagram (Coad and Yourdon 1991a) must have both ‘send’ and ‘receive’
roles. It is also possible, however, to define the minimum constraint as zero to
denote relationships that do not need to have other role(s). For example, the
object interaction graphs of Fusion (Coleman et al. 1994) allow one to define
message passing between objects in which the sender outside the model
boundary is not specified. More typical situations of zero minimum cardinality
are cases in which a relationship can be extended with an optional role type, e.g.

138

with an associative object type (Yourdon 1989a) in entity relationship diagram,
or with a creation of an object in data flow diagrams (Rumbaugh et al. 1991).
Hence, the minimum constraint for the optional role type is normally zero and
for a mandatory role at least one. Consequently, the deletion of mandatory roles
(minimum cardinality one) removes also the whole relationship and related
instances of role types. Moreover, if ternary relationships have their own
modeling constructs, as in the class diagram of UML (Booch and Rumbaugh
1995) the minimum role cardinality is 3: Each relationship must have at least
three instances of a role type. Otherwise the relationship is a binary one and
should be defined with a different relationship type.

Within the methods analyzed the maximum cardinality of a role is either
one (1) or many (M). The maximum cardinality is one in binary relationships
with two role types, e.g. in the relationships of a structure chart, a module
diagram (Yourdon 1989a) and a platform diagram (Booch 1991). Thus, if an
instance of a ‘call’ relationship type exists in a structure chart it can not have
more than one instance each of ‘send’ and ‘receive’ role types. The maximum
cardinality of a role type is many in n-ary (sometimes also called branching)
relationships. For example, an ‘inheritance’ relationship (also called
generalization, gen-spec, supertype) in object-oriented methods can have only
one (1,1) ‘superclass’ role but one to many (1,M) ‘subclass’ roles.

None of the methods modeled include restrictions on the cardinality rule
within different scopes. Since they implicitly expect that the same instance of a
relationship can exist only among the same role type instances, the most
relevant scope is a method. This allows us also to support methods which use
the same relationship type instances in several techniques (e.g. an inheritance in
Henderson-Sellers and Edwards (1994)). Moreover, checking of both minimum
and maximum constraints for the role cardinality are active: They can be
checked each time a relationship is created, an existing role is deleted, or a new
one added.

4.4.1.6 Multiplicity constraint

A multiplicity constraint is needed to define a minimum and a maximum
number of role instances an object instance may have. With the minimum value
we can define that an object instance must be connected to at least a specific
number of instances of this role type, and with the maximum value that an
object type instance can not be connected to more than a specific number of
instances of this role type. The need for the minimum constraint can be found
from modeling a state diagram (e.g. Booch 1991) in which a ‘start state’ must be
connected to at least one ‘send’ role of a ‘transition’ relationship, and from
techniques that are based on tree structures, such as JSD (Cameron 1989). An
example of the maximum constraint is inheritance found from most class
diagrams allowing only single inheritance (e.g. Rumbaugh et al. 1991): a class
can only participate once in a subclass role.

Typically, a multiplicity constraint for a role is zero-to-many (0,M): an
object type does not need to be connected to an instance of a specific role type,
but it can be connected to many instances of that role type. Other common

139

values found for minimum multiplicity are one for mandatory roles, and two
for object types which must occur at least twice in a specific relationship (e.g. a
‘condition’ object must participate in at least two ‘connector’ relationships (Coad
and Yourdon 1991a). Hence, the multiplicity value for a ‘condition connector’
role type should be two-to-many (2,M).

Methods use multiplicity constraints within the scope of a model or a
method. An example of the former is a ‘start state’ in a state transition diagram:
each start state must be connected to one state and thus the minimum
multiplicity constraint must be checked for each instance of a start state. A
typical example of the latter scope can be found from data flow diagrams in
which an instance of a ‘data store’ must participate in instances of ‘send’ and
‘receive’ role types of a ‘data flow’ relationship type, but not necessarily in one
diagram (Yourdon 1989a, p 282). Similarly among all collaboration diagrams
(Booch and Rumbaugh 1995) each instance of an ‘object’ must send and receive
at least one message, but not necessarily inside the same model.

A maximum constraint can be checked actively, but the minimum
constraint is passive: it can not be satisfied during model building, unless it is
zero, because objects can exist while they are not related to other objects (i.e.
connected to a role type instance).

4.4.1.7 Multiplicity over several role types

In addition to the multiplicity constraint, modeling of method knowledge
requires constraints between different role types. Basically, this constraint is
needed to prevent instances of object types that are not participating in any
relationships. In other words, this constraint supports a rule stating that an
object type instance must participate in at least one of the specified roles. In
NIAM (Hofstede et al. 1993) this constraint is called a total role constraint.
Examples of method knowledge necessitating the multiplicity constraint over
several role types are those of ISAC and SA/SD within the scope of a model. An
‘information set’ instance must participate either in a ‘predecessor’ instance, or a
‘successor’ instance (Lundeberg et al. 1981), and a ‘data store’ instance must
participate at least once in a ‘send’ or a ‘receive’ of a ‘data flow’ (Yourdon
1989a). The multiplicity rules identified among the methods analyzed do not
require more complex multiplicity constraints, such as mandatory participation
among two or more of the specified roles, or maximum multiplicity over several
roles. Together with the cyclic relationship constraint, modeling techniques
using tree structures, such as JSP (Cameron 1989), can be specified: one of the
modules must be the root of the tree.

All these constraints are originally specified to be applicable inside a
single diagram only, i.e. in the scope of a model only. Although the methods
modeled do not apply this constraint within other scopes, it could be applied
for the scope of the whole method as well (e.g. no more than 10 flows to an
external).

Although the metamodeling construct could be checked actively when an
object is created or a relationship deleted, passive checking is more suitable. The
reason for this is simple: all objects and relationships to be checked are not

140

necessarily available and models would too often encounter this rule leading to
heavy model checking.

4.4.1.8 Cyclic relationship

A cyclic relationship involves connections between instances of object types via
instances of a single relationship type, thus forming a cycle. Basically, in the
methods analyzed two types of cyclic relationships exist: a direct one, in which
the same instance of an object type can participate in both ends of the same
relationship type instance, and an indirect one, in which the cycle can be formed
via one or several additional instances of object types (with associated
relationship type instances). It must be noted that the indirect cyclic relationship
necessitates two or more instances of a relationship type. Table 4-3 illustrates
examples of different cyclic relationships found in the methods modeled.
Accordingly, a metamodeling language should distinguish both of these cyclic
relationships types and allow method engineer to allow or prohibit them.

TABLE 4-3 Examples of cyclic relationships in the methods modeled.

 Cyclic relationships allowed Cyclic relationships not allowed

Direct
cycle

Transitions in state model (Yourdon
1989a, Rumbaugh et al. 1991)

Message passing in object-
interaction graph (Coleman et al.
1994)

Message passing in message trace
diagram (Booch and Rumbaugh
1995)

Call relationships in structure chart
(Yourdon 1989a)

Inheritance in class diagram
(Coad/Yourdon 1991a)

Indirect
cycle

Message passing in message trace
diagram (Booch and Rumbaugh
1995)

Information flow in A-graph
(Lundeberg et al. 1981)

Inheritance in class diagram
(Coad/Yourdon 1991a)

Data structure diagram (Jackson
1976)

An example of a direct cyclic relationship can be found in state transition
models (e.g. Rumbaugh et al. 1991, Booch 1994) which allow a transition from a
state to itself, and in the object interaction graph of Fusion (Coleman et al. 1994)
in which an object can send a message to itself. In other techniques, direct cyclic
relationships are prohibited: in a message trace diagram (Booch and Rumbaugh
1995) an object can not send a message to itself, in a structure chart a module
can not call itself (Yourdon 1989a), and in all object-oriented methods a class can
not inherit itself. Inheritance serves also as an example of a prohibited indirect
cyclic relationship. Similarly, indirect cyclic relationships are not possible in tree
structures, as in JSD (Jackson 1976). Data flows in data flow diagrams,
transitions in state transition models, and message passing in object diagrams
(Coad and Yourdon 1991a) can form indirect cyclic structures. None of the

141

methods analyzed, however, restricts the “length” of an indirect cyclic
relationship structure, nor presents any specific scope for this type of constraint.
Because the dimensions above are not totally orthogonal, only three basic
patterns of cyclic relationships were found: those allowing both types (e.g. state
models), those allowing indirect relationships only (e.g. A-graph), and those
forbidding both types (e.g. tree structures like JSD). Thus, cyclic relationships
which allow direct cyclic relationships but not indirect ones were not found
from the methods.

Metamodeling constructs for cyclic relationships were not dependent on
instances of the same or other relationship types. For example, a data flow from
a process to itself can occur even if the same process receives a control flow
(Ward and Mellor 1985), i.e. has instances of other role types.

The checking of both cyclic relationships types can be carried out actively
although in most CASE tools the checking of the indirect type is passive because
of its high computing requirements. Here, all relationships and objects
participating in these relationships should be available. The scope of the
constraint is all models since none of the methods included any more specific
scope.

4.4.1.9 Multiplicity of types

A multiplicity construct for types is needed to define how many times instances
of the same type must or can exist inside the enclosing scope. For example,
ISAC (Lundeberg et al. 1981) has rules which specify that a maximum of 9
instances of a given type (‘activity’ or ‘information set’) should exist inside a
single graph. In IDEF (FIPS 1993a) the possible number of functions in a model
should not exceed 6, and also BSP (IBM 1984) recommends the number of data
classes or business processes in an IS architecture plan. The multiplicity
constraint is relevant for both object and relationship types. In most methods,
the multiplicity constraint for object types is one-to-many (1,M): They must
have one to many instances. However, the multiplicity of the ‘start’ state in most
state transition models is zero-to-one (0,1): start states are optional and only one
start state can exist in a model. Whereas object types can have different
minimum and maximum values for multiplicity, relationship types are
restricted only to a possible mandatory existence (i.e. with a minimum value).
For example, at least one instance of a ‘data flow’ must exist in a data flow
diagram and one instance of a ‘transition’ in a state transition diagram, but an
‘inheritance’ does not need to have instances in a class diagram. None of the
methods analyzed include rules which set a maximum number for the
occurrence of instances of relationship types.

Multiplicity of types should not be confused with multiplicity of the same
instance: how many times the same instance, e.g. a process named Verify
Orders, exists in a model. A metamodeling construct for instance multiplicity
seems to be unnecessary since none of the methods includes such restrictions.
Typically, to simplify crossing relationship lines in a model an instance can be
replicated and all copies have the same properties. For example, in SA/SD
(Yourdon 1989a) the same instance of the ‘store’ object type can be drawn to

142

many places in the data flow diagram. The same relationship instances can also
occur, as in OSA (Embley et al. 1992): an interaction relationship can occur both
in the object-behavior model and in the object-interaction graph and it has the
same properties for both instances (e.g. a trigger and an action). However, it
must be noted that the same relationship type with the same instance
information can not occur in any method more than once between the same
object type instances (i.e. no duplicate relationships are allowed). This
constraint is an inherent constraint (cf. Brodie 1984). As a result, it is not
necessary to specify this constraint with an additional construct of a
metamodeling language.

In the methods analyzed the multiplicity constraint is applicable at the
level of a single model (e.g. ISAC), and of a whole method (e.g. BSP).
Furthermore, although the multiplicity can be checked actively each time a new
instance of a type is added, it should not be restrictive: it should be possible to
create models that violate the multiplicity rule during modeling. Checking
minimum values actively would also be inappropriate, since new models would
violate the constraint.

4.4.2 Modeling interconnected techniques and methods

In this section we describe those metamodeling constructs essential to model
interconnected techniques. Although the proposed constructs are mainly a
prerequisite for modeling a whole method, some of the required constructs are
useful for modeling single techniques.

4.4.2.1 Inclusion of types

The first requirement in specifying a whole method is the allocation of types
into techniques. For this purpose, a metamodeling language must include a
construct called inclusion (according to Tolvanen et al. 1993). The inclusion can
be defined as an aggregation which can exist only between a technique and its
types. For example, at the technique level the ER model includes entity,
relationship and attribute types. At the type level, the GOPRR definition allows
us to describe the graph type ‘ER model’ and its components. The type level
cardinality for inclusion is many to many, since types can belong to many
techniques and a technique usually consist of multiple types. For example, in
the GOPRR metamodel of BSP the ‘business process’ belongs to three different
techniques (cf. Section 4.3.1).

In addition to object types, relationship types and role types can belong to
multiple techniques. For example, an ‘interaction’ in OSA (Embley et al. 1992)
can belong both to interaction models and state models, and an ‘inheritance’ in
MOSES (Henderson-Sellers and Edwards 1994) can be part of class and
inheritance diagrams. Because of the similarities in the type level method
definitions, these methods also explicitly allow the occurrence of the same
instances in different techniques. For example, the same instance of an
‘interaction’ defined in an object-interaction model describing message passing
between a set of objects can also be used to define an external trigger in an

143

object-behavior diagram describing possible states of a single object (cf. Embley
et al. 1992).

 The checking of inclusion can be regarded as active since this constraint is
already specified in the metamodel and does not necessitate an instance based
evaluation: each time an instance is created or an existing instance is added to a
model it must satisfy the type level definition. Because of the focus on
specifying a type of a technique, the inclusion constraint is relevant only within
the scope of a model.

4.4.2.2 Complex objects

The majority of the methods modeled, especially the object-oriented ones, apply
complex objects. By a complex object we mean an abstraction mechanism which
allows us to build aggregate-component structures among the types of the
method. The aggregate object suppresses details of the underlying relationship
between components (Smith and Smith 1977). Complex objects are also
distinguished from aggregation of attributes used to define attributes of entities
(Alegic 1988). In line with Iivari (1992) we make a distinction between the
concept of a relationship and a complex object. The former is used for example
in most dialects of ER-based data modeling languages. In fact, the ER model
proposed by Chen (1976) only included relationships. Because our interest is on
the type level definitions of methods it must be noted that instance level
aggregation structures, such as aggregation (in Rumbaugh et al. 1991) and
whole-part (in Coad and Yourdon 1991a), can be described with relationships in
the metamodel. Complex objects are used as modeling constructs in specifying
functional decomposition (cf. Yourdon 1989a), aggregation (cf. Coleman et al.
1994), concurrency (cf. Booch and Rumbaugh 1995), and clustering (Walden and
Nerson 1995). Hence, our focus here is on those structures that are not described
with relationship types and necessitate the use of complex objects. Several
studies on metamodeling (e.g. Smolander 1991, Venable 1993, Saeki and
Wenyin 1994) reveal limited support for modeling complex objects (sometimes
also called hierarchical structures) with data model based metamodeling
languages.

4.4.2.2.1 Analysis of complex objects in methods

Iivari (1992) reviews complex objects as a conceptual abstraction mechanism
and classifies them into five dimensions. These are: 1) dependent/independent,
2) connected/unconnected, 3) mandatory/optional, 4) exclusive/shared and 5)
recursive/non-recursive. In the following we describe the categories in more
detail and apply them at the metalevel to recognize the different kinds of
complex objects used in methods. Based on the analysis we found 11 different
kind of complex objects summarized in Table 4-4. The five first rows of the table
correspond to the various structures of complex objects proposed by Iivari
(1992).

1) The dependent/independent dimension defines whether a component
object can exist independently of the aggregate object. If a method employs
dependent components it leads to a top-down process of model building, since

144

it is not possible to create components without an available aggregate object.
Similarly, in a dependency situation, deleting an aggregate object will delete all
of its components in that scope. An example of a dependent complex object is a
functional decomposition in a data flow diagram (Yourdon 1989a). Here a
process can be divided into a new subdiagram describing its subprocesses.
Another example is a composite (Booch and Rumbaugh 1995) in which a class
must exist before its component objects (i.e. instances of a class) can be defined.
Functional decomposition is also applied in other methods, e.g. ISAC for
defining activities with A-graphs (Lundeberg et al. 1981), in IDEF for
decomposition of functions (FIPS 1993a), and in other techniques that employ
data flow diagrams (e.g. Rumbaugh et al. 1991, Shlaer and Mellor 1992). Here
we handle all these as examples of functional decomposition. An example of an
independent complex object is a clustering (Walden and Nerson 1995): a cluster
symbol (with an attached name) can be drawn around a set of classes to specify
that they belong to the same group. Because empty clusters are meaningless,
one or more component classes must exist. None of the methods analyzed,
however, includes a multiplicity rule which specifies the required number of
instance components. The construct for defining dependent components can be
checked actively each time a dependent component is created or an aggregate
deleted.

2) Connected/unconnected defines whether the internal relationships
between the components of a complex object can be omitted. This dimension is
not valid for metamodeling, since connected components are always possible:
None of the methods offers rules which state that the internal relationships can
not be specified together with the aggregate object.

3) Mandatory/optional describes whether a complex object can or cannot
exist without any specified component. ‘Mandatory’ necessitate the existence of
components and a bottom-up modeling approach. Typically, methods which
propose their own object type(s) as an aggregate object expect that components
exist before the aggregate object is specified. For example, a boundary in an
object model (Coleman et al. 1994) should not be specified without the existence
of its components (i.e. an empty boundary is not possible). Similarly, empty
categories in UML (Booch and Rumbaugh 1995) are meaningless. In contrast,
methods applying the same type both as an aggregate and a component often
propose a top-down refinement, although a bottom-up approach is also
possible. For example, in a data flow diagram, a process can exist even though it
is not decomposed into a subdiagram. A mandatory rule can be checked each
time an aggregate object is created or its component deleted.

4) The components of an aggregate can either be exclusive or shared.
Techniques which form hierarchies, like composite (Booch and Rumbaugh
1995), functional decomposition (Yourdon 1989a) or clusters (Walden and
Nerson 1995) presuppose that a component can not directly belong to more than
one aggregate object. In contrast, a boundary (cf. Coleman et al. 1994) allows
that a class (a component) can belong to many functional systems shown
through boundaries (an aggregate). Similarly, aggregation structures in object-
oriented methods specified with a complex object (e.g. Coleman et al. 1994)
instead of a relationship type (as in OMT, Rumbaugh et al. 1991) allow shared

145

component classes. The notation used here for an aggregation as a complex
object, however, easily leads to complex representations once components are
shared due to overlapping aggregate representations. Moreover, components
that are defined to be exclusive must be checked during modeling: the same
instance of a component type can not belong to another complex object.

5) Recursive/non-recursive complex objects. This final dimension in
Iivari’s classification defines whether or not the component objects can be of the
same type as the aggregate object. An example of a recursive complex object is a
subject (Coad and Yourdon 1991a) which can contain classes or other subjects.
None of the methods modeled had rules which required non-recursive
structures.

TABLE 4-4 Structures of complex objects in methods.

Dimensions Yes No
Dependent
component
objects?

composite, functional
decomposition, nested states

aggregation, boundary, category,
cluster, object group, process
group, subject, subsystem

Connected
component
objects?

aggregation, boundary,
category, cluster, composite,
functional decomposition,
nested states, object group,
process group, subject,
subsystem

-

Mandatory
component
objects?

boundary, category, cluster,
object group, process group,
subject, subsystem

aggregation, composite,
functional decomposition, nested
states

Exclusive
component
objects?

category, cluster, composite,
functional decomposition,
nested states, process group

aggregation, boundary, object
group, subsystem, subject

Recursive
complex objects?

aggregation, boundary,
category, cluster, composite,
functional decomposition,
nested states, object group,
process group, subject,
subsystem

-

Independent
relationship of the
aggregate?

aggregation, category,
composite, nested states

boundary, cluster, functional
decomposition, object group,
process group, subject, subsystem

Aggregated
relationships?

category, cluster, object group,
subsystem

aggregation, composite,
functional decomposition, nested
states

The five structures applied here reveal some similarities and differences in the
use of complex objects as a modeling construct in ISD methods. There are,
however, additional differences between the structure and behavior of complex
objects that are not yet addressed. For example, the structure of a composite is
not similar to a decomposition used in data flow diagrams, nor is a subsystem
(cf. Henderson-Sellers and Edwards 1994) similar to a subject (cf. Coad and
Yourdon 1991a). To identify these differences two additional dimensions are
required, namely independent/dependent relationships of the aggregate object

146

and aggregated/non-aggregated relationships. Both of these dimensions are
included in Table 4-4 as the last two rows.

6) The independent/dependent relationship of an aggregate object
specifies whether an aggregate object in a complex object can participate in
relationships which are independent of the relationships of its components. For
example, one difference between the structure of a composite and functional
decomposition is that in the composite an aggregate (i.e. class) can have
relationships, such as inheritance, which are not related to its components.
Naturally, the components representing instances of a class have attributes
which the class may have inherited. Similarly in nested state models (Yourdon
1989a, 267, Booch and Rumbaugh 1995, p 33) a state which has substates (i.e. a
composite state in UML) can participate in transitions which are not defined for
any of its substates. The important difference in this dimension is that in
functional decomposition a decomposed process can not have relationships
other than those included in a subdiagram. This dimension also reveals other
differences between relationships of complex objects. Some aggregates (i.e.
boundary, subject, and process group) do not participate in any relationships by
themselves but only through their components. Here a complex object is
concerned with a collection of its components without any specific relationships
(cf. Kim et al. 1989).

The case of dependent relationships, however, does not necessarily lead to
the use of the same instances of relationship types both for a composite and for
an aggregate. We did not include this difference among the dimensions of
complex objects, since the difference can be specified in metamodels simply by
allowing object types to participate in different relationship types. Independent
relationships do not require instance-based checking, since they are already
allowed on the type level. In contrast, dependent relationships of an aggregate
and its components originating outside the complex object must be checked
actively.

7) Aggregated/non-aggregated relationships define whether relationships
of components connected outside the same complex object are collected into a
new instance of the same or a different relationship type. Thus, we expect here
that the relationships of components are compressed into new aggregated
relationships. This dimension is valid only for those aggregates of complex
objects which can participate in relationships. Examples of aggregate
relationships can be found from some object models: a subsystem (MOSES,
Henderson-Sellers and Edwards 1994) or a cluster (BON, Walden and Nerson
1995) has its own relationships “collecting” the relationships among the
components of different subsystems or clusters. In MOSES these aggregate
relationships are called a collaboration and in BON a compression of client
relationships. The aggregated relationships can be of the same or a different
type from the components’ relationships. In the former case an object group (cf.
Walden and Nerson 1995) can not sent or receive messages that are independent
of the messages being send or received by its components. An example of the
latter case is a category dependency describing only client-supplier
relationships of the categories. These dependencies are, however, based on
underlying relationships between classes of different categories. Methods which

147

do not allow aggregated relationships either apply exactly the same instances of
relationships for the components, such as in functional decomposition, or allow
relationships for the aggregate which are independent of the relationships of its
components (as discussed in the sixth dimension). An aggregation of
relationships requires that each time a first relationship is created or the last one
deleted the same operation should be executed for the aggregated relationship
as well. This demands active checking of aggregation rules.

4.4.2.2.2 Metamodeling constructs for complex objects

If we assume that all these dimensions are orthogonal, we can obtain 128 basic
alternatives for complex objects. All possible alternatives identified in Table 4-4
are not necessarily, however, relevant for metamodeling of complex objects. The
analysis of complex objects shows that some complex objects follow a similar
structure. A subject (Coad and Yourdon 1991a) and a boundary (Coleman et al.
1994), nested states and a composite (Booch and Rumbaugh 1995), and an object
group (Walden and Nerson 1995) and a subsystem (Henderson-Sellers and
Edwards 1994) belong to the same categories in Table 4-4. These similarities
limit the number of different structures found among the methods into 8. As a
consequence, the metamodeling language must support the modeling of each
conceptual structure of complex objects to capture method knowledge. In the 17
methods selected we found 11 complex object types. It must be noted that other
alternative types for complex objects are also possible.

In addition to the seven dimensions of complex objects, the possible scope
of this construct divides methods into two categories: those treating complex
objects globally within the scope of a method, and those allowing different
complex objects of the same aggregate object in different models. Functional
decomposition and clustering according to the system view belong to the first
category. Each decomposed process or cluster has the same components even
though they would be represented in different models. Composite and subjects
are examples of the model scope. A class can participate in multiple composite
structures, each structure describing its instances (objects) in various contexts.
Similarly, the same subject can have different components in different class
diagrams.

To summarize, the following aspects of complex objects need to be
recognized and represented with a metamodeling language. First, since all
methods allow relationships to be described between components the second
dimension  connected component objects  seems useless in metamodeling.
Thus, we expect that a metamodeling language will not need to distinguish
complex objects based on the possibility to have relationships among the
components. Iivari (1992) too has doubts about system models that do not
specify internal relationships. Second, dependency and mandatory components
are alternatives since complex objects can be defined either in a top-down, or in
a bottom-up manner. In most situations of IS modeling both of these strategies
are possible. Thus, the methods analyzed here provide either one or both of the
options. Third, a metamodel should define whether the same object can or can
not be a component in many complex objects. None of the methods proposes
other restrictions, such as a component having to belong to a specific number of

148

complex objects. Fourth, since non-recursive complex objects were not found,
recursive structures do not need to be distinguished in the metamodeling
language. Fifth, it should be possible to define complex objects in which an
aggregate object can participate in relationships separately from relationships
that its components have outside the complex object. Methods apply either the
same relationship types for the aggregate object as its components have, like in
nested state models, or new relationship types, as in dependencies of categories
in UML. Finally, a metamodeling language must have constructs to distinguish
relationships of components which must be aggregated to from relationships of
the aggregate.

4.4.2.3 Explosion

One of the most common approaches to integrate techniques is linking of a type
in one technique to a set of types described in another technique. We call this
metamodeling construct an explosion in the GOPRR model (Kelly et al. 1996).
According to our analysis of complex objects, explosion structures are typical
between different techniques, and they do not carry as much semantic
information about the instance level linkages as complex objects. For example,
relationships of the exploded type are meaningless as the relationships in the
target model are based on another technique. According to most object-oriented
methods the behavior of a class from a class diagram (see also example
metamodels in Section 3.3.3) or a use case from a use case diagram can be
described with state diagrams (cf. Coad and Yourdon 1991a, Booch and
Rumbaugh 1995). Similarly, according to the balancing rules of SA/SD
(Yourdon 1989a, p 283) each control process must be associated with a state
transition diagram. Various explosion structures can be characterized according
to 1) the type of the explosion source, 2) the cardinality of the explosion, 3) an
exclusive or shared explosion target, and 4) active/passive checking of
explosion cardinality constraints. Each of these characteristics is described
below.

1) Type of the explosion source. Among the methods analyzed, three
different kind of explosions could be found depending on the metatype that
forms the source of the explosion. First, an object type, like a ‘data store’ or a
‘class’, can be a source for the explosion. A second possible source type is a
relationship, such as a ‘transition’ which in a state model explodes into a data
flow diagram (Rumbaugh et al. 1991). Third, a property type of an object or a
relationship type can also be refined by explosions. For example, in Coad and
Yourdon (1991a) each ‘service’ of a ‘class’ can be described in service charts.

2) Cardinality of explosion. Among the methods analyzed, several
limitations to the number of explosion links are defined. These constraints can
be represented by attaching cardinality constraints to explosions. Both a source
type and a target technique must have a cardinality constraint and both a
minimum and a maximum cardinality are needed for a complete definition. At
the source part, a cardinality defines how many explosion links an instance of
the source type can or must have. Typically, the minimum cardinality
represents whether an explosion is mandatory, and a maximum cardinality

149

specifies if more than one explosion link is allowed. An example of the
minimum cardinality can be found from SA/SD (Yourdon 1989a) in which each
data store must be described in more detail with an ER diagram, and in a data
dictionary. Most object-oriented methods generate a need for a maximum
cardinality: in most methods, the states of a class can be described in several
state models. Therefore, the total cardinality at the source type is zero-to-many
(0,M). Moreover, because in a data flow diagram a process can be specified only
in one process specification the maximum cardinality is one.

At the target part, the minimum cardinality specifies whether a target
model needs to be linked to one or more instances of the source type. For
example, in Yourdon (1989a) no floating process specifications are allowed, and
in Coad and Yourdon (1991a) service charts unconnected to a service of a class
are not allowed. Especially in cases of multiple possible explosion links to the
target technique, the minimum cardinality of the explosion target is zero. For
example, in OMT (Rumbaugh et al. 1991) each data flow diagram does not need
to be connected to an object type ‘state’ as it can be a target for an explosion of
an relationship type ‘transition’ as well. Thus, the minimum cardinality for an
explosion link between a ‘state’ and a ‘data flow diagram’ is zero. The
maximum cardinality of the target type on the other hand specifies whether
more than one instance of a source type can explode into the target model.
Although in most situations only one explosion link is allowed for the same
target, some methods, like FUSION (Coleman et al. 1994) or OMT (Rumbaugh
et al. 1991), allow many instances of a source type to explode into the same
instance model. Hence, the maximum cardinality is many. In Fusion, a model
describing interaction between several objects can be a target for several
explosion links from different instances of an ‘object’ specified in object models.
Similarly, an UML collaboration diagram specifies messages sent between
several instances of a ‘class’ described in a class diagram.

3) Exclusive explosion links restrict whether instances of two or more
different source types can explode to the same target model (i.e. instance
model). In SA/SD a process specification can be a target of explosion links from
two types, as both a ‘process’ and a ‘control’ can have operation specifications.
These specifications, however, must be defined as exclusive because a process
specification can belong to only one instance. An example of a shared target
model is explosion of instances of both a ‘class’ and a ‘class utility’ into the same
object diagram (e.g. Booch 1991).

4) Active/passive checking. Because the cardinality as such does not
describe a precedence between a source and a target this procedural aspect can
be described with a checking rule: if the checking of the minimum cardinality
on the target side of the explosion link is defined as active it can be used to
specify top-down structures of explosion links. In the earlier example of
exploding a process into process specifications, the mandatory and active
checking of minimum cardinality assures that process specifications can not be
specified without a related instance of a ‘process’. If a source element of a top-
down explosion link is deleted, the target models should be removed as well.
Active checking of the minimum cardinality on the source part, on the other
hand, can be used to define a bottom-up strategy for modeling explosion

150

structures. None of the methods analyzed, however, applied bottom-up
structures. In the explosion links analyzed the maximum cardinality for both a
target and a source can be checked actively.

Finally, the explosion constraint must be related to either of the two
possible scopes; a method or a model. The method scope defines that the
explosion constraint is relevant for all instances of the source type.
Alternatively, explosions can be relevant for each instance in a model only. In
the former case, explosions are defined for all instances of the type, and in the
latter case, the same instance of a source type can have different explosion links
in different models. An example of the method scope is an instance of a class
which explodes always to the same state model regardless of the class diagram
in which it is represented (i.e. a class always has the same lifecycle). An
example of a model scope is when a transition in a state model explodes to a
collaboration diagram specifying a scenario in which the transition occurs as a
message passing (e.g. Booch et al. 1997).

4.4.2.4 Polymorphism

Methods consisting of multiple techniques inspect systems from different views:
each technique focuses on a specific view and these different views are
integrated in the whole method. In addition to using the same types as a part of
different techniques on the metalevel (defined with the inclusion construct)
methods apply polymorphism of types to indicate instance level connections
(Venable 1993). By polymorphism we denote connections between two or more
instances of different types based on sharing the same values as their properties.
Types can also be of a different metatype (e.g. an object which is represented as
a relationship in another model). In other words, ISD methods use different
types to describe the same instances. Polymorphism is applied mostly in
methods which use horizontal integration for connecting instances of different
models, e.g. names used for data stores in data-flow diagrams being redefined
for cross-checking with an ER model.

Different structures of polymorphism can be identified based on 1)
coverage over one or more techniques, 2) the number of properties shared, 3)
the number of type instances related, and 4) a possible dependency among the
types of a polymorphism structure. As a consequence, a metamodeling
language should be capable of representing all the different structures
discussed below. These different structures are collected into Table 4-5 together
with examples to be discussed in more detail below.

1) Coverage. Polymorphism can exist between types included in one or
several techniques. An example of the former is a qualifier of an association in
some class diagrams (e.g. Rumbaugh et al. 1991, Booch et al. 1997). Qualifier is
also one of the attributes of a class participating in the association, i.e. the value
for the qualifier must also be defined as an attribute in the related class. As a
result, it is not adequate to model a qualifier and an attribute only as property
types, as they need to be related to indicate sharing of the same property values.
Similarly, a discriminator of the inheritance relationship must be an attribute of
the superclass. An example of the latter, polymorphism between techniques, can

151

be found from the balancing rules of SA/SD (Yourdon 1989a, p 283). A data
flow in a DFD and a call relationship in a module diagram, as well as a control
flow into a control process and a condition of a transition in a state model,
describe the same instance in different models. Similarly, almost all object-
oriented methods apply polymorphism to describe that an action (or an
operation) in a state transition model and a service (or a method) of a class
describe the same instance (Coad and Yourdon 1991a, see also the
metamodeling example in Section 3.3.3). To specify these structures adequately
an additional supporting metamodeling construct is required.

TABLE 4-5 Examples of different kinds of polymorphism in methods.

In one model In a method
qualifier/attribute attribute type of a class/attribute value of

a state, condition/data flow, name of a
category/name of a class, name of a class/
name of an object, name of a data
element/name of a data set, name of an
entity/name of a data store, operation of a
class/ action of a transition, service of a
class/message, service of a class/
operation of a state

One property value Multiple property values
attribute type of a class/attribute value of
a state, name of a category/name of a
class, name of a class/ name of an object,
condition/data flow, name of a data
element/name of a data set, name of an
entity/name of a data store,
qualifier/attribute

operation of a class/action of a transition,
service/message, service/operation of a
state

Two type instances More than two type instances
attribute type of a class/attribute value of
a state, condition/data flow, name of a
data element/name of a data set, name of
an entity/name of a data store,
qualifier/attribute

service of a class/message, service of a
class/operation of a state, name of a
category/name of a class, name of a class/
name of an object, operation of a
class/action of a transition

Independent Dependent
name of a category/name of a class, name
of an entity/name of a data store

attribute type of a class/attribute value of
a state, condition/data flow, name of a
class/ name of an object, name of a data
element/name of a data set, operation of a
class/action of a transition, qualifier/
attribute, service of a class/message,
service of a class /operation of a state

2) Number of properties shared. Polymorphism can be based on sharing more
than one property value at a time. This necessitates that more than two property
types are involved in the polymorphism. The qualifier example, discussed
above, is based on sharing one value only between two property types: the
‘qualifier name’ and the ‘attribute name’. Object-oriented methods like MOSES
(Henderson-Sellers and Edwards 1994) apply polymorphism for several
instances of property types at the same time: a service of a class in a class

152

diagram and a message in an event model have several common values, such as
name, parameters, and return types. Hence, when messages are described in an
event model, properties of a message must refer to a set of the properties of one
service. According to the majority of method descriptions, it is not possible to
have messages other than those defined as services of classes. As a result, if one
of the property type instances is shared, it necessitates also that related instances
of other property types are shared as well. For example, the same instance of a
message type can not have different return values as properties. Similarly, in
UML each object has a class name to indicate the class that the object belongs to,
and therefore the attribute values of the object must refer to those defined for
the class. Accordingly, a metamodeling language should also represent instance
level connections between related properties.

3) Number of type instances related. Polymorphism can occur between
more than two instances of types. For example, the same instance of an
operation of a class may be used as an operation of two or more state
transitions, or in some state transition diagrams also as operations of states
(Rumbaugh et al. 1991, Booch and Rumbaugh 1995). Here the same value is
referred to by property types of multiple non-property types. To distinguish the
states and related operations of a single object from the operations needed in
communication between several objects, some techniques (e.g. OSA, Embley et
al. 1992) include separate relationship types, or even techniques, for this
purpose.

4) Dependence on other instances. The dependent type can not have
other property values than those already defined in other type instances. For
example, in UML all objects must be connected to a related class by their name
and therefore it should not be possible to create an object which is not
instantiated from the defined class. As a result, an object can not refer to classes
which are not yet defined. A similar kind of polymorphism exists in MOSES
(Henderson-Sellers and Edwards 1994) between a ‘message’ relationship type
used in an event model and a ‘service’ of a class used in an O/C model. Thus, in
a metamodel, a property type of a message called ‘message name’ must share
values already defined as values of the property type ‘service name’. In other
words, an object should not call for a method of another object which is not
available in the called object.

Dependency is optional in many polymorphism structures. For example,
the balancing rules in Yourdon (1989a, p 281) between names of entities and
data stores do not state which of these must be defined first as long as the
names match in the end. In contrast, methods which propose some guidance for
applying different types in a specific order require that the dependency is
defined. For example, in ISAC (Lundeberg et al. 1981) a ‘data element’ instance
in a data structure diagram is normally defined only after the related ‘data set’
instance is defined in a D-graph (i.e. the name of a data element refers to the
name of a data set). Thus, the procedural part defined in a process model of an
ISD method usually requires as a counterpart a specific static structure
(Kinnunen and Leppänen 1994, Jarke et al. 1998).

In addition to the identification of various structures of polymorphism,
each type of polymorphism must be defined according to its scope and type of

153

checking. The scope of the polymorphism defines the space from which the
property type instances can be shared. Based on the polymorphism structures
found, all three scopes are possible. The method level includes all instances of
the property types. For example, in UML ‘class’ has a property type named
‘category’ for specifying to which category a class belongs. The possible values
for the ‘category’ are the names of all categories defined in all category
diagrams or class diagrams. Similarly, an object may be characterized by the
name of an existing class (e.g. Walden and Nerson 1995, Booch and Rumbaugh
1995). Polymorphism restricted to the scope of a model limits the possible
shared instances into those defined in a single model. For example, according to
the balancing rules of SA/SD (Yourdon 1989a), actions of state transitions must
correspond to the name of the flows defined in a related data flow diagram in
which the control process is described. The most complex form of
polymorphism is based on a dependency on a specific instance of a given type
in contrast to all instances, or instances of a single model. Among the methods
modeled their dependency can be found from explosion or from composite
objects (Venable 1993). For example, a state diagram of a single object (instance
of a class) can have only those actions as a property of transition, which are also
used for an object. In other words, the dynamic behavior described in a state
transition diagram can have only those actions defined as operations of the
related class in the class diagram. Similarly, a state can have as a property only
those actions which are defined in the related class (Rumbaugh et al. 1991), and
the attribute name of an object must match one in its class (Booch and
Rumbaugh 1995, p 5). In our metamodel-based definition of UML, this would
require that state variables defined as ‘values’ in our metamodel would be
related to the attribute definitions of a class.

The checking of polymorphism can be either active or passive depending
on the dependency of polymorphism, i.e. dependent or independent.
Dependent polymorphism implies active checking, as it can be checked at all
times that a created or modified type can not have other values than those
defined already (i.e. no new values are created). Independent polymorphism
can also be checked actively if the modeling tool informs the modeler of the
available instances of other property types which a created or modified type
could use as instances of its property types. Active checking, however, would
necessitate that the polymorphism would be satisfied at all times. For example,
according to the balancing rules in Yourdon (1989a) it would not be possible to
create an entity if a data store with the same name would exist and vice versa.
Thus, independent polymorphism must apply passive checking.

4.4.3 Summary of the metamodeling constructs

Modeling of method knowledge has been recognized as one of the main
research problems in the field of method engineering (e.g. Kumar and Welke
1992, Kronlöf 1993, Brinkkemper 1996). In this section we have approached this
problem in an inductive manner by analyzing modeling techniques from 17
different ISD methods, modeling them into metamodels and adapting them into
CASE environments. This analysis has pointed out various patterns, categories

154

and rules of methods that a metamodeling language should capture to model
method knowledge more completely. These were generalized into
metamodeling requirements by specifying constructs for metamodeling
languages which extend existing semantic data models (i.e. metametamodels in
the context of metamodeling).

Although the identification of the essential metamodeling constructs is
based on the examination of 17 ISD methods, we see several ways to explore
these constructs further. The first and most obvious way is to enlarge the set of
ISD methods analyzed. Second, the types of methods included could also be
extended from analysis and design methods into other methods of ISD, like
project management, programming languages, etc. This is especially important
since most methods modeled follow the icon-link structure typical in CASE tool
related methods. It would also be relatively easy to propose a method which
could not be described with the proposed metamodeling constructs. This means
that we can not exclude certain metamodeling construct, but rather only
describe those which were needed for our metamodeling effort. Third, the
metamodels of the software design oriented methods could be extended
towards programming languages, as suggested in some references (c.f. Booch
and Rumbaugh 1995). This would raise new requirements for metamodeling,
especially related to data types to satisfy the grammatical rules of programming
languages, as well as analysis of designs by executing or compiling them.

Finally, other metamodeling constructs could also be identified by
analyzing metamodeling carried out in practice. For example, in three
metamodeling experiments, 75% of the concepts identified were involved in
specialization hierarchies (Wijers 1991, p 174). Although we acknowledge the
usefulness of inheritance to simplify metamodels and organize elements of
metamodels into more manageable hierarchies (Rossi and Tolvanen 1995) we
did not include it among the essential constructs of a metamodeling language
for one simple reason: all static knowledge of methods could be described
without inheritance. Furthermore, in the metamodeling literature a variety of
approaches are proposed for using inheritance: Oei and Falkenberg (1994)
propose a metamodel hierarchy for organizing techniques and building
transformations between them, Elmasri et al. (1985) apply inheritance for entity
types, Kelly et al. (1996) apply inheritance for other types as well as object types,
and Venable (1993) and Ebert et al. (1996) extend inheritance to also cover the
relationships that the object type participate in. The limitation on describing
method knowledge only as it is represented in the literature is recognized in
Chapter 6: we apply a metamodeling language together with the proposed
extensions to describe method knowledge based on situations and experiences
of method use (i.e. also in practice rather than just from the method literature).

4.5 Evaluation of metamodeling languages

In this section we shall apply the results of the method analysis to evaluate the
modeling power of several proposed metamodeling languages. Evaluation of

155

modeling power implies evaluation of the constructs languages offer for
metamodeling. Similar kinds of assessments or comparisons have been carried
out by Welke (1988), Venable (1993), Saeki and Wenyin (1994), and Harmsen
and Saeki (1996). In the following sections we shall first review existing
comparisons in terms of their focus to clarify how they differ from our
evaluation. This is followed by an assessment of a set of metamodeling
languages using the metamodeling constructs identified. The section concludes
with a discussion of how well semantic data models can serve as a
metamodeling language from the perspective of modeling power, and in what
way they should be extended to describe method knowledge more completely.

4.5.1 Other studies evaluating metamodeling languages

In his early study Welke (1988) analyzed the modeling power of binary, ER, and
OPRR models to compare how adequate they are as metamodels for a
repository (i.e. as metaschema). The focus was especially on how completely
each metamodel can represent method knowledge, and hence it is close to our
approach. The suitability of different metamodels is demonstrated by using
structure charts as an example. In conclusion, the limitations of each
metamodeling language are discussed and an extended OPRR model, called
WOPRR, is briefly proposed for modeling larger methods and more complex
techniques. Smolander (1991) has extended the analysis of the OPRR model
based on experiences gained building OPRR-based metamodeling tools.
Limitations of OPRR are identified in two areas. First, OPRR does not provide
possibilities to model n-dimensional structures, such as the complex objects
discussed earlier. Second, OPRR does not provide concepts for defining the
connections between multiple connected techniques that form a whole method.

Venable (1993) concentrates on modeling complex objects, especially in
situations of complex covering aggregation in which an aggregate covers both
entities and their relationships. The modeling language proposed, named
CoCoA, is compared with a number of other data modeling languages, such as
the ER model (Chen 1976), entity-category-relationship model (Elmasri et al.
1985), class model of OMT (Rumbaugh et al. 1991), and NIAM (Wijers et al.
1992). Although the comparison covers languages used for IS modeling, many
of them including CoCoA have also been used for method modeling (Grundy
and Venable 1996). In the comparison two criteria, the richness and problem
domain correspondence, are relevant to us here. Richness refers to there being
sufficient semantic concepts to describe relevant aspects of the problem domain,
i.e. method knowledge. Problem domain correspondence specifies whether the
constructs of the metamodeling language correspond to the aspects of the
problem domain (i.e. methods). The analysis reveals a limited support for
modeling integrated techniques and demonstrates how complex covering
aggregation is relevant in metamodeling. In CoCoA, a complex covering
aggregation is mostly used for specifying which object types and relationship
types are components of a technique.

Saeki and Wenyin (1994) point out some limitations in ER-based
metamodels: how to describe constraints and hierarchical structures (i.e.

156

complex objects). Based on their evaluation, they suggest Object-Z as a language
for method modeling. Object-Z can describe knowledge and rules related to the
decomposition of processes in data flow diagrams, and constraints of
relationships, such as data flows between stores. Although their study reveals
the need for supporting specifications of constraints of method knowledge, no
classification of relevant constraints or even other constraint types is mentioned.

Finally, in a study by Harmsen and Saeki (1996) four different
metamodeling languages are compared. Some languages included in their
study also address process modeling, but all of them include meta-data
modeling. The focus of their comparison is on a wider framework of languages
for method engineering. Because of the breadth and generality of their
framework, the study does not reveal how well meta-data modeling languages
can represent method knowledge and how it is related to metamodel-based
modeling tools.

Although these studies present comparisons of metamodeling languages,
our analysis complements them in the following ways. First, we focus on
languages for meta-data modeling in relation to tools. To our knowledge only
Welke (1988) has compared metamodeling languages in relation to CASE, and
especially to a repository. Second, and perhaps more importantly, these earlier
comparisons were carried out on a relatively general level, since most of them
do not address detailed requirements for metamodeling. Finally, in line with
our inductive approach, our comparison is based on a set of constructs found
essential in modeling a large number of methods. Still, the inductive approach
limits our analysis to those aspects of metamodeling that are relevant in
modeling the chosen set of methods.

4.5.2 Evaluation according to essential metamodeling constructs

As described in Chapter 3, several languages for method engineering (i.e.
metametamodels) have been proposed and even implemented into tool
environments. In this section our goal is to analyze a set of metametamodels
according to the proposed essential constructs. The selected metamodeling
languages were already discussed in Section 3.3.3. They were selected because
of their focus on meta-data modeling, and intention for use as a metametamodel
in an adaptable modeling tool. Thus, we excluded all those metamodeling
languages which focus on method representation only and do not enable
metamodel-based adaptation of modeling tools such as CASE tools.
Furthermore, those parts of the metametamodels which do not focus on
modeling techniques were excluded. Hence, from MEL we analyzed only the
constructs for specifying product fragments and from ASDM we analyzed only
its deliverable model.

Because not all the tools applying the selected metamodeling languages
were available to complement our study the assessment is partly biased: it is
unclear how the metametamodels proposed can actually serve as a
metamodeling language for customizable modeling tools. This observation
emphasizes the need for such a tool-related comparison (Tolvanen et al 1996).
Tools for MEL (Harmsen 1997), CoCoA (Venable 1993) and NIAM were not

157

available as they exist at the design level only, or include partial
implementations for the researcher’s purposes only. The most common
metametamodels implemented into tools (CASE Outlook 1989), such as ER
(Mercurio et al. 1990) and OPRR (Meta Systems 1989, Smolander 1991, Marttiin
et al. 1993, MetaCase 1994) are widely described from a tool point of view, and
also tool-related implementations have been carried out for GOPRR (Kelly et al.
1996), and ASDM (Heym 1993). The last environment supports only method
modeling but not the implementation of modeling tools based on the
metamodels developed. We furthermore acknowledge the differences in
versions of languages and their evolution, as well as differences in supporting
even the same language (e.g. Quickspec and MetaEdit for OPRR) (Marttiin et al.
1993, Smolander et al. 1991). In the analysis we tried to focus on only one
metametamodel version which is close to the tool environment. Also, additional
grammatical extensions made for the notations of metamodeling languages,
such as proposed by ter Hofstede (1993) for NIAM, are excluded, since they
could be available for other metamodeling languages as well for directly
enforcing certain integrity constraints.

In the following we describe the results of evaluation. The results are also
summarized in Table 4-6: the vertical axis includes the metamodeling constructs
and the horizontal axis includes the metamodeling languages. A cross means
that the metamodeling language meets the requirement and a cross in brackets
that the current support is limited. It is obvious that the evaluation of the
metamodeling languages is not as clear-cut as Table 4-6 depicts.

158

TABLE 4-6 Support for metamodeling constructs in different metamodeling languages.

Metamodeling construct Metamodeling language

 ASDM CoCoA ER GOPRR MEL NIAM OPRR

Identifying property (x) (x) (x) (x)

Unique property (x) (x) (x) (x)

Mandatory property (x) x (x) x

Data type of properties (x) (x) (x) (x) (x) (x)

Cardinality x

Multiplicity (x) x (x) (x) (x) (x)

Multiplicity over several
role types

 (x)

Cyclic relationship (x) (x) (x) (x) (x) x (x)

Multiplicity of type

Inclusion x x x x

Complex objects (x) (x) (x)

Explosion (x) (x)

Polymorphism (x) (x) (x)

4.5.2.1 Modeling single techniques

4.5.2.1.1 Identifying property

Identity of types is considered a relevant construct in most metamodeling
languages, except in ASDM, CoCoA and MEL. Most languages, however,
specify identity of object types only, and they do not distinguish the identity
based on the scopes discussed in Section 4.4.1.1. OPRR allows one identifier for
object types only, but GOPRR allows identifiers to be defined for other types as
well (i.e. graph, relationship, and role types). NIAM normally uses a single
identifier specified in parentheses above the entity name but also other keys,
distinguished by ‘+’, are possible.

4.5.2.1.2 Unique property constraint

Uniqueness of property type instances is considered in ER, OPRR, NIAM and
GOPRR, but inadequately on the scope side. A common extension to ER models
for schema design is a uniqueness constraint. In OPRR identifying properties
are expected to be unique globally (i.e. inside the scope of a method). In NIAM,

159

the uniqueness of label types can be defined by a reference scheme named in
parentheses under the name of the object type. In addition to this identifier
description, the uniqueness of label types can be described by a uniqueness
constraint attached to a role of the label type connecting an object type to the
label type. Thus, the use of the same label for many object types allows for
uniqueness inside the scope of a dependent type. Likewise, in GOPRR the
property can be unique among the instances of related types.

4.5.2.1.3 Mandatory property constraint

Mandatory property types are identified explicitly in NIAM only. This is
achieved by a total role constraint attached to an entity (Nijssen and Halpin
1989) or an object (ter Hofstede et al. 1993) type connected to a label type. Some
other metamodeling languages include the possibility to define mandatory
properties with other constraints. For example, in MEL (Harmsen 1997) a
required clause can be used to define that certain properties must be available
in other modeling techniques. In CoCoA the constraint could be supported
through a simple aggregation with minimum cardinality one but this would
lead to complex structures if all mandatory values had to be specified as
aggregations and optional properties as a normal attribute. A common
extension in the ER model (Teorey 1990) for defining constraints for attributes
and database implementation considerations is the restriction of null values.

4.5.2.1.4 Data type of properties

Since semantic data models underpin the design of database schema, various
data types are widely recognized and supported, including basic data types
such as integer, Boolean, and string. Basically only two weakly supported
modeling constructs are encountered: properties with a specified grammar, and
collections. On the grammar side, CoCoA, NIAM, OPRR, and GOPRR support
more complex data types based on predefined values or intervals for possible
values. On the collection side, GOPRR has an explicit collection data type which
can have any of the basic data types as components, or even other types of the
method. CoCoA allows the definition of attributes (also called properties) as an
aggregate of other attributes, and with the simple covering aggregation entity
types may have components of other entity types. For the same purpose NIAM
has been extended by power types (ter Hofstede et al. 1993).

4.5.2.1.5 Cardinality constraint

The cardinality constraint is handled only in GOPRR by separate cardinality
values for both minimum and maximum cardinality. Moreover, since the
cardinality constraints are effective in the scope of a model GOPRR adequately
supports modeling of all possible binary and n-ary relationships. Although
other metamodeling languages allow n-ary relationships to be specified it is
only supported at the type level. For example, in CoCoA a relationship can
consist of more than two roles (i.e. type level), but it can not be specified
whether instances of a specific role type are necessary (i.e. instance level). In
NIAM the modeling of a cardinality constraint requires that the relationship is
considered as an object type (as in ter Hofstede 1993, p 45) leading to difficulty

160

in implementing a method support based on the metamodel: there would be no
way to distinguish the appearance of objects from relationships if they are of the
same type. Subtyping of entities could be applied here, as in the reference
model of Heym (1993). In spite of this, the relationships of methods considered
as object types can have an occurrence frequency constraint on the related role
type to include both minimum and maximum cardinality.

4.5.2.1.6 Multiplicity constraints

A multiplicity constraint is supported by ER, ASDM, OPRR, CoCoA and NIAM.
ER and ASDM support only maximum multiplicity (called there cardinality)
whereas CoCoA, MEL, and OPRR allow to specify minimum and maximum
multiplicity. NIAM supports minimum multiplicity with a value of one (i.e.
mandatory participation in a role) by a total role constraint, and maximum
multiplicity with a value of one (i.e. instances of a role must be unique) by an
uniqueness constraint. Other multiplicity values for maximum multiplicity can
be supported by attaching the additional occurrence constraints for roles. This
possibility is not allowed for minimum multiplicity (Weber and Zhang 1996) as
required to model some methods (such as service charts in which a condition
must participate in at least two role instances of the same type). The scope of the
multiplicity constraint is left undefined in all metametamodels and assumed
implicitly (once not specified) to cover either a scope of a method or a model.
CoCoA, however, can capture an aggregation of role types together with the
related relationship type and therefore supports both scopes of the multiplicity
constraint. If a role type is only part of a single technique the scope for the
constraint is a model. If the same role can also be part of multiple techniques
(overlapping according to terminology of CoCoA) CoCoA could also restrict to
the scope of the method. In principle support for specifying a scope among a
limited set of techniques could be supported as well, although this was not
recognized essential among the analyzed methods.

Multiplicity over several roles is only supported by NIAM, via a total role
constraint attached to two or more roles connected to the same object type.
NIAM, however, does not explicitly define a scope for this constraint and it is
applied by metamodelers (i.e. ter Hofstede 1993) only for the scope of a model.

4.5.2.1.7 Cyclic relationships

Cyclic relationships can be modeled with all metamodeling languages, but only
in NIAM can a direct recursion be forbidden by defining the cyclic relationship
(called homogenous binaries by Nijssen and Halpin (1989, p 183)) as
irreflective, and an indirect recursion by defining the relationship as
asymmetric. In contrast, no method has relationships which are reflective, or
symmetric, i.e. none of the object type instances must be related to itself via a
cyclic relationship, nor does any connection between two object type instances
necessitate another instance of the same relationship type with different role
types.

161

4.5.2.1.8 Multiplicity of type

Modeling the multiplicity of types is not supported in any of the metamodeling
languages analyzed. Thus, it is not possible to specify rules for restricting the
number of instances of a given type (i.e. how many instances of an object or
relationship type must or can occur in the scope of a model or a method).

4.5.2.2 Modeling multiple interconnected techniques

Most metamodeling languages focus on modeling single techniques only.
Accordingly, only a few of them distinguish constructs for modeling multiple
interconnected methods adequately.

4.5.2.2.1 Inclusion

Inclusion is supported in ASDM, CoCoA, MEL, and GOPRR, although in
CoCoA (Venable 1993, p 116) it is applied only in integrating similar types of
techniques from different methods. All of them allow the modeling of many-to-
many relationships of the inclusion: the same type can be part of multiple
techniques, and a technique can consist of multiple types. Because of the
deficiency of NIAM in this matter it has been extended with schema types by
ter Hofstede et al. (1993).

4.5.2.2.2 Complex objects

One of the most weakly supported constructs in metamodeling languages is the
modeling of complex objects. Only ASDM, CoCoA and GOPRR support some
structures of complex objects: ASDM provides a structural entity type; GOPRR
provides decomposition, instance reuse, and nested data types for modeling
complex objects. The last of these, however, does not address complex objects
other than by allowing a component to be modeled as a property of an
aggregate object (i.e. simple covering aggregation as in CoCoA). CoCoA
provides complex covering aggregation to model an aggregate object type and
its components as object and relationship types. As mentioned above, NIAM
has been extended (cf. ter Hofstede 1993) with a schema type also applicable for
modeling complex objects. In the following we assess the modeling support
according to the various structures of complex objects (cf. Table 4-4).

In ASDM, entity types resulting from recursive aggregations expect that
the component (called the structural entity type) must belong to exactly one
aggregate type (called the fundamental entity type). In contrast, in CoCoA and
GOPRR component elements are not dependent on the existence of an aggregate
object. Thus, they can not adequately specify methods which apply top-down
modeling only, such as functional decomposition (Yourdon 1989a) or a
composite (Booch and Rumbaugh 1995). However, connected components,
which are recognized as essential in all structures of complex objects, can be
modeled. The third dimension, mandatory component objects, can be modeled
only in CoCoA. In GOPRR components are optional, but in CoCoA both
mandatory and optional components can be specified by a cardinality constraint
for the covering aggregation, namely one for mandatory and zero for optional
components. In relation to the exclusive-shared dimension of complex objects,

162

GOPRR and CoCoA support only the shared dimension by allowing the same
instance of a component type to belong to more than one aggregate object. As a
result, they can not adequately specify methods which apply complex objects
with an exclusivity constraint, such as the clusters of BON (Walden and Nerson
1995), functional decomposition (Yourdon 1989a), composite (Booch and
Rumbaugh 1995) or nested state diagrams (Rumbaugh et al. 1991, Booch et al.
1997).

The fifth dimension of recursive complex objects is supported adequately
both in CoCoA and GOPRR since only recursive complex objects need to be
perceived. In CoCoA recursive complex objects are modeled by using the same
names for the aggregate and the component. Hence, the same instance of an
entity type is added twice to the CoCoA diagram. In GOPRR, non-recursive
complex objects can also be described by having two different graph types (i.e.
techniques), one containing the aggregate type and another for the component
types. Moreover, the graph type for components should not include the
aggregate object type. Because this approach requires two different graph types
the choice of the modeling technique beforehand would not be ideal.

The metamodeling languages studied do not make any type level
distinctions between relationships of an aggregate or a component. Thus, they
all satisfy the sixth type of complex structure, i.e. independent relationships for
aggregate object types. The final requirement in modeling complex types is
aggregated relationships. This was not supported in any of the metamodeling
languages studied.

4.5.2.2.3 Explosion

The third essential construct in modeling interconnected methods is the
explosion from a type of one technique into another technique. For this
metamodeling requirement GOPRR includes an explicit explosion construct;
CoCoA does not provide such a construct explicitly and most of the CoCoA
metamodels are based on techniques of a similar type in which the connection is
based more on inclusion and use of the same types among several techniques
rather than explosion structures between techniques (cf. Venable 1993, Grundy
and Venable 1996). Relationships which are outside the domain of complex
objects can, however, be distinguished as explosion relationships (see the
CoCoA example in Section 3.3.3.5). NIAM does not provide support for
explosions because it does not consider multiple techniques at all. Therefore,
NIAM has been extended with PSM (ter Hofstede 1993) to support explosions
by a relationship from an object type in one schema type to another schema (i.e.
technique). These relationships are usually distinguished from other
relationships by naming the roles (c.f. ter Hofstede 1993, p 33, 45) since they are
represented with the same notation and constraint types. Hence, like CoCoA,
NIAM/PSM does not provide any explicit type level construct.

None of the metamodeling languages for describing explosions is
adequate. First, no distinction is made about the scope of explosions. The
metamodeling languages analyzed thus do not distinguish between explosion
of a type instance in a model or among all models. Other deficiencies in the
metamodeling languages can be illustrated by various alternatives of explosion

163

structures, namely type of the explosion source, cardinality of the explosion,
exclusive or shared explosion target, and dependent/independent explosion
target. Each of these characteristics was described in Section 4.4.2.3 and will be
applied in the assessment below. Both GOPRR and extended NIAM (ter
Hofstede 1993) support explosion structures from object types only, and thus
can not adequately model explosion from property types, e.g. from a service to
service charts (as in Coad and Yourdon 1991a), or from relationship types, e.g.
from a transition to a data flow diagram (as in Rumbaugh et al. 1991).
Mandatory explosion is supported in NIAM/PSM only with the extended
graphical constructs (ter Hofstede 1993): a total role constraint on the role of the
object type participating in an explosion relationship. In principle, other NIAM
constraints for roles, such as uniqueness and occurrence frequency constraint,
could also be used for describing other necessary cardinality rules. To our
knowledge, however, NIAM has not been used to model such an explosion
cardinality (cf. ter Hofstede 1993, ter Hofstede et al. 1993). If extended in such a
way, exclusion of explosion links could also be described with the exclusion
constraint of NIAM added to all role types of explosion relationships. While the
cardinality of explosion links is unspecified in GOPRR, mandatory explosion
links can not be modeled. Also, many-to-many relationship between instances
of object types and graph types are allowed.

4.5.2.2.4 Polymorphism

Polymorphism is not supported at all in MEL, NIAM, ER and ASDM. For
example, ASDM allows the same property type for one entity type only. Other
languages address it only partially.

CoCoA offers an entity alias which supports polymorphism among entity
types only. No entity alias, however, was found from the methods analyzed as
none of them includes different types which have exactly the same instance
information. The entity alias seems to have be added into CoCoA mainly to
support integration of similar kinds of modeling techniques (cf. Grundy and
Venable 1996). Moreover, CoCoA does not specify the functionality of such an
alias if an aliased entity occurs in a complex covering aggregation. For example,
would it have the same relationship instances as well?

OPRR supports dependencies between elements at the level of single
valued properties only (Smolander et al. 1991, MetaCase 1994). A reference
property type links to instances of the same, or another property type. Since the
property type referred to may be named differently on the metalevel and
belong to a different object, relationship, or role type, some structures of
polymorphism can be supported with OPRR. These include methods which
apply polymorphism in a single technique and share single valued (string)
property types independently. Sharing of single property values can be
supported among multiple type instances by using the reference property type
for each type. Since any instance of the referred property can be used as a value
for a referring property, the reference scope is the whole method.

GOPRR extends the support of polymorphism found from OPRR to
multiple techniques as well as to more complex data types than string or other
basic data types. If such more complex data types would be used, necessitating

164

the use of instances of object, relationship or role types, the polymorphism is
supported for multiple values. In GOPRR the sharing of a single instance as a
property type is called property sharing. GOPRR does not specify any
dependency to the property sharing, and it is allowed wherever the same
property type is reused.

Support for metamodeling of polymorphism can be analyzed through the
support for each kind of polymorphism structure: the coverage over one or
more techniques, the number of property type instances shared, the number of
types related, and the dependency. The metamodeling languages do not make a
difference between polymorphism with instances of one technique or a whole
method. OPRR provides support for sharing one property value only; and
GOPRR extends this to sharing of multiple connected property values through
sharing non-property types. This necessitates that all interconnected properties
of a polymorphism structure are collected into a single type. Sharing the same
property values can not be limited into two or any other number of instances.
As a result, for example balancing rules of SA/SD requiring correspondence
between two type instances only can not be modeled. These balancing rules
state that an instance of an entity name can belong to only one item in the data
dictionary. Finally, none of the metamodeling languages recognizes
dependencies among polymorphism structure.

4.5.3 Limitations of metamodeling based on semantic data models

Although metamodels represent a great deal of static method knowledge and
customizable CASE tools can automate them they are not complete. First, our
metamodeling efforts with GOPRR (and OPRR, Tolvanen and Rossi 1996) show
that it has limited support for modeling the rule parts of method knowledge.
Second, none of the languages provides adequate support for metamodeling.
The obvious reason is the limited metamodeling capabilities of the selected data
modeling approach. As a result, we need to discuss the limitations of method
modeling using conceptual data models. This topic is especially important
because other languages for metamodeling, such as Object-Z (Saeki and Wenyin
1994) or LISA-D (ter Hofstede et al. 1993) have been proposed, which could
solve alone, or as extensions, limitations of data model based languages. To
guide the development of languages for capturing method knowledge or to find
other complementary approaches, we illustrate in the following some key
constraint types for metamodeling languages which were not addressed with
semantic data models.

The analysis of the limitations of data model based metametamodels is
supported by our method modeling studies. First, methods include
transformations in which models based on one technique are transformed to
another model. This is typical in vertical integration of techniques. According to
our metamodeling approach this would necessitate changing the types of
instances. For example, in a transform-centered design (Yourdon and
Constantine 1989) a network model of processes can be transformed into a
synchronous structure chart. Similarly, a data transformation based design
approach used in JSD (Cameron 1989) applies generation of initial process

165

structures from the definitions of the data structures. This is especially relevant
in CASE tool based methods since they can automate error-prone routines, such
as transformations. Transformations, however, are examples of method
knowledge that needs information both about meta-data models for retrieving
or changing design information (cf. Brinkkemper et al. 1989) and about process
models (cf. Marttiin 1998, Marttiin et al. 1996) for guiding and executing the
transformation.

Another type of method knowledge that can not be captured with static
metamodeling constructs is heuristic rules and recommendations. For example,
some object-oriented methods include recommendations on the breadth and
depth of inheritance hierarchies, the number of public operations for a class
(Booch 1991), or that a single state model should not specify states of more than
one class (e.g. Embley et al. 1992).

Third, dynamic relationships among the instances of the same or different
type can not be described with data models. Examples of these dynamic aspects
in method knowledge are the numbering of an instance based on the number of
its creating activity (Lundeberg et al. 1981), or that functions participating in a
call relationship can not have child diagrams (FIPS 1993a). Similarly, in
Yourdon (1989a, p 283) possible values for a condition in a state transition can
not be found among the properties of the related control process, but from the
flows it participates in: the possible values for the condition are only those
names of flows which are coming into the control process. This type of
polymorphism could not be supported with the proposed constructs. Extensions
of methods closer to the constructs of programming languages would raise
similar requirements. For example, an action defined in a state diagram of a
single class should be characterized as a private method, and a message
between objects as a public method, in the corresponding method definition of
the receiving class. Similarly, modeling of method overloading would not be
possible with the proposed metamodeling constructs. The extension of the
metametamodels and metamodeling languages in this direction is, however,
questionable. Some of the dynamic rules on naming, especially on the identifier
side, originate from pen-and-paper oriented methods (e.g. Lundeberg et al.
1981) and are not necessary in computer-aided environments. Thus, there
would not be a need to support these in metamodels either.

Fourth, none of the metamodeling techniques support grammar
specification for formal textual descriptions, such as process specifications, data
dictionaries (Yourdon 1989a), or textual grammars (Walden and Nerson 1995).
These are especially important to better integrate modeling tools and models
into other tasks of ISD, such as generating prototypes, program code, or
visualizing available data and program structures.

Because of these limitations other metamodeling approaches, such as rule-
based languages or predicate logic, could be more suitable as extensions and
need to be studied in relation to the criteria proposed here. Various other type
of languages for metamodeling could also be tested to specify essential
constructs of metamodeling.

166

4.6 Summary and discussion

In this chapter, we have analyzed conceptual structures of methods and
proposed essential constructs for metamodeling languages. These constructs
were derived from the analysis of ISD methods by modeling the methods and
by validating the metamodels by adapting them into a modeling tool. Our focus
on metamodeling has captured static aspects of method knowledge for adapting
a tool. The constructs are not required only to represent method knowledge, but
also to “execute” the methods in a computer -aided modeling tool. Each
construct of a metamodeling language supports the implementation of a certain
part of the conceptual structure of a method into a modeling tool.

The proposed constructs were divided into two categories, those for
modeling a single technique and those for modeling a whole method. In
modeling a single technique, four constructs deal with modeling property
types, including their identity, uniqueness, mandatory and data type. One
construct, type multiplicity, deals with the number of instances of a given type.
Four of the constructs deal with connections between objects, namely cyclic
relationships, cardinality, multiplicity of single role type, and multiplicity over
several role types. Required constructs for modeling interconnected techniques
were classified into four aspects: inclusion for specifying the types used in each
technique; complex objects for describing types which are treated as being
“combined” without explicit relationships; explosion for modeling links
between types and different techniques; and polymorphism for specifying the
types of a method whose instances share the same values. These constructs are
specific for the field of method modeling only, and no suggestions were made
of their applicability in other domains.

The analysis of method knowledge together with the proposed
metamodeling constructs also serves as a vehicle for assessing existing
metamodeling languages. In short, CoCoA and GOPRR seemed to be most
comprehensive for specifying method knowledge behind modeling techniques.
NIAM also succeeded well but only while modeling single techniques.

In general, the assessment reveals that the current methodical support for
method engineering is modest. While in recent years some progress has been
made in outlining conceptual and theoretical principles for metamodeling and
several metamodel-based tools have been developed (for a survey see Tolvanen
et al. 1996) we argue that the available metamodeling languages, mostly based
on data models (CASE Outlook 1989), do not provide adequate support for all
aspects of method engineering. For example, metamodeling methods offer
limited constructs for modeling interconnected techniques. Moreover, we
identified conceptual structures of methods which could not be represented
with the proposed metamodeling languages adequately or even at all. As a
result, we have pointed out some areas for improvement.

It must be noted that we did not discuss method knowledge that could be
supported already by all the languages, since this can be found directly from
the metamodels. Similarly, during the assessment of the metamodeling
languages we did not evaluate which language is more suitable for

167

metamodeling, nor did we try to eliminate the constructs offered by these
languages although some of them offered constructs which we did not find
essential. This was especially the case with NIAM (see also Weber and Zheng
(1996) for the construct overload) since the constraints for equality and
exclusion were not found to be essential. These constraints along with some
other might, however, be needed in modeling other methods, or if different
interpretations of method knowledge and their tool support need to be made.
The refinement of available languages for metamodeling, however, is outside
the scope of our study.

Finally, various interpretations of method knowledge and its modeling
deserve a closer examination. Like all modeling, our metamodeling effort was
influenced by alternative interpretations of the method knowledge. Two major
reasons for the interpretations and alternative versions of metamodels were tool
adaptation and incomplete, or even inconsistent, method descriptions.

First, on the tool adaptation side, method developers have not considered
enough possibilities of computer-aided tools but rather maintained the pen-
and-paper mentality. Moreover, most remarks on tool use were made on the
representational side, rather than on the conceptual side of method knowledge.
As a result, in tool adaptation some aspects of method knowledge could be
modeled differently. For example, there is no need to introduce additional
textual pages separate from diagrams to view and edit more detailed
information about the elements of a diagram (e.g. Lundeberg et al. 1981,
Goldkuhl 1992) if such information can be added directly to the elements.
Similarly, models do not need property types for entering reference
information, such as how many representations of this instance exist (Gane and
Sarson 1978), or whether the process is decomposed or not. Also the identity of
instances does not need additional reference numbers, such as process
identifiers, or information codes, widely used in pen-and-paper based methods
(e.g. Yourdon 1989a, FIPS 1993a, Lundeberg et al. 1981). The balancing rules
applied in many methods (e.g. Yourdon 1989a) could also be implemented
differently: instead of referring to names in a polymorphism, we could refer to
actual instances. Why refer just to a value of a property type, if the whole
instance of an object type or a relationship type is available. These modeling
options are typically related to the support provided by a modeling language,
or a tool.

Second, a major reason for alternative metamodels was inadequate or even
inconsistent method descriptions. As a result, we need to make our own
decisions on what specific concepts and rules mean. For example, in most of the
object-oriented methods, except OSA (Embley et al. 1992), it is unclear whether
a state model can include states of more than one object. Instead of providing
methods for systematizing ISD, method developers should apply
(meta)methods to systematize ISD methods (Parsons et al. 1997).

5 EXPERIENCE BASED METHOD EVALUATION AND
REFINEMENT

In this chapter our aim is to extend the use of metamodels in maintaining
method knowledge in evolving ISD situations. Accordingly, we shall develop
incremental method engineering principles and thus focus on our second
research question (cf. Section 1.5.3):

The question deals with extending the dominant a priori ME principles
through an a posteriori approach. We collect situational experiences of method
use for refining methods. Whilst current ME approaches focus solely on the
construction phase and expect information about methods and their use
situations to be known completely beforehand, we assume that constructed
methods are not necessarily applicable in the first place, situations in which
they are applied change, and method users learn through their use. A posteriori
refinement of methods is based on collecting and analyzing differences between
intended and actual use of modeling techniques, on studying how techniques
have supported modeling, and on understanding how they support problem
solving. In contrast to learning about object systems under development (via IS
models), our aim is to learn about methods and especially about modeling
techniques (via metamodels). The proposed principles complement, but do not
substitute, the ME frameworks and (meta)methods.

This chapter is organized as follows. First, in Section 5.1 we describe the
motivation for incremental ME in general, and experience-based evaluation and
refinement in particular. Second, in analyzing the principles of incremental ME
it is useful to place this work in relation to other similar work reported in the
literature. Therefore, in Section 5.2 we describe approaches proposed for

How can experience of method use together with metamodels be applied for
method refinements?

169

method evaluation as well as point out some problems and difficulties in such
evaluations. This leads us in Section 5.3 to propose mechanisms which, through
the use of metamodels, can help to gather, analyze and communicate
experiences about the use of modeling techniques. The ME process is explained
in more detail from the view of a posteriori evaluation and refinement. Finally,
Section 5.4 summarizes the chapter.

5.1 Introduction into incremental method engineering

Before extending ME principles further we need to argue for the necessity of an
incremental approach and describe why and how the current ME principles are
inadequate. This is important because there is a paucity of studies focusing on
principles to support method evolution through ME principles (Tolvanen et al.
1996).

In the following subsections we first give basic motivation for the
incremental approach and define it by taking an a posteriori view of the ME
process. Second, different scenarios for refining methods are identified.
Identification is based on analyzing the origins of ISD related experiences and
distinguishing targets for making method refinements. The section concludes by
discussing differences between incremental and more radical ME approaches.
This allows us to describe local method development situations where the
proposed principles are most suitable.

5.1.1 Motivation and definition

The motivation for incremental ME comes from our re-evaluation of method use
(Section 2.5) and from the limitations of current ME principles (Section 3.2). In
short, we claim that the situational applicability of methods is difficult to
achieve solely through a priori ME principles. Major reasons are that 1) the
required information for method construction is not sufficiently available, 2) the
criteria that can direct method construction are difficult to identify beforehand,
and 3) the ISD environment evolves.

Availability of method knowledge

In relation to availability, there are not many detailed metamodels available,
nor readily applicable frameworks of ME criteria which are “filled” with known
situational characteristics and related to metamodels. Most of the metamodels
 which come with metaCASE tools, repositories, or are described in reference
books (e.g. Olle et al. 1991)  focus on a limited number of methods and/or on
only specific types of methods (e.g. object-oriented methods). Moreover, the
metamodels described in books are not usually specified unambiguously and
are at a relatively coarse granularity, at least when compared with the detailed
metamodels required to model operational techniques. As a result, the pool of
methods specified with metamodels for comparison and selection is small.
Moreover, the frameworks of ME criteria, like the contingency frameworks
applied to ME (i.e. Punter and Lemmen 1996, Harmsen 1997) focus on only a

170

few aspects of methods applicability, and only on general method knowledge
(see Section 3.2). The combination of metamodels and ME criteria into a larger
baseline is difficult: different metamodeling languages focus on different types
of method knowledge at different levels of detail and are not usually related to
detailed method knowledge. Even assuming that a large body of metamodels
and related ME criteria were available, the maintenance of this knowledge
would be a huge or even unrealistic task. This fact also partly explains why
contingency frameworks operate with method knowledge at a general level.

As a result, organizations are forced to test methods and try to make them
more applicable by “learning” and d eviating from them while they are used.
After all, organizations can not stop developing their own variants although
theoretically this can be assumed (e.g. Wynekoop and Russo 1993). Similarly,
the proposed incremental principles take an a posteriori view of ME by seeking
to understand the applicability of methods through an organization’s
experiences. The a posteriori view also forms a key distinction to current ME
principles reviewed in Section 3.2. It must be emphasized that typically the
experience gathering and method refinements are carried out haphazardly and
on a trial-and-error basis without any systematic principles (Smolander et al.
1990, Hughes and Reviron 1996).

Availability of method engineering criteria

We claim that it is difficult, if not impossible, to identify beforehand all relevant
criteria for method construction. For example, the ME criteria of van Slooten
and Hodes (1996)  resistance of end-users, aspects of the system to be
analyzed, and management commitment  can hardly be known completely
beforehand. Furthermore, as argued in Section 3.2 their relationship to method
knowledge is not clear. In fact, van Slooten and Hodes apply the contingency
framework in an a posteriori manner to analyze whether the criteria proposed in
their framework have affected past projects and thus could be relevant to ME.
How they can be applied to construct methods is not discussed. In contrast to
the current ME view, cases of local method development (Jaaksi 1997, Tollow
1996) show that the characteristics and problems to be solved with methods
were not known beforehand because of uncertainty about the problems.

As a result, we claim that the requirement for complete prior knowledge is
both idealistic and unrealistic. Consequently, in situations of uncertainty and
limited information, the incremental principles focus on improving method
applicability through promoting small changes to methods while an
organization obtains experiences and learns both about the method and about
the IS domain. Although this option is partly dictated by practical needs, it also
allows the creation of new knowledge based on experience, regarding both the
method and the ME criteria. This is important, because current ME approaches
rely on the existing body of information about both methods and ME criteria.
Therefore, ME must be viewed as a learning process in which experience of
successful (or unsuccessful) ISD efforts needs to be incorporated into future ME
efforts: every use situation of methods should evaluate and analyze methods
with a view to improving them. In fact, keeping the situational dependency of
method use in mind, the most reliable information about method applicability

171

can be obtained from an organization’s own experiences. This experience-based
learning is generally an incremental process (Miner and Mezias 1996), and a
main argument in favor of incremental ME.

Evolving information system development environment

A method use environment is hardly stable because situations can change even
during a short ISD effort. These changes also affect the applicability of methods,
leaving two options for method engineers: either continue the use of the method
in its current state, or modify it to support the new situation. The former option
is chosen at the cost of applicability and the latter at the cost of making a new
version of the method and transforming models which have already been made.
This topic is discussed in Section 5.1.3. Changes in ISD situations are common,
and can be seen also in the documented ME cases (e.g. Cronholm and Goldkuhl
1994, Nissen et al. 1996, Jaaksi 1997). These show that once methods have been
adapted to tools, requirements for maintaining and modifying the methods for
new situations appear immediately. In fact, some of the requirements occur
already during tool adaptation, or after a pilot use. As a result of this evolution,
methods must be refined continuously.

At the level of the ME criteria, changes in the situation have been
identified as changes in contingencies, shifts in problems of ISD, or changes in
stakeholders’ requirements and values (Kumar and Welke 1992, Joosten and
Schipper 1996). On the contingency side, one of the main reasons for
introducing an ME approach is the inflexibility of contingency based method
selection (Kumar and Welke 1992): in the worst case, a change in one
contingency could lead to a selection of a totally different method. Similarly, a
typical shift in problems to be solved (Checkland 1981) necessitates changes in
methods: only in the case of a tightly defined and enclosed system can a method
be presumed to be applicable every time. Finally, neither stakeholders nor their
requirements are stable. People participate at different times and new people
can raise different requirements and have different values which need to be
reflected in methods (Nuseibah et al. 1996). Similarly, stakeholders’
assumptions change and they can not know all the relevant criteria (Joosten and
Schipper 1996).

To summarize, an incremental approach extends, rather than substitutes,
the current principles of ME by focusing on experiences of method use, i.e. on
an a posteriori instead of an a priori view. By evaluating the applicability of
methods in a given situation it aims to manage and refine methods. The
accumulated experience can lead organizations to extend, modify or purge any
part of the method knowledge, such as concepts, constraints, or notations. These
refinements are gradual and small in nature, hence the name incremental for the
proposed approach. Gradual means that method refinements are applied to the
method currently used in a given situation, instead of selecting a radically new
method. Small changes are a consequence of the gradual changes: applicability
is achieved by modifying selected parts of the existing method knowledge.
Before describing the incremental principles in more detail we first take a closer
look at method evolution.

172

5.1.2 Scenarios of method evaluation and refinement

In the following subsections we analyze incremental ME according to two
dimensions: the source of experiences and the target of method refinement.
Identifying the sources of experiences allows us to find mechanisms to collect
experiences and make them available for method engineers. Experiences can
lead to method modifications in different phases of the ME process. This is
described through the target of method refinements. In the following we shall
also address relationships between different types of method knowledge by
describing how requirements imposed on a method’s conceptual structure affect
notations and supporting tools, or vice versa.

5.1.2.1 Sources of experiences

A requirement to modify a method arises when the method does not meet the
situational requirements. These requirements can be collected while adapting a
method to a tool, while introducing a method into an organization, or while
using the method23. Each of these alternative sources can lead to iterations in
the ME process and to a method modification. In each view the applicability of
a method is determined based on different criteria:

1) Tool related feed-back occurs when a customizable modeling tool has
limitations to support the constructed method (Cronholm and Goldkuhl 1994)
or it offers possibilities which have not been considered earlier (Tolvanen and
Lyytinen 1993). For example, most of the ISD methods used today still follow a
“pen -and-paper” -mentality: they do not take full advantage of computer-based
modeling environments. Therefore, the applicability of the method is
determined here through a method-tool companionship.

2) Introduction of methods. Method refinements can also originate from
the introduction or “pilot” use of methods (cf. Nissen et al. 1996), when a larger
group of stakeholders can analyze the constructed method and tool support.
Here a method is typically assessed in terms of its supporting materials, like
tutorials, manuals, example solutions and reference models, as well as features
of the method supporting tool. The applicability is determined mostly
according to the pedagogical aspects, like how easy it is to learn and introduce
the method into an organization. Some ME approaches focus on constructing
methods so that they work as a learning device for teaching ISD methods (cf.
Mathiassen et al. 1996).

3) Experience-based feedback occurs when developers face situations in
which they feel that the constructed method is, or is not, applicable. If the
method is considered inapplicable, they may rely on their experience more than
on the use of the method. Hence, the applicability of the method is viewed in
the light of current circumstances. This type of feedback is important because it
is founded on actual method use. Several researchers (cf. Wood-Harper 1985,
Galliers and Land 1987, Galliers 1992, Checkland 1981, Grant et al. 1992) have

23 The method modifications can also occur while selecting or constructing the method, but

we do not consider them because they are discussed in available ME approaches (cf.
Punter and Lemmen 1996, van Slooten and Hodes 1996).

173

also emphasized the importance of the problem situation in which the method
is used as a basis for evaluation.

In this thesis our main interest is on experiences related to method use,
although the other sources mentioned are also possible starting points for
iterations. Modifications which arise from the functionality of the tool are
mostly dealing with technical issues and not related to the applicability of
modeling techniques. In other words, our primary focus is not on the evaluation
or improvement of modeling tools and their support for method-tool
companionship. However, we claim that this type of empirical approach is
required for evaluating tools (Tolvanen et al. 1996). Similarly, we do not
consider here the effect of teaching approaches, other method-related materials,
or the effects of piloting approaches, although we acknowledge their
importance.

5.1.2.2 Targets of method refinement

Collected experience can lead to method modifications at different phases of
method development. This dimension describes whether the iteration leads to
re-select a method or its parts (i.e. start the ME process from the beginning), to
construct the method differently, modify the method only to achieve better tool
companionship, change the way in which the method is introduced, or to
interpret the method differently. Each target is described in the following.

1) Refine the method while using it. This possibility means making
different interpretations and giving different meanings to the method
knowledge. This type of refinement takes place in learning-by-doing when an
individual learns by developing an IS. Moreover, it must be noticed that this
type of refinement can often occur without any language or documentation.
Hence, the refinements can also be tacit (Nonaka 1994, Hughes and Reviron
1996). For method refinements this means that experiences about methods are
not shared and thus not explicitly used to modify “intended” method
knowledge. As a result, method refinements performed only while individual
persons are using the method are difficult to study and systematize, because of
the tacit nature of method-related experiences.

An individual person’s refinements can be externalized (Nonaka 1994) by
making them explicit and thus available to method engineers and other
stakeholders. Experiences can also lead to organizational learning if they are
collected and shared in some way with other participants. The remaining four
phases of method refinement presuppose mechanisms to collect experiences and
to make explicit changes to method knowledge.

2) Changes in the introduction or “piloting” phase deal with method
refinements which change the way in which a method is taught; modify
method-related materials, such as example solutions, tutorials, manuals; or
demand more easily learned versions of the method. This last approach is
commonly used both in text-book methods (e.g. Booch 1991) and in local
variants (Jaaksi 1997) by developing “light” versions of the method. These are
simpler and easier to learn, yet applicable for small or “first” projects.

174

3) Refinement of the method in a tool aims to make the use of the method
easier with the tool. Examples of such modifications are changing the order in
which the design information is added to the tool, or changing reports for
consistency checking. Issues related to the tool only, such as the layout of
dialogs and the order of reports and techniques shown in dialogs or menus fall
into this category. Because these modifications change the behavior of the tool,
they are explicit and well-structured changes, but deal with the surface
structures (Wand 1996) of method knowledge.

4) Re-constructing a method represents more profound changes to the
method knowledge. These include modifications to the initially constructed
method knowledge: existing method components in the metamodel are
removed or modified. A re-construction of the method also requires
modifications to the underlying rationale applied for selecting and constructing
the method in the first place. Ideally, each modification should be evaluated
based on earlier knowledge of the method’s applicability: why a certain
methods was not applicable, and how the modification can improve its
applicability.

5) Selecting a new method or its parts deals with the most profound
refinements to methods. Here new method components, like types, constraints,
and modeling techniques, or totally new methods are selected. These changes
are also typical when the re-construction requires new components or when
unforeseen contingency factors arise, or there is a significant change in existing
factors (van Slooten and Hodes 1996).

Together the two dimensions, the source and the target, form a space for
possible method refinements. These are illustrated in the cells of Table 5-1. The
horizontal axis shows the sources of experience and the vertical axis shows the
targets of method refinement. The arrows show all possible choices when
method refinements can take place: from the starting point of an iteration to the
point of making the refinement. These scenarios are important because they
allow us to restrict our view to experiences based on method use, and their
influence on method refinements.

According to the possible scenarios, experiences about methods can be
collected before, during or after the use of the method. Our interest in method
refinements is in those related to experiences gathered from method use which
can be externalized, i.e. represented, analyzed and refined with metamodels.
These situations are grayed in the table. Thus, the first four phases of the ME
process, which can also raise requirements for method refinement, are not
considered in this thesis. They expect evaluations to be carried out before a
method is used and are already partly covered in a priori ME approaches.
Hence, we believe that the applicability of methods can be known only when
the method is used.

The selected scenarios also reflect the depth of method refinements
because all refinements made to metamodels expect modifications to be made to
later phases of ME, i.e. to tools and their introduction phase. These are,
however, also supported in most of the ME frameworks (see Section 3.2).

175

TABLE 5-1 Scenarios for incremental method refinements.

Source
Target

Method
selection

Method
construction

Tool
adaptation

Introduction
of methods

Method
use

Method
selection

Method
construction

Tool
adaptation

Introduction
of methods

Method use

5.1.2.3 Refinements between types of method knowledge

Method refinements can not always be carried out by modifying only one type
of method knowledge. Instead, during the construction phase the modifications
are interrelated: changes in one part of method knowledge cause changes in
other parts of the method.

Based on our focus on modeling techniques, we shall analyze only two
fundamental types of method knowledge subject to modifications, namely the
conceptual structure and the notation. These types and their relationships are
also identified by Kronlöf (1993) and Jarke et al. (1998). Thus, other types of the
method knowledge shown within the shell model (Figure 2-2) are excluded.
However, to emphasize the companionship between a method and a tool, we
also analyze tool-related method refinements. Therefore, method refinements
can deal with the following interrelations: 1) conceptual structure and notations,
2) conceptual structure and modeling tool, and 3) notation and modeling tool.

1) Conceptual structure and notations. The most drastic modifications in
a method occur when a large portion or the whole conceptual structure is
changed, as when shifting from structured methods to object-oriented methods.
Similarly, domains which are less mature, such as business modeling and
requirements engineering, have less stable concepts and thus are more likely to
evolve.

Because the underlying conceptual structures are typically the foundation
of the method, changes in the conceptual structure affect other types (Jarke et al.
1998): notations which represent these concepts, processes which operate on
these conceptual structures, and computer-aided tools which capture, store,
analyze and retrieve the models representing those conceptual structures. For
example, adding a new type to the conceptual structure requires changing the
notations by adding a new notation for that type. Accordingly, the completeness

176

of representations (Batani et al. 1992, Venable 1993), i.e. the availability of a
notational construct for each concept, is a well-known criterion for dealing with
the relationship between the conceptual structure and the notation. In contrast,
changes in notations do not necessarily affect the conceptual structure (cf. Ryan
et al. 1996, Kronlöf 1993). With respect to method refinements, we identify here
a causal relationship among interrelated modifications: all changes to the
conceptual structure should be made before changes in notations. Changes in
methods, however, often arise from notations because they are the most visible
part of the method.

2) Conceptual structure and modeling tool. Method modifications can
also occur because a tool can not provide the required modeling functionality,
such as an abstraction mechanism, a checking, or a form conversion. Here the
method may need to have additional constraints or properties to enable
consistency checking, reporting or code generation. For example, most of the
object-oriented design methods do not recognize whether an inheritance is
virtual although this information is required for generating header files for C++.
Although these concepts are added to the tool, they are also defined and
maintained in the metamodel.

3) Notation and modeling tool deals with the surface structure (Wand
1996) of the method knowledge: method refinements are made by modifying
symbols and notations based on the graphical capabilities of the tool.

Although most of the metaCASE tools available provide method
adaptation possibilities (Marttiin et al. 1993, 1996) they focus on modifications
which are carried out when the tool is introduced. Accordingly, later method
modifications are difficult, if not impossible (e.g. Cronholm and Goldkuhl 1994,
Nissen et al. 1996). It must be noted that by method modifications we also refer
here to situations in which the models made so far are updated along with the
modified method (e.g. to support reuse of designs).

5.1.3 Incremental versus “radical” method engineering

Not all method development efforts are necessarily gradual or require small
modifications to methods. In general, the literature on the development of
business processes and on organizational learning distinguishes between
radical and incremental approaches. For example, business process re-
engineering (BPR, Hammer and Champy 1993) advocates a radical approach in
terms of the rapidity and magnitude of a change, whereas total quality
management (TQM, Flood 1993, Oakland 1993) relies on continuous small
changes. Similarly, there is a wide-spread consensus on the distinction between
incremental and radical models of learning (Miner and Mezias 1996).

Generally speaking, the type of change required and the type of learning
are related: carrying out a radical change necessitates that the organization is
capable of radical learning (i.e. to implement and introduce a large change
quickly). Conversely, continuous small changes to existing processes expect
incremental learning. Both approaches can produce benefits for an organization,
and both types have advantages and disadvantages. In this sense they provide
alternative strategies depending on how often the change is made and how

177

large the change is. These alternatives are also valid in ME. By “radical” ME we
mean a priori ME approaches in which methods are constructed solely in the
beginning of each ISD project. This type of change is also the one most studied
in ME research (see Section 3.2). It can be considered radical because each ISD
project and each ME case is handled separately. A method is expected to be
introduced once and no reflective learning during the method use is
incorporated into methods. As described above, incremental ME is based on
smaller and more gradual changes. At the extreme end of the scale, method
refinement can be continuous and concurrent with the change requests from the
method use environment.

Both modes of ME can be useful, depending on the situation, as both
modes have their advantages and disadvantages: not all changes to methods
can be radical, but on the other hand, small gradual changes may hinder
development efforts which require more substantial changes. This also means
that not all local method development efforts can be carried out according to
incremental ME principles. Therefore, in the following we describe
characteristics of ISD organizations or projects where incremental principles are
most suitable. These characteristics are summarized in Table 5-2.

TABLE 5-2 Radical versus incremental modes of method engineering

 Incremental approach Radical approach
Availability of method

knowledge
Little Considerable

Selection criteria Uncertain Known
Duration Long-term Short-term
Process maturity Mature Immature
Degree of methodical

change
Small Major shifts required

(e.g. SA to OO)
Variety in target ISs Few target ISs Consulting house with

multiple customers

As our motivation for the incremental approach showed, ISD environments
exist where high levels of uncertainty and unavailability of method knowledge
are typical and applicable for incremental principles. Areas of ISD where there
are few methods available are, for example, the development of inter-
organizational ISs (cf. Tolvanen and Lyytinen 1994), hypermedia systems
(Isakowitz et al. 1995), and networked business processes.

Second, the longer an ISD project takes the more an organization will
garner experience and the more likely are method modifications. Moreover,
longer projects are also often larger and technically more complex, necessitating
approaches to combine methods. Similarly, in long-term ISD efforts the
technologies used may change and these changes need to be considered.

Third, as emphasized in our re-evaluation of method use (Section 2.5.3),
successful method improvements are tied to an organization’s own experiences
and to the level of maturity. Therefore, ME efforts relate to the maturity of ISD

178

(Humprey 1988): organizations must have methods in use and an ISD process
defined before any systematic experience gathering can be carried out. Also,
method refinement efforts expect that methods are specified  otherwise their
improvement is difficult (Jarke et al. 1994, Odell 1996). This means that an
organization using incremental ME principles must be at least at the defined
level according to the SEI maturity levels. In fact, the higher levels of maturity
can be partly achieved by using incremental ME principles, in which methods
are managed and optimized for the current situation. With respect to maturity,
the organization’s current method situation reflects the mode of ME.
Incremental ME is not necessarily an optimal strategy for initiating radical
changes in ISD, e.g. adopting methods to be used for the first time, or moving
from structured methods to object-oriented methods.

Fourth, incremental ME principles are more applicable for organizations
which can invest in method knowledge. Quite often this is possible only when
the method knowledge can be focused on specific areas. These types of
situations are typical in ISD organizations which focus on longitudinal projects
and on developing a limited number or type of applications. In contrast,
consulting houses which provide services to other organizations find their
choice of methods largely determined by customers’ requirements. As a result,
method requirements can change from one customer to another and
accumulated knowledge can not be utilized as effectively. Hence, in these cases
the method selection and use can usefully be radical.

Finally and perhaps most importantly, one reason for following either of
the ME approaches comes from their projected costs and benefits: how to
change the method without discarding expensive investments in technology
and methods. With respect to the technology investments, metaCASE tools are
seen as offering one solution (Seppänen et al. 1996), as they decrease the costs
and resources needed to manage method knowledge, and also provide a
platform for cost-effectively building new CASE tools for a changed method, or
different versions of methods. This also explains our interest in analyzing
method use in modeling tools: metaCASE tools which support situation-specific
evolution of methods are already available (Kelly 1997), but ME principles are
not. With respect to method investments and the process of finding, analyzing
and refining methods, it is the task of this thesis to decrease the costs related to
ME. In other works, the incremental ME principles provide mechanisms to
identify method refinement possibilities, manage method evolution, and
automate part of the method refinement process. These decrease the costs of
method improvements and thus of the benefits obtainable from engineering
methods appropriate to the situation.

5.1.4 Summary

Most of the ME frameworks are based on an a priori view of ME in which no
method refinements are expected during or after method use (cf. Section 3.3).
Therefore, no principles or systematic guidelines for ME during and after
method use have been proposed. To overcome this narrow view we analyzed
the possibilities for iterations in the ME process. These possibilities were called

179

method refinement scenarios. Based on this analysis we focused on specific
scenarios which originate from method use experiences and lead to
modifications in method knowledge or method-tool companionship. Hence, our
interest is concerned with the deep structure of method knowledge:
modifications of the conceptual structure, and its relation to notations.

Experience gathering and refinement should take place in modeling tools.
This means that modeling experiences from tool-based method use are collected
and analyzed. Although the analysis of “pure” tool support deals mostly with
minor changes in the surface structure of a method (Wand 1996), our focus on
method use with modeling tools is important for a number of reasons. First,
method use in CASE forms a foundation for examining the underlying
conceptual structure and notations. It makes ISD more transparent and the
products accessible. Second, through the use of metaCASE technology we can
allow method engineers to inspect the usage of methods. Third, by necessitating
the use of a formal metamodel we expect that method modifications can be
made explicit and formal. Finally, the resulting method refinements are also put
into use through the tool adaptation. This means that method modifications can
be shared quickly and can lead to learning in a whole ISD organization.

An incremental approach can be distinguished from other ME principles
by identifying when and how method knowledge is constructed. In the radical
mode, ME is viewed largely as an a priori method construction process, whereas
in the incremental mode experiences of method use are collected and analyzed
for the purpose of method refinements. Our focus is on this latter view. We
claim that the applicability of the method can not be achieved based on a priori
construction, but instead need to be investigated while using the method. This
allows us to evaluate not only the applicability of a priori constructed methods,
but also the relevance of the criteria that drive method construction.

We also identified ME situations which are most suitable for the proposed
ME principles. These situations are characterized by high uncertainty and
unavailability of method knowledge, and by a changing ISD environment.
Hence, ISD projects which lack method knowledge or criteria for method
construction benefit from incremental ME principles. Similarly, organizations
which carry out long-term ISD efforts, often related to specific products, can
take advantage of the incremental approach. Finally, incremental ME forms a
part of various types of ISD improvements (Humprey 1988, Odell 1996).
Therefore, organizations searching for long-term process improvement need
incremental ME principles to improve their ISD processes.

5.2 Evaluating the applicability of modeling techniques

In this section we shall analyze some proposed approaches and their
weaknesses in evaluating ISD methods. Most research on methods is based on
the assumption of applicable methods. ME research is no exception: otherwise
ME principles would not be proposed. ME research includes, however, one
major difference to most method research, namely the situational dependency.

180

Whilst method developers often aim to prove the general applicability of
methods, ME research is interested in improving the method use in given
circumstances. We examine method applicability based on the situation in
which it is applied. This is also emphasized in our re-evaluation of method use
(cf. Section 2.5.1). Similar definitions are also proposed by Fitzgerald (1991) as
an “applicability to the case or circumstances”, by Schipper and Joosten (1996)
as “serving in the intended purpose”, and by Kitchenham et al. (1995) as
focusing on specific cases in which a method is used.

Our focus is on studies which address the applicability of modeling
techniques. First, we shall analyze which kind of approaches the developers of
text-book methods have applied for validating their methods, and what
validation approaches are proposed for situational methods. The former covers
evaluation of methods in general and the latter focuses on evaluating methods
in their use situations. Our interest is in approaches which can be used to
collect, analyze and apply experiences to refine methods. This means that the
evaluation approach should not only analyze whether and how a method has
met the applicability requirements, but also how it could be improved.
Therefore, the analysis does not include approaches which are not linked to
evaluating method knowledge or which do not offer opportunities for method
improvements, such as Kitchenham et al. (1995) and Jayaratna (1994). Second,
we acknowledge some key problems related to method evaluation. Some of
these problems are partly solved with the systematic ME principles proposed.

5.2.1 Evaluation and validation of text-book methods

The applicability of a method forms a core assumption in all method
development. Most method development efforts, however, do not aim to
validate the proposed method at all. Only a few are in any way proven or
justified for the tasks for which they are promoted (Fitzgerald 1991). As a result,
it is difficult to find how claims made in favor of a particular method — such as
“more expressive, yet cleaner and more uniform ... than other methods” (Booch
et al. 1997, p 15) or “to support a seamless ISD process, or the reversibility of
models” (Walden and Nerson 1995) — can be proven.

By analyzing methods modeled in Chapter 4 two kinds of approaches for
determining the viability of a method are used: a demonstration of the method
in some imaginary or real-world case, and a comparison with other methods.
Both of these approaches are also widely used in studies comparing and
evaluating methods, e.g. those reported in the CRIS conferences (Olle et al. 1982,
1983). Neither of these approaches, however, can provide strong evidence for
method applicability (Fitzgerald 1991). Demonstration (e.g. Yourdon 1989a,
Booch 1991) describes how one or more ISs are captured into models. The
subject of validation is mostly a modeling technique (i.e. concepts and
notations) rather than the process or design objectives which explain the use of
such models. Little information is given about the background of the cases, such
as contingencies, participants, method users, or alternative solutions.
Weaknesses of the method are not considered or mentioned at all. As a result,

181

“validation” means here only that the method can be used in modeling, rather
than that it is useful or can lead to better results than other methods.

The latter, the comparison approach, focuses on similarities and
differences between the proposed method and other similar methods (e.g.
Firesmith et al. 1996, Booch and Rumbaugh 1995). The proposed method is
typically used as a yardstick: little wonder that it is often described to be more
comprehensive than others. The main emphasis in evaluation is on explaining
why the new concepts are required. Here the justification of the method is
normally explained at the type level only, because method use is not addressed
at all. Comparisons thus focus mainly on modeling techniques and underlying
conceptual structures. One reason for focusing on modeling techniques only is
that method books do not usually describe other parts of method knowledge
systematically. As a result, the main argument for a particular method is based
on the endorsement by an authority.

Yet, as is described in method books24, one can state that the best “proof”
for a method is its use: an assessment of a number of ISD efforts following a
method shows its viability. Use of a method’s popularity as a mechanism to
prove its applicability is questionable. First, based on this strategy certain
modeling techniques, like ER diagrams (Chen 1976) or data flow diagrams
(Yourdon 1989a), should be considered to be applicable. There is, however, a
great number of dialects available for these techniques. Also, criticisms against
some of the principles they apply have been raised. The different versions of the
ER model (e.g. Chen 1976, Batani et al. 1992, Teorey 1990) show that no single
variant of the ER model is popular. Similarly, criticisms against the top-down
decomposition applied in data flow diagrams has been presented (e.g.
Goldkuhl 1990, Booch and Rumbaugh 1995). For example, Goldkuhl (1990)
claims that top-down refinement of system leads to costly maintenance of
designs and to a loss of information between the different levels. Second, the
low acceptance of methods in general (cf. Section 2.4.1) and their adaptation in
particular (cf. Section 2.4.2) indicates that most methods as proposed by their
developers have failed. Therefore, instead of a general validation of methods,
we are more interested in the validation of methods in a given situation. This is
discussed in the next section.

5.2.2 Evaluation of methods in the problem context

In our literature review we found only a few studies that aimed to validate the
applicability of methods more systematically. These are the validation of action
modeling by Fitzgerald (1991), and of trigger modeling by Schipper and Joosten
(1996). These can be distinguished from earlier method evaluations or
validation approaches by their use of explicit measurements as a basis for the
evaluation. In the following these approaches are briefly described by

24 It may be the case that some validation efforts have been carried out but not described.

Similarly, it is most likely that evaluations are performed during method development,
but it must be noted that method developers have not described how this has been
carried out: i.e. how data is collected, how it is analyzed, and how it has led to
improvements in the method.

182

explaining the context in which they are used, what aspect of the method is
evaluated, how data is collected, and what measures are used. Finally, we
describe how the evaluation results are interpreted and applied for method
refinements. The results of this analysis are summarized in Table 5-3.

TABLE 5-3 Summary of validation approaches

Approach Fitzgerald (1991) Schipper and Joosten (1996)
Applied for
validating...

technique for action modeling technique for trigger
modeling

Context of
evaluation is...

modeling technique as a part
of a method and ISD process

one modeling technique

Rationale of
method
covers...

design criteria and objectives
of the technique

method developer’s
intentions and supporting
arguments

Data collection
is based on...

examples of object system
representations from different
modeling domains

intention-related instruments,
such as literature study,
method metrics, analysis of
deliverables, interviews of
method users

Target of
validation is...

richness of the technique in
terms of its modeling power

method developer’s
intentions with the modeling
technique

Validation is
based on...

method users’ opinion of
modeling power

recognized arguments which
support intentions, users’
priority for intentions

Method
refined...

- if intentions do not change
and earlier observations are
valid after refinement

Fitzgerald (1991) evaluates the richness of a technique in terms of what is
abstracted, i.e. its modeling power. He starts the evaluation by describing the
objectives and design criteria of the technique. This forms the basis for the
evaluation. He also describes the rationale of the technique (i.e. why the
technique has been constructed as it is). In the evaluation the modeling
technique is related to the larger context of the whole method, but no clear
distinction is made between arguments in favor of the method in general, and
those arguing for the specific modeling technique. The evaluation is carried out
through modeling and trying to find out how well relevant aspects of the object
system could be represented. The main instruments for data collection are the
use of examples from different situations (but nothing is explained of the type
of situations they were (e.g. domain, contingencies)), and why they were
selected as modeling subjects. The results are derived based on the researchers’
(acting as method users) opinions of the richness and modeling power of the
technique. Thus, the evaluation approach, as noted by the author, is highly
subjective and dependent on the selected modeling situations. Furthermore, the

183

approach does not present possibilities to refine methods during or after the
evaluation.

Schipper and Joosten’s (1996) contribution to method evaluation is their
proposal and use of multiple evaluation instruments. They base their approach
on reviewing how validation and evaluation of modeling techniques are
studied in other modeling-related areas, and what types of validity are
recognized in the literature. They propose a model of validation which focuses
on observing how the intentions of the method developer, in terms of associated
characteristics of a method, are met. The approach focuses on evaluating a
modeling technique separately from other parts of the method, and starts by
describing the method developer’s intentions (e.g. to allow modeling of logistic
processes) and characteristics (e.g. easy to learn) for the modeling technique.
Next, the rationale for the technique is stated by arguing how the intentions are
met and relating them as characteristics of the modeling technique. This method
construction rationale is derived similarly in Fitzgerald (1991), but Schipper and
Joosten also include characteristics other than those related to modeling power.
Therefore, the instruments for observing the characteristics are also different.
Schipper and Joosten (1996) propose and emphasize the use of instruments
(both qualitative and quantitative) in validation depending on the type of
intentions. Various instruments can be used simultaneously to check convergent
and discriminant validity. The instruments proposed include a literature study,
method metrics, analysis of deliverables, content analysis of interviews and
measurement scales for ease of use and usefulness. Of these, method metrics
(Rossi and Brinkkemper 1996) and ease of use and usefulness (Davis 1989) are
instruments which are not used by Fitzgerald (1991). A major reason for this
difference is that Fitzgerald has carried out the validation effort by himself,
whereas Schipper and Joosten target their studies to developing an automated
method selection procedure in CAME, i.e. to be used also by people other than
the method developer.

The study by Schipper and Joosten, however, does not describe how the
instruments are applied for data collection and analysis, nor do they provide
examples in favor of the evaluated trigger modeling technique. The result of the
validation effort should be the list of intentions and arguments derived from the
observations based on the instruments. To illustrate the approach some
examples are given. A goal to model business processes quickly can be
supported if method metrics show that the method is not complex, or users
consider it effective and quick to use. Because of the use of multiple instruments
the observations made can provide better evidence for how successfully the
method fulfills its developer’s intentions.

Finally, unlike Fitzgerald, Schipper and Joosten allow method refinements
during the validation process to improve the applicability of the modeling
technique. The modifications should, however, ensure earlier observations and
intentions remain the same. Although these conditions are understandable,
since they focus on validating a fixed method, they do not recognize experience
based learning, uniqueness of situations and method evolution. Accordingly, in
the following we shall analyze method evaluation approaches which accept, or
even promote, method evolution.

184

5.2.3 Evaluation of methods as a part of a continuous ME process

As discussed in Section 3.2, the evaluation of the applicability of methods in ME
research is dominated by a priori evaluation occurring in the method
construction phase. To our knowledge, only the learning based approaches to
method development (Checkland 1981, Kaasbol and Smordal 1996, Wood-
Harper 1985, Mathiassen et al. 1996) indicate the importance of experiences and
learning from method use as key mechanisms both to evaluate and to refine
methods. Checkland (1981) advocated the learning based approach to method
development and evaluation by introducing a cycle of action research in which
experiences on method use provide the main source for method modifications;
first by using the method and second by learning method use. This cycle is
illustrated in Figure 5-1.

Learn from use

Use method

Create method

hence

hence

hence

FIGURE 5-1 The evolution of a method through a learning cycle (Checkland 1981, p 254).

According to this cycle, ME can be viewed as a continuous and never-ending
process, in which experiences are elicited from working with the method.
Checkland has used the action research cycle as a key mechanism to develop
Soft Systems Methodology (SSM) by repeating the cycle in many development
cases and situations. In fact, the cycle for developing SSM began in 1969. The
main reason for the cyclic learning based approach seems to be the difficulty of
developing methods into a new field. In the case of SSM this means
development based on methods applied successfully in developing “hard”
systems into methods applicable for soft, human activity systems. This point
also confirms the motivation of the incremental approach to ME made earlier
(Section 5.1.3).

Because the cycle of method evolution is carried out as action research it is
sensitive to the context in which the method is used and thus situation-bound.
Although SSM includes the idea of incremental ME the objective of the learning
cycle has been to develop general or universal principles for developing human
activity systems. In other words, the iterative cycles have not been used to
develop SSM towards situation-specific needs in the same sense as in the ME
literature, but rather towards learning about various situations in which the
SSM is applied. Moreover, Checkland emphasizes that SSM is not a method in
the same sense as defined in this thesis but something between a philosophy or

185

a framework, and a method25. However, as Checkland notices, some parts of
SSM are very close to our definition of modeling technique (e.g. CATWOE).
Therefore, from the ME point of view, the learning cycle has been used to define
method knowledge in terms of concepts, processes, assumptions and values.
Because of our interest, we shall focus only on the incremental development of
SSM’s concepts and modeling techniques.

In Checkland’s approach the applicability of a method is evaluated based
on its strength as a working device in a process of developing human activity
systems. As such it applies a general question for the evaluation: “Was the
problem solved” (Checkland 1981, p 192). However, he does not provide
detailed principles of how experiences are collected (other than case records),
analyzed, and applied when starting the next cycle: i.e. creating or modifying
the method. Of course it can be claimed that such more concrete and systematic
principles exist but they are not reported. In general, the concepts and notations
used to develop conceptual models are not defined and thus not evaluated
according to any systematic principles. The only reported exceptions are the
root definition according to CATWOE and the sequencing between the stages of
the method. Especially the former is relevant for our study, since CATWOE is
closest to our definition of a modeling technique. The applicability of the
concepts behind the root definition (Customer, Actor, Transformation,
Weltanschauung, Ownership and Environmental constraints) were studied by
seeking a dozen well formulated root definitions from earlier projects to test
that the concepts behind the mnemonic CATWOE could be found. As a result of
this analysis, they conclude (Smyth and Checkland 1976) that the CATWOE
concepts are relevant because they would speed up the process of finding root
definitions and enrich debates. The sequence of the method’s tasks is another
example of experience based evaluation, although it focuses more on the
process than on modeling techniques. In SSM the transitions between modeling
tasks, and thus also between modeling techniques, are left open because
examination of earlier studies has revealed that different starting points and
sequences are possible. From a modeling technique point of view this means
that “conceptual models” of the system under development can be made before
root definitions or vice versa. An obvious reason why other parts of the SSM
modeling techniques are not evaluated is the universal nature of the method:
different human activity systems require different types of conceptual models
— which can also be seen from the case studies documented — and therefore
their validation in a universal manner is difficult (cf. Section 5.2.4).

The importance of Checkland’s view of method development (1981, 1991)
is that it highlights the continuous learning cycle and shows that this cycle
occurs at several levels: the IS level, the method level and the ME level.
Although Checkland (1981) did not promote the learning cycle as a mechanism
to develop methods (in the same sense as defined in this thesis) other
researchers have applied it directly to ME (Wood-Harper 1985, Avison and

25 For the same reason SSM has not been included among the methods modeled in Section

4.

186

Wood-Harper 1990, Mathiassen et al. 1996, Kaasbol and Smordal 1996). These
studies are described in the following.

The developers of Multiview (Wood-Harper et al. 1985) have applied an
action research cycle when using and testing the method. Similar to SSM,
Multiview was developed as a fixed method and thus it supports narrow
situational adaptability (Harmsen 1997) through in-built flexibility. One major
distinction of Multiview from other methods and from situational adaptability
is that it follows a contingency approach to select among the several techniques
it includes. However, concrete suggestions are not given either for ME criteria,
or for choosing the components of Multiview (Harmsen 1997).

Mathiassen et al. (1996) have applied the action research cycle for
developing a method, called OOA&D (Mathiassen et al. 1995). Here the
applicability of the method is evaluated based on how it has supported teaching
as a learning device. By eliciting experiences from the students in a class-room
setting they have shortened the method refinement cycle. As with other studies,
no concrete ME principles for collecting, analyzing and refining methods are
given. The authors have, however, distinguished some types of method
knowledge which should be specified in ME, namely concepts, guidelines,
principles and patterns, but no further details are given about these. The first
three are covered by our taxonomy: conceptual structure, process and design
objectives. The last one, patterns, deals more with instance level information as
it shows partial solutions to IS modeling tasks in specific domains.

These approaches have, however, several limitations in addition to their
universal view of methods. First and foremost, they do not include any explicit
mechanism to collect, analyze and refine methods. This would be required for
more systematic ME. Thus, after method use, no mechanisms are used to study
whether the method has been applicable. As such they are general frameworks
of method evaluation, rather than applicable principles for evaluating and
refining modeling languages.

Second, in all of them an iterative cycle is carried out by the method
developers rather than by others. For example, in Mathiassen et al. (1996) the
role of students in refining the method is not explained, nor is the frequency of
modifications. As a result, the modifications are highly dependent on the
method developer’s opinions. No indications are given as to how a larger group
of stakeholders can participate in the cycle. In other words, the process and
roles involved in ME are not described.

Third, based on what is reported, the learning cycle is applied at a general
level rather than related to the method knowledge (an exception is the
evaluation of the CATWOE concepts in SSM). Because method knowledge is
defined loosely in these approaches, the approaches do not apply any ME
languages or tools. If such a more systematic approach to method development
had been applied (as proposed by Parsons et al. 1997), it is obvious that method
knowledge could also have been specified and evaluated in more detail. One
reason why such approaches have not been followed may lie in the aim of
situation independent applicability: it is difficult to specify method knowledge
in detail and at the same time for general purposes. A good indication of this
can been seen in the development of the UML method and its versions (e.g.

187

Booch and Rumbaugh 1995, Booch et al. 1996, 1997) which have become less
specified in terms of details documented in metamodels as the need to satisfy
more general situations has increased.

To summarize, there is a surprising and disappointing lack of well-
documented method evaluation cases, evaluation mechanisms, and criteria. As
a result, it is hard to find out from the ME point of view why methods like
OOD&A (Mathiassen et al. 1996), or Multiview (Avison et al. 1990) are
constructed as they are. For example, which evidence from the use experiences
show that a concept of a cardinality should be used in object models
(Mathiassen et al. 1996) or in entity models (Avison et al. 1990)?

5.2.4 Problems of a posteriori evaluation

The analysis of the evaluation approaches, and especially their limitations, is
not intended to be a criticism of the method development approaches. Rather it
indicates the difficulty of method evaluation and why one of the key research
questions, “Are methods useful?”, has remained unanswered. In this section our
aim is to discuss the difficulties in making a posteriori, use based, evaluations of
methods. This view is important, since it allows us to describe how incremental
ME principles could solve these problems, and which problems it can not solve.

First, one major reason why method developers have not evaluated or
validated their approaches lies in the difficulty of such a task. By applying
‘scientific’ research methods to method evaluation and validation we can not
satisfy requirements of scientific theory testing, which involves reducing
domain complexity, controlling data collection, and meeting replication
requirements (see Galliers 1985, Fitzgerald 1991, Grant et al. 1992). The
application of a scientific method typically involves construction of an
experiment so that only one or a few factors are identified and studied at a time.
This involves breaking the research subject into smaller parts for examination
with a smaller number of factors. Hence, the experiment is first conducted in a
standard way and then a number of times with one factor changed (ceteris
paribus). A larger set of factors can not be considered at a time because of their
possible interactions. Thus, an understanding of the applicability of a method,
i.e. the big picture, would be constructed on the basis of these small factors. This
type of research setting is, however, hard to achieve in daily ISD practices.

The replication requirement is also difficult to meet in ME research
because ISD and thus method use is considered situational, or even unique. In
this sense, the requirement for replication could be met only in situations where
the ME criteria are the same. Moreover, if differences in a method’s
applicability occurred between similar (in terms of ME criteria) ISD efforts,
there would probably be factors which had not been identified. These factors
could even be considered as candidate criteria for ME.

In terms of ME, the evolution should deal with inspecting the applicability
of method knowledge according to the ME criteria used in the construction
phase. In other words, a posteriori evaluation could focus on studying how a
priori factors were satisfied. Was the method applicable in the expected
circumstances and contingencies? Did the method help solving the development

188

problems? Did the method satisfy its users’ requirements? Because of the
expected complexity of ME criteria it is difficult to study one or some of these in
different cases and expect that other criteria do not interfere with the results.

Second, coming up with hypotheses that show the applicability of
methods is problematic, because the hypotheses can not be formally tested.
According to the scientific approach, when several independent studies have
consistently supported the hypothesis it will become a theory or even a law.
This type of proof of method applicability is not available, and as Fitzgerald
(1991, p 662) sarcastically notes, this has troubled IS research very little. In the
context of ME, confirming a hypothesis means that there is some evidence that a
method has been applicable. For example, in the case of validating the root
definition method, Checkland (1981, p 227) notices that the existence of
CATWOE concepts does not guarantee a good definition, but it provides
evidence that in a well-formed definition such concepts are used. Coming up
with hypotheses is, however, important because we can reject them by finding
aspects of applicability which were not fully supported (Kitchenham et al.
1995). In other words, incremental method refinements occur only when a
method has not been fully applicable.

A third difficulty in studying method applicability is to ensure that the
method has actually been used (Jarke et al. 1994). In terms of our ME scenarios
this means that each source of experience should be based on verifiable
experiences. In our subset of method knowledge, this problem is bounded: the
study of method use in terms of modeling techniques is easier to analyze than
the use of other types of method knowledge, such as process (as in Jarke et al.
1994), or that design objectives and assumptions of the method are actually
followed. This is also an obvious reason why most validation approaches focus
on conceptual structures and modeling techniques. This does not mean that the
study of method use in terms of modeling techniques is without problems. For
example, method users can apply other modeling techniques than those
proposed by the method engineers, and the study of intermediate models,
design sketches, or different working versions of models is labor-intensive and
costly to analyze for the purposes of ME (Hofstede and Verhoef 1996).

Fourth, the acquisition of experiences is difficult because experiences are
personal and subjective (Nonaka 1994), they deal with situations that occurred
at one point in time (Schön 1983), and they are often tacit: not all experiences
can be made explicit and thus used for method refinements. Not all method
knowledge is explicit: practitioners’ method knowledge is partly embedded in
their practices and can not be fully described. Furthermore, collecting
experiences can be time-consuming and costly. As a result, method evaluations
and refinements seem to be highly subjective. For example, Fitzgerald (1991, p
668) believes “that the best that can be achieved is that people may be convinced
about a technique’s applicability and usefulness only by argument and
example, not by any concept of scientific proof”. It must be noted, however, that
subjective perceptions and opinions are vital for the acceptance of methods.

Finally, it is difficult to find what has been the role of a modeling
technique (Checkland 1981). A modeling language can be evaluated based on
what it has abstracted from the current situation (Fitzgerald 1991) but whether it

189

has provided alternative solutions or choices among them is more difficult to
evaluate. As the analysis of the method evaluation literature showed, evaluation
has mostly been based on the researcher’s concern that the problem has been
“solved” or the problem situation has been improved (Checkland 1981). On the
level of a whole method, an evaluation can be carried out more easily (e.g.
Kitchenham et al. 1995) because method knowledge can treated in its entirety.
Thus, detailed alternative compositions of method knowledge can be neglected.
For example, problem solving capabilities can be measured based on the
number of errors in the developed program, or whether the IS developed
satisfies the user’s requirements. Hence, a method is treated as a whole. In
addition, there remains a question whether the problem has been really solved
with the method, or have they been solved through other means (e.g. the whole
problem disappeared because of external changes). Naturally method users can
judge the influence of methods, but evaluation research does not discuss
enough how the method users’ experiences are collected and analyzed for
improving methods.

5.2.5 Summary and discussion of method evaluation approaches

In this section we have analyzed approaches for carrying out a posteriori
evaluation of modeling languages. Our aim was to seek mechanisms for
collecting and analyzing methodical experiences, because we believe that the
applicability of a method can only be known when the method is used. In short,
the analysis shows a lack of instruments for evaluation, and problems in
carrying out such evaluations. There seems to be no generally recognized way
to determine if a modeling technique has been applicable. The reasons are
summarized below.

First, the most important limitation of the approaches is that they do not
aim to apply evaluation results to improve the methods. Methods are
considered as a whole and evaluation is not targeted to inspect them in more
detail. Instead of making small changes to the methods, evaluators often seek to
obtain a general proof or disproof. Second, none of the approaches describe the
method evaluation process in detail and only Joosten and Schipper (1996)
describe some explicit instruments for evaluation. Even in their case, the use of
the instruments during the actual evaluation is not explained in detail (Schipper
and Joosten 1996). Some of the instruments, like method metrics, do not deal
with method use at all. Similarly, most of the instruments applied are used in
snap-shot cases. Third, all approaches target the validation to situation-
independent methods. Although they recognize various situations of method
use, they do not recognize that a method could be situation-dependent. In terms
of ME, the evaluation is not targeted only to study whether a method has been
applicable in the current case. Some possible reasons for this focus are the
search for generality, an aspiration to follow scientific methods, and the method
developers’ desire to prove their own methods.

To characterize the incremental approach in relation to the others
described above, we have to focus on detailed method knowledge. Similarly,
our primary aim is not to seek for a universal validation of methods following a

190

“scientific” proof. Instead we focus on situational validation in which better
applicability is sought by making gradual changes to a currently used method.

5.3 Principles for incremental method engineering

In this section we shall describe principles for a posteriori and continuous
method engineering. These principles are described through the steps of
incremental method engineering, and the mechanisms applied in each step. The
steps deal with collecting experiences, analyzing experiences, and refining a
method for a current situation. These steps are lacking from other ME
approaches and together with a priori ME they form an “iterative loop” of
incremental ME. Hence, we claim that both a priori and a posteriori steps are
required. The a priori steps were already described in Section 3.2 and the a
posteriori steps are described in the next section (5.3.1).

Throughout these steps we apply three mechanisms that seek to improve
methods. These mechanisms are based on analyzing the differences between an
intended and actual use of modeling techniques (Section 5.3.3), on studying the
role of techniques in modeling object systems (Section 5.3.4), and on
understanding how they support problem solving (Section 5.3.5). As the review
of method evaluation approaches showed, these mechanisms are not the only
possible ones. They are relevant for improving tool-supported methods and
managing methodical changes through metamodels. Together with these
method refinement mechanisms, we apply metamodels and method rationale to
collect and analyze experiences as well as refine methods (Section 5.3.2). In
comparison with other evaluation approaches these make the method
improvements more systematic and render refinements visible.

5.3.1 Process of incremental method engineering

To extend the a priori view of ME approaches we propose some complementary
principles. These extensions are illustrated in Figure 5-2. The data flow diagram
shows the steps of ME, with the three steps of incremental ME illustrated by
grayed processes. These steps deal with gathering experiences, analyzing
method use, and refining a method. Together with the a priori steps, they form
an iterative cycle in which method improvements can take place gradually
using method stakeholders’ experience (cf. Checkland 1981). In the following
we shall outline each step and their linkages to the steps of a priori ME.

191

In carrying out experience-based method evaluation the accuracy and
availability of feedback must be enhanced. This improves experience-based
learning (Huber 1991). The accuracy of collected experiences is enhanced by
relating experiences to metamodels and to the method construction decisions.
Their use is discussed in more detail in Section 5.3.2. The availability of method
use experiences is enhanced by collecting models and metamodels, by collecting
outcomes of an ISD project, and by interviewing stakeholders. The collection of
models as deliverables is similar to the ideas proposed by Fitzgerald (1991) and
Schipper and Joosten (1996). Models provide data on how modeling techniques
were actually used. Because we focus only on meta-data models, the models
only describe the end-result of method use rather than the modeling process. In
the context of metamodel-driven modeling tools, the collection of models and
metamodels can be automated since they are both stored in a repository of a
metaCASE tool.

5

Analysis of
method use

6

Method
refinement

2

Method
construction

3

Tool
adaptation

ISD
environment ISD projectCAME tool

ME criteria

CASE tool

1

Method
selection

4

Collection of
experiences

Method rationale

ME criteria

selected method

available
method
specifications

method changes

experiences

experiences

ME criteria on
- contingencies
- development
 problems
- stakeholders’
 values

characteristics

Method
components

constructed method

method
supporting
tool

tool related
specifications

models and
methods

updated criteria
project outcomes

refined
method

Method
components

Rationale for
refinements

past construction
rationale

constructed
method:
- manuals
- tutorials
- etc.

Method rationale

method construction
rationale

FIGURE 5-2 A data flow diagram specifying the incremental method engineering
process.

192

In addition to the model-based deliverables, the outcomes of the project
are inspected. These deal with the results of the ISD process changing or
improving the problem situation of the object systems. Interviewing method
stakeholders obtains situational experiences of method use. Both unstructured
and structured interviews can be used for data collection. An unstructured
interview closely resembles a normal conversation and allows a method user to
apply his or her own concepts and aspirations to specify method refinements.
Typically a refinement demand becomes apparent from the modelers’
observations of the limitations of a method in use situations (e.g. Tollow 1996,
Jaaksi 1997). Structured interviews are based on predefined questions which are
known to reveal refinement possibilities. The mechanism of incremental ME
described in the remaining sections of this chapter forms the basis for questions
for the structured interviews.

The second step deals with analyzing experiences in order to improve a
method. This step is carried out by the mechanisms of experience analysis
described in the following sections (cf. Sections 5.3.3-5.3.5). In short, the
mechanisms deal with:

1) Type-instance matching: inspecting differences between an intended
(i.e. metamodel) and actual use of a method (i.e. models).

2) Modeling capabilities: analyzing the capability of the method to
abstract required aspects of the object systems into models and to keep
them consistent.

3) Problem solving: analyzing the capability of the method to generate
alternative solutions and support decision making.

The mechanisms are designed so that they reveal those aspects of a method
which can be a target for refinements. In other words, if the analysis phase
suggests a method modification it reveals that the a priori constructed method
was not sufficiently applicable.

Evaluations of method use can lead to modifications of method knowledge
and tool support. Modifications related to the conceptual structure or notation
take place by adding, subtyping, joining and removing components of the
metamodel and by specifying a related notation. Each of the metamodel-based
refinements can be operationalized through the same metamodeling constraints
as in the method construction (cf. Section 4.4). The re-constructed method is
stored into a CAME tool, from which new components can also be selected.
Tool re-adaptation is a necessity if a metamodel has changed (cf. method
refinement scenarios, Section 5.1.2). Not all refinements, however, necessarily
require changes in the method. There are changes that deal with the way the
method is supported by the tool. For example, the consistency of model data
can be improved by adding checking reports without modifying the
metamodel. The modification of a CASE tool must be emphasized, because the
advantage of method improvements comes when the refined method is used in
a modeling tool. This enables the sharing of refinements and makes possible a
new evaluation cycle.

An improved method is not the only outcome of the incremental approach,
because the evaluation allows the creation of new knowledge for future ME

193

efforts. Based on current ME approaches this knowledge should be related to
the ME criteria in two ways: to confirm or to reject the criteria used in the
method construction, or to add totally new criteria. In fact, the only way to use
frameworks of ME criteria is to “fill” them with criteria that have worked in
past situations. This necessitates that the realization of ME criteria is assessed in
terms of new criteria, changed criteria, and whether the a priori set of criteria is
still relevant. This means that method engineers should analyze the ISD
environment continuously, not just for the initial method construction.
Paradoxically, ME approaches which aim to apply available frameworks of ME
criteria have neither validated them nor considered how information about
situational applicability is found.

5.3.2 Use of metamodels and method rationale in incremental method
engineering

As with most attempts at organizational improvement, improvements to the
current state are difficult to make if the practices currently followed are not
known. Changes can be made but no information is available on the effects of
the change nor whether they can be considered as improvements. Similarly,
incremental ME can not be carried out effectively if information about a method
and reasons for its promotion are not known. The former, method knowledge,
is described in metamodels, and the latter, method rationale, is described in ME
criteria and decisions made during method construction. Both of these are used
to collect, structure and analyze experiences. Use of them increases the accuracy
of the cause-effect relationships between an engineered and a required method.
Their use in ME is described in the following.

5.3.2.1 Metamodels in incremental method engineering

As in method construction, a metamodel makes method knowledge explicit.
Incremental ME applies metamodels beyond the method construction step. In
the first step of incremental ME, metamodels provide a mechanism to collect
and structure experience: method stakeholders’ comments, observations, and
change requests can be related to the types and constraints of the method. This
helps make experiences explicit, and helps focus on those experiences which are
related to the method.

For the analysis step, metamodels allow the detection of those parts of the
method which are subject to further analysis. The analysis possibilities are
available through the same metamodeling constructs that were applied in
describing the method. As in method construction, alternative method
refinements can be made and compared by using the metamodeling constructs.
During an iteration of the incremental approach, metamodels provide a history
of method refinements, since all changes to the method can be found by
comparing metamodels made at different points of time. Figure 5-3 illustrates
the method evolution through “constellations” of metamodels.

194

Metamodel 1 Metamodel 2 Metamodel 3

Time

Observations, change requests, changes in situations, etc.

FIGURE 5-3 Method evolution in metamodels.

5.3.2.2 Method rationale in incremental method engineering

Metamodels alone are inadequate to manage method refinements, because they
can not explain the evolution of a method. Therefore we need method rationale.
Method rationale occurs at two different levels depending on the users (Jarke et
al. 1994, Oinas-Kukkonen 1996). For method engineers, method rationale is an
explanation why certain types or constraints of the method are included in the
constructed method. We call this a method construction rationale. Ideally, each
type and constraint in a metamodel should be justified. A sample of method
construction rationale from our action research study (cf. Chapter 6) is given in
Figure 5-4, in which an explanation for a ‘group’ property type is given.

The topmost window describes part of the metamodel in which a ‘group’
property type is defined. The middle window shows specifications relating to
the property type. These include the name of the property type, that an instance
of the ‘group’ refers to values of existing groups, and an explanation of the type
for method users. The lowest window describes the reason why the ‘group’
property is needed. In the example, the rationale for using the grouping is the
need to collect similar kinds of information or material objects. For example, an
analysis can include information about business processes which only use
information related to orders, such as sales orders, quick orders, repairing
orders, orders sent by someone other than the original customer, etc.

Instead of applying a predefined schema for method rationale we have left
it unstructured. Use of predefined schemata could limit the possibilities of
information gathering, since there are not many studies on method rationale
(Jarke et al. 1994, Oinas-Kukkonen 1996).

195

FIGURE 5-4 An example of method rationale for a ‘group’ property type.

This detailed example also reveals the gap between currently proposed ME
criteria and their linkages to detailed metamodels: none of them support
relating situational requirements to individual types or constraints of a method.
Some of the ME approaches (e.g. Heym 1993, Harmsen 1997), however, support
relating information about method use situations and contingencies to
metamodels based on predefined schemata. For example, Heym and Österle
(1992) collect experiences in terms of the focus of the method (e.g. project
management, risk management, IS development), application type (e.g. expert,
office or real-time system), and phase of the ISD life-cycle (e.g. analysis,
maintenance). A similar approach is followed in MEL (Harmsen 1997). These
approaches, however, do not explain how these more detailed descriptions are
obtained, nor are they related to detailed metamodels.

The use of method rationale in incremental method evaluation necessitates
that more detailed construction explanations are related to metamodels, instead
of referring solely to ME criteria. It helps in understanding the effects of method
modifications: what capabilities are lost from the original method if a method
element is removed or changed. It also makes possible argumentation about
possible new method types.

196

Method users can understand method rationale differently. For them
method rationale explains why certain types or constraints of the method are or
are not used in models. We calls this method use rationale. The collection of
method use rationale is important because it reduces the subjective flavor of
experiences, makes a decision on method use more explicit, and allows users to
relate their method experiences directly to method knowledge. This is
important, since all experiences are individual, and therefore can be either
supporting or contradictory.

The rationale of method use, however, is not normally documented and to
our knowledge none of the modeling tools allows the capture of decisions about
method use; only decisions about design choices (i.e. design rationale (Ramesh
and Edwards 1993)). Therefore, it is the task of method engineers to collect the
rationale of method use. A similar data collection approach is followed by
Wijers (1991) while eliciting individual developers’ modeling knowledge. It
must be emphasized that Wijer’s studies are not related to a priori and restrictive
method knowledge. A priori means that methods are not improved. Instead,
existing practices are documented with metamodels. The restrictive method
knowledge means that modeling was not following an “engineered” method in
the same sense as in tool-supported modeling. This means that in Wijer’s study,
the modeler’s own method knowledge was allowed, and in fact intentionally
sought. In our case, the tool ensures that models are always related to modeling
techniques defined and known a priori. Because of a greater variety in method
use, Wijers applied interviews, analysis of developed models, and think-aloud
protocols, and recorded method use with video cameras. This active
participation during method use allowed the discovery of detailed modeling
knowledge and revealed knowledge about the modeling process. Because active
participation is costly and time-consuming it can usually be applied for only
one or a few developers’ modeling experiences at a time. Thus, in a large scale
method development effort where experiences are gathered from several users
the approach is not necessarily cost effective. There, active participation can be
used for inspecting method use among selected users from different roles
(developers, user, managers etc.).

In incremental ME, therefore, the method use rationale is collected through
structured interviews based on the evaluation mechanisms. This means that
method use rationale is not collected completely; only those aspects which deal
with the evaluation mechanisms are covered. In other words, method use
rationale is collected only when it seems to differ from method engineers’
intentions (i.e. from method construction rationale).

5.3.3 Type-instance matching

The first technique in incremental method engineering, type-instance matching,
is an analysis of method use through the models developed. Analysis of models
typically takes place at the instance level. For example, metrics are used to
analyze system models (e.g. Low and Jeffrey 1990, IFPUG 1994, Rask et al. 1993)
and method metrics are used to analyze metamodels (e.g. Rossi and
Brinkkemper 1996, McLeod 1997). In ME and especially in an incremental

197

approach, it is important to analyze both levels together: to compare IS models
with metamodels to inspect whether the constructed modeling technique has
been used. According to the metamodeling approach, the types of the
constructed method are described in a metamodel (i.e. IRD definition level, ISO
1990) and instances of these types are described in models (i.e. IRD level).
Hence the name for this method evaluation and refinement mechanism.

Analysis of intended and actual use of modeling techniques is similar to
seeking differences between prescribed process models and recorded process
models, proposed by Jarke et al. (1994). Some key differences must be noted
between these approaches. For process modes, the traceability model collecting
what has happened is broader than the guidance model defining the process to
be followed. While evaluating the differences between these process models, it
is also important to ensure that the predefined process is actually followed by
developers. In tool-supported modeling, it is not possible to develop IS models
which are not based on the metamodel. As a consequence, while analyzing type
usage through models we can more reliably expect that the developers have
actually used the constructed method (i.e. each instance has a type definition, cf.
Section 3.3.1): the tool ensures that active constraints are satisfied and informs
users about violations of passively checked constraints.

The close relation between models and metamodels offers also possibilities
to automate data collection, since all the necessary information about types and
instances is available in the repository. Hence, a metaCASE tool should support
queries for both levels simultaneously. This functionality is not available in
external CAME tools which are separated from method use (i.e. operate only at
the IRD definition level). This automation is especially important while
analyzing complex methods, projects which have developed multiple models,
and projects which have multiple developers. The last of these is important
because it helps highlight differences between people and reveal their modeling
preferences.

Type-instance matching can be performed in two phases: first by focusing
on the usage of basic types, and second by analyzing related constraints. Both of
these are discussed in the following subsections.

5.3.3.1 Usage of types

To investigate the usage of types, we must collect data about whether each type
of a method (e.g. object types, relationship types, or property types) is or is not
used. The data collection can be fully automated by inspecting instances
according to the types. This approach does not automatically lead to a method
modification, because the number of instances that a type has does not by itself
explain the relevance of a type. Moreover, because the analysis can suggest
alternative modifications the results of type use must be clarified by
interviewing method users after the preliminary analysis has been made.

Because models are always based on metamodels, three alternative
modifications to methods are possible while inspecting the usage of types.
These are 1) remove types which are not used, 2) divide, or specialize types
which refer to different kind of instances, and 3) combine, or define linkages

198

between types which refer to similar or related instances. These alternative
refinement options are illustrated in Figure 5-5 with corresponding numbers.

The upper ellipse refers to a set of types of a method (i.e. instances in a
metamodel), such as α, β, γ, δ. The lower ellipse describes instances of a model,
such as β1,ε1,δ1. The mapping between these levels follows the IRDS framework
discussed in Section 3.3.1. Reading from the top, models are always created
based on type level information. Reading from the bottom, models are always
read and interpreted based on the types and their representations.

1) Remove unused types. Inspection of unused types is relatively
straightforward. Types which are not used at all or have few instances may be
irrelevant in the modeled domain and can be removed or combined with other
types. This means that a method has a redundancy of modeling constructs, or
that not all constructs were relevant in this modeling situation, or that the
method users are insufficiently trained to make adequate distinctions. A
method can also have unused types if all proposed types or constraints can not
be found from the object system, or they are not considered cost-effective to
model (e.g. because they are labor-intensive to identify).

Checking for unused types is important in simplifying methods. Similarly,
organizations which have adapted external methods often simplify them
radically (e.g. Jaaksi 1997). Especially in cases where local versions are made for
the first time there is a risk of ambitiously modeling “everything” for
incorporation into a metamodel.

2) Division or subtyping of types is required if the same type refers to
different kinds of instances. This means that modeling constructs are
overloaded and new types, constraints, and related representations are needed.
For example, specification of classes which are persistent (e.g. MOSES,
Henderson-Sellers and Edwards 1994) and at the same time deal with
application interfaces (e.g. UML, Booch and Rumbaugh 1995) is not possible

Instances of the model β1 ε1 δ1

Types of the model α β γ δ

1) 2) 3)

FIGURE 5-5 Alternative method refinements while analyzing usage of types.

199

according to any of the object-oriented methods analyzed in Chapter 4. To
capture both of these characteristics, additional instance-based information
must be specified. Although the analysis is based on semantics, and therefore
can not be evaluated solely by analyzing models separately from the real-world,
some pointers to this kind of need can be found from models:

− Method users may extend modeling techniques by using different naming
policies for instances. This kind of modification is a common form of tacit,
on-the-fly modifications (Wijers 1991). An example of such an extension is
to name similar instances with a specific suffix indicating the similarity.
Naming extensions used can be also found from a data dictionary, or from
a documentation property type.

− Instances of the same type which are based on different wording (e.g.
nouns versus verbs, or singular versus plural), or use of other distinctions
(e.g. capital and lower case letters) may indicate that a single type is
inadequate to differentiate instances.

− Instances based on different wording can be further analyzed based on the
property types used. An overload of modeling constructs can occur if
instances of the same non-property type have instances with different
property types. For example, in the case of relationships, a flow which is
named with a verb and described with parameters can indicate that the
flow represents a function, a procedure, or an operation. In contrast, a flow
which is named with a noun may indicate only data passing. These
different kinds of flows could also be distinguished at the type level (e.g.
relationship types for an operation and a data flow). In the case of object
types, we can analyze differences between the relationship types the object
type instances participate in. If objects of different wording participate in
different relationship types they may denote different object types.

The resulting refinements can be carried out either by introducing a new

non-property type, or by using a characterizing property type. A new non-
property type is required if instances of a non-property type have different
properties or constraints, e.g. a different type multiplicity. If the only type level
difference is the need to classify instances then a characterizing property type is
sufficient. Depending on the tool support, different representations may require
new types. If the representation of a type can be changed based on instance
information (e.g. depending on the value of a property) the creation of new
types for notational reasons is not required.

3) Combinations of types, or definitions of linkages between types are
required when there is redundancy among modeling constructs, i.e. a method
has several instances of different types which refer to the same real-world or
semantic entity. The use of several types that refer to the same thing is not
always undesirable because it allows one to inspect an object system from
different perspectives, and thereby to integrate techniques. Similarly, the
metamodels developed in Chapter 4 show that the use of different types to
specify the same instance information is relatively common. For example, in
some situations an external entity in a context diagram (like in Yourdon 1989a)
can correspond to an entity in an ER diagram (Wijers 1991, p 171). In other

200

situations only data stores of a data flow diagram can be specified as entities.
Redundancy of types in a single modeling technique, however, is not
considered desirable, because it makes modeling time-consuming by
introducing additional complexity (Weber and Zheng 1996).

Some linkages are already defined in a constructed method, but we are
interested in finding linkages which are not defined and could be included into
a method. These can be found by analyzing:

− Instances which include the same values as their properties can indicate
interrelations. Especially if values are shared among identifying property
types, type level linkages could be defined. This refinement supports the
maintainability of models and enables consistency checking (cf. Section
5.3.4.2).

− Instances which are nouns, verbs, or adverbs formed from the same root
word, and which belong to different types can indicate some kind of
relation at the type level. Also, synonyms can indicate that different users
apply different modeling constructs to describe the same instances. The
wording and possible synonyms can be inspected from the data dictionary
related to models and by interviewing different developers about their
naming policy.

− Instances of object types can furthermore be analyzed based on the
relationships they participate in. If instances of different object types
which are named similarly (i.e. same wording, synonyms) participate in
similar relationship type instances they probably denote the same instance.
A similar approach is often the only way to find out the class which a
specific state in a state model describes: if a transition to a state includes
actions which the same class includes as its operations, the state describes
a part of the life-cycle of that class’s objects26.

The resulting refinements can be carried out either by combining types or

by defining constraints which allow instances to be linked. A combination of
types is not applicable if the non-property types have different property types,
participate in different relationships types, or have different constraints. It is
also possible to have different types which share exactly the same property
types, constraints, and participate in the same relationship types. For example,
in Coad and Yourdon (1991a) the only differences between classes and class-&-
objects are their semantics (i.e. class is an abstract class as it does not instances)
and representations (i.e. single lined rectangle for a class, double-lined rectangle
for classes with instances).

A more detailed analysis of these refinements would require that method
use is inspected in relation to other types and to more detailed constraints of the
method. Accordingly, most of the modifications deal with refinement of method
knowledge at the level of constraints.

26 The state could also belong to superclasses. The analysis can be further improved by

analyzing neighboring instances. For example, if the transition occurs from a state of
another class the operation should be defined as public (e.g. Booch et al. 1996).

201

5.3.3.2 Usage of constraints

Evaluating the usage of constraints is concerned with inspecting how the rules
of the modeling techniques were applied. It extends the analysis from types to
constraints. As with the type usage, the inspection of constraints can lead to the
removal or addition of constraints: Some of the constraints defined may have
been too strict, or conversely some might not have been used at all.

Data collection on the use of constraints is performed on the basis of the
constraints described in the metamodel. In the following we describe what
constraints need to be checked based on the essential constructs of
metamodeling (see Chapter 4.4). Basically, most of the constraints used in a
single technique are straightforward to analyze, whereas constraints related to
integrating techniques are more complex. Below we discuss each constraint and
the method refinements that can be suggested on the basis of its usage.

1) Identifying property. Properties which have inconsequential or dummy
values are not applicable for identifiers. Accordingly, the identity constraint can
be removed, and perhaps another identifying property type or types defined in
its place. It must be noted that the identity does not deal with identity in a
repository, but rather identity among design information. This is only
meaningful for humans, since computer-aided modeling tools normally use
internal identifiers (see also Section 4.4.1.1). New candidate identifiers can be
found from other property type values. For example, instances in a dictionary
property type can reveal candidate identifiers.

2) Unique property. Values of property types which are slightly changed
or are based on different wording (because the tool does not allow the same
instance values) may denote that the uniqueness constraint is limiting modeling
in the defined scope of the constraint. The scope of the constraint can be refined
to include a smaller set of values, for example from all instances of a given
property type to instances in a single model, or the whole uniqueness constraint
can be removed. In contrast, if different instances of the same type can not be
distinguished, compared, or checked adequately a uniqueness constraint needs
to be added.

3) Mandatory property. As with identifiers, a large number of dummy
values added to satisfy the mandatory constraint should lead to its removal.
Alternatively, property types which always have values may indicate that the
property type should be defined to be mandatory.

4) Data type of properties. Although tools normally ensure that data types
are followed, the use of complicated data types, default values, and predefined
values can be analyzed. Property types which allow free form text can include
definitions which should follow a certain structure or syntax (like CATWOE
discussed in Section 5.2.3). These can be added as new property types, or
alternatively a syntax could be defined for a property type.

A default value and predefined values can be modified to speed up
modeling. A default value can be changed if another value is more commonly
used. For property types with a mandatory constraint the most used value is
declared as the default. Also predefined values which guide selection, such as
stereotypes or multiplicity values (e.g. Booch et al. 1996), and which are not

202

used may be removed: they slow down modeling and make use of the method
more complicated.

5) Cardinality defines whether instances of a relationship type are binary
or a specific n-ary. Because all possible alternatives of participating roles and
objects do not necessarily appear, nor are all cardinality values used, the
refinement possibilities of the cardinality constraint can not be studied fully by
analyzing models.

Some aspects, however, can be analyzed from model data. If only binary
relationships are allowed the need for an n-ary relationship can be recognized
when multiple relationships with the same property values are created for the
same object. For example, an inheritance relationship defined as binary will
need to be defined as n-ary if a class participates in several relationships in the
superclass role and with the same discriminator value. This requires a change to
the maximum cardinality constraint. The minimum constraint can be changed
to one if all instances of a given relationship type use the specified role type, i.e.
changing an optional role to be mandatory.

If n-ary relationships are not used the cardinality constraint can be
removed. Another option would be to create a specific relationship type for n-
ary cases, as in OMT (Rumbaugh et al. 1991). More detailed refinements, like n-
ary relationships only being used for specific instances of an object type or
specific cardinality values, must be carried out together with method
stakeholders.

6) Multiplicity constraints deal with the number of role type instances an
object type instance may have in a model. The constraint can be bound either to
instances of a single role type, or to instances of different role types. As with the
evaluation of cardinality constraint, not all multiplicity alternatives are
necessarily applied during modeling and therefore their suitability can not be
analyzed solely from model data. The following principles, however, help
identify refinement possibilities:

− Existence of role type instances for all object type instances may indicate
that the role type should be defined to be mandatory, i.e. minimum
multiplicity should be one.

− Existence of only one instance of a role type for each object type instance
indicates a one-to-one constraint value (1,1). Alternatively, a passive
checking for a maximum value could be used to define that an object
should only have one role type instance: in some cases, which the users
should be informed about, multiple roles would still be possible. An
example of such a case is a recommendation to use single inheritance (i.e.
each class only participates once in a subclass role). This option is also
relevant for instances of several role types.

− Role types which are defined as mandatory and have “unnecessary”
instances may be made optional (i.e. minimum multiplicity of zero).
Examples of unnecessary instances are roles and related relationships
which are not specified with property values. Changes to the checking
mode are not relevant here because both modes are possible only for the
maximum multiplicity. Similarly, it must be noted that role types which

203

are not used at all have already been inspected through the type usage
analysis.

7) Cyclic relationships. Analysis of cyclic relationships based on model

data can only lead to removing cyclic relationships. If cyclic relationships are
not allowed, but required, this implies that not all aspects of the object system
can be represented. Additional objects to overcome the prohibited cyclic
relationships could be analyzed, but this would require semantic analysis.

8) Multiplicity of types. If system models are scattered into multiple small
models, a minimum constraint can be applied to remind users, but not to ensure
(because of the passive checking mode, cf. 4.4.1.9), that instances should be
combined into smaller number of models. Alternatively, the creation of large
and overly complex models can be prevented (with active checking), or
discouraged (with passive checking) by setting the maximum multiplicity
constraint for selected object types. The multiplicity of types is related to
complexity management which can also be supported with other metamodel-
based constraints, e.g. complex objects, explosions, and polymorphism.

9) Inclusion. In contrast to analyzing all instances of a type, an analysis of
inclusion means that instances are analyzed inside a single modeling technique.
For example, a ‘library class’ (Henderson-Sellers and Edwards 1994) can be
useful in a specific modeling technique but not in all techniques, or vice versa.
In addition to the use of non-property types, the occurrence of their property
type instances needs to be analyzed since it is typical, at least in the methods
analyzed (Chapter 4), that not all information on the same non-property type is
required in different modeling techniques. For example, in the metamodel of
UML (Section 4.4.3) an ‘object’ can be used both in a class diagram and in an
object diagram with a property type ‘values’. This property type is used to
describe instances of attributes of a class, but it is not necessarily relevant in
class diagrams but only in object diagrams. This reveals polymorphism and is
analyzed through the polymorphism constraint below.

10) Complex objects deal with an abstraction mechanism which allows the
modeler to build aggregate-component structures. Based on the usage of
complex objects, the most straightforward method is to determine which are not
applied and remove them as inapplicable. A more detailed analysis necessitates
that different characteristics of the complex object type are examined.

− A component type can be declared dependent if all instances of a
component type occur in complex objects.

− A component can be declared mandatory if all aggregate objects have
instances of the component type.

− A component type can be declared exclusive if none of its instances belong
to other complex objects.

− A component type is shared if the same instances of the component type
belong to several complex objects.

− A constraint for aggregated relationships can be defined when all
relationships of the components outside the complex object are also
defined for the aggregate. Whilst the constraint is undefined there exist

204

redundant modeling tasks in order to maintain consistency (cf. Section
5.3.4.2).

It must be noted that not all dimensions of complex objects (cf. Table 4-4)

are analyzed because they are not relevant, or can not be analyzed from model
data. For example, connected components and relationships of an aggregate can
be analyzed with a multiplicity constraint. The limited use of complex objects
can also be a consequence of the “dictatorship” of a tool. For example, aggregate
object types may remain unused because they have mandatory components
which are not applicable in the modeled domain. Hence, the constraints of the
complex object could be checked passively, although our analysis of complex
objects suggested that they can always be checked actively. Passive checking
would allow violation of the constraints of complex objects but would still
inform the method user about the inconsistencies.

11) The explosion constraint deals with organizing and structuring
multiple models. The original metamodel can either ensure (with active
checking) or encourage (with passive checking) the use of explosions. While
analyzing the current usage of the explosion constraint, the following situations
indicate a need for modifications:

− Explosion structures which are not used may be irrelevant and removed.
Alternatively, the active checking which specified explosion structures as
mandatory may be the reason why they are not used: passive checking
could be applied instead.

− Explosions should be defined as mandatory if all instances of a specific
type (i.e. a source) or a technique (i.e. a target) participate in explosion
structures. A mandatory explosion structure is defined with a minimum
cardinality value of one, or alternatively if only one explosion exists with a
minimum-maximum pair of (1,1).

− Passive checking can be applied if an explosion structure is not used for all
instances of a source type or a target technique. The use of active checking
can not be analyzed from the resulting models because it deals with the
modeling processes, i.e. whether all explosion structures were created in a
top-down or in a bottom-up manner. This would be possible in modeling
environments which allow queries on instance creation times.

− A constraint of a shared explosion target could be removed if only one
instance of a source type refers to a model.

− A constraint of an exclusive target model can be considered too restrictive
if it leads to the creation of multiple models which have fewer instances, or
which have multiple shared instances. The former can be partly analyzed
by inspecting the multiplicity of types in models, and the latter by
inspecting the occurrence of the same instance values.

− A model scope constraint is inaccurate if the same instance has the same
explosion links in multiple models. For example, a class has the same life-
cycle, i.e. an explosion to the same state model, although it is represented
in different models. Hence, the method scope should be used.

205

12) Polymorphism means two or more types sharing the same property
values. The evaluation deals with analyzing polymorphism structures which are
not used and by seeking instances which can indicate polymorphism. Based on
the former option, polymorphism structures which are not used may not be
suitable for the modeled domain. It must be noted that not all structures of
polymorphism are necessarily described by sharing property values. Instead
other constraints of a modeling technique can be used for this purpose. For
example, an object can have both an ‘instantiation’ relationship type to a class
and an object can be identified by a property type ‘class name’ (e.g. in Booch
and Rumbaugh 1995).

Based on the latter option, new polymorphism structures can be defined to
support reuse. These linkages are typical between different techniques where no
clear representation for linking is available. First, the analysis is carried out by
seeking values among different property types which are based on the same
wording, suffix, etc. This results in a set of types which describe the same model
data. This approach is similar to analyzing overloading of modeling constructs
with type usage (Section 5.3.3.1). For example, as in the metamodeling example
in Section 3.3.3, values for actions in a state diagram and values for operations
in a class diagram are the same.

Second, a number of types participating in a polymorphism structure must
be inspected. For example, a value “add customer” can be used as an instance of
an ‘operation name’, an ‘action name’ and a ‘message name’. This means that
the three types share the same value. Third, the size of a polymorphism unit
must be analyzed, i.e. how many instances of different property types are
shared together. For example, actions and operations typically share only
instances of the naming property types since actions do not include operation-
related characteristics, like parameters or access levels. Also, parameters of a
message in an event diagram (Rumbaugh et al. 1991, Booch et al. 1996) are the
same as operations. Hence, the values shared include both the name and
parameters. This is illustrated in Figure 5-6. An action, an operation and a
message denote the same instance values. In a state model, actions are defined
with a name, but operations of a class also include parameters and access levels,
e.g. public. A sequence property type is only meaningful for messages in a
message diagram.

206

Fourth, dependency among polymorphism structures requires that the
modeling process be analyzed. This would allow us to find the types for which
the shared instance values were first defined. For example, candidate operations
should be added first into a message diagram and therefore operations of the
class should refer primarily to already defined messages. Although analysis of
dependencies deals with the modeling process, some of them can be recognized
from model data. If a property type always has a value used in another
property type, the former type may be dependent. Alternatively the checking
mode for the dependency can be changed: active checking of dependency is
required if models need to fulfill the rule at all times, and passive checking is
used for an optional dependency.

Finally, the scope of a polymorphism can be changed if shared instances
belong to a smaller scope than originally intended. Alternatively, if
polymorphism is not used, because the instances the user wanted to refer to
were outside the permitted scope, a larger scope could be specified.

5.3.4 Modeling the object system

The second approach to incremental ME is analyzing modeling capabilities.
Tool-supported modeling capabilities are divided into abstraction and
consistency checking (Olle et al. 1991, see also Section 2.3.2). The former means
the capability to describe relevant aspects of object systems, and the latter
means the capability to maintain consistent models.

The evaluation of modeling capabilities requires information about the
object systems modeled and thus extends evaluation from the IRD level into the
application level of IRDS (cf. Section 3.3.1). As a result, the evaluation must be
conducted in close cooperation with method stakeholders. This means
interviewing stakeholders in addition to analyzing model data. Interviewing is

Types

add customer (customer data) public 2

Message:
name, parameters, sequence

Operation:
name, parameters, access

Action:
name

Instances

FIGURE 5-6 An example of polymorphism structure.

207

used to collect opinions on the method use and requests to change the method.
The evaluation questions described below focus on structured interviewing.

5.3.4.1 Abstraction support

A conceptual structure behind modeling techniques suggests an abstraction to
describe an object system (cf. shell model, Figure 2-2). An abstraction means
perceiving some aspects of the object system while ignoring other aspects. Two
issues must be noticed while evaluating tool-supported abstraction capabilities.
First, a tool provides a set of concepts which are limited from a syntactic and a
semantic point of view. Therefore, non-diagramming concepts27 (Wijers 1991)
or other additional concepts can not be applied. Although a tool can include
free-form modeling techniques, they are not adapted a priori to the situations
and therefore their evaluation is excluded here (for this type of analysis see
Wijers 1991). Second, not all aspects of the object system are necessarily
represented in a similar notation to that used in paper documents because a
CASE tool uses dialogs, linkages between models (e.g. an explosion structure),
and a data dictionary to capture specifications.

The evaluation of abstraction support can be analyzed by examining how
object systems could be represented, by analyzing difficulties in making
representations, and by inspecting differences among method users. These are
described below:

1) Are all relevant aspects of the object system perceived with the
method? The limitation of abstraction support can be recognized when some
aspects of the object system can not be perceived and represented with the
modeling techniques. This requirement sets out the goal that the method must
capture essential “objects” of the design problem and convey relevant
information about them. As the review of method evaluation studies showed,
this is the most common approach (e.g. Schipper and Joosten 1996, Wijers 1991,
Fitzgerald 1991). Based on the evaluation, refinements can be made by:

− Adding new types which illustrate aspects to be modeled. These can
include a new non-property type (e.g. an object type which has property
types and other constraints) (e.g. Jaaksi 1997), several types, or a whole
modeling technique (e.g. Tollow 1996).

− Adding a new property type (or types) that characterizes currently used
non-property types (e.g. for subtyping entities, as in Wijers (1991)).

− Adding new relationship (or role) types for describing specialized
connections between objects.

− Removing constraints which restrict abstraction. Examples of possibly
restrictive constraints are multiplicity constraints (limiting the number of
relationships which an object type instance can participate in) and
cardinality (limiting the number of roles a relationship can have).

27 Non-diagramming concepts refer in Wijer’s (1991, p. 170) study to additions to the

modeling technique which are made when all aspects of object systems could not be
explicitly specified with the modeling technique. Examples of such concepts in his study
include a ‘problem’ and an ‘external party’.

208

2) What types have been difficult to use? Difficulties in making

abstractions can indicate that the method does not “fit” the object system, or has
not been introduced and taught well. If the difficulties are related to an
inappropriate method, its conceptual structure can be redefined.

3) What types have been used differently among individual developers?
Differences in method use can be due to individual differences and modeling
preferences. For example, some developers can use state models to describe an
object’s life-cycle as the method engineer intended, whereas others can use them
for interface design (e.g. Jaaksi 1997). Similarly, method developers can have
different requirements from end-users (Tolvanen and Lyytinen 1993). Although
individual differences of method use exist (e.g. Wijers 1991, Hofstede and
Verhoef 1996) and can be supported through ME, ISD is a group activity. The
modeling results should be based on a common understanding of modeling
concepts. This is important for communication, minimizing misunderstanding
etc. Hence, method refinement should strive to find linkages between related
views of method users (Nuseibah et al. 1996).

5.3.4.2 Checking support

Problems of insufficient computing power are most noticeable in ensuring the
consistency of models. Use of checking related constraints in the metamodel
will result in well-defined and complete model instances. Consistency checking
supports the maintainability of models, decreases the redundancy of modeling
tasks, and supports traceability by informing of side-effects of changes. These
emphasize both vertical and dynamic integration of conceptual method
connections. The checking support is emphasized in ISD efforts where multiple
models are developed with different techniques (integration among techniques
or methods) and by different people (coordination among method users).

With respect to metamodel data, checking can be carried out either
actively or passively. Active checking ensures that models continuously satisfy
the constraints of the metamodel, whereas passive checking requires a
modeler’s attention. In modeling tools passive checking is typically
implemented with checking reports which inform method users about
violations.

Although consistency is checked with various algorithms it is always
dependent on the underlying metamodel data. Checking support can be
evaluated with the following questions:

1) Are the developed models consistent? This question can be partly
analyzed by checking if the models satisfy both the active and passive checking
rules defined in the metamodel. Active checking is already ensured by the tool
and passive checking can be analyzed by running the consistency reports made
during the tool adaptation. If models are not consistent, either consistency rules
are not applicable or they are not used. In the former case the checking related
constraints can be removed, and in the latter case active checking can be
required.

209

2) Is manual work required to keep models consistent? This question
deals with finding new constraints to maintain consistent models. Redundancy
of modeling occurs when the same instance information must be changed
several times in order to maintain consistent models. This error-prone and time-
consuming task can be reduced by adding constraints to the metamodel and by
providing new checking reports based on the constraints added. Also,
difficulties in tracing how changes in one model affect specifications elsewhere
can indicate a need for new constraints. Redundant work exists in the following
situations:

− The addition of an instance requires the addition of the same information
elsewhere in the models. For example, creation of a new action in a state
diagram necessitates that the action is specified among operations of a
class (cf. metamodeling example in Section 3.3.3). This situation would
require that the action names are dependent on the operation names.

− A change to an instance requires that other instances must be updated. For
example, a change of an entity name must be reflected in a data dictionary
and in data flow diagrams (Yourdon 1989a).

− The deletion of design data requires searching and removing the same
instance information. For example, the deletion of a class might require the
manual deletion of related state models or removal of individual states.
The former could be automated by defining a minimum cardinality of one
for the explosion target (i.e. the state model), and the latter by using
dependent polymorphism among states and classes (i.e. each state must
refer to and be dependent on a class through its name, as in UML (Booch
et al. 1996)).

Some refinements can be carried out by changing the checking mode, or

the scope of the constraints. Active checking can be used for constraints which
are defined but not applied or when the use of passive checking is considered
tedious. The scope of the consistency related metamodel constructs can be
changed if consistency is not ensured among instances outside the defined
scope: the scope is refined from a smaller set of instances (e.g. dependent type)
to include a larger number of instances (e.g. model or method).

5.3.5 Supporting problem solving

Methods are not only used to describe a current situation but also to carry out a
change process with respect to object systems. This necessitates that a method
supports the seeking of candidate solutions and deciding amongst them
(Tolvanen and Lyytinen 1994). Both of these can be supported by a CASE tool
with form conversion and production of documents (Olle at al. 1991, cf. Section
2.3.2). Form conversion provides mechanisms to seek alternative solutions by
manipulating design data according to method knowledge (i.e. according to the
conceptual structure or the notation). Deciding among solutions can not be
directly automated but can be supported through the provision of documents
for review and comparing candidate designs with the current configuration.

210

The evaluation of problem-solving capabilities is not much addressed as
most approaches (cf. Section 5.2) focus mainly on modeling support. One reason
for this focus is the evaluation of methods separate from their use situation. The
analysis of problem solving capabilities reveals which parts of the method
knowledge are required to seek alternative solutions and which are needed only
for abstraction and checking. For example, while generating code from object-
oriented methods, not all concepts of the method are needed: although message
diagrams are important in understanding object interaction, they are not
required since the design data related to program code is already represented in
class diagrams.

As with the evaluation of modeling support, the evaluation of a method’s
role in problem solving requires the participation of stakeholders. It involves an
inspection of the application level to refine the IRD definition level (i.e.
metamodels); in other words, a comparison of development outcomes and the
method’s role in producing them.

5.3.5.1 Support for form conversion

Form conversion in a CASE tool means an analysis and a comparison of design
data, simulation, generation of program code, and building of prototypes. Like
consistency checking, form conversions are carried out by algorithms (e.g.
checking reports or transformations) but they are only possible if the
metamodel specifies and maintains the necessary design data. This means that
aspects other than those found directly from or derivable from models can not
be converted. In other words, conversions are largely dictated by the abstraction
capabilities. Naturally, method knowledge is also included in the conversion
algorithm (e.g. the syntax of the generated language), or can be added by
developers during the conversion (e.g. a choice among approaches to convert an
inheritance into a relational model, see Rumbaugh et al. (1991)).

The evaluation of method support deals with analyzing how well it
provides concepts and notations for form conversions. A conversion of
conceptual design data takes place, for example, when a schema for a database
is generated. Conversion of representational data occurs when the conceptual
design data remains the same but the notation changes. For example, BSP (IBM
1984) determines boundaries between ISs by organizing the data classes and
business processes into a matrix so that a minimal number of connections occur
among ISs. During this conversion only representations of data classes and
business processes are clustered according to the use of data. Form conversion
capabilities can be evaluated with the following questions:

1) Can the required analysis be made using the models? Although
analysis of models is dictated by the rationale that suggests modeling concepts,
model analysis can reveal the need for new concepts. For example, during
workflow modeling, a demand to analyze bottlenecks may arise. This, however,
is impossible if the models do not capture information about capacity and
throughput times. This suggests additions of property types to the workflow
modeling technique. Similarly, inspection of encapsulation requires that
attributes and operations of a class can both be specified directly with the

211

specification of a class (e.g. Rumbaugh et al. 1991), or in a class related models
(e.g. Coleman et al. 1994).

2) Can alternative design solutions be generated from models? A
method should include rules which allow the conversion of models into various
design alternatives by using the metamodel data. For example, to generate
alternative solutions based on the level of (de-)centralization of the
organization, the method should describe organizational structures. Similarly,
interaction scenarios between classes can be examined by describing a
significance for events (e.g. Awad et al. 1996).

3) Does the design satisfy requirements of later phases or external tools?
An outcome of modeling is a design solution which can be implemented or
further analyzed with other methods or external tools (e.g. with a simulator, a
programming environment, a code generator, or a reporting tool). Therefore,
vertical integration with other tools and methods (cf. Table 2-2) must be
provided. In other words, the requirements of later phases must be satisfied to
provide an integrated method. For example, although UML (Booch et al. 1996)
supports the generation of CORBA IDL interfaces (Iona 1997) better than other
methods analyzed in Chapter 4, its support is not complete. As an example,
UML does not consider context clauses for IDL operations. Hence, the UML
metamodel can be extended with property types for context expression.
Metamodel extensions towards programming languages are further discussed
in Hillegersberg (1997).

The analysis of form conversion capabilities typically leads to extending
the conceptual structure with new types and constraints. If a conversion suffers
from unavailable design data, for example because modeling tasks can not be
completed unless instance values are added to the models made earlier,
constraints can be added. These include a mandatory constraint for property
types, multiplicity of types, and multiplicity of roles. In addition to changes to a
metamodel, changes are also required in form conversion algorithms.

5.3.5.2 Support for review

Information system specifications which can be understood and reviewed by
stakeholders are of great importance for validation. Tool support for review
consists of the provision of information for stakeholders, such as summary
reports for managers, less formal descriptions of the selected domain for end-
users, and formal specifications for programmers. The documents produced can
vary based on the conceptual data and their representations. Since a review is
always dictated by what is abstracted, the evaluation of review support deals
mostly with representational issues. Tool support for the review step can be
analyzed with the following questions:

1) Can validation of IS models be supported? The metamodel must help
to validate the system descriptions in relation to stakeholders’ desires and
needs. This requirement is partly overlapping with the consistency criterion.
There is, however, a marked difference: validity deals mostly with the semantic
adequacy, whereas consistency focuses mainly on the syntactic properties of the
models. Therefore, validity can not be assessed by exploring the metamodel

212

alone, but method users can provide information about which concepts and
representations they find useful in validation.

2) Does the method correspond to users’ natural concepts? Development
methods are developed to satisfy developers’ cognitive needs related to design
tasks. Therefore, it would be an advantage if methods were similar to users’
existing concepts and patterns of thought. For example, Olle et al. (1991)
suggests different graphic representations for different types of users: experts
from different areas of the object system may require different concepts from
those employed in the underlying techniques. Similarly, less formal notations
and icons can be applied.

The analysis of review support typically leads to extending the method in
terms of providing different notational constructs, and simplifying the method
for different use situations.

5.3.6 Remarks on the a posteriori mechanisms

In this section we have put forward mechanisms for evaluating methods in a
given situation. These mechanisms refine a method by adding, changing, and
removing parts of the method knowledge. In other words, they evaluate which
parts of the modeling techniques need to be simplified or extended. If the
mechanism reveals requirements to change the method, it means that the
constructed method may not be applicable in a use situation. The mechanisms
are summarized in Table 5-4. The steps of incremental ME, i.e. collection of
experiences, analysis, and outcome of refinements, form the vertical axis, and
the a posteriori mechanisms the horizontal axis.

TABLE 5-4 Mechanism for method evaluation and refinement.

Steps of
incremental ME

Type-instance
matching

Problem solving
capabilities

Modeling
capabilities

Method
rationale

Data collection Metamodels,
completed
models

Project
outcomes,
interviews,
models, tool
support

Models,
interviews, tool
support, method
change requests

Method use
decisions

Analysis Differences
between types
and instances

Support for
form conversion
and decision
making

Support for
abstraction and
consistency
checking

Individual
differences,
method
engineer’s
intentions

Major outcome
of method
refinement

Removed types
and constraints

Added types
and constraints,
improved
method-tool
companionship

Add types and
constraints,
improved
method-tool
companionship

Updated
method
rationale

As the proposed mechanisms show, we emphasize modeling and problem-
solving capabilities. They are mostly used in cases of local method development

213

(cf. Section 2.4.2) and in the method evaluation literature (cf. Section 5.2), and
they can be related to detailed method knowledge. Neither contingencies nor
stakeholders’ values imply modifications of detailed metamodels, although
some changes in contingencies or value-based ME criteria could be
accommodated in a metamodel.

It must be noted that the preceding mechanisms are not the only ones
possible for evaluating methods. They are relevant for our research question of
supporting method improvement through metamodels. The collection and
analysis of experiences, as well as method refinements, are carried out through
the metamodeling constructs. These organize the experience gathering and
make method modifications more explicit and formal. The matching of types
and their instances mostly leads to purging of method knowledge, because
extensions which enlarge the metamodel are not possible. In other words,
analysis of the use of a method in a tool can only show things which the tool has
not prohibited. In contrast, the evaluation of modeling support and problem
solving capabilities mostly lead to extensions of method knowledge. Extensions
are largely a result of method users’ requests which arise from the application
level. This also means that a posteriori ME requires the participation of the
method engineer in ISD to obtain application level knowledge. This supports
the claims that a method engineer must be one of the stakeholders of ISD, such
as a project manager (Odell 1996).

Because the mechanisms are overlapping, they can suggest conflicting
modifications. For example, an analysis of explosion structures can show that
each instance must be exploded, but the analysis of type multiplicity reveals
that resulting models have only a few instances. As a result, the choice of an
appropriate refinement must be made together with method users. Moreover,
neither the mechanism nor the refinements should be prioritized. Therefore, the
preferences of stakeholders can emphasize different mechanisms and resulting
refinements. For example, Hofstede and Verhoef (1996) propose to be less
ambitious with regard to the level of consistency and promote simple
representations (i.e. a small number of graphical symbols).

5.4 Summary

This chapter has focused on complementing existing method engineering
principles by introducing an incremental approach. This approach is motivated
by the limitations of a priori ME approaches. In short, a priori ME is not
interested in method use, and it assumes that the constructed method is
understood and applied as the method engineer intended. In contrast, we
believe that method knowledge and method construction criteria can not be
known completely beforehand. Moreover, we claim that an ISD environment is
not stable, because method use situations change and method users learn about
their methods. These method use characteristics were also emphasized in our
re-evaluation of method use (Section 2.5). As a result, at some point of time a
method becomes less applicable for the tasks for which it was promoted.

214

Certainly it is possible that a method can be found to be fully applicable during
the ISD project. Even in these cases it is of key importance to learn about
method use. The learning aspect is also a key difference between a priori and a
posteriori approaches to ME. Instead of expecting that a method engineer is
responsible for all improvements to a method, the incremental approach
emphasizes the role of method users and their experiences. In other words,
method development should be based on stakeholders’ experience and
situational needs, in contrast to selecting methods solely by using ‘universal’
ME criteria. The focus on experiences is also relevant because learning through
experiences has been identified as a main way of learning about methods
(Hughes and Reviron 1996).

The incremental approach is clarified through method engineering
scenarios. The scenarios illustrate steps of ME in which modifications can occur.
The scenarios are used to explain incremental ME principles: we are interested
in experiences which arise from method use, which can be made explicit, and
which can contribute to method refinements. Explicit means that method
improvements are not tacit, nor individual knowledge, but can be discussed
and shared in an organization. This is important because learned methods often
become tacit and “invisible” (Wastell 1996) and an in dividual developer’s
productivity (Davis et al. 1991) can be reduced by methods (Fitzgerald 1996).
The aims of method refinements mean that we evaluate methods primarily for
improving them in a current use situation.

To relate our incremental approach to other studies, we reviewed the
approaches proposed for situational method evaluation and validation. This
analysis pointed out that most of the evaluation approaches do not follow any
systematic evaluation procedure for data collection or analysis. They are carried
out mostly by method developers, and they do not aim to systematize the
method improvement process. Moreover, unlike ME they aspire to a general
situation-independent proof (or disproof). This proof has been found difficult to
obtain (Fitzgerald 1991) as it necessitates that evaluations could be replicated,
the variety and complexity of ISD environments reduced, and data collection
limited to factors relevant to method use. Our approach is different. We aim to
evaluate methods in situations in which they are applied and use an
organization’s own experiences as a source for method improvement. In this
sense method modifications are subjective, but generalizations can be found by
iterating in cycles of incremental ME.

The incremental approach is described through the mechanisms for
collecting and analyzing experiences for the purpose of method improvements.
The mechanisms deal with differences between intended and actual use of a
method, the modeling power of modeling techniques, and a method’s support
for problem solving. In each case the experience is collected and analyzed
differently and can lead to modifications of a method or a tool. For each
mechanism, principles for collecting and analyzing experiences are described
and alternatives for possible method refinement are explained. First, the
approach collects experiences and analyzes the applicability of modeling
techniques through the use of types and constraints (in a metamodel) for
representing an IS (in models). Second, it focuses on mechanisms that

215

emphasize the capability of a modeling technique to abstract relevant aspects of
the IS and maintain the consistency of these models. Third, the suggested
mechanisms evaluate the support of modeling techniques in problem solving.
This evaluation deals with the capability to provide alternative solutions
through form conversions and to support review and validation of models.

6 AN EXAMINATION OF INCREMENTAL METHOD
ENGINEERING: TWO CASE STUDIES

In this chapter we shall demonstrate the viability of the proposed method
engineering principles by analyzing two cases of incremental ME. Our focus on
real-world method development efforts means that we will face two major
differences in metamodels: hereafter the metamodels developed are situation-
bound, and method applicability varies as its use situations change.

So far we have modeled ISD methods as they are described in the method
literature: they are “universal”, standard and largely fixed. In Chapter 4 each
method was specified using a single metamodel and no situational method
modifications were made. Recently, method developers have adopted
metamodeling for describing meta-data models, e.g. Booch et al. (1997) present
metamodels for their Unified Modeling Language, and Henderson-Sellers and
Bulthuis (1996b) for their Open Modeling Language. These metamodels,
however, neither suggest modifications of methods nor provide different
method versions for different situational needs. Although some situational
needs are identified (e.g. Booch and Rumbaugh 1995), versions that can meet
these situations are not specified. In incremental ME, metamodels are made
based on situational needs. At the same time we can demonstrate that the
metamodeling constructs are relevant for modeling situation-bound methods,
not only applicable for modeling text-book methods, as we used them in
Chapter 4.

Based on the re-evaluation of method use (cf. Section 2.5) we shall focus on
supporting the evolution of methods. Two cases of local method development
are analyzed longitudinally and the methods constructed are evaluated a
posteriori using the principles of incremental method engineering. These
principles seek to externalize experiences of the methods’ use and channel them
back into method improvements. This allows us to address our second research
question on how to refine methods through modeling experiences. Possible

217

method refinements resulting from a posteriori analysis demonstrate that the a
priori method was not as applicable as intended. If some refinements occur,
these justify our conjectures that local methods are evolutionary and need to be
maintained. Alternatively, if no method refinements are needed, then a posteriori
analysis can be considered unnecessary, or the evaluation mechanisms were
inapplicable to improve methods.

The chapter is structured as follows. First, we describe the action research
method followed. Second, two cases of local method development are discussed
using the steps of incremental ME. Finally, the cases are analyzed by soliciting
lessons about local method development, about method engineering principles,
and about the incremental approach.

6.1 Research method for method engineering cases

Empirical studies of local method development are rare (Wynekoop and Russo
1993, Tolvanen et al. 1996). This makes the selection of a research method for
our case more difficult: we can not directly build upon other work and confirm
(or challenge) its findings. Though several studies have investigated method
use in practice (see the studies discussed in Section 2.4 and surveys by
Wynekoop and Conger 1991, Tolvanen et al. 1996, Sauer and Lau 1997,
Wynekoop and Russo 1997) they operate at a general level of method
knowledge. Surveys and field studies do not address detailed method
knowledge; rather they show that adaptations occurred (see Section 2.4). Case
studies have been carried out on method introduction and use, resistance to
change (Wynekoop et al. 1992), social defense (Wastell 1996), and stakeholders’
interests (Sauer and Lau 1997), but none of them addresses the situational fit of
the method use. As a consequence, most of the ME approaches reviewed in
Chapter 3 are unproven for local method development efforts. Those
approaches which include demonstrative cases do not go into details (e.g.
Punter and Lemmen 1996) and address only a priori ME, i.e. mostly the
construction phase.

Because ME is a relatively new research field, complementary research
efforts and a variety of research methods are needed. To achieve the necessary
pluralism we need more empirical studies (Tolvanen et al. 1996). Too often ME
approaches, metamodeling languages and metaCASE tools are developed
without an empirical grounding. Among empirical research approaches we
believe that action research is appropriate to examine ME. Several researchers
give support to this research approach (cf. Galliers and Land 1987, Galliers 1992,
Wood-Harper 1985, Checkland 1981, Grant et al. 1992) in the context of
studying ISD methods. Reasons for applying the action research method in our
studies are manifold: it resembles incremental ME, it is iterative, it allows us to
go into details, it is situation driven, and it offers possibilities for longitudinal
observation.

218

Before we describe how the action research was carried out in this thesis
(Section 6.1.2), and its similarities with incremental ME (Section 6.1.3) we briefly
describe the action research method.

6.1.1 Action research method

Action research can be understood as a variant of a case study and a field
experiment (Galliers 1992). Analogously to a case study, action research uses
evaluations of particular subjects, such as an organization, a group of people, or
a system at a point of time. It attempts to capture the “reality” in greater detail
and typically no control of the phenomena is exercised. Unlike a case study, in
action research a researcher participates and acts in the area of study and
simultaneously evaluates the results of this participation. This dual role means
that the objectives of the research are twofold: on the one hand, the action
researcher aims to improve the situation in the organization. Thus, action
research resembles any organizational development or consulting effort. On the
other hand, the action researcher aims to contribute to scientific knowledge by
creating generalizable concepts and theories of the problem setting and its
behavior. The generalization is necessary for future settings, and for researchers
to build better theories.

The close interaction between theory and practice in action research means
that during the research process, the roles of a research subject and a researcher
can be reversed (Galliers 1992). As a result, the process of the action research
separates the phases where action is taken, and where its results are evaluated
(Checkland 1991, Jönsson 1991, Baskerville and Wood -Harper 1996). The dual
role necessitates that action researchers be aware that their presence will affect
the situation. Unlike case studies, the action research method permits
intervention of the researchers into the events. In fact, the possibility to plan
interventions and record them for evaluation purposes forms the essential
mechanism of action research. The intervention can vary from direct
intervention as an equal coworker, to indirect intervention through a catalyst
role. An example of direct intervention would be participation in the method
selection, and an example of indirect intervention would be playing an expert
role in tool adaptation. However, in both modes the changes to be made must
be planned and the effects of the actions recorded. This part of action research
resembles a highly unstructured field-experiment. The process of the action
research method is described in the next section in which its application in this
study is explained.

The possibility to test and refine principles, tools, techniques, and
methods, as well as to address real-world problems, makes the action research
method very appropriate for organizational development (van Eynde and
Bledsoe 1990) and for IS research (Baskerville and Wood-Harper 1996). The
advantages of the action research method compared with other approaches
come from the possibility to obtain a deeper, first-hand understanding of the
situation. The action research method allows collection of information which
would be difficult to obtain by outsiders, and permits use of longitudinal
research designs (Checkland 1981, 1991, Baskerville and Wood-Harper 1996).

219

Action research also has limitations. The approach offers few possibilities
for statistical generalization, and no possibility to exercise control over
experimental conditions. Because action research is largely interpretive, its
results can also be interpreted differently by individual researchers. The dual
role of the researcher also raises some ethical problems: the goals of practice and
research can be conflicting. For example, organizations often expect quick
results whereas the researcher may expect slower and more gradual progress.
Conflicts can also be faced by the individual researcher having to act in both
roles simultaneously. The funding structure behind action research raises a
dilemma when the researcher is financed by the organization examined.
Although the funding indicates some commitment of the organization to the
study and access to data as a “worker” of the organization, the researcher must
seek to satisfy the organization’s objectives as well. For example, it is not
usually possible to study failures by consciously planning them. As in all
research, action research must be planned to obtain scientific knowledge, and to
overcome or minimize the limitations of the research approach followed. In the
following section we describe the action research method followed in this thesis.

6.1.2 Using action research in studying method engineering

Several models for action research can be found (cf. Baskerville and Wood-
Harper 1996, Checkland 1991). They all consist of steps like planning actions,
taking actions, and evaluating their results. In addition to these, entry and exit
points to an organization must be planned (Buchanan et al. 1988). In studying
incremental method engineering, the use of action research can be described
according to the process model illustrated in Figure 6-1.

1) Entering means getting access to real-world ME cases and establishing the
action research. The criteria for selecting cases can be derived from our problem
formulation. The site must be in the middle of a ME problem, deciding how to
engineer a method for a particular IS development need?. In our study, the

1) Enter 2) Action
planning

4) Evaluating
the effects of

actions
5) Exit

3) Action taking

FIGURE 6-1 Action research process model followed.

220

cases included two organizations which needed methods to carry out specific
system development efforts. The first case was related to a business process re-
engineering effort involving an inter-organizational IS development in a trade
organization. The second case deals with developing sales and outbound
logistics in a cardboard mill. Both of the ISD environments were suitable for our
study because they lacked methods and detailed method selection frameworks.
Both cases had several external stakeholders, were dynamic and consequently
had a high uncertainty. Both cases also provided the possibility for longitudinal
observation: access to the organizations was possible also after method
construction.

Access to cases was obtained within a larger research project in which both
companies participated. The funding was not based on the work carried out for
the organizations but instead through the organizations’ participation in the
research project. Participation was arranged as development projects. In these
projects, ME efforts were organized as subprojects. In both cases, the ME
projects had specific goals and a separate project plan which described its
resources and schedule. In the latter case, the ME project also had a separate
budget.

2) Action planning involves decisions about the objectives and questions
of the study, and shows how the study bears on these objectives. The research
objective of our studies was to demonstrate the viability of incremental ME. We
examined whether situational methods could be specified using the proposed
metamodeling constructs, and whether the a posteriori ME principles could be
used to refine methods. The former was studied by analyzing whether all
aspects of modeling techniques could be described with a semantic meta-data
model. The latter was inspected by analyzing the outcomes of the ME efforts
and the use of methods. If the a posteriori evaluation mechanisms neither
revealed possible method refinements nor supported learning of method use,
they could be considered inadequate. Further studies could then be carried out
to analyze which circumstances favor incremental ME and which favor a more
“radical” ME approach (cf. Section 5.1.3).

During action planning one also determines data collection mechanisms.
To understand the constructed methods and possible method changes in detail,
the data collected included metamodels, adapted tools, method manuals and
other method descriptions, such as domain models and algorithms for model-
based analysis. Method construction rationale was collected from documents
describing the requirements for methods, from memos and minutes of the ME
projects’ meetings, and by participating in the ME process. To understand the
actual use of methods, the models developed, the analyses created, and the
project documentation were collected. In particular, access to design data stored
in tool repositories was important because it allowed to inspect how the method
was actually used with the tool. The project reports describing the deliverables
of the ISD projects formed anther source of information about method use.

Data collection also covered requirements to change methods and method
versions. These were captured in documents relating to ME, and were outcomes
of using the mechanisms of a posteriori ME. Finally, method engineers were
interviewed twice during the study: first while the method improvements were

221

being sought with the mechanisms of a posteriori ME, and second at the end of
the project. The latter interviews were applied to verify earlier observations and
to establish satisfaction (or dissatisfaction) with the method and tool developed.
Interviews were not recorded but notes were taken and the resulting
descriptions were checked by the method engineers interviewed.

3) Action taking carries out incremental ME as described in Sections 3 and
5, i.e. applying both a priori and a posteriori principles. Both ME phases were
carried out by collaborating with stakeholders. They identified ISD problems
and provided experience to assess method applicability. The method users were
partly the same people who engineered the methods. In the wholesale case, the
researcher also participated in the ISD efforts, but in the mill case, participation
was limited to tool adaptation and guiding the evaluation mechanisms. Hence,
in the latter case the researcher played an expert role. In this sense the latter case
was closer to a case study.

4) Evaluating the effects of actions analyzes whether the actions have
been taken as suggested and how they have affected problem solving. The
results of ME actions were described in a baseline documentation which was
checked for correctness by method engineers. Using this document, ME actions
were analyzed based on metamodels, supporting tools and method manuals.
The evaluation included an analysis of whether the metamodeling constructs
were applied, and whether their use was considered successful. In the a
posteriori phase, we analyzed whether changes followed incremental ME
principles, and whether the changes improved methods.

5) Exit stops the action research cycle. Cycles of action research were
simultaneous with the cycles of incremental ME. Each time a method was
evaluated the results were recorded and analyzed. This allowed us to carry out
a longitudinal study rather than inspect only a snap-shot of the methods (as in
Section 2.5 while analyzing the descriptions of ME cases). Because of the time
and resource constraints, the actions were limited to one cycle.

Although the cycles were simultaneous they occurred at different levels
(Checkland 1991). The ME cycle deals with learning about methods. The action
research cycle deals with learning about ME in general and about incremental
principles. Both of these cycles should be documented as part of the research
(Jönsson 1991). To clarify the different levels of actions we shall briefly compare
the action research method and incremental ME.

6.1.3 Comparing action research and incremental method engineering

The description of the action research method shows that incremental ME
resembles it in many ways. These similarities are summarized below:

Both are iterative and focus on long-term changes. In principle they form
never-ending processes in which learning is used in the consequent cycle.

Both ISD and ME methods are studied in real organizations and in actual
use. This focus allows the study and improvement of methods and related
technologies. Because incremental ME principles are being promoted only
action research and field experiments can be applied to study their viability.

222

Both are situation-dependent, which can also be considered a weakness if
statistical generalization is an objective of the research. On the ME level, the
need for situational dependency was already discussed in Section 2.5. On the
action research level, situational dependency is reduced through research cycles
and by carrying out studies in different organizations (in this thesis two
organizations).

Despite these similarities a key difference must be recognized: while the
incremental principles operate at the ME level, the action research operates one
level higher. These levels are summarized in Table 6-1 based on the domain in
which they are applied. In this chapter we operate at the research level since our
interest is to study the incremental ME principles. The research subject is
method engineering and the mechanisms of incremental approach.

Because of this focus on the research level, in the following sections ME
efforts are described from the research point of view. Studying ME principles,
however, necessitates that we also describe how methods were constructed (the
ME level) and how they were applied (the ISD level). This means that the cases
are reported at three levels as follows: Sections 6.2 and 6.3 describe ME cases
which followed incremental ME principles (i.e. the action taking part of action
research). Although the reporting focuses on how methods were specified and
evaluated with the metamodeling constructs, the ISD level must also be
recognized. This allows us to explain how the constructed methods were
applied and the rationale for their use. The outcomes of action research (i.e. the
evaluation part of action research) are described in Section 6.4, in which lessons
learned from ME and from the incremental principles are discussed.

TABLE 6-1 Levels of research, method engineering, and information system development.

Level of action Domain studied Main actor Method

Research level Incremental ME Researcher Action research

ME level ISD method Method engineer Incremental ME

ISD level Application IS developer ISD method

6.2 Case A: Wholesale company

This section describes the action taking part of the action research: how
incremental ME principles were followed in a wholesale company. The section
is organized according to the process of ME (cf. Figure 5-2). First, we describe
the background of the company in Section 6.2.1 and characterize the ISD
environment in Section 6.2.2. These characterizations are applied in method
selection and construction. The results of the a priori phases are described in
Section 6.2.3 by discussing the metamodel and tool support implemented.
Section 6.2.4 briefly describes the method use. The remaining sections focus on

223

an a posteriori view: Section 6.2.5 describes the use of evaluation mechanisms,
and Section 6.2.6 clarifies refinements and lessons learned from the methods.
The research results (i.e. the evaluation part of action research) are described in
Section 6.4.

6.2.1 Background of the study

Case A was carried out in a major Finnish wholesale company. Its central line of
business is to buy goods and to deliver them to customers through a central
warehouse and regional distribution centers. During the study the company
was in the middle of a major business reorganization, in which it was decided
to remove the regional distribution centers: i.e. a move from a three-level to a
two-level organizational structure. The ISD efforts focused on the company’s
order entry and purchasing processes which had multiple functions, covering
both intra- and inter-organizational functions. The main ISD objective was to re-
design the ordering and purchasing processes, and develop ISs to support the
two-level organization.

The case was chosen because it was thought to be complex enough, and
moreover it implemented the idea of business process-driven modeling that
covers both hierarchy-based and market-based business processes. In fact, the
modeling was carried out in four organizations. In addition to the wholesaler,
these were a manufacturer/supplier, a regional distribution center, and a
hardware store. Because most of the regional distribution centers and some of
the hardware stores were also partially owned by the wholesaler the network
can be further characterized as a quasi-market.

The objective of the study was to develop methods which would help
identify opportunities to improve order entry and purchase processes. In both
of these processes IT plays a significant role. The order entry relates mostly to
selling: through quota processing and order receiving to a delivery. The
purchasing includes processes that deal with the company’s own buying tasks
in inbound business operations. In the inter-organizational setting these
processes are connected: the stakeholders of the order entry are the company’s
customers, and in purchasing they are suppliers and manufacturers. In other
words, these functions form a net of interrelated processes among companies.
Because the business modeling study involved four organizations, the
wholesaler’s order entry activities had to be seen in connection with the
hardware stores’ purchasing activities, and so on. Although these functions
were common to all four companies, the business development effort was
carried out by the wholesaler. Accordingly, the method construction was based
on the wholesaler’s requirements and problems.

The ME effort was organized as a separate task inside the ISD project. The
method was constructed by a person from the wholesaler’s IT department and
by the participating researcher. In addition, help from external consultants was
obtained during problem characterizations. The company had recently hired
consultants to carry out a study of the company’s logistics. The results of the
study were used to characterize the ISD environment and identify problems
expected to be addressed with the method.

224

6.2.2 Characteristics of the ISD environment

The initial requirements for method support were quite general. The method
should address inter-organizational processes and it should allow the definition
of an architecture for the networked organization. Moreover, because of the
importance of the underlying logistics of delivered goods, the method should
recognize material flows together with information flows (as proposed by Bititci
and Carrie (1990)). These requirements were revised in more detail based on the
characteristics of the object system environment.

The initial requirements revealed, however, the necessity of a method
engineering approach. First, no contingency framework for method selection
was found that could address the basic characteristics of the problem context,
such as inter-organizational systems. This was found out by a study reported in
Tolvanen and Lyytinen (1994). In fact, the knowledge of developing and
modeling inter-organizational ISs is relatively modest; not enough to develop a
contingency framework (Stegwee and Van Waes 1993, Vepsäläinen 1988,
Clemons and Row 1991, Tolvanen and Lyytinen 1994). Second, we did not find
any business modeling method that would satisfy the requirements to model
inter-organizational processes, and to specify the network’s information
architectures (cf. Teng et al. 1992).

6.2.2.1 ISD experiences and method knowledge

In the wholesale company, experiences of methods included data modeling and
process modeling. These were part of a method called TKN (Information
Processing Advice). The TKN method was mostly used for the requirements
engineering and analysis phases. For example, the data modeling part of TKN
had been used for conceptual modeling and analysis, but not for schema design.
One reason for this was that implementation was outsourced.

The external consultants applied Yourdon’s (1989a) structured analysis
and a supporting CASE tool (System Architect) in their study. The tool use was
considered necessary because of the size of business models, but the method
was not considered suitable. Because the method was targeted to develop
individual ISs it did not address (de-)centralization, responsibilities among
different organizations, or architecture definition. The CASE tool offered
method adaptation possibilities by allowing the addition of new attributes
(property types in our metamodeling terminology) to existing method types.
This support, however, was too limited. No analysis could be made based on
the property types added and they only supported the abstraction part of the
method-tool companionship.

6.2.2.2 Characteristics of the problem context

Because of the lack of contingency frameworks, the criteria for method
construction were sought from the wholesaler’s problems. Thus, a
characterization of the organization and ISD problems formed the main entry
point for method engineering. These characteristics and problems had been
identified during the company’s own strategy process, and through a recent

225

study that dealt with the company’s logistics. The problems are listed below.
The numbering of the list allows us to identify their influence on the
constructed method. The following problems had been recognized:

1) Inadequate understanding of other stakeholders’ purchasing
processes. Understanding of the external environment was found to be
inadequate for the provision of a good external service. Moreover, the shared
and fragmented knowledge about business processes (e.g. goals, resources)
within the industry made it difficult for the wholesaler to streamline its
boundary operations towards a more cooperative environment. For example, in
the industry and even in the company’s local outlets different rules were
applied in purchasing and delivery, including non-uniform product and code
standards.

2) Duplicate tasks and routines. One of the most obvious problems was
the duplication of effort. Each company had its own ordering and purchasing
functions and associated supporting systems in which the data was entered.
Moreover, the data in the IS is primarily used to serve each organization’s own
needs. From the network point of view this has led to sub-optimal solutions and
to unnecessary complexity in workflow. The wholesale company had already
taken some steps towards external systems integration (e.g. data entered once
served multiple functions and even multiple organizations), but data
integration was still seen a problem. Duplicate tasks in the network increased
costs, created errors, and lead to longer turn-arounds.

3. Customer satisfaction (i.e. service level) was problematic. Satisfaction
had been measured to be quite high from the wholesaler’s point of view, but it
was considered low on the customer’s side. The reason for opposing opinions
was not due to different service objectives, but rather due to the way how
purchasing and delivery information was shared. Because customers’ opinions
were not based on statistics, it was expected that better sharing of order and
delivery information could improve the service level.

4. Lack of coordination. Incompatible systems duplicated data entry
efforts and decreased information availability (i.e. data sharing, access rights).
The latter was seen to form a major problem in developing shared business
processes and supporting ISs. These ISs can share and transmit order and
purchasing related information, such as inventory status, orders, quotations, up-
to-date price lists, product descriptions, invoices and electronic money transfers.
The sharing of information, however, needs to be planned. A concrete example
of this was faced in inventory systems where suppliers or buyers had to check
another company’s product information.

5. Unsatisfactory turnaround times. Because of the fragmented logistic
functions the turnaround times were not satisfactory. This increased inventory
costs. Normally, companies knew their own inventory levels but could not
check whether any other store or regional wholesaler “downstream” had a
sufficient stock of a given product. Furthermore, this poor availability of
delivery information tied with a complex ordering process increased
throughput times. Thus, process integration between companies along the value
chain was necessary to speed up cycle times and reduce inventory levels.

226

6. Lack of demand information. Because the wholesaler’s purchasing
system was heavily dependent on marketing information, and on estimated
sales, up-to-date market information played a significant role. However, the
company did not utilize the marketing information well enough. Moreover, the
availability of market information was assumed to be of interest to other
participants in the industry (i.e. suppliers, importers, and manufactures).

6.2.3 Business modeling method constructed

Here we shall introduce the modeling techniques using a metamodel and
discuss their tool support. We describe how methods were selected and
modified to fit the characteristics of the problem context.

6.2.3.1 Metamodels

Two well-known methods formed a starting point for the method construction,
namely value chain and value systems (Porter 1985, Macdonald 1991), and
Business Systems Planning (IBM 1984).

The method construction was guided by the ISD characteristics and
problems. During the construction step we applied metamodeling to specify the
methods and their interrelations. Figure 6-2 contains a metamodel of the
selected parts of the methods and their interactions. The model is based on the
GOPRR metamodeling technique discussed in Section 3.3.3.7 and in the
appendix.

The first part of the business modeling effort was to describe interrelated
business processes and their relations. This part we call value process modeling,
after Macdonald (1991). The value process models describe value adding
processes and their dependencies while providing products and services to the
“final” consumer. Although the traditional value chain (Porter 1985)
concentrates on the value adding capability via different types of processes (i.e.
inbound, operation, outbound, etc.) we extended it to include delivery-related
properties, such as ‘location’, ‘capacity’, ‘volume’ and ‘turnaround time’. These
properties we defined as optional whereas ‘type of process’ and ‘process name’
were considered mandatory. The mandatory constraint, however, could not be
modeled into the metamodel and was therefore not actively checked. The
checking of mandatory constraints was enabled by the analysis reports
implemented (i.e. passive checking).

Although in a value chain most information and material moves
downstream, we also wanted to model the opposite because it allows us to
analyze problems related to rework. In other words, duplication of work (cf.
problem 2) often occurs as a result of failures or defects in providing services
(Harrington 1991), causing a return “upstream” in the chain. This is specified in
the metamodel by allowing customers and business processes to send
(participate in “flow from” role types) information and material.

Each process was further described by an actor to illustrate process
responsibility. In cases where the necessary information was not available a
process could be decomposed. According to the metamodeling constructs this
structure was defined as a dependent, non-mandatory and exclusive complex

227

object. The metamodeling language, however, did not support these more
detailed characteristics of complex objects (see also Section 4.5). It allowed,
however, aggregating different levels of value process models and business
processes. In the GOPRR metamodel this is described with a decomposition link
(a dotted line with an arrow-head).

Value process model

Business
process

Material flow

Information/
Coordination

flow

Material flow fromMaterial flow to

Text
Term

String
Volume String

Responsibility

Text
DescriptionString

Flow name

String

Process
name

Type of process

String
Location

String

Turnaround time

String

Capasity

String

Volume

Boolean
Adds value

Information flow from

String
Actor

Text
Description

String
Name

String

Location

String
Model name

String
Capasity

Type of
information/

Coordination flow

1,1

Information flow to

Business system integration

String

Model name

Organization
Data

Business
process

Usage

Type of use

Is usedUses

id

id

Unique

id

Unique

id

Unique

id

1,1
1,1

1,1

1,1 1,1

idName

Boolean
Obligatory?

String

Material
flow

name

Customer

String

FIGURE 6-2 A metamodel of the a priori constructed method.

The process models concentrated on material flows and on process information.
In this way, it was possible to identify information requirements for processes
that control material handling (cf. Bititci and Carrie 1990). Both flow types were

228

characterized by their name, description, mean volume, and responsibility.
Material flows were further defined by possible terms of delivery. Information
flows were specified according to their type (i.e. order, payment, report or
control), maximum capacity, and status (obligatory, optional). Accordingly, the
aim of the value process modeling was to establish a common description of a
network of ordering and purchasing processes (problem 1), identify duplicate
tasks (problem 2), and help to focus on areas which could considerably improve
customer satisfaction and cycle times (problems 3 and 5).

The level of IS integration among the companies was modeled using a
business system integration method, which was a modified version of BSP (IBM
1984). The use of the original techniques included in BSP (see Table 4-1) was
limited to modeling data use in business processes using CRUD (create, read,
use and delete) matrices in architecture planning. The modeling techniques
were integrated through polymorphism: the names of business processes
should be the same in value process models and integration models. Similarly,
data described in architecture models was expected to be specified in value
process models. In other words, the system architecture should not have data
classes which were not specified as instances of flow types in the value process
models.

The method also supported modeling of market based IS integration
solutions instead of focusing on integrating processes inside a hierarchical
regime. This was achieved by dividing data handling processes among different
organizations (a property type ‘organization’ in the metamodel, see Figure 6-2).
Each business process was characterized with the organizational unit it
belonged to, and thus organizational dependencies were represented. In BSP
this is achieved by inspecting organizational units against business processes.
Thus, unlike BSP the integration method described IS architectures where each
company had both local and inter-organizationally shared business processes
and data. Moreover, it defined the inter-organizational responsibilities, data
sharing and data availability (e.g. create, use). The objectives of the integration
method were to address and solve problems related to inter-organizational IS
architectures, to improve coordination through shared data (problem 4),
eliminate duplicate data and processes (problem 2), and to improve availability
of market information (problem 6).

6.2.3.2 Tool adaptation

Both modeling techniques were supported by a computer-aided tool. The value
process modeling was supported by a metaCASE tool, and the business system
integration was supported by a spreadsheet tool.

The metamodel of the value process model was implemented in a
metaCASE tool called MetaEdit (MetaCase 1994). The notation of the value
process model is represented in Figure 6-3, in which a high level view of the
wholesale process is described. With respect to the other parts of the method-
tool companionship, checking and documentation reports were implemented.
The checking reports operated on those aspects of method knowledge which
needed to be checked passively, or were not possible to capture in the

229

metamodel. The checking reports included unconnected object types (i.e.
minimum multiplicity one) and undefined properties (i.e. mandatory property
types). The multiplicity of types was not inspected because only two object
types and relationship types were used. The documentation reports included
dictionary reports and flow reports. The dictionary report describes property
definitions for all instances of the ‘business process’ and the ‘customer’ object
types. The flow reports describe use of information or material from the
business processes side (i.e. flows in, flows out) and from the flow side (i.e.
which business processes use a specific information flow). The reports on
information flows were used to build the architecture models into a
spreadsheet. The value process model captured most of the design data
required for architecture definition, except the type of usage and the
organization. The organization information could also be detected from the
model hierarchy, although it was not included as separate property type in the
metamodel. The flow reports also served as a basis for documentation and to
deliver models for validation and further inspection.

Because of the use of a non-metamodel driven tool for business system
integration, metamodel based method knowledge could not be applied. The
reason for this was the lack of matrix representation support in the metaCASE
tools reviewed (cf. Bidgood and Jelley 1991). The matrix representation was
considered a necessity because it allowed the analysis of large architecture
models among four organization types in a condensed form and the
representation of couplings between processes and data. Matrices also provided
an abstraction required to develop alternative architectures based on
information availability.

6.2.4 Method use

The ISD project took over half a year, and seven persons from all four
organizations were involved. Most effort was needed to develop the
wholesaler’s downstream activities. The participation of a supplier organization
was limited because they were only interviewed to obtain their requirements.
The value chain of the wholesale process is described in Figure 6-3.

The figure is based on the value process model. The model describes major
parties and business processes. Organizations participating in the ISD are
illustrated through grayed business processes. The value process model
describes only material-based relationships (represented as thick lines with an
arrow head). During the ISD project, delivery, ordering, and purchasing related
controlling information flows were described. In addition, each participating
organization was modeled in more detail by decomposing business processes.

230

The order entry and purchasing system was decomposed into around 60
business processes, 140 different information flows, and 30 material flows. The
main outcome of the project was three solutions for managing purchasing and
ordering related processes. These alternative approaches were differentiated
based on the responsibility given to different actors. All these alternatives
required a new IS for sharing ordering/purchasing related information. A
“pull” solution configures the chain based on the market needs as recognized
by the stores: all ordering functions and related purchasing functions of the
wholesaler are based on sales. A “push” solution means the opposite. It offers
control mechanisms for the wholesaler to monitor sales from the field. This
provides better prediction for the wholesaler’s purchasing functions, and offers
possibilities to balance inventories. A hybrid solution means a combination of
these based on the type of goods: for example, sales of low volume products are
difficult to predict requiring a market-based strategy (i.e. the pull alternative),
whereas seasonal products could be planned by the wholesaler (i.e. the push
alternative).

The alternative solutions and their influence on problem solving are
described in the next section since they were applied in evaluating modeling
power and problem solving capabilities.

6.2.5 The a posteriori method engineering

In this section we explain how the method was refined during the case based on
the experiences from method use. We first apply type-instance matching. This
part of the study was conducted by the researcher/method engineer alone.

Hauling
companies

Delivery

Local
suppliers

Delivery

Forwarding

Inbound

"By-pass"
suppliers

Foreign
suppliers

Wholesaler
Inc

Stores

Customer

Forwarding
companies

Delivery

Delivery

Competitors

Subsidiary
organization
s

Delivery

Regional
wholesalers

Normal sales

Delivery

Hauling
companies

Hauling
companies

FIGURE 6-3 Value chain of the wholesaling industry (modified and partial).

231

Second, we assess the applicability of the method in terms of how well it
supported business modeling. Third, we try to identify the role of the method in
ISD. These latter two evaluations were conducted by interviewing the
stakeholders based on the method evaluation and refinement mechanisms
described in Section 5. The stakeholders involved were from the wholesale
company and mostly from its IS department. Hence, because the problem
characterization and method construction was accomplished by the wholesaler,
the method refinement was accordingly conducted from the wholesaler’s point
of view.

6.2.5.1 Type-instance matching

Type-instance matching deals with inspecting how the constructed method has
been applied. The comparison is made between the method’s intended use (as
seen from the metamodels) and actual use (as seen from the models). In the
following we describe only the results of this evaluation, i.e. those differences
between models and metamodels which suggested method refinements (cf.
Section 5.3.3 for details). Therefore, those questions or evaluation alternatives
which did not reveal any differences are excluded. Similarly, it must be noted
that not all constraint-related evaluations will be inspected, because the
metamodeling language could not capture them.

6.2.5.1.1 Usage of types

1) Unused types. All non-property types were used but several property types
had few, if any, instances. None of the unused property types were redundant
with other property types, but they were not used because design information
could not be found, or was not considered cost-effective to find. The
‘turnaround time’, ‘capacity’ and ‘volume’ were defined for only 5% of
instances of the ‘business process’. The business processes which included these
property definitions operated at a detailed level, or at the organizational
boundaries. The ‘actor’ was defined in 20% of the business processes because
this was considered redundant while decomposing processes. In other words,
actors of lower level business processes were the same, or specific groups of
those in the higher level business process.

As a result, the property types could be removed from the value process
model. Although some other property types had few instances they were not
removed. The ‘volume’ and the ‘responsibility’ was defined in only 5% of the
material flows, but for almost each information flow. Because no special reason
for treating the flow types differently was found (other than the primary focus
on information flows during the project) no modifications were made to these
property types.

2) Dividing or subtyping of types was considered necessary in two cases.
First, processes had differences in their naming. Some high-level processes were
named according to organizational units (e.g. inventory) whereas other were
tasks of employees. For the latter cases, the ‘turnaround’, ‘capacity, and
‘volume’ property types were applied. This suggested that processes must be
divided into higher level business processes and into employee tasks. Second,

232

because of the inter-organizational setting, several information flows with the
same name referring to different flows were modeled. For example, an order
had a different meaning and content in different companies. This could be
detected from models which had organization-related descriptions related to
flows. For example, “confirmations of an order are delivered directly to
shopkeepers”. Although this was acceptable while modeling information flows
of individual companies, it was not desirable for making an information
architecture for the whole network. Therefore, the flows/data should be
specified in terms of the organization and its content.

3) Definition of new linkages between property types was suggested in
only one situation. Actors and responsibilities of flows shared the same values.
Also, the direction for sharing property values was found, because all actors
were also specified in flows. This aspects is analyzed in more detail later.

6.2.5.1.2 Usage of constraints

Analysis of constraints is limited to those defined in the metamodel and
supported by the tools. Some of the constraints which could not be captured
into the metamodel, however, could be supported by the tool. These constraints
include the unique property, the mandatory property, and the multiplicity
constraints. For example, a tool could warn about property types which are not
defined, although such a mandatory constraint was not defined in the
metamodel.

Active checking of the mandatory property constraint was considered
important because all classifications of property types were not specified. As a
result, separate architecture models could not be created automatically for the
current ordering system (i.e. by selecting all order-related information flows
from the value process model). The ‘type of information flow’ property type
included also values other than those which were predefined. The most used
was delivery related information. It was considered relevant for logistics
modeling and had to be added to the predefined values to speed up the
modeling work. This addition was also considered important for analyzing
management of delivery information.

Several business processes had flows with the same name, suggesting the
need for n-ary relationships (a role’s minimum cardinality greater than one).
Although this indicated duplicate modeling effort in situations where design
data is updated, the use of n-ary relationships was considered unnecessary.
Moreover, binary relationships could be used for the same purpose. Our
metamodeling constructs did not even have a constraint which would
necessitate the creation of n-ary relationship if two binary relationships with the
same instance information existed.

Multiplicity constraints over two role types could not be supported but the
model indicated that this should be the case for all object types in both
techniques. In other words, existence of an instance of either of the role types
suggested that the role types should be defined as mandatory (i.e. minimum
multiplicity one). Moreover, a typical recommendation in architecture design,
that only one process should create data (i.e. be responsible for it), was present

233

in the models. Modeling the present state suggested, however, that it should be
possible to model more than one data creating process.

The specification of complex objects had to be changed: dependency and
non-mandatory rules were applied while decomposing business processes, but
an exclusive component constraint was not. One reason for this was the need to
combine detailed process models and the development of different versions for
representing alternative solutions. Instead of hierarchical leveling with
exclusive components (similar to decomposition in data flow diagrams) the
value process models were unified at lower levels showing detailed workflows
between companies. This required shared business processes in complex
objects. Second, the analysis of scope for the constraint suggests a change from
the method to the model. Otherwise different versions using the same process
could not be made: a tool would necessitate aggregated relationships for all
instances of the process regardless of the model where it is defined (i.e.
decomposed or combined process models). This would result in a model which
included all relationships (and a whole model hierarchy) instead of specifying
those necessary only for the current version.

Analysis of values among different types revealed one new candidate for a
polymorphism structure between the ‘actor’ and the ‘responsibility’. Here the
same value could be used although they are semantically different. The actor
means the acting part in the business process whereas the responsibility is used
to define the instance responsible for delivering the data.

6.2.5.2 Modeling capabilities

The tool supported modeling with abstraction and checking capabilities. Before
evaluating these we describe how the method was used in modeling the object
system. These characteristics are the same ones which drove the method
construction. First the way of modeling is described and then abstraction and
checking capabilities are evaluated.

1) Inadequate knowledge of stakeholders’ processes. Because of the
inter-organizational nature of the object system, the wholesaler’s knowledge of
partners’ processes was modest. In general, only processes that related to costs
or interactions at the organization’s boundary were documented. In
synthesizing this fragmented knowledge the value process model proved to be
useful. Its main impact was that it helped to describe all business processes
related to order entry and purchasing, which were shared processes in all
companies. As is typical in logistics, the specification of material flows between
multiple participants and their mappings to controlling information flows were
considered useful. In particular, process dependencies and responsibilities were
revealed which helped participants see information handling policies.

The main difficulties in abstraction related to characterizing processes with
logistic information. These were already recognized as unused types (i.e.
unspecified turnaround times, capacity and volumes related to processes). In
most cases the business process information was not found, and if such was
specified, it was related to processes at organizational boundaries, or to an
individual’s tasks. Moreover, the value process model operated at too general a

234

level. This demanded modeling of a detailed workflow. Process modeling was
found redundant in maintaining process related information between different
levels of the process hierarchy. For example, a turnaround time of a business
process should not be smaller than the sum of those specified to its
subprocesses. The manual maintenance of the property values was one reason
why such data was not specified. This required derived data types or checking
reports which could calculate business process related characteristics from the
properties of its subprocesses.

2) Duplicate tasks and routines. In networked processes, effort
duplications occurred at the department and especially at the company level. In
the study, system integration models were used to describe network-wide
processes that use or create similar local data. Examples of such processes were
order entry and delivery notification. The value process showed the structure of
tasks, but not how the processes are carried out: In particular, the analysis of the
current situation required descriptions of more detailed tasks structures and
decisions. For example, the value process model did not describe alternative
possibilities to make orders depending on the current availability of goods. This
suggested a concept of a decision in relation to the task structures.

Because modeling tools were separate, maintaining consistency between
models created duplicate work. Each change needed to be updated to other
types of models and the information flow report from value process models to
integration models was only used once when the whole network was
transformed into a spreadsheet.

3) Customer satisfaction on delivery did not involve any other modeling
concept or constraint than the involvement of customers (i.e. stores). The
modeling support therefore dealt with specifying delivery related information
flows together with the customers of the wholesaler.

4) Lack of coordination. The possibilities for inter-organizational business
integration were estimated by deriving IS architecture models for each company
and then later integrating them into a network wide model. During modeling,
difficulties arose because of homonym and synonym problems in the data, and
because the same data class could contain different information. In order to
specify IS architectures in more detail — e.g. differences in data classes among
companies (e.g. in orders or inventory data) — data modeling was regarded as
important: the currently used techniques were considered inadequate to
examine these differences.

5) Unsatisfactory throughput times. One objective for modeling was to
gather data on logistic measures (i.e. capacity, turnaround times, and delivery
conditions) to help find efficient solutions. In practice, however, we faced
several obstacles in accomplishing this task: the smaller companies did not have
the required information on their logistic measures, or it was not in the required
format. Although all companies knew in detail their material handling
processes which operated at the organization’s boundary, information about
internal processes and about non-cost items was seldom available. Because
logistic measures give a detailed picture of the efficiency of the organization this
information was at times kept secret. Moreover, the modeling revealed the need

235

for different modeling constructs at different modeling granularities (i.e.
detailed tasks are specified differently from general business processes).

6) Lack of marketing data. The availability of marketing data was
modeled like any other information flow. The value process models were used
to identify the wholesaler’s and stakeholders’ information requirements, and
the integration model was used to inspect data coordination aspects. As with
modeling shared data, the models had to be supported by tools for data
modeling (e.g. ERD).

6.2.5.3 Problem solving capabilities

In incremental ME, evaluation is carried out by comparing modeling outcomes
and method principles used to achieve these outcomes. We inspected this using
form conversion and review mechanisms. Form conversion means the capability
of a tool to analyze models and generate candidate designs. Review
mechanisms mean production of documents for stakeholder needs and
validation.

In the following this evaluation is described. First we describe the project
outcome and then the role of the method is discussed.

1) Knowledge about stakeholder processes was improved by using the
value process models. These helped participants correct or verify their
assumptions of process dependencies and find information that originated
outside their organization. Thus, the value process models mostly supported the
validation and uniform documentation of processes among companies. In the
form conversion part, the process and information flows were also converted to
tentative design data in the business integration model. As a result, all use-
based connections between processes and data could be automatically
converted into the CRUD matrix. Other types of usage could not be converted,
because no indication could be given in flows as to whether a business process
for example had created or only updated the data.

2) Duplicate tasks and routines. The business integration method allowed
the identification of redundant information handling processes and generation
of alternative candidate designs. This is similar to BSP (IBM 1984) with the
distinction that data availability in our case is based on different organizations.
Hence, solutions were sought by inspecting outcomes of different data
integration and sharing possibilities between companies. These alternatives
included, for example, that the wholesaler’s inventory information is available
in real-time for the stores during purchasing, or that manufacturers can have
access to the wholesaler’s inventory and sales information. As a result, duplicate
tasks, both in the order entry and purchasing activities, were removed through
improved information sharing between companies. These changes also
simplified processes by reducing their complexity, especially in tasks related to
handling special kinds of orders, order confirmations, and out of stock reports.
The spreadsheet tool did not automate solution generation, although this could
have been defined based on the metamodel.

3) Customer satisfaction. As a result of the modeling effort, customer
satisfaction was improved by offering more accurate information through an

236

on-line ordering system about products, the customer’s order base and delivery
status. These changes were obtained by first modeling purchasing processes
and then customers’ information requirements. The proposed solutions
decreased customers’ uncertainty, improved the wholesaler’s responsiveness,
and moved redundant tasks (such as recording follow-up of orders, and re-
ordering, and related decision making) from the wholesaler to stores. These
changes were also presumed to bind customers more to the wholesaler.
Although none of the metamodel constructs were directly used to analyze or
improve customer satisfaction, the recognition of delivery information in the
instance models allowed the recognition of availability of delivery information.

4) Lack of coordination. One of the project outcomes was the overall IS
architecture. The method allowed the construction of several candidate designs,
including both “hierarchy based” and “ market based” data integration. By
hierarchy based integration we mean local and company related information
modeling, and by market based integration we mean the integration of data
across multiple companies. As an example of a candidate design based on a
market driven approach, we proposed order entry and purchasing systems
which focus on supporting stores and distribution centers by employing the
wholesaler’s or even the manufacturer’s inventory and delivery information (i.e.
the pull solution). A totally opposite approach would have offered improved
control mechanisms for the wholesaler (i.e. the push solution). For example, by
gathering sales and inventory information from the field, the wholesalers could
unify processes downstream in the chain, e.g. to control product mixes, or
provide information for marketing and inventory control for stores. By these
changes the wholesaler could achieve economies of scale and further improve
its own purchasing processes. In line with the wholesaler’s business strategy,
the selected data coordination mechanisms tightened the relatively free
mechanisms towards a more uniform and cooperative one. Because of the
flexibility of demand, the suggested solutions still allowed a pull solution for
selected products and customers. At the same time it also offered a more
controlled service to other customers or goods which are easy to handle and
predict (such as goods which have a stable demand, a cycle in patterns, or can
be delivered quickly). Because of the lack of full CASE functionality, this part
was not supported by automatic conversion mechanism provided by matrix
based tools (e.g. Kelly 1994). However, conversion reports provided design
information to manually build integration models.

5) Unsatisfactory throughput times. One objective for ISD was to gather
data on logistic measures that help find efficient solutions. The value process
models did not offer enough information about task structures or logistic
measures. Because of unavailable data, such analyses could not be made with
the tool, although the analysis functionality (flow-in/flow-out reports) was
implemented. Hence, the method failed to offer immediate solutions that could
improve cycle times or decrease inventories.

6) Lack of marketing data. Solutions for information gathering included
an application for summarizing order and sales data to support the wholesaler’s
purchasing processes. This data also attracted interest outside the company,
especially among the manufacturers. One feasible solution for this problem was

237

an on-line communication system, which would allow the wholesaler to make
queries downstream, e.g. about campaign products sold, or information about
marketing progress and delivery schedules. In solving this problem, both
methods were applied. The value process models were used to identify the
wholesaler’s and stakeholders’ information requirements and the integration
model was used to inspect coordination aspects.

6.2.6 Method experiences and refinements

The outcomes of the method evaluation were two-fold. First, it offered
possibilities to refine the used method, and second it supplemented existing
knowledge about methods and method contingencies. In our case, method
development focused mainly on addressing the networked material flow.
Accordingly, we shall concentrate in the following on the contingencies related
to the organization’s logistic ISs. Experiences from value process modeling
confirmed earlier observations (cf. Österle et al. 1990, Macdonald 1991) of its
applicability in process integration. Especially in cases of multiple companies
(e.g. with customers and suppliers), the method helped clarify both information
and material based process dependencies. Moreover, the method was found to
be applicable for network-oriented modeling where the knowledge of the
business is dispersed. At the same time, the method presumes a strong
commitment from participants, especially in cases where the same modeling
accuracy and detail is required.

Problems in data gathering revealed, however, that the method is not
suitable in cases where the processes are not documented, or where they are
constantly changing. Furthermore, the value-oriented approach seemed to be
appropriate only in modeling higher level views. Therefore, in situations where
a more detailed representation was required, and we lacked general process
measures, other methods were needed. The task of business system integration
was likewise hindered by the lack of information. This was especially the case
in dealing with inter-organizational relationships, where each company had a
similar kind of data (such as an order), while its actual content differed greatly.
Thus, although most methods for IS architecture definition do not strive to
develop detailed data models (Österle et al. 1990), our modeling case clearly
demanded the use of such methods. Like most methods for architecture
definition (e.g. Business Systems Planning), the business integration method is
suitable for organizations which are centralized (Sullivan 1985), and where
some architecture and system specifications already exist.

A second outcome of the incremental ME was method refinements based
on method use. The suggested method refinements are defined by changing the
method specifications. It must be noticed that none of the required changes to
the method could be predicted earlier. As the method assessment clarified, the
necessary changes to the method related to modeling task structures and data.
In the case of value process modeling, specifying detailed task structures
required more detailed constructs (as in problem 2 for specifying more detail
tasks, or in problem 5 for finding unsatisfactory throughput times): Value
process models are not rich enough in dealing with a fine granularity of

238

modeling where we want to describe a team’s or an individual’s task structures.
Some of the necessary data (such as cycle times in problem 5) could be derived
only through modeling system dynamics (cf. Jordan and Evans 1992). For these
reasons, we examined techniques suitable for modeling business and task
dynamics (e.g. Dur 1992). Detailed models of tasks could be utilized in
representing dynamic features of logistic processes.

The modeling technique to be used for describing task dynamics and its
connections to the value process model is shown in Figure 6-4. In the new
metamodel each business process can be further specified either by a new value
process model, or by a task structure. In a task structure, a ‘task’ depicts actors
and their jobs, a ‘transition’ specifies an order between tasks, and a ‘decision’
possible alternatives and choice logic. The ‘task’ is further characterized with
properties which originally were related to the ‘business process’. Hence, task
modeling can support information gathering about the capacity, volume and
turnaround times which were found difficult to specify at higher levels. The use
of task structures could be further specified to enable analysis features. These
could include data about actors’ workload, delay and priority of tasks,
transitions, and other behavior to handle alternative conditions in transitions.
These analyses were not made because the aim of the study was not to tune
individuals’ tasks structures, but rather to design the overall architecture of the
ISs.

In carrying out system integration the requirements for a more detailed
data analysis could be satisfied by connecting an entity-relationship diagram
(ERD) to the business system integration method (see Figure 6-4). This
refinement related mostly to making higher level abstractions and improving
the analysis of common/shared data, i.e. problem 4. Here data classes identified
in the business system integration models were defined in terms of ERDs. This
was expected to allow the specification of different views of the same data and
inspect differences in local data, e.g. in ordering, where information
requirements are often different. Another example can be found in purchasing,
where the wholesaler’s information requirements are totally different from
those of regional wholesalers and stores, and where the terms of delivery and
prices are permanent. The conceptual structure of an ER diagram followed the
TKN method already used in the wholesaler’s IT department, and was similar
to the metamodel developed in Section 4.3.2.

In addition to these new modeling techniques the existing ones were
modified. The type-instance matching added new predefined values for
property types, such as delivery information to the classification of information
flows. Similarly, a polymorphism structure was defined between the ‘actor’ and
the ‘responsibility’. This modification speeded up modeling and improved
consistency: it allowed to reflect changes in one actor value to all other flows or
business processes which referred to the same value.

B
us

in
es

s
pr

oc
es

s
C

us
to

m
er

M
at

er
ia

l f
lo

w

In
fo

rm
at

io
n/

C

oo
rd

in
at

io
n

fl
ow

M
at

er
ia

l f
lo

w
 f

ro
m

M

at
er

ia
l f

lo
w

 to

Te
xt

Te
rm

St
ri

ng

V
ol

um
e

R
es

po
ns

ib
ili

ty

Te
xt

D
es

cr
ip

tio
n

St
ri

ng

Fl
ow

 n
am

e

St
ri

ng

Pr
oc

es
s

na
m

e

Ty
pe

 o
f

pr
oc

es
s

St
ri

ng

Lo
ca

tio
n

B
oo

le
an

A
dd

s
va

lu
e

St
ri

ng

A
ct

or

Te
xt

D

es
cr

ip
tio

n

St
ri

ng

C
ap

as
it

y

Ty
pe

 o
f

in
fo

rm
at

io
n/

C

oo
rd

in
at

io
n

fl
ow

1,
1

B
us

in
es

s
sy

st
em

 in
te

gr
at

io
n

O
rg

an
iz

at
io

n
D

at
a

B
us

in
es

s
pr

oc
es

s

U
sa

ge

Ty
pe

 o
f

us
e

Is
 u

se
d

U
se

s

id

id

U
ni

qu
e

id

1,
1

1,
1

1,
1

1,
1

1,
1

id

N
am

e

B
oo

le
an

O

bl
ig

at
or

y?

St
ri

ng

M
at

er
ia

l
fl

ow
 n

am
e

Ta
sk

D

ec
is

io
n

Tr
an

si
ti

on
 Tr

an
si

ti
on

 n
am

e

IR
ec

ei
ve

Se

nd

1,
1

1,
1

id

St
ri

ng

id

St
ri

ng

Ta
sk

 s
tr

uc
tu

re

Tr
an

si
ti

on

IR
ec

ei
ve

Se

nd

1,
1

1,
M

E
R

 d
ia

gr
am

 E
nt

ity

R
el

at
io

ns
hi

p

R
el

at
io

ns
hi

p
na

m
e

Pa
rt

ic
ip

at
es

1,

1
1,

1

C
ar

di
na

lit
y

C
ar

di
na

lit
y

Pa
rt

ic
ip

at
es

A
tt

ri
bu

te
s

St
ri

ng

E
nt

ity
 n

am
e id

St

ri
ng

A
tt

ri
bu

te
 n

am
e

Te
xt

D

es
cr

ip
tio

n

Te
xt

C
on

st
ra

in
ts

St
ri

ng

M
od

el
 n

am
e

id

U
ni

qu
e

St
ri

ng

M
od

el
 n

am
e

id

U
ni

qu
e

R
es

po
ns

ib
ili

ty

FI

G
U

R
E

 6
-4

 M
et

ho
d

 a
ft

er
 r

ef
in

em
en

ts
.

240

The method evaluation also suggests changes which could not be captured into
the metamodel or supported by the modeling tool. Because of the limited
metamodeling power of OPRR (see Section 4.5), the metamodel could not
adequately specify identifiers, uniqueness and mandatory properties. Other
constraints which were needed and not supported related to multiplicity of
roles, complex objects, and polymorphism. This means that the tool could not
check actively that the method knowledge was followed. These constraints can,
however, be supported passively through reports.

In addition to the metamodeling constraints applied for evaluation, the
case reveals a need for a derived data type. By a derived data type we mean a
property type whose instance value can be calculated from other instances
values. For example, turnaround times needed to be calculated from lower level
task structures. Similarly, derivation of these values can be performed with
reports. For example, if actor names are not given they could be derived from
the aggregate business process.

Consistency checking problems suggest the use of a single modeling tool
which supports different representation forms. This modification, however, is
related more to the required features of the modeling tool than to the method,
and therefore is not considered further here.

6.3 Case B: Logistic processes and a cardboard mill

This section describes the ME efforts carried out for developing logistic ISs.
Unlike the wholesale case, the aim of ME was not to develop a project specific
method, but rather a domain specific method. The method was engineered by a
consulting company for redesigning business processes related to logistics.
While reporting the case, we focus on method evaluation in using the method
for modeling outbound logistics of a cardboard mill.

This two-party setting is reflected in the structure of the section. First, in
Section 6.3.1 we describe the background of the method development effort.
The a priori ME phases are described in Section 6.3.2, along with the metamodels
and tools implemented. Section 6.3.3 characterizes the ISD environment in the
cardboard mill and Section 6.3.4 briefly describes method use. The remaining
sections focus on the a posteriori view: Section 6.3.5 describes the use of
evaluation mechanisms and Section 6.3.6 the refinements. The outcomes of the
action research for both case A and case B are described in Section 6.4.

6.3.1 Background of the study

The case involved two organizations: a large research and consulting company
systematizing business process re-design (BPR) practices, and a cardboard mill
undergoing BPR. This two-party setting means also two entry points for our
action research study: first to the consultant company developing the method,
and second to the mill as an application area for the method. In this section we
describe the background of the former: the consulting company and its BPR
method. The cardboard mill is described in Section 6.3.3.

241

6.3.1.1 Data model of logistics

The action research study was directed towards ME from the start, because the
methods and tools applied by the consulting company were considered
inadequate. The decision to develop their own method was supported by a
relatively large evaluation of logistics-related modeling tools (Lindström and
Raitio 1992) and by piloting and using various methods (including IDEF (FIPS
1993a), communication matrices, state models, and data flow diagrams). The
method evaluations were not systematic; rather, they were based on a trial-and-
error procedure. ME was expected to support more fine-featured method
construction and tool adaptation. In fact, entry to the company was obtained
because of the decision made to apply metaCASE technology for building tool
support for their own method.

At the time the study was started, part of the method selection process had
already been carried out. The result was a metamodel of logistic processes and
ISs which can be considered as a reference model for developing logistics (i.e. at
the IRD definition level). This model was called a data model of logistics, in
contrast with reference models of logistics, which include example solutions
(i.e. at the IRD level). The data model was developed based on experiences in
developing logistics in different type of companies.

The data model of logistics was specified by following a variant of an ER
model and by using examples. Because of the ER model, the logistics data
model included only a few modeling-technique-related constraints (i.e. a
multiplicity of a single role and an identity) and no representation definitions.
In fact, the model focused primarily on defining key concepts and their
relationships rather than modeling techniques. Examples of the concepts were a
chain, a process, a task, a job, an organization, a resource, and a transfer (split,
join, or copy). The data model was complemented by defining the semantics of
each concept and by defining major attributes of the concepts. The objective of
ME was to construct a method based upon the data model of logistics and other
model analysis related requirements. These are discussed in the following
section.

During the study, the ME effort was organized into a separate project. The
method was engineered mostly by three consultants. In addition, some feedback
about the method was obtained during pilot use from the manager responsible
for sales and delivery logistics. My role in the a priori method construction was
limited to the tool adaptation, i.e. modeling the method according to the
metametamodel applied in the selected metaCASE tool, implementing the
required checking rules and reporting algorithms, and making connections to
external tools. With respect to the a posteriori ME principles, my role was related
to introducing and teaching the evaluation principles, and carrying out the
evaluation together with the method users. During the study the a posteriori
evaluation was carried out after the ISD project.

242

6.3.1.2 Requirements for the constructed method

As already mentioned, the basis for the ME effort was the data model of
logistics. Because the model focused mainly on the conceptual structure it
neither defined how logistic processes should be represented, checked,
analyzed and documented, nor considered method-tool companionship. It
emphasized concepts required for understanding object systems rather than
carrying out a change process. Therefore, the main emphasis in the ME effort
was in the analysis and model checking part: what should be checked and
analyzed about logistic processes for the purpose of re-design, and how this
analysis should be supported by a tool. In this sense, ME was driven by the
formulation of the logistic related problems to be analyzed.

In the following we describe the type of analyses which were intended to
be carried out while developing logistic ISs. Each of the analyses raises
requirements for the method construction (cf. Section 6.3.2). The suggested
analyses were partly a result of analysis needs faced in earlier ISD efforts, and
partly adopted from other methods (e.g. Harrington 1991, Dur 1992, Lee and
Billington 1992, Johansson et al. 1993). The following types of analyses were
considered:

1) Minimize delays. In logistic systems it is essential to improve the cycle
time because delays increase costs. A cycle time is the total length of time
required to complete the entire process (cf. Harrington 1991, Dur 1992). It
includes working time, and also waiting and reworking. Delays in the process
are defined through tasks with the most idle time in relation to working time.
Therefore, the analysis deals with comparing effective processing time to whole
cycle time. The timing was considered to be calculated from tasks and from
transitions between tasks (cf. Harrington 1991). Moreover, the analysis was
planned to be carried out on a subset of the network and also, if required, to the
whole network.

2) Minimize costs. Processes which have high costs should be selected for
further analysis. In logistics, the cumulative cost should be analyzed together
with the consumption of time (cf. Figure 6-5). This means for example that
higher costs are acceptable if they improve the cycle time, or that small cost
tasks which do not improve cycle times may not be acceptable.

3) Minimize non-value adding tasks deals with evaluating the process to
determine its contribution to meeting customers’ requirements (Harrington
1991). In short, real-value-adding tasks are the ones that a customer is willing to
pay for. Hence, the objective is here to optimize a process by minimizing or
eliminating non-value-added tasks. With respect to logistics, the analysis is
related to cycle times and cumulated cost.

4) Simplification of processes deals with removing tasks from the process
which add complexity and make understanding of the process difficult
(Davenport and Short 1990, Harrington 1991). The result would be fewer tasks
and task dependencies which make the whole process easier to understand. The
simplification is based on analyzing processes which have complex information
flows, involve checking, inspection of others work, approvals, creating copies,
and receiving unnecessary data.

243

FIGURE 6-5 Cost-cycle time chart (cf. Harrington 1991).

5) Organize around processes deals with re-designing an organizational
structure based on a workflow and an overall process structure (Johansson et al.
1993). In other words, instead of following current responsibilities and resource
allocations, the organizational structure should be formed around the process.
Here, the required analysis covers information or material connections between
workers or organizational units. This also means that the BPR effort should not
focus on modeling current organizational responsibilities, but rather on
building these based on the workflow.

6) Minimize re-work and duplication of work. Candidate tasks for
removal can be identified from iterations in the process (e.g. returning
information), from tasks which are identical and performed at different parts of
the process, from tasks which create the same or similar information (often by
different organizational units), and from tasks which are exceptions or correct
outcomes of other tasks. The analysis of re-work and duplication of work is
performed by following the workflow of a certain item (e.g. an order).

The focus on logistics-related analysis had the following consequences: the
method had to develop alternative solutions based on the model data, provide
concrete measures, and allow the tracking of changes in performance with the
same analysis measures. The modeling part of the method had fewer, more
general requirements: the method should resemble other used methods, be
simple and apply graphical modeling techniques.

6.3.2 Constructed method

To understand the context of method evaluation and refinement subjects we
shall introduce here the modeling techniques and tool support. On the method
side, we describe the metamodel and how the method requirements were

244

supported by the method specification. On the tool side, we describe what
checking and analysis reports were implemented.

6.3.2.1 Metamodels

Method construction began by choosing modeling techniques which are
compatible with the data model of logistics. By compatible we mean that they
provide the same concepts and relationships as the logistics data model, or
allow them to be derived from the conceptual structure of modeling techniques.
The selected techniques included an activity model (Goldkuhl 1992) for
describing the workflow, and an organization chart (Harrington 1991) for
describing organizational structure. These modeling techniques were modified
by adding new types and constraints required by the analyses and by the
integration of the techniques. This task was supported by metamodeling and by
reusing the metamodel of activity modeling already included in the metaCASE
tool. Figure 6-6 represents a metamodel of the techniques and their interactions.
The figure uses the GOPRR metamodeling technique (cf. appendix). The
constructed method and its relation to the analysis requirements are described
in the following.

The activity model describes material or information connections between
several tasks. For this purpose, the metamodel includes concepts of ‘task’,
‘material object’, and ‘information’. Each of these object types are characterized
with property types required for carrying out model based analyses.

The ‘task’ has an identifier as a property type because similarly named
tasks could exist. The identifier, however, could be unique inside the method
scope. An ‘operation’ property type was applied to specify the contents of the
task and possible instructions for carrying it out. As in data flow diagrams, each
task could be decomposed into subtasks (i.e. another model). In Goldkuhl (1992)
an activity (called a task here) is characterized by its location, doer and trigger.
In the constructed version, location information was not used since it was not
needed for carrying out the required analyses. A trigger was related to flows
related to a ‘task’, i.e. a ‘condition’ property type. A doer was represented by
relating tasks to organizational units. This aspect was modeled as a
polymorphism, in which the organization names are referred to by tasks and
organizational units. The implementation of the metamodel did not allow
dependency so that tasks could not refer to organizational units other than those
already specified. A similar structure would also be needed to share resource
names among instances of a ‘resource’ and the ‘task’. This deficiency also
influenced the modeling process: task structures could be specified before
organizational units and resources.

The ‘task’ has property types named a ‘processing time’ and a ‘total time’
to analyze cycle times (requirement 1, cf. Section 6.3.1.2). The timing values
were further specified with a unit of measurement (e.g. day, hour, minute)
enabling calculation of cycle times. Cost analysis (requirement 2) was supported
by attaching a ‘cost’ property type for the ‘task’ as well as for an ‘information
flow task’ and for a ‘material flow task’ relationship types.

245

Text

Operations

Organization

Real

Processing time

Real
Total time

Int

Priority

Real

Costs

Real
Time consumed

Resource

Unit of time

To task

Activity model

Organization chart

Note

Note label

Text

Description

Model name

Int

ID

Int

Task ID

1,1
Whole

Task

Material
flow

Material
object

Information
flow

Information

1,1

Material flow to

Use resources

Boolean
Copy?

Task type

String
Name

Unit of
capacity

Organization type

Type of
resourceString

Capacity

String

Name

Resource
name

Organization
name

Material flow from

Has Belong to

Information flow to

Information flow from

Group

String
Responsibility

String

Condition

From material From information

Value adding

Material
flow task

Suborganization
1,M

Part

Information
flow task

id

id

id

Unique

id

Unique

id

Unique

id

Unique

id

Unique

Use resource

Belong to

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1
1,1

Model name

id

Boolean
Money?

Costs
Real

String

FIGURE 6-6 Metamodel of the a priori method.

The ‘task’ object type was further characterized by its type (i.e. approval, check,
decision, information update, input, storing, transfer, or mixed). This
characterization allowed the simplification of processes (model analysis
requirement 4) by highlighting inspection and checking tasks to be removed or

246

combined (e.g. Hammer and Champy 1993, Harrington 1991). Similarly,
analysis of value adding (requirement 3) was carried out by characterizing tasks
with a ‘value adding’ property. Value adding included four categories,
(business-value-added, real-value-added, no-value-added, mixed) and it was
calculated from the estimated value before and after a task (Harrington 1991).
This characterization was also used in analyzing cycle times and delays
(requirement 1 and 2).

An ‘information’ and a ‘material object’ were characterized by a ‘group’
property type that combined a collection of materials or information. In this
way, it was possible to analyze workflows of specific information or material
groups and identify complex (requirement 4) or duplicate tasks (requirement 6)
(e.g. all tasks related to invoices). Moreover, the ‘information’ was characterized
with property types ‘money’ and ‘copy’. The former specified money and the
latter that the specific information was a copy rather than the original
information object. These were not required by the analysis reports, but were
included into the method to provide compatibility with the logistics data model.

The metamodel included two basic relationship types, material flow and
information flow, which were each split into one type for task outputs and
another type for task inputs, leading to four relationship types in all.

The ‘material flow’ and ‘information flow’ relationship types specified
outputs of a task. As in Goldkuhl (1992) a material object can include
information, but not vice versa. To model a composite of information or
material objects, the ‘information’ and the ‘material object’ could participate in
both roles of a flow. This allowed us to describe, for example, that a delivery
includes a cargo list and shipped goods. Alternatively, an additional modeling
technique could be applied to describe composite objects.

The ‘information flow task’ and ‘material flow task’ relationship types
specified inputs of a task. These flows were characterized with a ‘cost’ and a
‘time consumed’ property types to support analysis of costs and delays. A
‘priority’ property type was added to the ‘to task’ role type to model urgency
handling among several information or material flows. This property was
added to the role because the modeling tool did not allow properties of
relationships to be represented graphically.

An organization chart specified organizational units and a hierarchy
among them. An ‘organization’ object type was characterized with a ‘name’, a
‘responsibility’, and a ‘type’. A ‘responsibility’ was required to identify owners
of the tasks and an ‘organization type’ classified the organizational units into a
company, a division, a department, or a working team. Resources were
modeled with a ‘name’, a ‘type’ (e.g. machine, human, IS), and a ‘capacity’.
Resources were related by a ‘use resource’ relationship type to organizations
and tasks. Therefore, the ‘resource’ can have graphical instances in both
modeling techniques. In the metamodel this is described by including the type
in both graph types (inclusion in GOPRR). Similarly, a ‘note’ object type is used
to add free form comments in both modeling techniques. It must be noted that
the ‘task’ can also refer to the ‘resource’ by sharing the values of the ‘resource
name’. This possibility was added because of the desire to simplify activity

247

models (instead of representing all resources and their relation to tasks with a
graphical notation).

As a result, the constructed metamodel included information about
organizational units and their resources. This was considered to support
structuring of the organization according to the process (requirement 5), i.e.
connections between tasks could be applied to find organizational units which
have cooperation.

It must be emphasized that not all method knowledge could be specified
with the metametamodel. Examples of unmodelable method knowledge
included mandatory property types (e.g. an identifier of the task), multiplicity
over several role types (e.g. unconnected tasks), and different scopes (e.g.
resource name unique inside the organizational unit). Moreover, method
construction raised the same requirement for a derived data type as in the
wholesale case: for example, identifiers of lower level tasks should be derived
from identifiers of higher level tasks. The lack of metamodeling power was
partly solved with checking reports as discussed in the next section.

6.3.2.2 Tool adaptation

Both modeling techniques were supported by a metaCASE tool, MetaEdit
(MetaCase 1994). As a result, models could be developed to carry out
abstraction according to the metamodel. The notation of the activity model is
represented in Figure 6-8. It illustrates part of a production planning process.

As part of the method-tool companionship, reports for checking, review,
and analysis were implemented. These automated reports complemented the
manual checking and analysis. The checking reports operated on those aspects
of method knowledge which had constraints to be checked passively, or were
not possible to capture in the metamodel. The reports covered unconnected
object types (i.e. minimum multiplicity one), and undefined properties (i.e.
mandatory property types). The documentation and review reports included a
dictionary report that listed tasks, items (both information and material), and
resources. These reports resembled manual documents followed in activity
modeling (cf. Goldkuhl 1989). Moreover, tasks were also reported by their type,
possible value adding, and the people carrying them out.

Most emphasis during the tool adaptation was placed on defining reports
which carried out the required analyses based on the model data. For the
purposes of analysis, the modeling tool included a report which transformed
selected model data into the relational database format of an external analysis
tool. This tool provided the following model analysis functionality:

− Elapsed time analysis, i.e. how much time (effective and waiting time) is
used in selected tasks. This analysis addresses delays (requirement 1).
Different alternative scenarios could be analyzed using a what-if analysis
by changing the property values.

− Cost versus time analysis, i.e. an analysis of a chain of tasks based on
costs and time consumed in each task. This analysis addresses cost
minimization (requirement 2) and is illustrated in Figure 6-5. As with the

248

elapsed time analysis, property values could be changed to generate
alternative scenarios for a workflow.

− Item workflow analysis: this report describes time and costs related to a
specific item or item group. It allows the identification of errors, re-work,
or duplication of effort related to items (i.e. instances of the ‘information’
or the ‘material object’). As with the other analysis reports, cost and time
values or tasks could be changed to generate alternative scenarios.

− Architecture matrix: this model illustrates the creation or use of items or
item groups between organizational units. It allows the analysis of
duplicate tasks (analysis requirement 6) which create or update the same
data.

− Communication matrix: (see Figure 6-7) this illustrates the connections
between workers or organizational units. The communication matrix can
be derived from the flows of the activity model sending information or
material. The communication matrix is generated automatically from the
activity model, and it was considered to help in structuring the
organization according to the workflow (requirement 5).

FIGURE 6-7 Communication matrix.

Each analysis report could be restricted by defining the scope for the models to
be included in the analysis. This restriction can be made based on the version of
models, selected tasks (i.e. a chain), organizational units, groups of information
or material objects, or organizational units/workers.

In addition to these analyses, the tool generated reports which classified
tasks according to their value-adding, type, and responsibility. The inspection
of value-added properties allowed the analysis of non-value adding processes
in relation to costs and cycle times (requirement 3). Hence, it complemented the
earlier analysis. Classification of tasks according to their type was considered to
support the simplification of processes (requirement 4). It focused on checking,
approval, and information updating tasks, which are often candidates for
removal. Finally, classification according to the responsible person allowed
inspection of the coherence among individual workers’ tasks. Each report also
included additional process information such as processing time and the
description of operations or guidelines.

249

6.3.3 Characteristics of the cardboard mill

The method was used in developing outbound logistics of a cardboard mill. The
mill produces specialized cardboard, mainly for the European packing
industry. The study focused on analyzing the current delivery process of the
mill. The delivery process was influenced by a cooperation with an export
association, and with companies responsible for transportation and harbor
operations. In contrast to the wholesale case, the development efforts were
limited to one company, i.e. to the mill and its parent company. Because the
problem context was logistics centered, the constructed method addressed the
characteristics of these problems in the cardboard mill.

6.3.3.1 Characteristics of the problem context

Most of the marketing and sales were made by Finnboard, an export association
of Finnish board mills. The export association provided on-line data interchange
with their customers and international sales offices. This system provided a
virtual and instantaneous means of placing status inquiries and new orders, in
contrast with the 12-day norm of the industry (Konsynski 1993). As a result,
many mills acting together and leveraging this technology were able to appear
to the outside world as one large “virtual” company. The integrated system of
Finnpap/Finnboard is described in Konsynski (1993). Because the export
association was seen to decrease the competition among mills, its use in the
form described has been recently (and after the study was conducted) banned
by the European Union. In addition to the sales made by Finnboard, the mill
had its own customers among the subsidiaries of the parent company. These
sales were made without the assistance of Finnboard, and we call them the
mill’s “internal sales”, in contrast with the sales made by the export association.

The main problems addressed in the ISD process related to variation in the
delivery process and poor predictability. The delivery process varied
considerably depending on the sales and delivery channel (i.e. internal versus
Finnboard). Among internal sales the variety was greater and even more
dependent on the customer. These in turn made the process more complex,
which required additional resources and increased cost. This problem had
already been detected in the mill. Its marketing manager reported that the
delivery process had recently been streamlined: all variation and exceptions had
been eliminated. However, it was still considered complex and therefore one of
the objectives of ISD was to further simplify the delivery process (requirements
4 and 6 used for method construction). This was also of great interest to the
consultants, who wanted to apply their method and the developed tools. By
modeling the delivery process in detail, which had not been done before, it was
expected that the resulting in-depth understanding would further improve the
process.

Because of the northern location of the mill and the southern location of its
main customers, transportation and logistics placed a central role. The low costs
of the cardboard compared to its inventory costs required that the cardboard
was always manufactured based on the available transportation capacity. All

250

deliveries were planned on the principle “just -in-time for transportation”.
Moreover, during the study the demand for cardboard was good and the mill
was operating at full capacity. Hence, manufacturing in advance was not
possible. This emphasized accurate production planning in the mill. Therefore,
ISD focused on improving timely delivery and minimizing logistics costs. Both
of these analysis targets were taken into account in the method
used(requirements 1 and 2).

It must be noted that not all aspects of the method were considered to be
needed. They were, however, included in the method used because these
additional analyses had not been used in earlier ISD efforts. In this sense, the
experiences of the consultants are counted for the constructed method rather
than as a priori identified characteristics and problems of the mill to be
addressed.

6.3.3.2 ISD experiences and method knowledge

The cardboard mill had limited experiences with ISD methods. In contrast, the
consultants responsible for carrying out the effort had relatively high expertise
in methods and method selection. This was also indicated from the existence of
the data model of logistics and earlier cases from other companies. One of the
consultants had studied artificial intelligence systems for contingency-based
method selection.

6.3.4 Method use

The ISD project took place in the cardboard mill but also included personnel of
the parent company. The project took almost one year, and around twelve
people were involved. Most effort was spent on specifying production planning
and delivery. During the project these processes were represented by 90 tasks,
140 different information flows, and 30 material flows. An example of a model
related to production planning is illustrated in Figure 6-8. The model is based
on the activity modeling technique.

Modeling began by defining task structures and validating the activity
models. This took most of the time related to method use. Once the task
structures had been validated they were refined by adding properties about
individual tasks and flows. At the same time the task structures were
supplemented with organizational structures and by connecting resources to the
tasks. This step was supported by the organizational structure chart.

The models were divided into those dealing with internal sales and those
dealing with Finnboard sales. The analysis of the processes was conducted
according to the analyses discussed in Section 6.3.2.2. Without going into
details, all tool-supported analyses, except those related to cost, were carried
out. Cost-related modeling and analyses were not performed because of a lack
of time. The project outcomes included three major recommendations to
improve production planning and delivery.

First, the delivery process had to be simplified by removing variation in
the process. This result came as a surprise. For example, the marketing manager
stated: “I thought we had already streamlined our delivery process, but now we

251

have to streamline it some more”. The report of the development project
summarized that although the variation was not considered remarkable, it
doubled the resources needed. The extra complexity was most notable in
internal sales. The modes of operation were more homogeneous in Finnboard
sales. This could be easily detected by comparing the workflows (e.g. tasks
involved and resources needed).

Second, better principles for exception management were needed: exceptions
took more than half of the total time in delivery management (analyzed through
elapsed time, and item workflow). One reason for the relatively high rate was
unclear and varying responsibilities. For example, when a change occurred,
notification to other parties in the delivery process was haphazard and each
party (customer, mill, harbor, transportation company, ship) made and
requested several unnecessary confirmations.

Third, internal sales included tasks which duplicated effort. Tasks such as
checking order validity and saving order information were not relevant.

FIGURE 6-8 Model of production planning tasks (modified).

252

Because of the variation, one proposed option was to make the internal sales
more similar to that of Finnboard sales. This would necessitate consideration of
the current service level in which the mill would take into account the special
requirements of each subsidiary company. The resulting better predictability
would help production planning.

More detailed analysis of the processes was not possible for two reasons.
The variation in the process required that the model-based analyses addressed
average situations and excluded frequencies. Furthermore, analysis of cost and
value analysis was not conducted.

6.3.5 The a posteriori method engineering

In this section we explain how the method was evaluated and refined. We first
apply type-instance matching: this part was conducted by the method
engineers. Second, we assess the applicability of the method in terms of how
well it supported business modeling. Third, we identify the role of the method
in problem solving. These latter two evaluations were carried out by the
method engineers.

6.3.5.1 Type-instance matching

Type-instance matching inspects how the constructed method has been applied.
The comparison is made between the method’s intended use (as seen from the
metamodels) and actual use (as seen from the models). In the following we
describe the results of this evaluation, i.e. the differences between models and
metamodels which suggested method refinements (cf. Section 5.3.3 for details).

6.3.5.1.1 Usage of types

1) Unused types. Because the analysis reports required detailed data the
method was followed strictly. For example, analysis of delays required time
related properties to be specified (i.e. have values). Some property types,
however, were used infrequently. These included the property types ‘money’
and ‘copy’. Second, property types characterizing flows were not applied.
Therefore, analysis of delays did not include time consumption related to flows.
Third, costs related to tasks or flows were not modeled. As a result, these
property types could be removed from the method.

2) Division or subtyping was not required because modeling constructs
were not overloaded. The main reasons for this was that the use of the ‘group’
and ‘type’ property types allowed for user-defined classifications. The analysis
of the free form ‘operation’ property type, however, indicated new data types.
Some tasks included data about error rates and frequencies which could be
included as new property types and used in analyses.

3) Definition of new linkages between types was suggested in only one
situation. ‘Responsibility’ and ‘resource name’ had the same values. This
suggested polymorphism, to make existing values available between these
property types. This would speed up modeling and decrease typing errors.
Several task names also included information or material object names. For
example, a task called “refine annual budget” delivers as output an “annual

253

budget” which is an instance of the ‘information’ object type. This is illustrated
in Figure 6-9. However, refinements could not be made here because in some
modeling situations the value of an information or a material object was either
an input or an output, and the name of a task did not necessarily refer to any
information or material object. These naming-based connections, however,
could be checked using reports. For example, a report could inform of tasks
which did not refer to any of the related information or material objects.

6.3.5.1.2 Usage of constraints

Analysis of constraints was limited to those defined in the metamodel and
supported by tools. It must be noted that although the metamodeling language
did not support all constraint definitions, the tool checked some of the omitted
constraints passively using reports. These reports identified violations of the
unique property, mandatory property, and multiplicity constraints. The first
two of these in particular were needed to carry out model-based analyses. An
identity constraint related to one property type was not enough since there was
a need to distinguish versions. This defect was solved by extending all model
data with a version number during a conversion of the models. Similarly,
checking of unused property types informed about values which were not yet
specified but were required by the reports. The model data, however, was often
supplemented in the analysis tool because passive checking did not guarantee
model completeness. If all property types had been defined as mandatory while
making preliminary task structures, entering all task specific data would not
have been possible. Alternatively, a weaker constraint technique could be
created for modeling preliminary task structures.

A uniqueness constraint was defined only for identifiers. The tool actively
ensured the uniqueness of identifiers. The data types defined were found to be
adequate, although the predefined values needed some refinement. As storage
and transfer were not used while classifying tasks (i.e. the ‘task type’ property
type) they were removed. Value adding was not applied as planned because the
classification was too detailed. Instead, a Boolean value (valued-added, no-
value-added) was found to be sufficient.

The cardinality constraints in the activity model were not changed. Flows
which split or join information or material objects could be created by attaching
additional instances to an instance of the ‘information’ or the ‘material’ object
types.

Constraints on role multiplicity could not be specified adequately in the
metamodel. Instead. reports inspected connected and unconnected object types.
Model data suggested that in a model scope the ‘task’ should have a minimum
multiplicity constraint (one) for all related role types (i.e. ‘material flow from’,
‘process to’, and ‘information flow from’). An ‘information’ and a ‘material’
should have the same minimum multiplicity, but on the scope of the whole
method. Hence, in a single model, an instance of ‘material’ or ‘information’
should participate in at least one role, but inside the method in all possible
roles, i.e. be both an output and input to a task. This necessitated the use of a
multiplicity constraint over several roles.

254

The metamodeling language did not support checking of cyclic
relationships. Therefore, possible cyclic relationships between organizational
units (e.g. department consist of itself) could not be checked actively. The tool
reports allowed checking only direct cyclic relationships and thus here the
method implementation was inadequate. In activity models direct cyclic
relationships could be denied because they take part in several object types. For
example, the metamodel did not allow direct connections between tasks and
thus required information flow or material flow based connections. The
method, however, allowed direct cyclic relationships to be created between
information and material objects. The initial objective for allowing cyclic
relationships was to keep the method simple and use flow relationships to
model whole-part structures. Figure 6-9 illustrates the whole-part structure in
an activity model in which a budget consists of other information items.

Price
2.8

Inventory
level

2.9 Sales volume
2.10

Transportation
routes

2.11

Cardboard mill
Refine annual budget2.4

Annual budget
2.22

FIGURE 6-9 Modeling whole-part structures in the activity model.

Type multiplicity could not be defined in the metamodel and the tool could
only inform about the number of type instances in a model, or in the whole
method. Based on the model data, all object types except ‘material object’ and
‘resource’ should have a minimum multiplicity constraint of one in the scope of
a model. Because not all activity models included instances of ‘material object’
and ‘resource’ the scope for type multiplicity should be the method. As a
consequence, information flows and suborganization relationship types should
have instances in all models. The maximum multiplicity constraint was not
changed because the models were not considered to be too large (e.g. the largest
model had 34 object type instances).

The specification of task hierarchies had several errors because neither the
metamodel nor the tool could enforce the complex object constraints. The
metamodel only allowed the specification of non-mandatory components, and
the reporting capabilities of the tool did not support the checking of complex
objects. The required checking included exclusivity of components as well as
aggregated relationships. At best, the tool could produce reports which
collected constraint-related data for manual checking. This naturally led to
error-prone and tedious model checking, decreasing the reliability of analyses.

255

Polymorphism was applied in two cases in which a task referred to an
organizational unit and to the resources it used. Instead of referring to the value
of a property type the reference could include the whole object type. In other
words, instead of referring to an organization name a task could refer to the
whole organizational unit. The advantage was the possibility to inspect
specifications (i.e. properties) of organizational units and resources during
activity modeling. Hence, the polymorphism unit would be the whole object
instead of a single property. Finally, instances of ‘responsibility’ and ‘resource
name’ had the same values. This suggested a polymorphism structure: sharing
the same instance value between these property types.

6.3.5.2 Modeling capabilities

The method was constructed to support logistic analyses. In the following the
modeling capabilities are analyzed using the evaluation mechanisms. The
suggested refinements are summarized in Section 6.3.6 as changes in the
metamodel.

6.3.5.2.1 Abstraction support

The use of the method raised new requirements for describing the logistic
processes of the mill. First, there was a suggestion that the life-cycle of
important information and material objects would be modeled in separate
models. By the life-cycle we mean all the states of an information or material
object and transitions between these states. Examples of the states of a material
object representing an order are received, checked, accepted, delivered,
invoiced, etc. The activity model primarily described sequences and connections
between tasks, but the life-cycle of each item was scattered over several models.
Only analysis reports illustrated the life-cycle concept through tasks which
related to a certain item, or item group. Second, the consultants suggested a new
property type which could be defined in modeling (i.e. typed during
modeling). In the mill case, tasks in particular were considered to need extra
information about error rates or broken items. The addition of a new property
type instead of free-form description data in the current ‘operations’ property
type was emphasized because the analysis tool required structured descriptions.
Third, it was suggested that information and material objects could include
information about volume data and a property for free-form description.

Major difficulties in modeling were related to the variation in the business
processes. Two kinds of variation were detected. First, the delivery process
differed greatly depending on the type of customer, tasks involved, and task
specific properties. This could not be solved by modifying the modeling
technique but rather by introducing generalizations (e.g. typical, problematic,
etc.). Hence, the developers needed to introduce different versions (e.g. internal
sales versus Finnboard sales) and find representative cases of the processes in
each version. A second kind of variation related to frequency. The method
expected that task characteristics remained stable and volatility could not be
modeled. For example, an exception in the process could increase workload

256

temporarily and cause long-term delays. The proposed solution for this
deficiency in the method was a ‘frequency’ property type attach to the ‘task’.

Because modeling work was carried out by two people, and others mostly
reviewed the models, no major modeling differences between participants were
detected. Moreover, the consultant acted both as a method engineer and an IS
developer, and could explain and teach the method to other stakeholders.

6.3.5.2.2 Checking support

During model maintenance most efforts focused on the task hierarchy and on
the property type ‘task’. This needed to be consistent within the hierarchy.
Because the metamodel did not adequately specify these constraints (i.e. a
complex object) the resulting models had several inconsistencies. For example,
it was required that the modelers updated the aggregated relationships in a task
hierarchy and that tasks were exclusive (cf. constraints for complex objects in
Section 4.4.2.2). The variation in the process emphasized maintainability
problems because a change in one task required changes in other models.

The task hierarchy highlighted property-based dependencies between
tasks. For example, the processing time of a task should not be less than the
processing time of its subtasks, or a task should not be defined as value-adding
if none of its subtasks were value-adding. This demanded creation of a new
data type which allowed derivation rules to be defined and related to a selected
set of property types. Similarly, the numbering of tasks based on a task
hierarchy required a lot of manual work: it was the modeler’s responsibility to
update identifiers when the task hierarchy changed. To speed up the modeling
process it was suggested that the tool would use internal identifiers (and output
these to the analysis tool). Similarly, to speed up modeling work, timing-related
property types needed to include measuring units. The initial metamodel
included a pair of property types, i.e. one for the value and one for the related
unit. Both these requirements were surprising because they were not found
during the initial method analysis (Chapter 4).

6.3.5.3 Problem solving capabilities

The method was constructed to automate analysis tasks. Hence, the form
conversion and review capabilities were emphasized during the evaluation of
the method. Surprisingly, most benefits were outcomes of modeling rather than
of analyses. Although most tool-supported analyses were carried out, their
contribution was disappointing. The automated analyses found few
improvements and their results were considered dubious because of different
interpretations. Instead, most benefits of analyses occurred from the
identification of those aspects of processes which required further analysis (e.g.
the most time consuming tasks, or slack resources). It must be noted that not all
analyses were relevant in the mill case, but all were included since the
consultants wanted to test the whole method.

257

6.3.5.3.1 Form conversion support

Form conversion denotes a tool’s capability to analyze models and generate
candidate designs. In the CASE environment the conversion functionality was
provided through analysis reports. Accordingly, we evaluate the tool’s
contributions to analysis of the model data and identification of design
solutions.

1) Delays were analyzed by inspecting the elapsed time in tasks. The
delay analysis revealed that exception management is time-consuming, and that
internal sales are over 20% more time-consuming than Finnboard sales.
Although the analysis allowed the comparison of effective time and waiting
time, candidate designs to optimize processing time were not sought. In other
words, no what-if analysis was carried out. Reasons for the limited use of
analyses included difficulties in choosing candidate times and volatility in the
object system: in many tasks time related measures were considered inaccurate
because of wide deviations in the processing time, and because flow times were
not specified. As a result, the analyses were considered unreliable. The solution
suggested was to add frequency information to the ‘task’. Although this
information was not supposed to be modeled during activity modeling, but
rather during analysis, it was added to the modeling technique, to help gather
frequency data while modeling time properties.

2) Cost analysis was not carried out because gathering costs via task
structures was difficult, and the project lacked the necessary resources. Hence,
all cost-based modeling constructs, including the cost-cycle time chart, were not
applied. Because of these difficulties the consultants examined accounting-
based approaches which could be used with current modeling methods. In
ABC-based accounting (Morrow 1992) the resources would have the cost data
and cost drivers. Moreover, tasks would then be linked to resources (as in our
models) and to task specific cost structures. Hence, instead of relying on task
costs, the cost analysis would be based on resources costs. ABC-based
accounting would require linkages to external tools, such as a spreadsheet
application.

3) Value adding was not related directly to the analyses because its use
was not possible because of the limited cost analyses. Instead, reports of value
adding capability were applied to identify removable tasks, i.e. non-value-
adding tasks. During modeling, however, the value-added features had been
understood so strictly that less than 10% of tasks were specified to add value.
Moreover, internal sales had more non-value adding tasks than Finnboard sales,
indicating that the mill should perform the minimum possible outbound
logistics by itself and leave the rest to the export association. The value-adding
was considered to be improved by relating it to the cost-cycle time chart: cost
and delay analysis would then support analysis of value-adding activities.

4) Simplification of processes was performed by streamlining the
delivery process. To this end the effort focused on exception management and
the redesign of sales processes. Most of the simplification possibilities were
detected during the modeling step, but the automated analysis allowed
comparison of item-based workflows between different sales channels (i.e.

258

internal sales vs. Finnboard sales, and internal sales to different types of
customers based on delivery terms). Because cost data was not available this
analysis relied on elapsed time only and had the same difficulties with
inaccurate results.

5) Organize around processes. At the level of individual workers the
communication matrix did not find strong bindings between workers in
different organizational units. Hence, the organizational structure seemed to
follow the task structure already. At the level of organizational units the
communication matrix was more useful: it allowed the inspection of differences
between internal sales and Finnboard sales. In the former case, the mill had a lot
of connections with other parties, e.g. haulage, harbor, and customer, whereas
in the latter case, the export association managed most of the negotiations with
other parties. However, because the project focused on the mill, no suggestions
were made about how to organize the responsibilities in the network.

6) Minimize re-work and duplication of work. Candidate tasks to be
removed were sought using the architecture matrix and the item workflow. The
architecture matrix showed tasks which created or updated the same data and
thus pointed out tasks to be removed or combined. Item workflows described
iterations in the process and thus clarified the repetition of work. During the
analysis the architecture matrix revealed possibilities for re-designing processes
based on access rights (i.e. create, use). Item workflows did not reveal why
work needed to be repeated.

To summarize, the architecture matrix was the only analysis which
directly enabled the generation of designs. The candidate designs could be
made by changing the data access rights for tasks. Other analysis reports
measured the current situation, but did not include any built-in possibilities to
suggest candidate designs. These reports were supported with what-if analyses,
i.e. by changing the values in the analysis tool and running the analysis again.

6.3.5.3.2 Review support

Most method use was concerned with validating models with the domain
experts. Hence, the review support was of great importance. In a CASE tool,
review support implies the production of documents for different stakeholders
to validate the models.

Validation was performed in two phases: first related to the general task
structure and organization structure, and second in relation to the details of the
models (i.e. to properties used in analyses).

In the first phase, the review was carried out using graphical models. The
main difficulties while reviewing the models concerned dividing flows and
specifying volumes. Initially, the method included only a ‘condition’ property
type for describing dividing flows. The domain experts suggested that dividing
flows should be specified in more detail, e.g. by describing logical operators or
a ratio. An example of such a situation is shown in Figure 6-8 in which
information about production time (ID 4.2.6) is used in two tasks. The use of
logical operators (and/or), as proposed by Goldkuhl (1989), would allow the
modeling of situations where the information object is used in both tasks or in
one of the tasks. Moreover, users suggested a percent-based specification

259

showing, for example, that in 40% of the cases the information was used by only
one of the tasks. Moreover, the condition values were not shown in graphical
models and thus they suggested a notational change. The users also suggested
that volume information should be shown graphically. This addition required a
new property type for the ‘information’ and ‘material object’ types, with a new
notational element (i.e. a text field close to the rectangular symbol of the
‘information’ and ‘material’ object types).

Although these additions were simple, their influence on the model
analyses (e.g. item workflow) was unclear. It was suggested that each analysis
case be handled separately either by modeling all conditions separately, or by
omitting the conditions during the transfer of data to the analysis tool. In the
latter case, the conditions should be entered while making a what-if analysis.

In the second phase, the review focused on validating the property values.
For this task we developed a report tool for documenting the tasks of each
individual, who could then review the information. These documentation
reports were also included into the final report. In addition to personal reviews,
the method users proposed state modeling to collect and integrate workers’
views into state models. This was believed to help inspect the dynamic behavior
of order management independently of workers’ tasks. It could therefore offer a
behavior-oriented view to help validate task structures (i.e. the process oriented
view).

6.3.6 Method experiences and refinements

Method evaluation provided a good amount of experiences of the method and
suggested several method modifications. Method development focused mainly
on analysis needs and emphasized modeling constructs which were needed by
the analyses.

The method refinements suggested were a direct outcome of the method
evaluation. The evaluation clarified that the most important changes related to
modeling life-cycles of information or material objects, managing variation in
time, and describing volumes. These are reflected in the metamodel illustrated
in Figure 6-10. It should be noted that not all metamodel constraints, such as
scopes, are captured in the metamodel because neither the metamodeling
language nor the tool supported them adequately.

260

Text

Operations

Organization

Real

Processing time

Real
Total time

Int

Priority

Real

Time consumed

Resource

Unit of time

To task

Activity model

Organization chart

Note

Note label

Text

Description

Model name

Int
ID

Int

Task ID

1,1
Whole

Real

Costs

Task

Material
flow

Material
object

Information
flow

Information

1,1

Material flow to

Use resources

Text

Description

Task type

String
Name

Unit of
capacity

Organization type

Type of
resourceString

Capacity

String

Name

Resource
name

Organization
name

Material flow from

Has Belongs to

Information flow to

Information flow from

Group

String
Responsibility

Text

Description
m

From material From information

Value adding

Material
flow task

Suborganization
1,M

Part

Information
flow task

id

id

id

Unique

id

Unique

id

Unique

id

Unique

id

Unique

Use resource

Belongs to

1,1

1,1

1,1

1,1

1,1

1,1

1,1

1,1 1,1

Model name

id

Real
Volume Unit of

Volume

Real
Frequency Unit of

frequency

Real
User value User unit

String

Condition

State

1,1
Send Transition

1,1
Receive

id

Unique

State model

Model name
id

id

Transition name

State name

Task name

Cost driver

Cost driver

FIGURE 6-10 Metamodel of the refined method.

261

A simplified state model was considered adequate to model the life-cycle of
information and material objects. The simplification meant that events and
conditions typical in state models (cf. metamodels in Section 4.3) were excluded.
Instead, the state model was integrated to the activity model through explosion
and polymorphism. Explosion meant that each ‘information’ and ‘material
object’ instance was linked to a state model. Although the cardinality of the
explosion could not be specified in the metamodel the explosion should be
mandatory for ‘information’ and ‘material object’ instances and “floating” state
models should not be possible (i.e. the cardinality of the explosion should be
one-to-one for the source and one-to-many for the target state model). Checking
of cardinality constraints is passive because we wanted to leave unspecified
whether activity models or state models should be created first. This
metamodeling choice also influenced the dependency of polymorphism
structures.

Polymorphism was defined between two techniques: values of the ‘name’
property type characterizing the ‘information’ and ‘material object’ types were
shared with ‘state name’ values. Similarly, ‘task name’ values were shared with
‘transition name’ values. While using the method this method specification
would allow the modeler to refer to existing property values instead of entering
the same values twice or more. As a result, modeling becomes faster and less
error-prone, and model changes are reflected automatically in the tool. Another
possibility would be to refer to the whole information or material object instead
of a single property. This possibility was not used because the tool did not
support it. The polymorphism allows inspection and checking of models. For
example, each transition should be represented for a task in an activity model,
and all states should be required as information or material objects in some
activity model. It must be noted that the polymorphism could not be defined to
be dependent because the explosion cardinality did not expect that either of the
techniques should be used first. Hence, the polymorphism was checked
passively at the user’s request.

Activity modeling was simplified by removing some unused property
types: ‘money’, ‘copy’ and ‘costs’. To enable calculation of delays and costs, the
‘information’ and ‘material objects’ were supposed to be characterized with
volume information. The ‘task’ object type was refined by relating property
types for specifying frequency and user-defined aspects. Although the ISD
effort indicated that error rates could be specified with their own property type,
it was considered to be specific to the cardboard mill only. Hence, user-defined
values were expected to be more flexible in future. Moreover, to specify more
detailed descriptions about activity models a new property type ‘description’
was attached to information and material object types and flows.

The modeling experiences showed that costs are difficult to collect in a
similar manner to other workflow characteristics. Therefore, the cost analysis
was changed totally: instead of adding cost information to individual tasks and
items (i.e. material or information) they were related to resources. The cost
structures were calculated through Activity Based Counting (Morrow 1992).
Because the modeling tools used were not well-suited to accounting, the tool
would export cost data into a spreadsheet. For this purpose, the ‘type of

262

resource’ was supposed to refer to the kind of cost, and the ‘capacity’ to a cost
driver. Information about the resource use of each task could already be
modeled with the method.

To support model review we considered it necessary to show more design
information graphically. Because the tool could not show properties related to
relationship types, the ‘condition’ was moved to the ‘to task’ role type.

In addition, the evaluation suggested changes to the tool. First, the tool
should allow graphical selection of a task chain and transfer it into the analysis
tool. Second, the predefined reports for documenting and checking were
suggested to be improved, enabling the use of passive constraints (e.g.
cardinality of explosion). Alternatively it was suggested to automate passive
checking while transferring the models into the analysis tool. This option was
abandoned because it would slow the transfer of models into the analysis tool.
Third, the numbering of identifiers should be automated.

The method evaluation also allowed improvements in activity modeling,
method related contingencies, and automated analyses. Activity modeling was
considered to be easy to use, its models were understandable, and
communication with end-users improved. As already mentioned, the main
difficulties were related to maintaining task hierarchies and identifying codes
when models changed.

Second, because a priori method selection did not follow any contingency
selection framework, the relevance of method selection criteria could not be
measured. Instead, during method construction the compatibility with earlier
experiences with the logistics data model were emphasized. After all
refinements it was interesting to notice that the refinements included no major
changes which conflicted with the underlying data model. Instead, the original
data model was extended with some behavior-related concepts.

Third, the automated analyses were disappointing when compared with
the original objectives. The analysis reports did not originally allow the
generation of candidate solutions, and the analysis results often looked
doubtful. Maybe the case was too complex for the required analysis, and the
given measuring properties too inaccurate because of the variation in the
process studied. It was therefore suggested that the analyses would be tried out
in smaller, more bounded business systems. Accordingly, principles should be
sought for choosing between alternative workflow scenarios (e.g. product
based, customer based, worst case, etc.).

6.4 Lessons learned

In this chapter we described two method engineering cases. The cases were
carried out as action research studies. The action research method offers
possibilities for learning in three areas (Checkland 1991): the area of an
application, the methodology applied, and the particular ideas promoted. In our
studies the application deals with developing local methods for specific ISD
environments. In Checkland’s (1991) terminology, the methodology denotes the

263

general principles applied in inspecting an application area. Hence, for us this
means method engineering along with related methods and tools such as
metamodeling and metaCASE tools. The ideas promoted are the metamodeling
language constructs and the a posteriori view of ME.

The following subsections discuss the evaluation part of action research.
First, we describe in Section 6.4.1 general findings about local method
development. Since our action research studies were not focused on all aspects
of local method development (like costs or management principles) we shall
only inspect the development of tool-supported methods. Second, we shall
inspect differences between the proposed ideal ME principles and the cases
(Section 6.4.2). Finally, we describe in Section 6.4.3 findings related to the use of
incremental ME principles. Because we also participated in the ISD process,
some findings could be presented about how to develop inter-organizational ISs
in wholesale and improve the delivery systems of a cardboard mill. Our studies,
however, were designed to operate at the ME level, not at the ISD level (cf.
Section 3.3.1). Some general solutions for ISD, however, were already discussed
as part of the cases.

6.4.1 Local method development

The studies show that organizations develop their own methods. In the
wholesale case, the ME effort was targeted to support a specific BPR project.
The mill case included some features characteristic of developing a more
universally applicable method: the consultants wanted to develop a method
which would be independent of object systems, and appropriate for analyzing a
variety of workflows related to logistic ISs. Because the method developed was
intended to be used in all projects the consulting company engaged in, the
second case followed an organization based ME.

Local methods were developed because of the limitations found in the
existing methods used, inadequate tool support, and the lack of knowledge
about other methods. In the wholesale case, the need to distinguish between
organizations involved in the delivery chain and to characterize inter-
organizational processes led to the establishment of the ME project. In the mill
case, the need to automate analyses of workflows necessitated the development
of specific tool functionality and as a by-product allowed the development of a
propriety modeling method. Hence, modeling capabilities were addressed
primarily in the wholesale case, and automated analysis capabilities (i.e. tool
support) were emphasized in the mill case. It should be noted that in both cases
the existence of a specific ISD project clearly influenced how the method
development and evaluation effort was carried out. For example, if the
wholesale company had not been in the middle of a major business process re-
engineering effort, a local method would not have been developed.

The methods developed in the two cases had similarities: they addressed
the modeling of business processes, described material objects or flows, defined
organizational units, and characterized these modeling elements with some
similar properties (e.g. volume, capacity). The main differences between the
methods was the granularity of analysis. The wholesale company tried to

264

understand its order entry and purchasing processes better in relation to its
business environment, to support the move to a two level hierarchy. The mill
case focused on individual workers and aimed to analyze the structures of
tasks. More detailed differences between the methods can be identified by
comparing the metamodels.

Both organizations found the developed method useful: interviews
showed that the method developed was considered to work better than those
used earlier. For example, in the mill case the consultants estimated that with
the methods and tools used earlier, they could perform only half of the
modeling and analysis tasks supported by the engineered method and tool. In
general, models based on the developed method were considered to be easier to
read and understand, to support communication better, and to allowed the
combination and analysis of views of multiple stakeholders, or even of multiple
organizations. Moreover, in the mill the connection of the models to the quality
system was important.

Satisfaction with the developed method does not mean that no problems
existed. In fact, the method refinements clearly showed that the methods had to
be improved. The main difficulties included different interpretations of
conceptual structures and analysis. Most of the effort in method development
related to agreeing and confirming an understanding about the method and tool
functionality. In the mill case, the consultants also considered the objectives for
the engineered method to be too ambitious. Meeting these objectives in turn
required significant resources and time.

Satisfaction with the tool was surprisingly different among user types.
Method engineers considered the metaCASE functionality limited (i.e. all
metamodeling constraints could not be supported). As a result, a lot of time was
consumed while trying to find roundabout ways to build method-tool
companionship. People in the organizations using the tool, however, were
highly satisfied with the tool, although they requested several new features
which did not directly address the method-tool companionship. These included
importing available process maps into the tool (e.g. from the documentation of a
quality system), providing links to external documentation tools, and
improving method-independent reports.

6.4.2 Method engineering

The method engineering process was quite similar in both cases and all ME
tasks were carried out. One reason for the similarities was the tool adaptation
which required detailed method specifications. The similarities in the ME
process were also a consequence of planning the action research, since the ME
process needed to include the a posteriori ME tasks postulated.

During ME, a priori method selection (cf. Section 3.2.1) was made among
relatively few methods, and included methods which were known or had been
used earlier. However, in the second case selection was supported by a
relatively large review of methods (cf. Tolvanen and Lyytinen 1994) and tools
(cf. Lindström and Raitio 1992). During ME neither of the cases applied
contingency frameworks, because such frameworks were not available. Those

265

reviewed were considered to be too broad since they did not help to distinguish
between modeling techniques based on identified characteristics. Similar
observations were also made in Section 3.2.3 while analyzing other ME cases.

The main differences in the ME processes were the metamodeling
languages used, the emphasis on different ME tasks, and the types of
stakeholders involved. First, in the wholesale case the only metamodeling
language applied was that used by the metaCASE tool, whereas in the mill case
the early phases of method development had been carried out with another
metamodeling language (i.e. the ER-based logistics data model). However, here
a metamodel of the activity model method already included in the metaCASE
tool was taken as a starting point during tool adaptation (i.e. reuse of an
existing metamodel).

Second, the use of resources and duration of tasks differed greatly. In the
mill case, the method engineering took more time and resources. One obvious
reason was the objective of the ME project to develop a general purpose
method. In other words, the method was expected to be applicable for solving
logistic problems in other areas too. Moreover, the mill case stressed tool
adaptation because it required implementation of the analysis functionality.
About 1/3 of the resources were spent on tool adaptation, whereas in the
wholesale case the tool adaptation was the least resource-consuming task.

Third, the participation of method users differed in the cases: the IT
personnel of the wholesaler participated actively in the method construction
and evaluation, whereas the personnel of the mill did not directly participate in
the ME project. One reason for the difference was the two-party setting between
the consulting company and the mill.

6.4.3 Principles of incremental method engineering

As the objectives of action research indicated, our interest was to demonstrate
the viability of incremental ME principles. First we analyze whether the
situational methods were possible to describe with meta-data models and the
proposed metamodeling constructs. Second, we analyze whether the a posteriori
view was appropriate as a mechanism of method evaluation and refinement.

6.4.3.1 Modeling situational methods

In both cases, methods were modeled with metamodeling languages embedded
in a metaCASE tool. This was needed to provide modeling tools for the ISD
projects. In the mill case the metamodeling also included ER-based modeling,
but only for outlining the concepts and relationships used in the method.
Moreover, the ER model was used for metamodeling before the selection of the
metaCASE tool.

Not all method knowledge, however, could be fully supported, because of
the limitations in the metamodeling language. These limitations concerned
modeling property types with unique, mandatory, and data type constraints.
Other limitations related to defining that an object must participate in at least
one connection, must have a specific number of instances, and can not
participate in connections which are cyclic. Most limitations were related to

266

integrating modeling techniques: constraints related to complex objects (i.e.
exclusive component objects and aggregated relationships) and polymorphism
structures (i.e. sharing of several property types at a time, and dependency on
other instances) could not be defined.

The proposed metamodeling constructs allowed methods to be specified
more completely than was adapted into the tools. In this sense, they can be
considered sufficient for engineering the methods in the cases. Only one
limitation in capturing method knowledge was found. In both cases a derived
property value had to be specified. An example of the derived data type is
calculating the processing time of a task from its subprocesses. Because this type
of dynamic calculation is difficult to capture into a static data model, this
requirement suggested the use of metamodeling languages other than those
based on semantic data models (see also Section 4.5.3).

It must be emphasized that not all proposed metamodeling constructs
were fully applied since not all possible rules of methods were needed in the
cases. For example, an explosion structure was used (refined method in Figure
6-4) but cardinality of explosions were not used. Similarly not all scopes and
checking modes related to the metamodeling constructs were applied. One
reason for the limited use of scopes may be because of the relatively simple
structure of the methods in the cases, i.e. the fact that they included only a few
modeling techniques. Thus, the viability of every metamodeling construct was
not demonstrated via the metamodels. During ME, however, awareness of
method knowledge which is not specified into metamodels is valuable because
it allows one to understand alternative method configurations and
metamodeling choices.

The limited use of metamodeling constructs also suggests that specific
metamodeling constructs are needed while modeling specific methods. For
example, the requirement for modeling derived data types was not detected
during the modeling of text-book methods (Chapter 4) which were mostly IS
analysis and design methods. In contrast, our case studies required business
modeling methods which often incorporated numerical values.

Although our aim was not to evaluate the metaCASE tool used, their
limitations and capabilities influenced the metamodels. First, because the
metaCASE tool did not support matrix-based representations tool adaptations
were not made for all parts of the method. Second, checking reports allowed us
to overcome limitations of the metamodeling languages through passive
checking. Passively checked metamodeling constructs related to mandatory
properties, unconnected object types, multiplicity of roles, and multiplicity of
types.

6.4.3.2 Refining situational methods

The case studies followed the principles of incremental ME: in addition to
constructing methods we also evaluated their applicability. This evaluation led
to several refinements to the methods initially constructed. This finding
supports our re-evaluation of method use (cf. Section 2.5.4): it seems to be

267

difficult, if not impossible, to construct a situation-dependent method by
following solely a priori tasks of ME.

The requirements for method refinements were obtained by following the
a posteriori steps of ME: collecting experience, analyzing method use, and
improving methods. The reporting of the ME cases followed the three
evaluation mechanisms of incremental ME: 1) type-instance matching, 2)
modeling capabilities, and 3) problem solving capabilities.

Type-instance matching suggested a large number of method refinements.
These dealt with removing less frequently used property types, dividing object
types and classifying relationship types, and creating linkages between types of
the method which can refer to the same model data (instance values). The
analysis of constraints leads to modifying methods in more detail. The changes
introduced influenced all constraints except those dealing with uniqueness,
cardinality, and inclusion. In other words, these constraints were defined
adequately in the a priori constructed methods. It must, however, be noted that
not all constraints could be fully evaluated since they were not allowed in
metamodels. Although this part of the evaluation was carried out by method
engineers, all the refinements were validated with the method users.

The modeling capability evaluation seeks to abstract relevant aspects of
object systems and keep the resulting models consistent. The cases contained
several situations in which methods were considered inadequate to model the
object systems or parts of them. Individual differences were not analyzed,
because only a few users actually modeled with the method: other method
stakeholders were involved in reviewing the models and conducting analyses.
This part of the evaluation proposed new types and related constraints, and
even new modeling techniques. These extensions were partly the same as those
found during type-instance matching.

The checking analysis revealed possibilities to improve the consistency of
models via an integrated and more strictly defined metamodel. Better support
for consistency was achieved by defining complex objects and polymorphism
structures. These refinements decreased the need for manual maintenance and
improved the consistency of models. The evaluation also revealed the need for
derived property type values, and the use of a single tool. These changes,
however, could not be carried out because such method specifications could not
be captured in the metamodels.

The evaluation principles focused on analyzing the role of methods in
solving the business problems. This part of the evaluation was divided into
finding candidate solutions through form conversion, and supporting model
validation by producing documents. During form conversion, new features
relevant for the generation and analysis of design solutions were suggested,
together with new analysis algorithms. In the second case, larger extensions to
the analysis needs were also made, i.e. the addition of Activity Based Counting.
Support for exporting design data and analysis results into external tools were
considered adequate.

The integration and validation of models from different parts of the object
systems required a new modeling technique. Other refinements suggested dealt
with notations and reports: notations were modified by graphically showing

268

information about model data instead of using model related textual reports.
The contents and layout of reports were also changed.

The required method refinements were made into the corresponding
method specifications (i.e. metamodels), or were achieved using the tool (i.e.
checking reports). Not all the required changes, however, could be made
because either the metamodeling language or the tool did not support them. In
this sense, not all suggested method improvements could be taken into use. It
should be noted that none of the required changes could be predicted.
Moreover, because the refinements were found to improve the method, the a
posteriori approach to ME is clearly viable.

Finally, while evaluating the results of action research it must be noted
that the use of incremental ME was limited to one cycle (less than a year). For
example, contingencies in the ISD object system did not change during that
time. Therefore, new method refinements would be needed if the evaluation
were to be carried out again. At the same time, the contribution of individual
evaluation mechanisms would mostly likely be different.

7 CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

This thesis suggests principles that support local method development. The
research is motivated by earlier findings in method research: the majority of ISD
organizations which use methods develop their own variants instead of solely
applying external methods as specified. Organizations, however, lack proven
guidelines to develop or adapt their methods. Though method modeling
languages and customizable modeling tools, such as metaCASE tools, have
become available, there is a paucity of (meta)methods for method development.
Our aim was to systematize a set of local method development principles that
would improve the method engineering process and increase metamodeling
support. Accordingly, this thesis concentrates on principles for engineering
modeling techniques for ISD tools.

The ME principles developed can help organizations develop local
methods and manage changes in modeling techniques. The principles are
founded on extended metamodeling capabilities and on an a posteriori view of
ME. In this view, experiences of method use are utilized to improve methods.
The metamodeling capabilities will be summarized in Section 7.1, and the a
posteriori mechanisms in Section 7.2. Finally, in Section 7.3 we propose
directions for future research in this area, and complementary research topics,
such as the study of implications for building tools and languages for ME.

7.1 Modeling languages for method engineering

The first contribution of the thesis deals with extended support for
metamodeling. Before proposing metamodeling constructs we surveyed
method knowledge and described method-tool companionship. Survey into
method knowledge was needed to understand various types of method
knowledge and explain the focus of method engineering taken in the thesis:

270

modeling conceptual structures behind modeling techniques. The concept of
method-tool companionship was applied to describe how tools can support
method use through abstraction, checking, form conversion and review.
Although we view metamodeling in the context of modeling tools our interest is
on metamodeling. The reason why we have studied metamodels in tools is that
metamodels which do not influence ISD have a limited impact. Conversely,
modeling of ISs is more beneficial if the models can be applied for
implementing ISs. Among the categorical choices in metamodeling languages
we have focused on semantic data models. They are most widely applied in
large metamodeling efforts and as metametamodels of metaCASE tools and
repositories.

Extended support for metamodeling was developed by proposing new
constructs for metamodeling languages. We found a limited set of constructs
which can help method engineers to specify relevant aspects of modeling
techniques. It is clear that unlimited support for all types of methods is
impossible. Unlike with many other metamodeling languages we did not try to
build a language which is as powerful as possible. Rather we sought to balance
power and ease of use so that it can be used with minimal effort but the
language is at the same time powerful enough to model methods. In fact, ME
has the same objective: to develop methods which help users to perceive and
specify relevant aspects of object systems rather than model “everything”.

The examination of metamodeling constructs was carried out by
conducting a content analysis of a chosen sample of the method literature. This
type of an inductive approach has not been generally used in such an extent to
develop metamodeling languages. In all, we analyzed 17 methods consisting of
72 modeling techniques of which 3 methods and 19 modeling techniques are
reported in detail in this thesis. The methods covered different ISD phases
including business modeling, requirements engineering, system analysis and
system design methods. The literature described the concepts, rules, notations
and possible requirements in building tool support for methods. The data was
classified into distinct types allowing us to simplify and systematize conceptual
structures of methods. In our case, the classification of method knowledge was
based on the metamodeling languages supported by metaCASE tools. The
metamodeling approach allowed us to capture and understand method
knowledge and the metaCASE tools allowed building, checking, and querying
on metamodels, as well as to make tool adaptations. Hence, as a by-product of
the analysis, we developed a modeling tool for each method.

The content analysis allowed us to categorize method knowledge and
identify constructs which are needed to model methods more completely. The
metamodeling constructs were divided into those necessary for modeling single
techniques and those needed to integrate multiple techniques. Furthermore, we
identified varying scopes in method name spaces and crafted checking modes
for each construct.

The proposed metamodeling constructs lead us to assess available
metamodeling languages. This assessment revealed that current methodical
support for method modeling is modest. While in recent years some progress
has been made in outlining conceptual and theoretical principles for

271

metamodeling and metamodel based tools (for a survey see Kelly 1997,
Tolvanen et al. 1996) we found that available metamodeling languages do not
provide adequate ME support. Having evolved from general purpose data
models or data modeling languages, existing ME languages are capable of
expressing specific semantic constraints imposed by the business data modeling
domain. Many of the languages promoted for ME are applied on ISD as well
and the required metamodeling constructs are quite different than those needed
in IS modeling. As a result of the assessment, we identified structures of method
knowledge which could not be represented adequately with the studied
metamodeling languages. For example, metamodeling languages offered
limited constructs for modeling interconnected techniques and the identified
scopes of method knowledge were inadequate. In this sense, the content
analysis of method literature contributed to the current understanding of
detailed method knowledge. It revealed several aspects of method knowledge
which have not been identified by the developers of metamodeling languages.
The evaluation also lead us to examine the limitations of semantic data models
as a foundation for metamodeling. With respect to modeling tools, the semantic
data models are powerful in describing static aspects, but poor in describing
dynamic rules applied in modeling techniques.

The results of the evaluation can be applied by researchers and
practitioners alike: developers of metamodeling languages can use them for
analyzing and extending their languages; tool vendors can apply them for
extending their metametamodel based tools; and method engineers can use
them to identify method knowledge which is neglected. Extended
metamodeling constructs allow organizations to better specify, understand,
analyze and refine methods.

7.2 Experience based method refinements

The second contribution of the thesis lies in an improved understanding of the
method engineering process. These improvements were obtained by extending
method engineering to cover method evaluation and refinement. The proposed
incremental approach does not cover only the selection and construction of
methods for a given situation (a priori), but also the evaluation of the
applicability of methods and method improvements (a posteriori). Earlier
research into the ME process has so far focused on constructing methods in an
“one -shot” manner, as described in Sections 3.2 and 5.2. We however regard ME
as an incremental process. We believe that the method is rarely defined at once,
and written down as a complete metamodel. The process of arriving at a
method is fragmented, evolutionary and largely intuitive. Though we can
identify some refined pieces of ISD methods, the reality of ME tends to be
meandering towards a solution, as situations change and stakeholders learn
more. This means that any ME approach focusing only on the initial method
construction is incomplete and ME principles need to be extended to cover
improvements of the methods based on their use.

272

The incremental approach complements ME principles by proposing steps
for a posteriori ME. These steps deal with collecting, analyzing, refining, and
sharing methodical knowledge. The steps are based on explicit metamodels as
well as on decisions and rationale behind method development. Metamodels
are needed to understand methods in use and method refinements, and method
rationale is needed to describe why methods were specified as they were.
Throughout these steps we applied three mechanisms of method evaluation and
refinement. Like the metamodeling constructs, these mechanisms examine
modeling techniques in the context of modeling tools. The first mechanism —
the type-instance matching — compares differences between a modeling
technique’s intended use (as seen from the metamodel) and actual use (as seen
from models). The second mechanism — analysis of modeling power —
examines the capability of the method to represent the desired aspects of the
object system in models and to maintain the consistency of the models. The
third mechanism — the analysis of the role of a method in problem solving —
focuses on a method’s capability to generate alternative solutions and support
subsequent decision making. The latter two mechanisms address experiences
and learning of method stakeholders, such as designers, end-users, domain
experts, ISD tool experts, and method engineers.

These mechanisms are suggested so that they can focus on method aspects
which need refinement. As a consequence, if the analysis phase suggests a
method modification, it reveals that the a priori constructed method was not
fully applicable. The refinements extend, modify or remove parts of the method
knowledge. The refinements can be gradual and small (in comparison with
other method development strategies). This explains the title of the proposed
approach. The term gradual suggests that method refinements are made to the
currently used method, rather than by selecting a new method. Small changes
are a consequence of gradual changes; applicability is achieved by modifying
parts of the method.

The incremental approach was examined through an action research
intervention in two cases. The cases covered all the major steps of ME. Our
discussion focused primarily on the a posteriori view and method evaluation
mechanisms. The evaluation led to several refinements of the constructed
methods. The refinements added, modified, and removed parts of method
knowledge. Through a tool implementation the new method was taken into use.
This finding provides evidence that a priori method construction alone does not
always provide adequate support. In the cases, the suggested identification
principles and method improvement mechanisms were found to be useful. The
metamodeling approach used also revealed some extensions to the
metamodeling constructs. Moreover, the use of metamodels was found to be
useful while specifying local methods and analyzing their evolution. In this
sense, the metamodels supported not only the local method development, but
also the action research studies of detailed method knowledge and its evolution.

During the action research interventions the method refinements were
performed only once. An incremental approach to method engineering,
however, would necessitate several “reflection” cycles. Method engineers must
obtain data from several situations to yield a metamodel repository with

273

information about the applicability of methods (and their parts). With effective
use of this incremental approach, methods can be constructed and improved
based on their demonstrated ability to support specific situational factors.

The ME principles developed can be applied in an organization which is
developing its own methods and needs methodical guidelines. Moreover, the
principles of incremental ME are suitable not only for local method
development, but also for development of standardized methods (as shown in
case B).

7.3 Directions for future research

In reflecting on the research questions addressed, we observed several
interesting research topics. These would allow us to further evaluate and
expand the findings of this thesis.

For any modeling language, functionality and usability form central
issues: ME languages are no exception. Future research on ME languages
should concentrate on these aspects, either by extending existing ME languages
or by creating new ones. With respect to the functionality aspect, the sufficiency
of the metamodeling constructs could be analyzed by modeling more methods.
The selected sample should include other types of methods than those modeled
here. The sufficiency of the proposed metamodeling constructs can also be
examined by modeling organizations’ in-house methods, rather than methods
described in the literature. These examinations can confirm (or raise doubts
about) the relevancy of the proposed metamodeling constructs, and most likely
find new constructs.

The proposed metamodeling constructs can be used to evaluate other
metamodeling approaches. They can be used as a set of requirements to develop
new metamodeling languages, or extend existing ones. Research on
metamodeling should be extended to cover other types of method knowledge,
in addition to the conceptual structures behind modeling techniques. Candidate
types of method knowledge to be modeled include processes, participation, and
decision making.

When analyzing the functionality of a metamodeling language, its
usability should not be forgotten. This suggests investigating the use of ME
languages using different research methods. In fact, to proceed in ME research
we need empirical studies about the use of metamodeling more than proposals
of new metamodeling languages. Surveys and field studies must be made to
analyze what metamodeling languages are used in practice; laboratory studies
are needed to investigate user preferences for different visual representational
paradigms (e.g. Kelly and Rossi 1997); and case studies are needed to assess the
usability of metamodeling languages in a ME project.

Empirical research is also relevant to the study of the ME process. Because
ME is a relatively new research field, complementary research efforts and the
use of various research methods are needed to improve the quality of research
conclusions (see Tolvanen et al. 1996). As pointed out in this thesis, more case

274

studies and action research are needed to analyze local method development in
detail. These research methods should be applied to examine what factors
contributed to success or failure in local method development, how frequently
and to what extent methods are changed, and how methods evolve. These
questions presuppose longitudinal research efforts, as well as close interaction
between method use and method development situations. In addition to
longitudinal studies, larger scale ME efforts, in terms of the number of
stakeholders and method size, should be inspected. Studies should also address
methods other than business modeling, apply different metamodeling
languages, and implement method-tool companionship with different
metaCASE tools.

Within empirical research, other research methods, such as field studies
and surveys, must be used. Although several surveys of method use and to
some extent also of method development have been performed, there is still a
need for new ones. One reason is that existing studies have obtained different
results, and several key questions of ME remain unanswered. Surveys should
analyze how common in-house methods are, and whether stakeholders are
satisfied with local methods. Field studies allow the examination of the ME
process in more detail. They should examine the circumstances under which
local methods are developed, whether the ME process consists of “radical” or
incremental changes, and how ME projects are organized and managed.

Finally, the incremental ME principles should be taken into account while
developing metamodeling languages and metaCASE tools. In addition to
extending metamodeling languages with the proposed constructs, they should
also be applied in metaCASE technology. MetaCASE tools should offer
functionality to modify and version metamodels, to update models when a
method already in use is changed, to support the collection and structuring of
experiences about the use of the method, and to automate the mechanisms of
method evaluation. In particular, metrics for type-instance matching should be
implemented into metaCASE tools. Design rationale models should also be
taken into use for recording and explaining metamodeling decisions. Tool
support for these functionalities would allow the proposed principles of
incremental ME to be used to full advantage.

275

REFERENCES

Aaen, I., (1992) CASE tool Bootstrapping - how little strokes fell great oaks. In:

Next Generation CASE tools (eds. K. Lyytinen, V.-P. Tahvanainen), IOS Press,
Amsterdam, Netherlands, pp. 8-17.

Aaen, I., Siltanen, A., S� rensen, C., Tahvanainen, V.-P., (1992) A Tale of Two
Countries - CASE Experiences and Expectations. In: The Impact of Computer-
Supported Technologies on Information Systems Development, (eds. Kendall et
al.) Elsevier North-Holland, pp. 61-94.

Aalto, J.-M., (1993) Experiencies on Applying OMT to Large Scale Systems. In:
Proceedings of the seminar on Conceptual Modeling and Object-Oriented
Programming, (eds. A. Lehtola, J., Jokiniemi), Finnish Artificial Intelligence
Society, pp. 39-47.

Aalto, J.-M., Jaaksi, A., (1994) Object-Oriented Development of Interactive
Systems with OMT++. Proceedings of Technology of Object-Oriented Languages
and Systems (TOOLS 14) (eds. R. Ege, M. Singh, B. Mayer), Prentice-Hall, pp.
205-218.

Ahituv, N., (1987) A metamodel of information flow: a tool to support
information systems theory, Communications of the ACM 30(9), pp.781-791.

Alderson, A., (1991) Meta-CASE Technology. In: Proceedings of European
Symposium on Software development environments and CASE technology (eds. A.
Endres, H. Weber), Springer-Verlag, No. 509, pp. 81-91.

Alegic, S., (1988) Object-Oriented Database Programming. Springer-Verlag, New
York.

Andersen Consulting, (1991) Foundation-Plan/1: Object access and design
(version 1.1).

Argyris, C., Schön, D., (1978) Organizational Learning, A theory of action
perspective. Addison-Wesley.

Armense, P., Bandinelli, S., Ghezzi, C., Morzenti, A., (1993) A survey and
assessment of software process representation formalism, International
Journal of Software Engineering and Knowledge Engineering, Vol. 3, No. 3, pp.
401-426.

Auramäki, E., Leppänen, M., Savolainen, V., (1987) Universal framework for
information activities. Data Base, Fall/Winter, pp. 11-20.

Avison, D., (1996) Information Systems Development: A Broader Perspective.
In: Proceedings of the IFIP TC8 Working Conference on Method Engineering:
Principles of method construction and tool support (eds. S. Brinkkemper, K.
Lyytinen, R. Welke), Chapman-Hall, London, pp. 263-277.

Avison, D., Wood-Harper, T., (1990) Multiview - an exploration in information
systems development. McGraw-Hill, Maidenhead.

Awad, M., Kuusela, J., Ziegler, J., (1996) Object-Oriented Technology for Real-Time
Systems - A Practical Approach Using OMT and Fusion, Prentice-Hall.

Baskerville, R., (1996) Structural Artifacts in Method Engineering: The Security
Imperative. In: Proceedings of the IFIP TC8 Working Conference on Method
Engineering: Principles of method construction and tool support (eds. S.
Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain, pp. 8-
28.

276

Baskerville, R., Travis, J., Truex, D., (1992) Systems Without Method: The
Impact of New Technologies on Information Systems Development Projects.
In: The Impact of Computer Supported Technologies on Information Systems
Development. (eds K. Kendall, K. Lyytinen and J. DeGross), IFIP Transactions
A8, North-Holland, pp. 241-269.

Baskerville, R., Wood-Harper, T., (1996) A critical perspective on action research
as a method for information systems research. Journal of Information
Technology, July.

Batani, C., Lenzerini, M., Navathe, B., (1992) Conceptual database design: An entity
relationship approach. Benjamin-Cummings Publishing Company, Redwood
City.

Benjamin, R., Blunt, J., (1992) Critical IT Issues: The Next Ten Years. Sloan
Management Review, Summer, pp. 7-19.

Bennetts, P., Wood-Harper, T., (1996) A traditional methodology: Its context
and future. In: Lessons learned from the use of methodologies (Proceedings of the
4th Conference on Information System Methodologies), (eds. N. Jayaratna,
B. Fitzgerald), British Computer Society, pp. 97-106.

Bergsten, P., Bubenko Jr, J., Dahl, R., Gustafsson, M., Johansson, (1989) L.-Å.,
RAMATIC - a CASE shell for implementation of specific CASE tools.
TEMPORA report T6.1, SISU, Stockholm.

Bergstra, J., Jonkers, H., Obbink, J., (1985) A software development model for
method engineering. ESPRIT´84: Status report of ongoing work (eds. J.
Roukens, J. Renuart), Elsevier Science Publishers B.V., North-Holland.

Bidgood, T., Jelley, B., (1991) Modeling corporate information needs: fresh
approaches to the information architecture. Journal of Strategic Information
Systems, Vol. 1, No. 1.

Bititci, U., Carrie, A.S., (1990) Information material flow mapping. Logistics
Information Management, March, pp. 31-36.

Blum, B., (1994) A taxonomy of software development methods. Communications
of the ACM, Vol. 37, No. 11, pp. 82-94.

Boehm, B.W., Papaccio, P.N., (1988) Understanding and Controlling Software
Costs. IEEE Transactions on Software Engineering, Vol. 14, 10 (October), pp.
1462-1477.

Bommel, P. van, ter Hofstede, A. H. M., van der Weide, Th.P., (1991) Semantics
and verification of object-role models, Information Systems 16(5), pp. 471-495.

Booch, G., (1991) Object-Oriented Desing with Applications. The Benjamin/
Cummings Publishing Company Inc., Redwood City.

Booch, G., (1994) Object-Oriented Analysis and Design with Applications,
Benjamin/Gummings Publishing Company Inc.

Booch, G., Jacobson, I., Rumbaugh, J., (1996) Unified Modeling Language (version
0.9), Rational Software Corporation.

Booch, G., Jacobson, I., Rumbaugh, J., (1997) Unified Modeling Language: version
1.0, Rational Software Corporation.

Booch, G., Rumbaugh, J., (1995) Unified Method for Object-Oriented Development,
Documentation Set (version 0.8), Rational Software Corporation.

Brinkkemper, S., (1990) Formalisation of Information Systems Modelling. Thesis
Publishers.

277

Brinkkemper, S., (1996) Method engineering: Engineering of information
systems development methods and tools. Information and Software
Technology, 38, pp. 275-280.

Brinkkemper, S., de Lange, M., Looman, R., van der Steen, F.H.G.C., (1989) On
the derivation of method companionship by metamodelling. In: Proceedings
of CASE’89, Third International Workshop On Computer-Aided Software
Engineering, London, July 17-21, 1989 (ed. J. Jenkins), IEEE Computer
Society Press, pp. 266-286.

Brodie, M., (1984) On the development of data models. Perspectives from artificial
intelligence, databases, and programming languages (eds. M. Brodie, J.
Mylopoulos,J. Schmidth), Springer-Verlag, pp. 19-47.

Bronts, G., Brouwer, S., Martens, C., Proper, H., (1995) A unifying object role
modelling theory, Information Systems 20(3), pp. 213-235.

Brooks, F., (1975) The mythical man-month: Essays on software engineering. Addison
Wesley Publishing Company.

Bubenko jr, J., (1986) Information System Methodologies -A Research View. In:
Information System Design Methodologies: Improving the Practise. Proceeding of
the IFIP WG 8.1 Working Conference, Noordwijkerhout, the Netherlands, 5-
7 may, 1986. (eds. T.W. Olle, H.G. Sol, A.A. Verrinj-Stuart) North Holland
Publishing Company, Amsterdam, pp. 289-318.

Bubenko jr, J., (1988) Selecting a Strategy for Computer-Aided Software
Engineering (CASE). SYSLAB-report Nr. 59, University of Stockholm,
Sweden.

Bubenko, J., Langerfors, B., S� lvberg, A., (eds.) (1971) Computer-Aided
Information Systems Analysis and Design, Studentlitteratur, Lund.

Bubenko, J., Wangler, B., (1992) Research directions in conceptual specification
development. In: Conceptual Modeling, Databases and CASE: An Integrated view
of Information System Development (eds. P. Loucopoulos, R. Zicari), John
Wiley, New York.

Buchanan, D., Boddy, D., McCalman, J., (1988) Getting in, getting on, getting
out and betting back. In: Doing Research in Organizations (ed. A. Bryman),
Routledge.

Cameron, J., (1989) JSP&JSD: The Jackson approach to software development (2nd
edition), IEEE Computer Society Press.

CASE Outlook (1989) Where Do Repositories Come From? CASE Outlook, 4, pp.
20-29.

CCTA (Central Computer and Telecommunication agency) (1995) SSADM4+:
reference manual, NCC Blackwell.

CDIF (1997): http://www.cdif.org/
Charette, R.N., (1989) Software Engineering Risk Analysis and Management,

Intertext Publications, McGraw-Hill Book Company.
Checkland, P. B., (1981) Systems Thinking, Systems Practice, J. Wiley, New York.
Checkland, P., (1991) From framework through experience to learning: the

essential nature of action research. Information systems research: contemporary
approaches and emergent traditions (eds. H.E. Nissen, H.K. Klein, R.
Hircschheim), Elsevier Science Publishers B.V, North-Holland, pp. 397-403.

278

Chen, M., (1988) The integration of organization and information system modeling: a
metasystem approach to the generation of group decision support systems and
computer-aided software engineering. Dissertation, University of Arizona.

Chen, M., Nunamaker, J.F., Weber, E.S., (1989) Computer-aided software
engineering: present status and future directions. Data Base, Spring, pp. 7-13.

Chen, P., (1976) The entity-relationship model - toward a unify view of data.
ACM Transactions on Database Systems, 1, 1, pp. 9-36.

Chikofsky, E., (1988) Software Technology People Can Really Use. IEEE
Software, March, pp. 8-10.

Chikofsky, E., Rubenstein, B., (1988) CASE: Reliability engineering for
information systems. IEEE Software, March, pp. 11-16.

Ciborra, C.U., (1987) Research agenda for a transaction costs approach to
information systems. In: Critical Issues in Information Systems Reseach (eds.
R.J. Boland, R.A. Hirschheim), John Wiley & Sons Ltd.

Clemons, E., Row, M., (1991) Sustaining IT Advantage: The Role of Structural
Differences. MIS Quaterly, September, pp. 275–292.

Coad, P., Yourdon, E., (1991a) Object-Oriented Analysis. Yourdon Press, Prentice-
Hall, Englewood Cliffs, New Jersey.

Coad, P., Yourdon, E., (1991b) Object-Oriented Design. Yourdon Press, Prentice-
Hall, Englewood Cliffs, New Jersey.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremes,
P., (1994) Object-Oriented Development - The Fusion Method. Prentice-Hall,
Englewood-Cliffs.

Conway, B., Hunter, R., Light, M., (1995) The AD Management Continuum:
Integrated Methods, Process and Project Management, Gartner Group, Strategic
Analysis Report, R-480-127.

Cotterman, W., Senn, J. (eds) (1992) Challenges and strategies for research in
system development, John Wiley & Sons Ltd.

Cronholm, S., Goldkuhl, G., (1994) Meanings and motivates of method
customization in CASE environments - observations and categorizations
from an empirical study. In: Proceedings of the 5th Workshop on the Next
Generation of CASE Tools, (eds. B. Theodoulidis), University of Twente, pp.
67-79.

Curtis, B., (1992) The CASE process. Proceedings of the IFIP WG 8.1 Working
Conference on Impact of Computer Supported Techniques on Information Systems
Development. pp. 333-343.

Curtis, B., Kellner, M., Over, J., (1992) Process modeling, Communications of the
ACM, Vol. 35, No. 9, pp. 75-90.

Curtis, B., Krasner, H., Iscoe, N., (1988) A field study of the software design
process for large systems. Communications of the ACM, 31, 11, pp. 1268-1287.

Danzinger, M., Haynes, (1989) P., Managing the CASE environment, Journal of
Systems Management, Vol. 40, 5, pp. 29-32.

Davenport, T.H., Eccles, R.G., Prusak, L., (1992) Information Politics. Sloan
Management Review, Fall, pp. 53-65.

Davenport, T.H., Short, J.E., (1990) The New Industrial Engineering:
Information Technology and Business Process Redesign. Sloan Management
Review, Summer, pp. 11-27.

279

Davis, F., (1989) Perceived usefulness, perceived easy of use, and user
acceptance of information technology, MIS Quaterly, vol. 13, 3, pp. 319-339.

Davis, G. B., Collins, R. W., Eierman, M., Nance, W. D., (1991) Conceptual Model
For Research On Knowledge Work. University of Minnesota, Minneapolis MN
55455, MISRC-WP-91-10.

Davis, G., Olson, M., (1985) Management Information Systems: Conceptual
Foundations, Structure and Development. McGraw-Hill, New York.

Davis, G.B., (1982) Strategies for information requirements determination. IBM
Systems Journal, Vol. 21, No. 1, pp. 4-30.

De Troyer, M., Meersman, R., Ponsaert, F., (1984) RIDL User Guide, International
Centre for Information Analysis Services, Control Data Belgium, Brussels,
Belgium.

DeMarco, T., (1979) Structured Analysis and Systems Specification. Englewood
Cliffs, N.J., Prentice-Hall.

Dur, R., (1992) Business Reengineering in Information Intensive Organizations.
Dissertation, the Netherlands.

Earl, M., (1989) Strategies for Information Technology, Prentice-Hall.
Ebert, J., Süttenbach, R., (1997) An OMT Metamodel, Research report 13/97,

Institut für Informatik, Universität Koblenz -Landau.
Ebert, J., Süttenbach, R., Uhe, I., (1996) MetaCASE in practice: A Case for KOGGE,

Research report 22/96, Institut für Informatik, Universität Koblenz -Landau.
Elmasri, R., Weeldreyer, J., Hevner, A, (1985) The category concept: an

extension to the entity-relationship model, Data and Knowledge Engineering,
Vol. 1, pp. 75-116.

Embley, D., Kurtz, D., Woodfield, S., (1992) Object Oriented Systems Analysis, A
model-driven approach, Yourdon Press, Prentice-Hall, Englewood Cliffs.

Essink, L., (1988) A conceptual framework for information systems
development methodologies. In: Information Technology for Organizational
Systems (eds. Bullinger et al.) Elsevier-Science Publishers B.V, pp. 354-362.

Eynde Van, D., Bledsoe, J., (1990) The changing practice of organization
development, Leadership and organization development journal, Vol. 11, No. 2,
pp. 25-30.

FIPS, (1993a) Integration definition for function modeling (IDEF0), Federal
Information Processing Standards Publication, 183 (FIPS 183).

FIPS, (1993b) Integration definition for function modeling (IDEF1X), Federal
Information Processing Standards Publication, 184 (FIPS 183).

Firesmith, D., Henderson-Sellers, B., Graham, I., Page-Jones, M., (1996) OPEN
Modeling Language (OML) Reference Manual, OPEN Consortium.

Fitzgerald, B., (1995) The use of system development methods: a survey. Paper ref
9/95, University College Cork.

Fitzgerald, B., (1996) Formalized systems development methodologies: a critical
perspective. Information systems journal, 6, pp. 3-23.

Fitzgerald, G., (1991) Validating new information systems techniques: a
retrospective analysis. In: Information Systems Research: Contemporary
Approaches and Emergent Traditions (eds. H.-E. Nissen, H.K. Klein, R.
Hirschheim), Elsevier Science Publishers B.V, pp. 657-672.

Flood, R., (1993) Beyond TQM, Wiley, Chichester.

280

Floyd, C., (1987) Outline of the paradigm change in software engineering.
Computers and Democracy: A Scandinavian Challenge (eds. G. Bjerknes, P. Ehn,
M. King) Avebury Gower, Brookfield Vermont.

Flynn, D., Goleniewska, E., (1993) A survey of the use of strategic information
systems planning approaches in UK organizations. Journal of Strategic
Information Systems, Vol 2, No 4, pp. 292-319.

Forte, G., Norman, R.J., (1992) A self-assessment by the software engineering
community. Communications of the ACM, Vol. 35, No. 4 (April), pp. 28-32.

Fraser, M., Kumar, K., Vaishnavi, V., (1991) Informal and formal requirements
specification languages; Bridging the gap. IEEE Transactions on Software
Engineering, 17, 5, pp. 454-466.

Friedman, A., Cornford, D., (1989) Computer Systems Development: History,
Organization and Implementation. John Wiley & Sons Ltd.

Frost, S., (1994) The Select perspective: Extending Rumbaugh’s OMT for client/server
system development. Select Software Tools.

Galliers, R.D., (1985) In search of a paradigm for information systems research.
Research methods in information systems (eds. E. Mumford, R. Hirschheim, G.
Fitzgerald, A.T. Wood-Harper), Elsevier Science Publishers, North-Holland,
pp. 281-297.

Galliers, R.D., (1992) Choosing Information Systems Research Approaches.
Information Systems Research: Issues, methods and practical guidelines (ed. R.
Galliers), Blackwell Scientific Publications, pp. 144-162.

Galliers, R.D., Land, F.F., (1987) Choosing Appropriate Information Systems
Research Methodologies, Communications of the ACM, Vol. 30, 11, pp. 900-
902.

Gane, C., Sarson, T., (1979) Structured Systems Analysis: Tools and Techniques,
Prentice Hall, Englewood Cliffs, New Jersey.

Gigch van, J.P., (1991) System design modeling and metamodeling. Plenum Press,
New York.

Gladden, G.R., (1982) Stop the life cycle, I want to get off. Software Engineering
Notes, 7, 2, pp. 35-39.

Goldkuhl, G., (1989) Datasystem och verksamhetsutveckling (in Swedish). Intention.
Goldkuhl, G., (1990) Kontextuell verksamhetsanalys med handlingsgrafer (in

Swedish), Intention AB.
Goldkuhl, G., (1993) Verksamhets utveckla datasystem. Intention (in Swedish),

Affärslitteratur AB, Linköping.
Goldkuhl, G., (1992) Contextual activity modeling of information systems. In:

Proceeding of the Third International Working Conference on Dynamic Modelling
of Information Systems, Noordwijkerhout, June 9-10.

Goldkuhl, G., Cronholm, S., (1993) Customizable CASE Environments: A
Framework for Design and Evaluation, In: Proceedings of COPE IT’93 /
NordData.

Goldkuhl, G., Cronholm, S., Krysander, C., (1992) Adaptation of CASE tools to
different systems development methods. In: Proceedings of 15th IRIS, (eds. G.
Bjerknes, T. Bratteteig, K. Kautz), Department of Informatics, University of
Oslo, pp. 142-156.

281

Grant, D., Ngwenyama, O., Klein, H., (1992) Validating ISD Methodologies Within
The Organizational Context: An Action Research Case Study. Working paper
series, Binghampton, State University of New York, 92-215.

Griethuysen, J., (1982) Concepts and terminology for the conceptual schema and the
information base. Publication nr. ISO/TC97/SC5-N695.

Grundy, J., (1993) Multiple textual and graphical views for interactive software
development environments, Dissertation, University of Auckland.

Grundy, J., Venable, J., (1996) Towards an integrated environment for method
engineering. Proceedings of the IFIP TC8 Working Conference on Method
Engineering: Principles of method construction and tool support (eds. S.
Brinkkemper, K. Lyytinen, R. Welke), Chapman-Hall, London, pp. 45-62.

Hackathorn, R., Karimi, J., (1988) A Framework for comparing information
engineering methods. MIS Quaterly, June.

Hammer, M., Champy, J., (1993) Reengineering the Corporation- A manifesto for
business revolution. Nicholas Brealey publishing Ltd., London.

Hardy, C., Edwards, H., Thompson, J., (1996) The unification of method
engineering approaches. In: Lessons learned from the use of methodologies
(Proceedings of the 4th Conference on Information System Methodologies),
(eds. N. Jayaratna, B. Fitzgerald), British Computer Society, pp. 439-450.

Hardy, C., Thompson, J., Edwards, H., (1995) The use, limitations and
customization of structured systems development methods in the United
Kingdom. Information and Software Technology, 37 (9), pp. 467-477.

Harel, D., (1988) On visual formalism, Communications of the ACM, 31, 5 (May),
pp. 514-530.

Harmsen, F., (1997) Situational Method Engineering. Dissertation, Moret Ernst &
Young Management Consultants, the Netherlands.

Harmsen, F., Brinkkemper, S., Oei, H., (1994a) A language and tool for the
engineering of situational methods for information systems development,
Proceeding of the 4th International Conference Information Systems Development
(ISD’94), (eds. J. Zupancic, S. Wrycza), Moderna Organizacija, pp. 206-214.

Harmsen, F., Brinkkemper, S., Oei, H., (1994b) Situational Method Engineering
for Information System Project Approaches. In: Methods and Associated Tools
for the Information Systems Life Cycle (A-55), (A. Verrijn-Stuart, T. Olle),
Elsevier Science B.V., North-Holland.

Harmsen, F., Saeki, M., (1996) Comparison of four method engineering
languages. In: Proceedings of the IFIP TC8 Working Conference on Method
Engineering: Principles of method construction and tool support (eds. S.
Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain, pp.
209-231.

Harrington, H.J., (1991) Business Process Improvement. McGraw-Hill, Inc., USA.
Henderson-Sellers, B., (1992) A book of object-oriented knowledge : object-oriented

analysis, design and implementation : a new approach to software engineering
Prentice-Hall.

Henderson-Sellers, B., Bulthuis, A., (1996a) COMMA: Sample metamodels.
Report on Object-Oriented Analysis and Design, JOOP, Nov-Dec, pp. 44-48.

Henderson-Sellers, B., Bulthuis, A., (1996b) The COMMA Project: Final report.
COTAR technical report 95/35, University of Techology, Sydney.

282

Henderson-Sellers, B., Edwards, J., (1994) The working object — Object-oriented
software engineering: methods and management. Prentice-Hall.

Heym, M., (1993) Methoden-Engineering Spezification und Integration von
Entwicklungsmethoden für Informationssysteme (in German), Dissertation,
Hochschule St.Gallen, Switzerland.

Heym, M., Österle, H., (1992) A Reference Model of Information Systems
Development. In: The Impact of Computer Supported Technologies in Information
Systems Development (eds. K.E. Kendall, K. Lyytinen, J.I. DeGross),
Amsterdam, North-Holland, pp. 215-240.

Heym, M., Österle, H., (1993) Computer -aided methodology engineering.
Information and Software Technology, Vol. 35, 6/7 (June/July), pp. 345-354.

Hidding, G., Gwendolyn, J., Freund, M., Joseph, J., (1993) Modeling Large
Processes with Task Packages, Workshop on Modeling in the Large, AAAI
Conference, Washington, D.C.

Hillegersberg van, J., (1997) Metamodeling-based integration of object-oriented
systems development. Dissertation, Thesis Publishers, Amsterdam.

Hillegersberg van, J., Kumar, K., Welke, R.J., (1998) Using metamodeling to
analyze the fit of object-oriented methods to languages. Proceedings of the 31st
Hawaii International Conference on System Sciences, Volume V, (eds. R.
Blanning, D. King) IEEE Computer Society, pp. 323-332.

Hobby, J., (1993) Spending on case will raise. Computing, September.
Hochstettler, W., (1986) A model for supporting multiple software engineering

methods in a software environment, Dissertation, The Ohio State University.
Hoef van de, R., Harmsen, F., (1995) Quality requirements for situational

methods. In: Proceedings of the 6th Next Generation of CASE tools (ed. G. Grosz),
Jyväskylä, Finland.

Hofstede ter, A., (1993) Information modeling in data intesive domains. Dissertation,
University of Nijmegen, the Netherlands.

Hofstede ter, A., Proper, H., Weide van der, P., (1993) Formal definition of a
conceptual language for the description and manipulation of information
models, Information Systems, Vol. 18, 7, pp. 489-523.

Hofstede ter, A., Verhoef, T., (1996) Meta-CASE: Is the game worth the candle?,
Information Systems Journal, 6, pp. 41-68.

Hofstede, A. H. M. ter, Nieuwland, E. R., (1993) Task structure semantics
through process algebra, Software Engineering Journal, (8), pp.14-20.

Hofstede, A. H. M. ter, van der Weide, Th. P., (1993) Expressiveness in data
modeling, Data & Knowledge Engineering (10), pp. 65-100.

Hong, S., van den Goor, G., Brinkkemper, S., (1993) A Formal Approach to the
Comparison of Object-Oriented Analysis and Design Methodologies. In:
Proceedings of the 26th Hawaii International Conference on Systems Science (eds.
J. Nunamaker, R. Sprague), Vol. 4., IEEE Computer Society Press, Los
Alamitos.

Hopkins, T., Horan, B., (1995) Smalltalk : an introduction to application development
using VisualWorks, Prentice Hall, London.

Huber, G., (1991) Organizational learning: the contributing process and the
literatures. Organization Science, Vol. 2, No. 1., pp. 88-115.

283

Hughes, J., Reviron, E., (1996) Selection and evaluation of information system
development methodologies: The gap between the theory and practice. In:
Lessons learned from the use of methodologies (Proceedings of the 4th
Conference on Information System Methodologies), (eds. N. Jayaratna, B.
Fitzgerald), British Computer Society, pp. 309-319.

Hull, R., King, R., (1987) Semantic Database Modeling Survey, Applications,
and Research Issues, ACM Computing surveys 19(3), pp. 201-260.

Humphrey, W.S., (1988) Characterizing the Software Process: A Maturity
Framework. IEEE Software, March, pp. 73-79.

Humphrey, W.S., (1989) Managing the software process. The SEI series in Software
Engineering. Addison-Wesley.

IBM (1984) Business Systems Planning — Information Systems Planning Guide.
Application Manual, IBM Corporation, July.

IFPUG (1994) International Function Point Users Group: Function Point Counting
Practices Manua”, Release 4.0, IFPUG Standards.

Iivari, J., (1992) Relationships, aggregations and complex objects. In: Information
Modeling and Knowledge Bases III: Foundations, Theory and Applications (eds. S.
Ohsuga, H. Kangassalo, H. Jaakkola, K. Hori, N. Yonezaki), IOS Press, pp.
141-159.

Iivari, J., Kerola P., (1983) A sociocybernetic framework for the feature analysis
of information systems development methodologies. In: Information Systems
Development Methodologies: A Feature Analysis (eds. T.W. Olle. H.G. Sol, C.J.
Tully), Elsevier Science Publishers B.V., North-Holland.

Iona, (1997) Orbix Programming Guide. IONA Technologies PLC.
Isakowitz, T., Stohr, E., Balasubramanian, P, (1995) RMM: A methodology for

structured hypermedia design. Communications of the ACM, Vol. 38, 8, pp.
34-44.

Isazadeh, H., Lamb, D., (1997) A Comparative Review of MetaCASE Tools. In:
Proceedings of the Information System Development Conference, Plenum Press.

ISO (1990) ISO-IEC 10027. Information technology - Information Resource
Dictionary System (IRDS) - Framework, ISO/IEC International standard.

ISO, (1991) EXPRESS Language Reference Manual, ISO TC184/SC4/WG5,
Document N14, Owner: Philip Spiby, CADDETC, 171 Woodhouse Lane,
Leeds LS2 3AR, UK.

Jaaksi, A., (1997) Object-oriented development of interactive systems, Dissertation,
Tampere University of Technology, Publications 201, Tampere, Finland.

Jackson, M.A. (1976) Constructive Methods of Program Design. In: Proceedings of
First Conference of the European Cooperation in Informatics, Vol. 44.

Jacobson, I., (1992) Object-Oriented Software Engineering: A Use Case Driven
Approach. ACM Press, Addison-Wesley.

Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S., (1995)
Concept Base: A deductive object base for meta data management. Journal
for intelligent information systems, 4, 2, pp. 167-192.

Jarke, M., Pohl, K., Rolland, C., Schmitt, J.-R. (1994) Experience-Based Method
Evaluation and Improvement: A process modeling approach, In: Proceedings
of the IFIP WG8.1 Working Conference CRIS’94, (eds. Olle, T.W., Verrijn Stuart,
A.A.), North-Holland Publishers, Amsterdam, pp. 1-27.

284

Jarke, M., Pohl, K., Weidenhaupt, K., Lyytinen, K., Marttiin, P., Tolvanen, J.-P.,
Papazoglou, M., (1998) Meta modeling: A formal basis for interoperability
and adaptability. In: Information Systems Interoperability (B. Krämer, M.
Papazoglou), John Wiley Research Science Press.

Jayaratna, N., (1994) Understanding and Evaluating Methodologies: NIMSAD, A
Systemic Approach, McGraw-Hill.

Jeffrey, D.R., (1987) Software engineering productivity models for management
information system development, In: Critical Issues in Information Systems
Research (eds. R. Boland, R. Hirschheim), John Wiley & Sons Ltd, pp. 113-
134.

Johansson, H., McHugh, P., Pendlebury, A., Wheeler, W., (1993) Business process
re-engineering: Breakpoint strategies for market dominance, John Wiley and Sons.

Jönsson, S., (1991) Action Research. Information systems research: contemporary
approaches and emergent traditions (eds. H.E. Nissen, H.K. Klein, R.
Hircschheim), Elsevier Science Publishers B.V, North-Holland, pp. 371-396.

Joosten, S., Schipper, M., (1996) Validation of the Workflow Analysis Technique
“Trigger Modeling”, In: Proceedings of the 2nd Americas Conference on
Information Systems, Phoenix, Arizona, pp. 626-628.

Jordan, E., Evans, J., (1992) The simulation of IS strategy using SIMIAN. In:
Dynamic Modeling of Information Systems II (eds. H.G. Sol, R.L.Grosslin),
Elsevier Science Publishers B.V., The Netherlands, pp. 131-144.

Kaasboll, J., Smordal, O., (1996) Human work as context for development of
object oriented modeling techniques. Proceedings of the IFIP TC8 Working
Conference on Method Engineering: Principles of method construction and tool
support (eds. S. Brinkkemper, K. Lyytinen, R. Welke), Chapman-Hall,
London, pp. 111-125.

Katz, R. L., (1990) Business/enterprise modeling. IBM Systems Journal, Vol 29,
No. 4.

Kelly S., Lyytinen K., Rossi M., (1996) MetaEdit+: A Fully configurable Multi-
User and Multi-Tool CASE and CAME Environment. In: Proceedings of the
8th Conference on Advanced Information Systems Engineering (eds Y. Vassiliou,
J. Mylopoulos), Springer Verlag.

Kelly, S., (1994) A matrix editor for a metaCASE environment, Information and
Software Technology, Vol. 36, No. 6, pp. 361-171

Kelly, S., (1995) What’s in a Relationship? On distinguishing property holding
and object holding. In: Proceeding of the IFIP conference Information System
Concepts: Towards a consodilation of views (eds. E. Falkenberg, W. Hesse, A.
Olive), Chapman & Hall, pp. 144-159.

Kelly, S., (1997) Towards a Comprehensive MetaCASE and CAME Environment:
Conceptual, Architectural, Functional and Usability Advances in MetaEdit+,
(Dissertation). Jyväskylä Studies in Computer Science, Economics and
Statistics, No. 41, University of Jyväs kylä.

Kelly, S., Rossi, M., (1997) Differences in Method Engineering Performance with
Graphical and Matrix Tools: A Preliminary Empirical Study. Proceedings of
the second CAiSE/IFIP8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (eds. K. Siau, Y. Wand, J. Parsons),
Barcelona, Spain, University of Nebraska at Lincoln.

285

Kelly, S., Smolander, K., (1996) Evolution and Issues in MetaCASE, Information
and Software Technology, 38, pp. 261-266.

Kelly, S., Tahvanainen, V-P., (1994) Support for Incremental Method
Engineering and MetaCASE. In: Proceedings of the fifth workshop on the next
generation of CASE tools, B. Theodoulidis (ed.), Memoranda Informatica 94-
25, University of Twente, NL, pp. 140-148.

Kerner, D.V., (1979) Business Information Characterization Study. Data Base,
Spring.

Kim, W., Bertino, E., Garza, J.F. (1989) Composite objects revisited. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data (eds. J. Clifford, B. Lindsay, D. Maier), SIGMOD Record, Vol. 18, No. 2.

Kim, Y., March, S., (1995) Comparing data modeling formalism. Communications
of the ACM, Vol. 38, No. 6, pp. 103-115.

Kinnunen, K., Leppänen, M., (1994) O/A -Matrix and a Technique for
Methodology Engineering, Proceeding of the 4th International Conference
Information Systems Development (ISD’94) (eds J. Zupancic, S. Wrycza),
Moderna Organizacija, pp. 113-126.

Kitchenham, B., Pickard, L., Pfleeger, S., (1995) Case studies for method and
tool evaluation. IEEE Software, July, pp. 52-62

Klein, H., (1983) A verbal rejoinder to Colter’s paper, 4th American Conference on
Information Systems, Houston.

Konsynski, B., (1993) Strategic Control in the Extended Enterprise. IBM Systems
Journal, vol. 32, no. 1, pp. 111-142.

Kotteman, J., Konsynski, B., (1984) Information Systems Planning and
Development: Strategic Postures and Methodologies. Journal of Management
Information Systems, Vol. 1, No. 2, pp. 45-63.

Krasner, G., Pope, S., (1988) A Cookbook for using the model-interface-
controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, August/September.

Krogstie, J., S� lvberg, A., (1996) A classification of methodical frameworks for
computerized information systems support in organizations. In: Proceedings
of the IFIP TC8 Working Conference on Method Engineering: Principles of method
construction and tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke)
Chapman&Hall, Great Britain, pp. 278-295.

Kronlöf, K., (1993) ed, Method Integration: Concepts and Case Studies. John Wiley
& Sons, Chichester.

Kumar, K., Welke, R., (1984) Implementation failure and system developer
values: assumptions, truisms and empirical evidence. In: Proceedings of the 5th
International Conference on Information Systems (ICIS), (eds. L. Maggi, J. King,
K. Kraemer), pp. 1-13.

Kumar, K., Welke, R.J., (1992) Methodology engineering: a proposal for
situation-specific methodology construction. In: Challenges and Strategies for
Research in Systems Development (eds. W.W. Cotterman, J.A. Senn), John
Wiley & Sons Ltd, pp. 257-269.

Kurki, T., (1996) Object-TT: and object-oriented system development model of
TT-Group Inc (in Finnish), Syteemityö, Helsinki, 1/96, pp. 22-24.

286

Lee, H., Billington, C., (1992) Managing Supply Chain Inventory: Pitfalls and
Opportunities. Sloan Management Review, Spring, pp. 65-73.

Lieberherr, K. J., Ignacio, S., Cun, X., (1994) Adaptive Object-Oriented
Programming using Graph-Based Customization, Communications of the
ACM, May, (4), pp. 94-101.

Lindström, H., Raitio, P., (199 2) Logistics software - a survey and an analysis
framework, (in Finnish), Report J-12, Technical Reseach Centre of Finland,
Helsinki.

Loh, M., Nelson, R., (1989) Reaping CASE Harvests. Datamation, July, 1, pp. 31-
34.

Low, G.C. Jeffrey, D.R. (1990) Function Points in the Estimation and Evaluation
of the Software Process. IEEE Transactions on Software Engineering, Vol. SE-
16, No. 1, Jan, pp. 64-71.

Lundeberg, M., (1982) The ISAC approach to specification of information
systems and its applications to the organization of an IFIP working
conference. In: Information System Design Methodologies: A Comparative
Review, (eds. T.W. Olle, H.G. Sol, A.A. Verrinj-Stuart), North Holland
Publishing Company.

Lundeberg, M., (1992) A framework for recognizing patterns when reshaping
business processes. Journal of Strategic Information Systems, Vol 1, 3 (June).

Lundeberg, M., Goldkuhl, G., Nilsson, A., (1981) Information Systems
Development: A Systematic Approach. Prentice-Hall, Englewood Cliffs.

Lyytinen, K., (1986) Information systems development as social action: framework and
critical implications. Dissertation, University of Jyväskylä.

Lyytinen, K., (1987) A taxonomic perspective of information systems
development: theoretical constructs and recommendations. In: Critical issues
in information systems research, (eds. R.J.Boland, R.A.Hirschheim), John Wiley
& Sons Ltd., pp. 3-41.

Lyytinen, K., Hirschheim, R., (1987) Information System Failures - a survey and
classification of the empirical literature. Oxford Surveys in Information
Technology, Oxford University Press, Vol. 4, pp. 257-309.

Lyytinen, K., Marttiin, P., Tolvanen, J.-P., Jarke, M., Pohl, K., Weidenhaupt, K.,
(1998) CASE Environment Adaptability: Bridging the Islands of
Automation, Submitted.

Lyytinen, K., Smolander, K., and Tahvanainen, V.-P., (1989) Modelling CASE
Environments in Systems Development, In: Proceedings of the first Nordic
Conference on Advanced Systems, SISU, Stockholm.

Lyytinen, K., Tahvanainen, V.-P., Smolander, K., (1991) Computer Aided
Methodology Engineering (CAME) - A Research Proposal. University of
Jyväskylä, Department of Computer Science and Information Systems,
Jyväskylä.

Macdonald, K.H., (1991) The Value Process Model. In: The Corporation of the
1990s: information technology and organizational transformation (ed. M. Scott
Morton). Oxford University Press, pp. 299–309.

March, J. G., Simon, H.A., (1958) Organizations, Wiley, New York.
Martin, J., Finkelstein, C., (1981) Information Engineering, Vols 1 and 2, Prentice

Hall, Englewood Cliffs, New Jersey.

287

Marttiin, P. (1994) Towards Flexible Process Support with a CASE shell, In:
Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAiSE’94, Utrecht, The Netherlands, June 1994, G. Wijers, S.
Brinkkemper and T. Wasserman (Ed.), Springer-Verlag, Berlin, pp. 14-27.

Marttiin, P., (1998) Customizable Process Modeling Support and Tools for Design
Environment, (Dissertation). Jyväskylä Studies in Computer Science,
Economics and Statistics, No. 43, University of Jyväsk ylä.

Marttiin, P., Harmsen, F., Rossi, M., (1996) A functional framework for
evaluating method engineering environments: the case of
MaestroII/Decamerone and MetaEdit+. In: Proceedings of the IFIP TC8
Working Conference on Method Engineering: Principles of method construction and
tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall,
Great Britain, pp. 63-86.

Marttiin, P., Lyytinen, K., Rossi, M., Tahvanainen, V. -P., Tolvanen, J. -P., (1995)
Modeling requirements for future CASE: issues and implementation
considerations, Information Resources Management Journal 8(1) pp. 15-25.

Marttiin, P., Rossi, M., Tahvanainen, V.-P., Lyytinen, K., (1993) A comparative
review of CASE shells - A preliminary framework and research outcomes.
Information & Management, 25, pp. 11-31.

Mathiassen, L., Munk-Madsen, A., Nielsen, P., Stage, J, (1995) Object oriented
Design (in Danish) Marko, Aalborg.

Mathiassen, L., Munk-Madsen, A., Nielsen, P., Stage, J, (1996) Method
engineering: Who’s the customer. Proceedings of the IFIP TC8 Working
Conference on Method Engineering: Principles of method construction and tool
support (eds. S. Brinkkemper, K. Lyytinen, R. Welke), Chapman-Hall,
London, pp. 232-245.

Mayer, B., (1992) Eiffel: The Language. Prentice-Hall, Hemel Hempstead.
McClure, C., (1989) CASE is software automation. Prentice Hall, Englewood Cliffs,

New Jersey.
McLeod, G., (1997) Method Points: Towards a metric for method complixity. In:

Proceedings of the Second CAiSE/IFIP8.1 International Workshop on Evaluation of
modeling techniques in systems analysis and design (EMMSAD’97), (eds. K. Siau,
Y. Wand, J. Parsons).

Mercurio, V., Meyers, B.F., Nisbet, A.M., Radin, G., (1990) AD/Cycle strategy
and architecture, IBM Systems Journal, 29, 2, pp. 170-188.

Meta Systems, (1989) QuickSpec - User’s Guide (version 1.0.), Meta Systems Ltd.,
Ann Arbor, Michigan, USA.

MetaCase Consulting, (1994) MetaEdit 1.2 User’s Guide, Micro-Works, Jyväskylä,
Finland.

MetaCase Consulting, (1996a) MetaEdit+ (version 2.5): User’s Guide, Micro-
Works, Jyväskylä, Finland.

MetaCase Consulting, (1996b) MetaEdit+ Method Workbench (version 2.5): User’s
Guide, Micro-Works, Jyväskylä, Finland.

Miner, A., Mezias, S., (1996) Ugly duckling no more: Past and futures of
organizational learning research. Organization Science, Vol. 7, No. 1, pp. 88-
98.

288

Morrow, M., (ed.) (1992) Activity-based management: New approaches to measuring
performance and managing costs, Woodhead-Faulkner, New York.

Moynihan, E., Taylor, M., (1996) A comparative examination of historical and
current business systems development. In: Lessons learned from the use of
methodologies (Proceedings of the 4th Conference on Information System
Methodologies), (eds. N. Jayaratna, B. Fitzgerald), British Computer Society,
pp. 29-40.

Nandhakumar, J., Avison, D., (1996) Information systems development
methodology in use: An empirical study. In: Lessons learned from the use of
methodologies (Proceedings of the 4th Conference on Information System
Methodologies), (eds. N. Jayaratna, B. Fitzgerald), British Computer Society,
pp. 205-214.

Naumann, J., Davis, G., McKeen, J., (1980) Determining information
requirements: A contingency method for selection of a requirements
assurance strategy. The Journal of Systems and Software, 1, pp. 273-281.

Necco, C.R., Gordon, C.L., Tsai, N.W. (1987) Systems Analysis and Design:
Current Practices, MIS Quarterly, December, pp. 461-475.

Neches R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.R.,
(1991) Enabling Technology for Knowledge Sharing. AI Magazine, Fall, pp.
36-55.

Nijssen, G., Halpin, T., (1989) Conceptual Schema and Relational Database Design: A
Fact Oriented Approach. Prentice-Hall, Sydney.

Nilsson, E.G., (1989) CASE Tools and Software Factories. In: Proceedings of
CASE89 The First Nordic Conference on Advanced Systems Engineering,
Stockholm, Sweden, May 9-11 (eds. B. Steinholtz, A. S� lvberg, L. Bergman)
SISU, Stockholm, Sweden, pp. 42-60.

Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G., Huber, H., (1996) Managing
multiple requirements perspectives with metamodels. IEEE Software, March,
pp. 37-48

Nissen, H.E., (1996) Responsible action in the use, management and
development of information systems. In: Lessons learned from the use of
methodologies (Proceedings of the 4th Conference on Information System
Methodologies), (eds. N. Jayaratna, B. Fitzgerald), British Computer Society,
pp. 1-16.

Nonaka, I., (1994) A dynamic theory of organizational knowledge creation.
Organization Science, Vol. 5., No. 1, pp. 14-37.

Norman, R., Chen, M., (1992) Editor’s introduction, IEEE Software, March, pp.
13-16.

Nuseibah, B., Finkelstein, A., Kramer, J., (1996) Method engineering for multi-
perspective software development. Information and Software Technology, 38,
pp. 267-274.

Oakland, J., (1993) Total quality management: the route to improving performance
(2nd ed.), Butterworth Heinemann, Oxford.

Odell, J., (1996) A primer to method engineering. Presentation at the IFIP TC8
Working Conference on Method Engineering: Principles of method
construction and tool support, Atlanta, August, 1996.

289

Oei, J. L. H., van Hemmen, L. J. G. T., Falkenberg, E. D., Brinkkemper, S., (1992)
The Meta Model Hierarchy: A Framework for Information for Information Systems
Concepts and Techniques, University of Nijmegen, Nijmegen.

Oei, J., Falkenberg, E., (1994) Harmonisation of information systems modelling
and specification techniques, In: Methods and Associated Tools for the
Information Systems Life Cycle, (eds. A. A. Verrijn-Stuart and T. W. Olle) No.
A-55, Elsevier Science publishers, pp. 151-168.

Oei, J.L.H. (1995) A meta model transformation approach towards
harmonisation in information system modelling. In: Information System
Concepts - Towards a consolidation of views, (eds. Falkenberg, W. Hesse and A.
Olivé), Chapman & Hall, London, pp. 106-127.

Oinas-Kukkonen, H., (1996) Method rationale in method engineering and use.
In: Proceedings of the IFIP TC8 Working Conference on Method Engineering:
Principles of method construction and tool support (eds. S. Brinkkemper, K.
Lyytinen, R. Welke) Chapman&Hall, Great Britain, pp. 87-93.

Olle, T.W., (1994) Expanding methodologiess to handle distributed systems. In:
Proceeding of IFIP TC8 conference Business Process Re-engineering: Information
Systems Opportunities and Challenges, (eds. Glasson et al), Elsevier Science
B.V., North-Holland, pp. 443-457.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol., H.G., Van Assche,
F., Verrijn-Stuart, A.A., (1991) Information Systems Methodologies - A
Framework for Understanding. (2nd edition) Addison-Wesley Publishing
Company, The Bath Press, Avon.

Olle, T.W., Sol, H.G., Bhabuta, J., (eds.) (1988) Proceeding of the IFIP WG 8.1
Working Conference on Computerized Assistance During the Information Systems
Life Cycle, Engham, England, 19-22, September, 1988. North-Holland,
Amsterdam, The Netherlands.

Olle, T.W., Sol, H.G., Tully, C.J., (eds.) (1983) Proceeding of the IFIP WG 8.1
Working Conference on Feature Analysis of Information Systems Design
Methodologies, York, United Kingdom, 5-7, July, 1983. North-Holland,
Amsterdam, The Netherlands.

Olle, T.W., Sol, H.G., Verrijn-Stuart, A.A., (eds.) (1982) Proceeding of the IFIP WG
8.1 Working Conference on Comparative Review of Information Systems Design
Methodologies, Noordwijkerhout, The Netherlands, 10-14, May, 1982. North-
Holland, Amsterdam, The Netherlands.

Olle, T.W., Sol, H.G., Verrijn-Stuart, A.A., (eds.) (1986) Proceeding of the IFIP WG
8.1 Working Conference on Comparative Review of Information Systems Design
Methodologies: Improving the Practise, Noordwijkerhout, The Netherlands, 5-7,
May, 1986. North-Holland, Amsterdam, The Netherlands.

OMG(1997): http://www.omg.org/
Österle, H., Brenner, W., Hilbers, K., (1990) The implementation of Information

Systems Architectures. Information Management 2000 Research Program,
University of St. Gallen, Report CCIM2000/6.

Oz, E., (1994) When Professional Standards are Lax: The CONFIRM Failure and
its Lessons. Communications of the ACM, Vol. 37, No. 10, pp. 29-36.

Parkinson, J., (1996) 60 minute software - strategies for accelerating the information
systems delivery process. John Wiley and Sons, New York.

290

Parsons, J., Russo, N., Tolvanen, J.-P., (1997) Trainging methodology
researchers: Foundational research methods. In: Proceedings of the 5th BCS
Conference on Training and Education of Methodology Practioners and Reseachers
(eds. N. Jayaratna, T. Wood-Harper, B. Fitzgerald) Springer.

Patton, M., (1990) Qualitative Evaluation and Research Methods, Newbury Park,
Sage, 2nd edition.

Pohl, K., (1996) Process-Centered Requirements Engineering, Research Studies
Press, John Wiley & Sons.

Porter, M., (1985) Competitive Advantage. New York: Free Press.
Punter, T., Lemmen, K., (1996) The MEMA-model: towards a new approch for

Method Engineering. Information and Software Technology, 38, pp. 295-305.
Pyburn, P., (1983) Linking the MIS Plan with Corporate Strategy: An

Exploratory Study, MIS Quaterly, June, pp. 1-14.
Ramackers, G., (1994) Model integration and model execution. In: Methods and

associated tools for information systems life-cycle. (eds. A.A. Verrijn-Stuart, T.
Olle), Elsevier-Science B.V., pp. 223-239.

Ramesh, B., Edwards, M., (1993) Issues in the development of requirements
traceability model. In: Proceedings of IEEE Symp. Requirements Engineering,
San Diago, California.

Rapoport, R., (1970) Three dilemmas of action research. Human relations, 23, pp.
499-513.

Rask, R., Laamanen, P., Lyytinen, K., (1993) Automatic Derivation and
Comparison of Specification Level Software Product Metrics in a CASE
environment, IEEE Transactions on Software Engineering, vol. 19 no. 7, pp.
661-671.

Rockart, J., (1979) Chief Executives Define Their Own Data Needs. Harward
Business Review, Vol. 57, No. 2.

Rockart, J.F., Hofman, J.D., (1992) Systems Delivery: Evolving New Strategies.
Sloan Management Review, summer, pp. 21-31.

Rolland, C., Prakash, N., (1996) A proposal for context-specific method
engineering. In: Proceedings of the IFIP TC8 Working Conference on Method
Engineering: Principles of method construction and tool support (eds. S.
Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain, pp.
191-208.

Rolland, C., Souveyet, C., Moreno, M., (1995) An approach for defining ways-
of-working, Information Systems, 20(4), pp.337-359.

Ross, T.R., Schoman, K.E., (1977) Structured Analysis for Requirements
Definition. IEEE Transactions on Software Engineering, Vol. 3, No. 1.

Rossi, M., (1995) The MetaEdit CAME environment, In: Proceedings of the
MetaCase 95, University of Sunderland press, Sunderland.

Rossi, M., (1998) Advanced Computer Support for Method Engineering -
Implementation of CAME Environment in MetaEdit+, (Dissertation). Jyväskylä
Studies in Computer Science, Economics and Statistics, No. 42, University of
Jyväskylä.

Rossi, M., Brinkkemper, S., (1996) Complexity Metrics For Systems-
Development Methods And Techniques, Information Systems, 21, 2, pp. 209-
227.

291

Rossi, M., Gustafsson, M., Smolander, K., Johansson, L.-Å., Lyytinen, K., (1992)
Metamodeling Editor as a Front End for CASE shell, Advanced Information
Systems Engineering, (ed. P. Loucopoulos), Springer-Verlag, Lecture Notes in
Computer Science #593, Berlin, pp. 546-567.

Rossi, M., Tolvanen, J-P., (1995) Using Reusable Frameworks in Development of
a Method Support Envionment, In: Proceedings of The WITS 1995,
Amsterdam, The Netherlands, (eds. M. Jarke, S. Ram), pp. 240-249.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., (1991) Object-
Oriented Modeling and Design. Prentice-Hall.

Russo, N., Hightower, R., Pearson, J., (1996) The failure of methodologies to
meet the needs of current development environments. In: Lessons learned
from the use of methodologies (Proceedings of the 4th Conference on
Information System Methodologies), (eds. N. Jayaratna, B. Fitzgerald),
British Computer Society, pp. 387-394.

Russo, N., Klomparens, R., (1993) Formal application development methdologies in
the 90’s. Working paper, Northern Illinois University, DeKalb, Illinois.

Russo, N., Wynekoop, J., Walz, D., (1995) The use and adaptation of system
development methodologies. Proceedings of International Conference of IRMA
(International Resources Management Association, Atlanta, May 21-14.

Ryan, K., Kronlöf, K., Sheehan, A., (1996) Method integration. In: Lessons learned
from the use of methodologies (Proceedings of the 4th Conference on
Information System Methodologies), (eds. N. Jayaratna, B. Fitzgerald),
British Computer Society, pp. 235-246.

Saeki, M., Wenyin, K., (1994) Specifying software specification and design
methods. In: Proceedings of 6th International Conference on Advanced
Information Systems Engineering (eds. G. Wijers, S. Brinkkemper, T.
Wasserman), Springer-Verlag, pp. 353-366.

Sauer, C., Lau, C., (1997) Trying to adopt system development methodologies -
a case-based exploration of business users’ interests. Information Systems
Journal, 7, pp. 255-275.

Savolainen, V., (1992) A dynamic framework of reference of information
systems development. Dynamic modelling of information systems II (eds. H.G.
Sol, R.L. Grosslin), Elsevier Science Publishers, pp. 285-307.

Schipper, M., Joosten, S., (1996) A validation procedure for information systems
modeling techniques. In: Workshop on Evaluation of Modeling methods in
Systems Analysis and Design, 8th Conference on Advanced Information
Systems Engineering (CAISE’96).

Schön, D., (1983) The Reflectice Practitioner, Basic Books Inc., New York.
Scott Morton, M., (1985) The state of the art of research. In: The Information

Systems Research Challenge (eds. F. McFarlan et al.), Boston: Harward
Business School Press.

Seppänen, V., Kähkönen, A. -M., Oivo, M., Perunka, H., Isomursu, P., Pulli, P.,
(1996) Strategic Needs and Future Trends of Embedded Software. Technology
Development Centre, Technology review 48/96, Sipoo, Finland.

Shlaer, S., Mellor, S.J., (1992) Object Lifecycles: Modeling the world in states.
Prentice-Hall, Yourdon Press Computing Series.

292

Slooten van, C., Schoonhoven, B., (1994) Towards Contingent Information
Systems Development Approaches: In: Proceedings of ISD´94: Methods and
Tools, Theory and Practice.

Slooten van, K., (1995) Situated Methods for Systems Development, Dissertation,
University of Twente, the Netherlands.

Slooten van, K., Hodes, B., (1996) Characterizing IS development projects. In:
Proceedings of the IFIP TC8 Working Conference on Method Engineering:
Principles of method construction and tool support (eds. S. Brinkkemper, K.
Lyytinen, R. Welke) Chapman&Hall, Great Britain, pp. 29-44.

Smith, H.A., McKeen, J.D., (1993) Re-engineering the Corporation: Where Does
I.S. Fit In: Proceedings of the 26 th Hawaii International Conference on Systems
Science, (eds. J.F. Nunamaker, R.H. Sprague), Vol. 3., IEEE Computer Society
Press, USA.

Smith, J.M., Smith, D.C.P., (1977) Database abstractions: Aggregation and
generalization. ACM Transactions on Database Systems, Vol. 2, No 2.

Smith, P., Stobart, S.C., Thompson, J.B., (1990) Potential Benefits and Problems
of Customizable CASE tools. In: Fourth International Workshop on Computer-
Aided Software Engineering, (eds. R.J. Norman, R. Van Ghent) IEEE Computer
Society Press, Los Alamitos.

Smolander, K., Tahvanainen, V.-P., Lyytinen, K., Marttiin, P., (1991) MetaEdit -
a flexible graphical environment for methodology modeling. In: Advanced
Information Systems Engineering (eds. R. Andersen, J. Bubenko, A. S� lvberg),
Berlin, Germany, Springer-Verlag, pp. 168-193.

Smolander, K., (1991) GOPRR - a proposal for a metamodelling method,
MetaPHOR-project, internal paper.

Smolander, K., (1991) Metamodels in CASE Environments. Licenciate thesis,
Computer Science Reports, University of Jyväskylä, Jyväskyl ä, Finland.

Smolander, K., (1992) OPRR - A Model for Modeling Systems Development
Methods. In: Next Generation CASE Tools (eds. K. Lyytinen, V.-P.
Tahvanainen) IOS Press, Amsterdam, Netherlands, pp. 224-239.

Smolander, K., Lyytinen, K., Tahvanainen, V-.P., (1989) Family tree of methods
(in Finnish), Syti-project (internal-paper), University of Jyväskylä, Finland.

Smolander, K., Tahvanainen, V.-P., Lyytinen, K., (1990) How to Combine Tools
and Methods in Practise - a Field Study. In: Lecture Notes in Computer Science,
Second Nordic Conference CAiSE’90, (eds. B. Steinholtz, A. S� lvberg, L.
Bergman) Stockholm, Sweden, May, pp. 195-211.

Smyth, D., Checkland, P., (1976) Using a systems approach: the structure of root
definitions. Journal of applied systems analysis, Vol 5, 1.

Song, X., Osterweil, L., (1992) Towards Objective and Systematic Comparisons
of Software Design Methodologies, IEEE Software 18 (5), pp. 43-53.

Sorenson, P., Tremplay, J.-P., McAllister, A., (1988) The Metaview System for
Many Specifications Environments. IEEE Software, March, pp. 30-38.

Spurr, K., Layzell, P., Jennison, L., Richards, N., (eds.) (1994) Software assistance
for business re-engineering, John Wiley & Sons.

Standish Group International (1995) Chaos. http://www.standishgroup.com/
chaos.html.

293

Stegwee, R.A., Van Waes, R.M., (1993) Flexible CASE tools for Information
Systems Planning. In: Computer-Aided Software Engineering - Issues and Trends
for the 1990s and Beyond, (ed. T. Bergin), Idea Group Publishing, pp. 248-292.

Sullivan, C.H., (1985) Systems Planning in the Information Age. Sloan Business
Review, Vol. 26, 2, pp. 3–11.

Susman, G., Evered, R., (1978) An assessment of the scientific merits of action
research. Administrative Science Quaterly, 23, Dec, pp. 582-603.

Süttenbach, R., Ebert, J., (1997) A Booch Metamodel, Research report 5/97, Institut
für Informatik, Universität Koblenz -Landau.

Tagg, B., (1990) Implementing tool support for box structures. IBM Systems
Journal, Vol. 29, 1, pp. 79-89.

Taivalsaari, A., Vaaraniemi, S., (1997) TDE: Supporting geographically
distributed software design with shared collaborative workspaces.
Proceedings of CAiSE’97, Advanced Information Systems Engineering (eds. A.
Olive, J. Pastor), Springer, Heidelberg, pp. 309-408.

Teichroew, D., Hershey III, E., (1977) PSL/PSA: A Computer-Aided Technique
for Structured Documentation and Analysis of Information Processing
Systems. IEEE Transactions on Software Engineering, January.

Teichroew, D., Macasovic, P., Hershey III, E., Yamato, Y., (1980) Application of
the Entity-Relationship Approach to Information Processing Systems
Modeling, ISDOS-project, The University of Michigan.

Teng, J., Kettinger, W., Guha, S., (1992) Business process redesing and
information architecture: establishing the missing links. In: Proceedings of the
13th International Conference on Information Systems, (eds. J. DeGross, J.
Becker, J. Elam), pp. 81-89.

Teorey, T., (1990) Data base modeling and design: The entity-relationship approach.
Morgan Kaufmann Publishers, Calif., USA.

Tollow, D., (1996) Experiences of the pragmatic use of structured methods in
public sector projects. In: Lessons learned from the use of methodologies
(Proceedings of the 4th Conference on Information System Methodologies),
(eds. N. Jayaratna, B. Fitzgerald), British Computer Society, pp. 177-186.

Tolvanen, J.-P., (1995) Incremental method development for business modeling:
an action research case study. In: Proceedings of the 6th Next Generation of
CASE tools (ed. G. Grosz), Jyväskylä, Finland.

Tolvanen, J.-P., Lyytinen, K., (1993) Flexible method adaptation in CASE - the
metamodeling approach. Scandinavian Journal of Information Systems, Vol. 5,
pp. 51-77.

Tolvanen, J.-P., Lyytinen, K., (1994) Modeling Information Systems in Business
Development: Alternative perspectives on business process re-engineering.
In: Proceeding of IFIP TC8 conference Business Process Re-engineering:
Information Systems Opportunities and Challenges, (eds. Glasson et al), Elsevier
Science B.V., North-Holland, pp. 567-579.

Tolvanen, J.-P., Marttiin, P., Smolander, K., (1993) An Integrated Model for
Information Systems Modeling. In: Proceedings of the 26th Annual Hawaii
International Conference on Systems Science, (eds. J. Nunamaker, R. Sprague),
IEEE Computer Society Press, Los Alamitos, pp. 470-479.

294

Tolvanen, J.-P., Rossi, M., (1996) A metamodeling approach to method comparison: A
survey of a set of ISD methods, WP-34, Department of Computer Science and
Information Systems, University of Jyväskylä.

Tolvanen, J.-P., Rossi, M., Liu, H., (1996) Method engineering: current research
directions and implications for future research. In: Proceedings of the IFIP TC8
Working Conference on Method Engineering: Principles of method construction and
tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall,
Great Britain, pp. 296-317.

Turner, W. S., R. P. Langerhorst, G. F. Hice, H. B. Eilers and A. A. Uijttenbroek
(1988) SDM: system development methodology, North-Holland.

Venable, J., (1993) CoCoA: A Conceptual Data Modeling Approach for Complex
Problem Domains. Dissertation, State University of New York at
Binghampton, United States.

Vepsäläinen, A., (1988) A Relational view of Activities for Systems Analysis and
Design. Decision Support Systems, 4.

Verheijen, G., Van Bekkum, J., (1982) NIAM: An information analysis method.
In: Information Systems Design Methodologies: A Comparative Review (eds. T.
Olle, H. Sol, A. Verrijn-Stuart) North-Holland Publishing Company, pp.
537-589.

Verhoef, T., (1993) Effective Information Modeling Support. Dissertation, Delft
University of Technology, The Netherlands.

Verhoef, T.F., ter Hofstede, A.H.M., Wijers, G.M. (1991) Structuring modeling
knowledge for CASE shells. In: Proceeding of CAiSE’91 Advanced Information
Systems Engineering, (eds. R. Andersen, J. Bubenko, A. S� lvberg) Berlin,
Germany, Springer-Verlag, pp. 502-524.

Vitalari, N., Dickson, G., (1983) Problem solving for effective systems analysis:
an experimental exploration. Communications of the ACM, 26, 11, pp. 948-956.

Vlasblom, G., Rijsenbrij, D., Glastra, M., (1995) Flexibilization of the
methodology of system development, Information and Software Technology,
Elsevier-Science B.V., 37, No. 11, pp. 595-607.

Walden, K., Nerson, J.-M., (1995) Seamless Object-Oriented Software Architecture:
Analysis and Design of Reliable Systems, Prentice-Hall.

Wand, Y., (1996) Ontology as a foundation for meta-modeling and method
engineering. Information and Software Technology, 38, pp. 281-287.

Wangler, B., Wohed, R., Öhlund, S. -E., (1993) Business Modelling and Rule
Capture in a CASE Environment. In: Proceeding of the Fourth Workshop on The
Next Generation of CASE Tools (eds. S., Brinkkemper, F. Harmsen), University
of Twente, The Netherlands, pp. 189-204.

Ward, P., Mellor, S., (1985) Structured Analysis for Real-Time Systems. Prentice-
Hall, Englewood Cliffs, New Jersey.

Wasserman, A., (1980) Software tools and the user software engineering project,
Technical report#46, University of California San Francisco, Medical
Information Science.

Wastell, D., (1996) The fetish of technique: methodology as a social defence.
Information Systems Journal, 6, pp. 25-40.

Waters, S.J., (1974) Computer-aided methodology of computer systems design.
The Computer Journal, Vol. 17, 3, pp. 211-215.

295

Weber, R., Zhang, Y., (1996) An analytical evaluation of NIAM’s grammar for
conceptual schema diagrams. Information Systems Journal, 6, pp. 147-170.

Welke, R., Konsynski, B., (1980) An examination of the interaction between
technology, methodology and information systems: A tripartite view.
Proceedings of the first International Conference on Information Systems, pp. 32-
48.

Welke, R.J., (1981) IS/DSS: DBMS support for information systems
development, ISRAM WP-8105-1.0, McMaster University, Hamilton.

Welke, R.J., (1988) The CASE Repository: More than another database
application, MetaSystems Ltd., Ann Arbor.

Welke, R.J., Forte, G., (1989) Meta Systems on Meta Models. CASE Outlook, 4,
December, pp. 35-45.

Wijers, G., (1991) Modeling Support in Information Systems Development, Thesis
Publishers Amsterdam.

Wijers, G., ter Hofstede, A., van Oosterom, N., (1992) Representation of
information modeling knowledge. Next Generation of CASE tools (eds. K.
Lyytinen, V.-P- Tahvanainen), IOS Press, Amsterdam, the Netherlands, pp.
167-223.

Wijers, G., van Dort, H., (1990) Experiences with the use of CASE tools in The
Netherlands. In: Advanced Information Systems Engineering, (eds. B.
Steinholtz, A. S� lvberg, L. Bergman), Springer-Verlag, Germany, pp. 5-20.

Wood-Harper, T., (1985) Research Methods in Information Systems: Using
Action research. In: Research Methods in Information Systems (eds. E.
Mumford, R. Hirschheim, G. Fitzgerald, A.T. Wood-Harper, Elsevier
Science Publishers B.V. (North-Holland), pp. 169-191.

Wood-Harper, T., Antill, L., Avison, D., (1985) Information Systems Definition:
The Multi-View Approach. Blackwell Publishers, Oxford.

Wynekoop, J., Conger, S., (1991) A review of computer aided software
engineering research methods. In: Information Systems Research: Contemporary
approches and emergent traditions, (eds. H.-E. Nissen, H.K. Klein, R.
Hirchheim), Elsevier Science Publishers B.V., pp. 301-325.

Wynekoop, J., Russo, N., (1993) System Development Methodologies:
Unanswered questions and the research-practice gap. In: Proceeding of the
14th International Conference on Informtion Systems (eds. J.J. DeGross, R.P.
Bostrom, D. Robey), pp. 181-190.

Wynekoop, J., Russo, N., (1997) Studying system development methodologies:
an examination of research methods. Information System Journal, 7, pp. 47-65.

Wynekoop. J., Senn, J., Conger, S., (1992) The implementation of CASE tools: an
innovation diffusion approach. In: The impact of computer supported
technologies on information systems development, (eds. K. Kendall, K. Lyytinen,
J. DeGross), North-Holland, pp. 25-41.

Yin, R., (1993) Applications of case study research. Sage Publications.
Yourdon, E., (1986) What ever happened to structured analysis? Datamation,

June, pp. 133-138.
Yourdon, E., (1989a) Modern Structured Analysis. Prentice-Hall, Englewood

Cliffs, New Jersey.

296

Yourdon, E., (1989b) Pacific Bell, American Programmer, 2, No. 9 (September), pp.
3-6.

Yourdon, E., (1992) The Decline and Fall of the American Programmer, Prentice-
Hall, Englewood Cliffs, NJ.

Yourdon, E., Constantine, L., (1989) Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Englewood Cliffs, N.J.,
Prentice-Hall.

297

APPENDIX
GOPRR metamodeling language

This appendix describes the GOPRR metamodeling language in two ways: by
describing the notation for graphical metamodels, and by describing the textual
set format used for reporting the metamodels here. A more detailed description
of GOPRR can be found from the MetaEdit+ Method Workbench User’s Guide
(MetaCASE 1996b) and from (Kelly 1997).

Graphical metamodeling constructs
Concept & representation Description
Graph type

Graph

A graph type is a collection of object, relationship
and role types, and bindings describing how these
can be connected.
A graph type usually denotes a modeling
technique, such as data flow diagrams or class
diagrams.

Object type

Object

An object describes a thing that can exist on its
own.
Object type names are typically nouns.
Examples include process, class, and attribute.

Property type

Property
(collection)

String
Property

Properties describe characteristics of instances of
other types.
Property type names are generally nouns or
adverbs.
Examples include class name, cardinality, and
attributes.
Each property type has a basic data type (e.g.
number, string, Boolean, text, another type (graph,
object, role or relationship), or a collection of one
of these).
A collection data type is represented with a double
ellipse.

Relationship type

Relationship

A relationship can exists between objects. It
connects objects through roles.
Semantically, relationships are usually verbs, but
relationship type names are sometimes also nouns
or adverbs.
Examples include inheritance, call, and usage.

Role type

Role

A role specifies how an object participates in a
relationship.
Semantically, roles are adverbs. Role type names
are often prepositional phrases or verbs.
Examples include subclass, from, and receives.

(continues)

298

Inclusion

Object

Relationship

Graph

Role

An inclusion relationship can exist between a
graph type and its components (i.e. object,
relationship, and role types).
Inclusion is used to combine all the main
components of a technique.
Inclusion is many-to-many, so that the same type
can belong to many graph types.

Participation

Object Role

An object type can participate in zero to many role
types. In a graph type, a role type must be related
to at least one object type.

Composition

1,M

Role Relationship

Relationship types are related with at least two
compositions to roles. Together with a
participation, this forms a binding (cf. Kelly 1997).
Each role type in a binding is characterized with a
cardinality constraint describing how many
instances of this role type must (minimum) or may
(maximum) occur in an instantiation of this
binding.

Property of

String
PropertyObject

id Unique

local name

A property can characterize instances of other
types (i.e. non-properties). This relation is
described in a metamodel with the property of
relationship.
Each property of relationship is specified further
with three constraints:
1) id to describe if the property type is used as a

naming property (a non-property type can
have only one id),

2) uniqueness to specify if there is no duplication
of property values allowed among
instantiations of this ‘property of’ relationship,
and

3) local name to define a name for this use of the
property type. Hence, two non-property types
can refer to the same property type but with
different labels; the labels are visible for
example in dialogs for editing the properties of
this non-property.

Property link

Property Object

Property Object

The data type of a property type can be itself a
non-property type. This is defined with a property
link relationship from the property type to a non-
property type.

(continues)

299

Explosion

GraphObject

An object can be linked to one or more graphs via
an explosion.
Explosion is typically used between different
graph types.
Examples include that a process in a data flow
diagram can be related to a state diagram and to
process specifications.

Decomposition

Object
Graph

An object can be decomposed into a new graph.
This feature is known as functional decomposition
in data flow diagrams, or leveling of graphs to
form a hierarchy.
The decomposition target is typically of the same
graph type as the source’s containing graph.
Note that only one decomposition is allowed for
each object instance, and it applies in all graphs
containing that object. In contrast, there may be a
set of graph types specified as possible
decomposition targets for an object type, and this
set may be different in each graph type where this
object type is used.

Set format of metamodels
The metamodels reported in Section 4 are made by querying the repository of
MetaEdit+. The set format has been applied because MetaEdit+ does not use
graphical metamodels for tool adaptation.

In the set format all types are described as sets, e.g. the object types of the whole
SA/SD method are represented thus:

Object types = {Process, Store, External, Module, State, Entity}

The ‘property of’ relationship is described as a mapping of the set of property
types which are associated with each non-property type (roles, objects,
relationships). For example:

<organization, {organization name, Owner}>

Participation and composition are described as a binding: each binding stores a
relationship, two or more roles, and for each role, one or more objects. Because a
graph type can include several bindings they form a set.

Process/Entity Matrix={<Data usage,{<Used,{Entity}>,

 <Uses,{Business Process}>}>}

Inclusion is described for each technique only implicitly through the bindings,
i.e. the non-property types included in the graph type can be found from the
union of all binding members for that type.

300

Property links referring to non-property types which are not directly in an
inclusion relationship in any graph type of this method are described by a pair
containing a non-property and a set of properties.

<Attributes, {<Attribute, {Attribute name, Data type, Attribute

 type, Initial value, Constraints,
 Visibility}>}>

Explosions are described as set of pairs of an object type an d a set of graph
types the object type may explode to.

Explosions ={<Process, {Structure Chart, State Diagram}>}

Decompositions are described as a set of pairs of an object type and a set of
graph types the object type may decompose to.

Decomposition ={<Process, {Data Flow Diagram}>}

GOPRR metamodels
The metamodels made and adapted into MetaEdit+ and MetaEdit are available
from MetaCase Consulting, http://www.metacase.com.

301

YHTEENVETO (FINNISH SUMMARY)

Tämän väitöskirjatyön tavoitteena on parantaa tietojärjestelmien
suunnittelumenetelmien soveltuvuutta. Verrattuna moneen muuhun
insinöörialaan tietojärjestelmien suunnittelumenetelmien yksi erityispiirre on
niiden tilannekohtaisuus. Erilaisiin kehitysympäristöihin ja erilaisten
tietojärjestelmien suunnitteluun soveltuvat erityyppiset menetelmät: esimerkiksi
matkapuhelimien suunnittelussa menetelmätarpeet ovat erilaisia kuin
suunniteltaessa www-sovelluksia tai logistisia prosesseja tukevia
tietojärjestelmiä. Tilannekohtaisten menetelmien tarpeellisuutta korostavat
uusien tietojärjestelmätyyppien ja käytettävissä olevien teknisten ratkaisuiden
lisääntyminen. Empiiristen tutkimusten mukaan onkin varsin tavallista että
tietojärj estelmien kehitystä harjoittavat organisaatiot ja yksittäiset
kehitysprojektit muokkaavat menetelmiä omia käyttötilanteita varten.

Tässä väitöskirjatyössä esitetään periaatteita organisaatioiden suorittaman
menetelmäkehityksen tukemiseksi. Menetelmiä tarkastellaan osana tietokone -
avusteisia suunnitteluohjelmistoja. Nämä ohjelmistot tarjoavat tuen valitun
menetelmän mukaiselle tietojärjestelmän kuvaamiselle, kuvausten ylläpidolle ja
analysoinnille sekä tietojärjestelmän määritysten tuottamiselle. Työn
ensimmäisessä osassa tarkastellaan olemassa olevia menetelmäkehityksen
periaatteita ja menetelmäkehityshankkeita. Tarkastelu osoittaa heikkouksia
menetelmäkehityksen periaatteissa jotka liittyvät menetelmien yksityis -
kohtaiseen määrittelyyn ja niiden tilannekohtaisen soveltuvuuden arviointiin.

Työn toisessa osassa keskitytään menetelmien mallintamiseen, eli
metamallintamiseen, tutkimalla menetelmien yksytyiskohtaisen kuvaamisen
kannalta tarpeellisia mallinnuskielten käsitteitä. Metamallinnuskielten käsitteitä
etsitään analysoimalla joukkoa suunnittelumenetelmiä, kuvaamalla ne
metamallinnuskielten avulla ja sovittamalla menetelmät muokattaviin
suunnitteluohjelmistoihin. Löydettyjä käsitteitä sovelletaan määritettäessä
menetelmiä ja arvioitaessa olemassa olevia metamallinnuskieliä.

Työn kolmannessa osassa tarkastellaan menetelmien tilannekohtaista
soveltuvuutta ja esitetään periaatteita organisaatioiden menetelmätietämyksen
luomiseksi ja ylläpitämiseksi. Esitetyt periaatteet perustuvat tietojärjestelmiä
kuvaavien mallien ja menetelmiä kuvaavien metamallien väliseen vertailuun.
Näiden periaatteiden käyttökelpoisuus havainnollistetaan kuvaamalla niiden
käyttöä kahdessa tietojärjestelmien kehityshankkeessa: tukkukaupan ja
metsäteollisuuden logististen tietojärjestelmien suunnittelussa. Molemmissa
tapaustutkimuksissa käytettyjen suunnittelumenetelmien soveltuvuutta
pystytään parantamaan työssä esitettyjen periaatteiden avulla. Työn tuloksia
voivat hyödyntää kaikki suunnittelumenetelmiä käyttävät organisaatiot
menetelmien soveltuvuuden parantamiseksi ja menetelmäosaamisen
kehittämiseksi. §

