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ABSTRACT 
 
Juha-Pekka Tolvanen 
Incremental Method Engineering with Modeling Tools: Theoretical Principles 
and Empirical Evidence 
Jyväskylä: University of Jyväskylä, 1998, 301 p. 
(Jyväskylä Studies in Computer Science, Economics and Statistics  
ISSN 0357-9921; 47) 
ISBN 951-39-0303-6 
Finnish summary 
Diss. 
 
The main objective of this study is to improve the applicability of information 
system development (ISD) methods supported by modeling tools. This is 
carried out by examining and extending method engineering (ME) processes. 
To draw on an analogy with software engineering, ME develops and improves 
ISD methods. Instead of introducing a set of standardized methods in an ISD 
project, we assume that its method requirements vary. ISD projects differ 
greatly and are more situation-bound than is usually assumed. We suggest that 
methods should be constructed according to the needs of particular ISD 
situations and contingencies. To continue the analogy, just as software 
engineering is guided by ISD methods, ME is guided by (meta)methods. In 
order to develop ISD methods and improve their flexibility we develop 
methodical guidelines that are founded on engineering principles. These 
guidelines specify how knowledge related to methods should be described, 
analyzed, and maintained for ISD projects, and how it should be adapted into 
ISD tools. The topic of ME is important, since local method development is 
common in organizations, and there is a lack of knowledge about the 
development and use of local methods. 

In this thesis we focus on incremental ME. Any organization that builds 
ISs not only delivers systems, it also learns and creates knowledge about how 
to carry out ISD, and thus crafts new ISD methods. An incremental approach 
aims to make this experience systematic, leading to continuous method 
improvement. Accordingly, methods are a part of organizational knowledge 
which evolves and needs to be maintained in an organization. This thesis puts 
forward three principles of incremental ME. First, constructs of method 
modeling languages for carrying out efficient incremental ME are described. 
Second, guidelines and mechanisms for collecting and analyzing modeling-
related experiences are defined, and their implications for method 
improvements are explained. Third, the viability of the principles proposed is 
demonstrated in two cases of incremental ME. The resulting ME principles can 
be applied in organizations which are developing their own method and need 
methodical guidelines for this task. 
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ACM Computing Review Categories: 
D.2.1 Software Engineering: Requirement/Specifications:  

Languages, Methodologies, Tools 
D.2.2 Software Engineering: Tools and Techniques:  

Computer-aided software engineering (CASE) 
D.2.10 Software Engineering: Design:  

Methodologies, Representation 
I.6.5 Simulation and Modelling: Model Development:  

Modeling methodologies 
 

 
Author’s Address: 
Juha-Pekka Tolvanen 
University of Jyväskylä  
Department of Computer Science and Information Systems 
P.O. Box 35 
FIN–40351 Jyväskylä  
Finland 
Email: jpt@jytko.jyu.fi 
Fax: +358 14 603011 



ACKNOWLEDGEMENTS 
 
For the realization of this dissertation I am indebted to many people and 
organizations. The Academy of Finland, the Foundation for Economic 
Education, and the Technical Research Center of Finland have provided 
funding for the research. MetaCase Consulting Inc. provided vital connections 
to the case studies and has greatly increased my research motivation by 
allowing me to combine both the research and practice of method development. 

The advice of my supervisor, Professor Kalle Lyytinen, has been inspiring 
and significant. It was he who encouraged me into research in the first place, 
and directed me towards the field of method engineering. I would like to 
extend my thanks to the external reviewers of the dissertation, professors Juhani 
Iivari and Richard Welke, and to Göran Goldkuhl, Matthias Jarke, Mauri 
Leppänen, who have commented on this work as it has progressed.  

While carrying out this research I have been fortunate to work in the 
MetaPHOR project. In fact, the research problems addressed in this work would 
not have been possible to study to such an extent without the work carried out 
in the research group. My long term research colleagues, Steven Kelly, Pentti 
Marttiin, Matti Rossi and Kari Smolander have given valuable comments on this 
work and implemented the metaCASE tools applied in my research. Steven 
Kelly also assisted with the correction of the English in this dissertation. The 
other members of MetaPHOR project, including Janne Kaipala, Pentti Kerola, 
Janne Luoma, Harri Oinas-Kukkonen, Minna Koskinen, Hui Liu, Risto 
Pohjonen, Marko Somppi and Veli-Pekka Tahvanainen have all contributed in 
creating the favorable conditions for research within the project.  

I would like to express my thanks to the metamodeling language 
developers, Arthur ter Hofstede, Michael Heym, Steven Kelly, Kari Smolander 
and John Venable, who have provided comments about metamodeling 
functionality and checked the metamodels I made. With respect to the practice 
of method development, I would like to thank several method developers and 
adapters, including Ari Jaaksi, Brian Henderson-Sellers, Harri Lindström, Hans 
Nissen and Pirkko Vesterinen, for their valuable discussions and insights into 
local method development. 

Finally, I would like to thank my parents and my wife Marjut for 
supporting me throughout the whole research process, and especially Marjut for 
setting aside her own career to accompany me as I wrote up this thesis as a 
visiting researcher in RWTH Aachen, Germany. 





CONTENTS  
 

1 INTRODUCTION.........................................................................................11 

1.1 Problems in information system development................................. 11 
1.2 Methodical support for information system development.............. 12 
1.3 Local method development ................................................................ 14 
1.4 Alternative strategies for local method development ...................... 18 

1.4.1 Text-book approach........................................................................19 
1.4.2 Contingency approach ...................................................................19 
1.4.3 Method engineering .......................................................................20 

1.5 Research questions and research methods ........................................ 22 
1.5.1 Research topic .................................................................................22 
1.5.2 Research domains and related research .......................................23 
1.5.3 Problem formulation ......................................................................26 
1.5.4 Research methods ...........................................................................28 
1.5.5 Limitations of the study .................................................................30 

1.6 Outline of the thesis............................................................................. 30 

2  INFORMATION SYSTEM DEVELOPMENT: METHODS AND 
TOOLS .........................................................................................................32 

2.1 Information system development methods ...................................... 32 
2.2 Types of method knowledge .............................................................. 35 

2.2.1 Conceptual structure ......................................................................37 
2.2.2 Notation ...........................................................................................38 
2.2.3 Processes ..........................................................................................40 
2.2.4 Participation and roles ...................................................................41 
2.2.5 Development objectives and decisions .........................................41 
2.2.6 Values and assumptions.................................................................42 
2.2.7 Summary of method knowledge...................................................43 

2.3 Information system development tools ............................................. 43 
2.3.1 Tool support for information system development.....................44 
2.3.2 Method-tool companionship..........................................................46 
2.3.3 Remarks on modeling tool support...............................................48 

2.4 Paradoxes of ISD methods.................................................................. 49 
2.4.1 Low acceptance and use of methods.............................................49 
2.4.2 Popularity of local method development .....................................51 

2.5 Re-evaluation of method use .............................................................. 53 
2.5.1 Situation-bound methods...............................................................53 
2.5.2 Tacit method knowledge................................................................55 
2.5.3 Method use is a learning process ..................................................56 
2.5.4 Evolution of methods explained ...................................................57 

2.6 Summary and discussion.................................................................... 64 



 
8 

3 METHOD ENGINEERING: METHODS AND TOOLS............................66 

3.1 Defining method engineering ............................................................ 66 
3.2 Method engineering approaches........................................................ 69 

3.2.1 Method engineering process..........................................................69 
3.2.2 Types of method knowledge considered .....................................71 
3.2.3 Criteria for constructing methods .................................................74 
3.2.4 Implementation into ISD tools.......................................................78 
3.2.5 Summary and discussion...............................................................80 

3.3 Metamodels and metamodeling languages ...................................... 81 
3.3.1 Defining metamodeling and metamodels....................................81 
3.3.2 Types of the meta-data modeling languages examined .............85 
3.3.3 Modeling power of meta-data models .........................................86 
3.3.4 Constructs of metamodeling languages .......................................99 

3.4 Summary of method engineering approaches.................................. 99 

4 MODELING METHOD KNOWLEDGE FOR MODELING TOOLS..... 101 

4.1 Introduction ........................................................................................101 
4.2 Method selection and method modeling process............................103 

4.2.1 Selecting methods for the study .................................................. 103 
4.2.2 Metamodeling process ................................................................. 105 
4.2.3 Tool implementation .................................................................... 110 

4.3 Metamodels for method knowledge.................................................110 
4.3.1 Business Systems Planning .......................................................... 111 
4.3.2 Structured Analysis and Design.................................................. 116 
4.3.3 Unified Modeling Language ....................................................... 121 
4.3.4 Summary ....................................................................................... 131 

4.4 Requirements for metamodeling languages ....................................131 
4.4.1 Modeling single techniques......................................................... 134 
4.4.2 Modeling interconnected techniques and methods................... 142 
4.4.3 Summary of the metamodeling constructs................................. 153 

4.5 Evaluation of metamodeling languages...........................................155 
4.5.1 Other studies evaluating metamodeling languages.................. 155 
4.5.2 Evaluation according to essential metamodeling 

constructs ...................................................................................... 156 
4.5.3 Limitations of metamodeling based on semantic data 

models ........................................................................................... 164 
4.6 Summary and discussion...................................................................166 

5  EXPERIENCE BASED METHOD EVALUATION AND 
REFINEMENT .......................................................................................... 168 

5.1 Introduction into incremental method engineering........................169 
5.1.1 Motivation and definition............................................................ 169 
5.1.2 Scenarios of method evaluation and refinement ....................... 172 
5.1.3 Incremental versus “radical” method engineering ................... 176 
5.1.4 Summary ....................................................................................... 178 



 
9 

5.2 Evaluating the applicability of modeling techniques..................... 179 
5.2.1 Evaluation and validation of text-book methods ......................180 
5.2.2 Evaluation of methods in the problem context ..........................181 
5.2.3 Evaluation of methods as a part of a continuous ME 

process ...........................................................................................184 
5.2.4 Problems of a posteriori evaluation ..............................................187 
5.2.5 Summary and discussion of method evaluation 

approaches ....................................................................................189 
5.3 Principles for incremental method engineering ............................. 190 

5.3.1 Process of incremental method engineering ..............................190 
5.3.2 Use of metamodels and method rationale in incremental 

method engineering .....................................................................193 
5.3.3 Type-instance matching ...............................................................196 
5.3.4 Modeling the object system .........................................................206 
5.3.5 Supporting problem solving........................................................209 
5.3.6 Remarks on the a posteriori mechanisms .....................................212 

5.4 Summary ............................................................................................ 213 

6 AN EXAMINATION OF INCREMENTAL METHOD 
ENGINEERING: TWO CASE STUDIES.................................................216 

6.1 Research method for method engineering cases ............................ 217 
6.1.1 Action research method ...............................................................218 
6.1.2 Using action research in studying method engineering ...........219 
6.1.3 Comparing action research and incremental method 

engineering ...................................................................................221 
6.2 Case A: Wholesale company ............................................................ 222 

6.2.1 Background of the study..............................................................223 
6.2.2 Characteristics of the ISD environment ......................................224 
6.2.3 Business modeling method constructed .....................................226 
6.2.4 Method use ....................................................................................229 
6.2.5 The a posteriori method engineering............................................230 
6.2.6 Method experiences and refinements .........................................237 

6.3 Case B: Logistic processes and a cardboard mill ............................ 240 
6.3.1 Background of the study..............................................................240 
6.3.2 Constructed method .....................................................................243 
6.3.3 Characteristics of the cardboard mill ..........................................249 
6.3.4 Method use ....................................................................................250 
6.3.5 The a posteriori method engineering............................................252 
6.3.6 Method experiences and refinements .........................................259 

6.4 Lessons learned.................................................................................. 262 
6.4.1 Local method development .........................................................263 
6.4.2 Method engineering .....................................................................264 
6.4.3 Principles of incremental method engineering ..........................265 



 
10 

7 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH ....... 269 

7.1 Modeling languages for method engineering .................................269 
7.2 Experience based method refinements.............................................271 
7.3 Directions for future research............................................................273 

REFERENCES................................................................................................ 275 

APPENDIX .................................................................................................... 297 

YHTEENVETO (FINNISH SUMMARY) .................................................... 301 

 

 



1 INTRODUCTION 

1.1 Problems in information system development 

Though information has become one of the most valuable assets of modern 
corporations, development of information systems (IS) faces many problems. 
Among the most important are low productivity, a large number of failures, 
and an inadequate alignment of ISs with business needs. The first problem, low 
productivity, has been recognized in the term “software crisis”, as indicated by 
the development backlog and maintenance problems (cf. Brooks 1975, Boehm 
and Papaccio 1988, Jeffrey 1987). Simply, demands for building new or 
improved ISs have increased faster than our ability to develop them. Some 
reasons are: the increasing cost of software development (especially when 
compared to the decreasing cost of hardware), the limited supply of personnel 
and funding, and only moderate productivity improvements.  

Second, IS development (ISD) efforts have resulted in a large number of 
outright failures (cf. Lyytinen and Hirschheim 1987, Charette 1989). These 
failures are sometimes due to economical mismatches, such as budget and 
schedule overruns, but surprisingly often due to poor product quality and 
insufficient user satisfaction. For example, one survey (Gladden 1982) estimates 
that 75% of IS developments undertaken are never completed, or the resulting 
system is never used. According to the Standish Group (1995) only 16% of all 
projects are delivered on time and within their budget. This study, conducted as 
a survey among 365 information technology managers, also reveals that 31% of 
ISD projects were canceled prior to completion and the majority, 53%, are 
completed but over budget and offer less functionality than originally specified. 
Unfortunately this area has not been studied in enough detail to find general 
reasons for failures. As a result, we must mostly rely on cases and reports on 
ISD failures (e.g. Oz 1994). 
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Third, from the business point of view, there has been growing criticism of 
the poor alignment of ISs and business needs (cf. Earl 1989). While an increasing 
part of organizations’ resources are spent on recording, searching, refining and 
analyzing information, the link between ISs and organizational performance 
and strategies has been shown to be dubious (Smith and McKeen 1993). For 
example, most managers and users are still facing situations where they cannot 
get information they need to run their units (Davenport et al. 1992, Rockart and 
Hofman 1992). Hence, ISD is continually challenged by the dynamic nature of 
business together with the ways that business activities are organized and 
supported by ISs. 

All the above problems are further aggravated by the increasing 
complexity and size of software products. Each generation has brought new 
application areas as well as extended functionality leading to larger systems, 
which are harder to design, construct and maintain. Moreover, because of a 
large number of new technical options and innovations available  like 
client/server architectures, object-oriented approaches, and electronic 
commerce  novel technical aspects are transforming the practice of ISD. All in 
all, it seems to be commonly recognized that ISD is not satisfying organizations’ 
needs, whether they are technical, economical, or behavioral. Consequently, 
companies world-wide are facing challenges in developing new strategies for 
ISD as well as in finding supporting tools and ways of working (Rockart and 
Hofman 1992, Benjamin and Blunt 1992). 

1.2 Methodical support for information system development 

One widely acknowledged approach to solve these problems has been to 
improve and apply systematic guidelines and procedures for ISD1. This type of 
knowledge is typically incorporated into ISD methods, which we can briefly 
define here as systematic and predefined guidelines for carrying out at least one 
complete task of ISD effort2. As the considerable amount of effort poured into 
the method development indicates (cf. Jackson 1976, Gane and Sarson 1979, 
Lundeberg 1982, Rumbaugh et al. 1991, Booch 1994), the current paradigm 
within the scientific community advocates methods. Maybe an analogy to the 
use of methods and techniques in other engineering disciplines (e.g. electronics, 
civil) or even in less engineering-oriented disciplines, such as recording and 
composing (Jaaksi 1997), is so close that methods are sought for ISD as well. It is 
a general opinion among both practitioners and academics that ISD failures are 
resulting from the application of irrational approaches. ISD methods are viewed 
as one solution to these problems (Fitzgerald 1996). In fact, the drive towards 

                                                
1 Some other organizational and technical innovations include CASE (Computer Aided 

Systems/Software Engineering), 4GL (fourth generation languages), application package-
based ISD, development and use of reusable designs and code, and quality assurance 
programs. 

2  ISD methods are defined and characterized in more detail in Chapter 2. 
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better methods and practices is common in all fields of systems development, 
including business modeling and re-engineering (Bubenko and Wangler 1992, 
Smith and McKeen 1993), development of IS architectures (Bidgood and Jelley 
1991, Stegwee and van Waes 1993), system analysis and design (Olle et al. 1991), 
and implementation (Jeffrey 1987). In particular, improvements in early phases 
are believed to lead to higher productivity. 

The goal of method development is to build up collective experience of IS 
development and utilize it to craft systematic development practices. Such 
experience is obtained through participating in ISD, evaluating methods, and 
conducting studies on method use. Based on this experience, method 
developers promote their own concepts, beliefs, modeling languages and 
procedures. In general, methodical approaches are expected to lead to more 
acceptable and successful solutions, and to a better-managed development 
process. 

As a result, we currently find hundreds of methods. By taking into account 
organizations’ own “dialects”, i.e. methods developed in-house, we can assume 
that thousands of more or less similar methods are available (Bubenko 1986, 
Grant et al. 1992). In addition new or improved methods are being introduced 
continuously. Similarly, there are thousands of tools available for automating 
and assisting these methods. In fact, nearly all tasks of ISD are supported with 
software products varying from business modeling tools (Spurr et al. 1994) and 
CASE tools (Computer-Aided Systems Engineering, Chen et al 1989, Nilsson 
1989) to programming environments. Most methods or techniques for ISD are 
considered impractical or even impossible to use without automated support 
(Wasserman 1980, Yourdon 1986, McClure 1989, Smolander et al. 1990). For 
example, there is little point in writing first in some programming language and 
then making a translation by hand into a machine language, or in checking the 
correctness and consistency of system designs without tool support. 
Accordingly, in this thesis our interest is in those method aspects that can be 
supported with automated tools. 

Paradoxically, despite the efforts poured into method development, there 
seems to be no universal agreement on whether methods are useful in ISD 
(Lyytinen 1987, Cotterman et al. 1992, Wynekoop and Russo 1993, Wynekoop 
and Russo 1997). One major reason for this contradiction is the limitation and 
narrow focus of research: there is surprisingly little empirical knowledge of 
method use. The vast majority of research has concentrated on developing new 
methods, or developing frameworks for method analysis (cf. Olle et al. 1982, 
1983, 1986, 1988, Blum 1994), comparison (cf. Hackathorn and Karimi 1988, 
Hong et al. 1993), and selection (cf. Davis 1982, Kotteman and Konsynski 1984)3. 
Furthermore, most empirical studies on method development or method 
comparison are based on cases, and on limited experiences of method use 
(Fitzgerald 1991). Because we know so little about how methods are used in 
practice, there are only shallow generalizations that could explain the success or 
failure of method use. 
                                                
3  Although the literature offers several approaches to classify, understand, compare and 

select methods there has been no validation of these approaches. 
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Although we do not know the effects or usefulness of ISD methods, the 
market has put a great emphasis on tool use and productivity. The market for 
development tools, such as CASE tools and application generators, has grown 
steadily during the last decade, and several new approaches have emerged, 
such as object-orientation and business process re-engineering. As Welke and 
Konsynski (1980) and Norman and Chen (1992) point out, tools for supporting 
ISD have evolved together with technical and methodical innovations. 
Likewise, vendors’ investments in building ISD tools have increased. As a 
result, organizations world-wide have invested in new ISD tools (embodying 
various methods) such as business modeling tools, CASE, 4GL’s (4th generation 
languages), integrated programming environments etc. (Benjamin and Blunt 
1992). Although the rate of diffusion of CASE tools has been slower than 
expected, it is relatively widely recognized that the rate of diffusion of these 
tools will continue to increase in the future (Conway et al. 1995, Hobby 1993, 
Benjamin and Blunt 1992, Friedman and Cornford 1989). For example, a 
prediction of the CASE world market in 1997 is $1.2 bn (Hobby 1993), and the 
estimated annual rate of growth is 35% (Conway et al. 1995). 

1.3 Local method development 

Despite the plethora of ISD methods available, organizations are seldom 
satisfied with existing methods. Surveys as well as case studies reveal that 
organizations tend to develop their own local “variants” of methods, or adapt 
methods available according to their situation-specific needs (Pyburn 1983, 
Russo et al. 1995, Hardy et al. 1995, Wijers and van Dort 1990, Aalto 1993, Aaen 
et al. 1992)4. This means that methods from outside an organization do not meet 
the requirements for its ISD efforts, i.e. they are not considered applicable. As a 
result, the only choices are to abandon the method, try another one, continue the 
use of the method, or develop methods locally.  

By local method development we mean organizations’ attempts to develop 
their own method or methods. This means that the local method includes 
aspects which are not included in any other single method. In our case of 
modeling related methods these extensions can include whole modeling 
techniques, new modeling concepts, or new constraints. Local method 
development is often carried out by combining and modifying existing 
methods. Surveys investigating the use of methods have shown that 38% 
(Hardy et al. 1995) or 36% (CASE Research Corporation, cited in Yourdon 1992) 
of the organizations used methods developed in-house. These, however, can 
also be adapted to organization, project, or individual needs. Thus, the 
difference between local method development and adaptation is noteworthy. By 
method adaptation we mean attempts to modify available methods, including 
local variants, for situational needs. On the adaptation side, a survey by Hardy 

                                                
4  The empirical studies on method use and on local method development are discussed in 

more detail in Section 2.4. 
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et al. (1995) showed that 88% of the organizations studied had adapted methods 
in-house. In another study the percentage of method adaptation is similarly 88% 
(Russo and Klomparens 1993, Russo et al. 1995).  

Studies of CASE tool usage (Wijers and van Dort 1990, Aaen et al. 1992) 
have obtained similar results. They show an obvious need for local method 
support and indicate that although companies have introduced CASE tools with 
particular methods, they face difficulties in CASE use due to the limited 
possibility to adopt and develop situation specific methods (Wijers and van 
Dort 1990). Different development situations, cultures, skill levels, and types of 
IS require different ISD approaches. Accordingly, standard-like methods are 
less common than expected, and less popular than their local variants. This is 
interesting since tool markets have focused on fixed and method-dependent 
tools. This may explain the relatively low acceptance of CASE tools which lack 
method modification and adaptation possibilities (cf. Aaen et al. 1992). 
Therefore, a need for more flexible and customizable tools has been emphasized 
(cf. Forte and Norman 1992, Seppänen et al. 1996).  

We can find in the literature some case studies of local method 
development including extensions of current methods (cf. Aalto 1993, Nissen et 
al. 1996). These describe how methods have been modified and explain reasons 
for their evolution. There is, however, surprisingly little empirical knowledge 
available on local method development and method use (Wynekoop and Russo 
1993). In fact, most of the reported work has concentrated on developing new 
standard methods. Though many organizations develop methods in-house or 
adapt them, we know little as to why and how this is done, or whether local or 
adapted methods work better. Some studies on method development indicate 
that although many companies are “rolling their own”; the selection of 
methods, their development and introduction seems to be done in an ad-hoc 
manner by choosing tools and methods on a trial-and-error procedure 
(Smolander et al. 1990). Although local method development is common there is 
a lack of proven principles. These principles include how to construct and adapt 
methods for particular needs, how to check the applicability of the method, and 
how to organize method development efforts.  

To understand local method development efforts in more detail we 
distinguish five steps that every organization faces while developing methods 
in-house. The identification of these steps is based on analyzing and 
synthesizing the literature (e.g. Smolander et al. 1990, Tagg 1990, Tolvanen and 
Lyytinen 1993, Brinkkemper 1996). These steps are illustrated in Figure 1-1 and 
described in more detail in Section 3.2. It must be noted that the figure is an 
assertion rather than a generally proven process model of local method 
development.  
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Tool selection
and adaptation

Method use

Selection of
methods

Introduction of
methods

Method
construction

Method
refinements

Method
refinements

 

FIGURE 1-1 Steps of local method development.  

1) Selection of methods. First, every organization or ISD project must 
make a decision which methods to follow and use. Even an organization that 
does not use methods at all has made some decision, either explicitly or 
implicitly. Similarly, cases of local method development (cf. Jaaksi 1997) are 
often based on a selection of a well-known “text-book” method which is 
introduced first in its standard form, and later  after gaining experience about 
its use  modified to better meet local needs. 

2) Method construction is a task in which selected methods are composed 
or new ones are created to meet specific objectives of ISD (Kumar and Welke 
1992, Heym and Österle 1993). This task includes building, improving and 
modifying a method by specifying its components and their relationships.  

3) Tool selection and adaptation. Tool adaptation can be defined as a task 
in which a given method is represented and implemented for an ISD tool in 
such a way that the tool can support tasks as prescribed by the method 
(Tolvanen and Lyytinen 1993). If such a tool modification is not possible, 
organizations still face the question “which method-specific tools should be 
selected?” A more detailed discussion about different selection strategies for 
CASE can be found from Bubenko (1988). 

4) Introduction of methods deals with various tasks for initiating method 
use, such as teaching, carrying out possible pilot projects etc.  
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5) Method use refers to an actual ISD effort in which methods are utilized 
together with supporting tools. 

 
The transitions described show a succession of steps through the selection 

of methods to their use, but it is also possible to omit some steps. For example, 
local method development can be carried out without selecting or using any ISD 
tool, or without proper method introduction. Similarly the steps can be 
overlapping (Nuseibah et al. 1996). Other transitions are also possible or can 
even be more common. For example, an organization does not necessarily use, 
and thus need to select, a computer-aided tool, or an organization can start from 
the middle step by choosing a CASE tool, and indirectly the accompanying 
methods.  

The specification of transitions suggests a “loop” to method refinements 
which is of major interest in our study: At each step of method development 
new experience can lead to method modifications. This part is illustrated by 
arrows on the left and right sides. An organization or an ISD project not only 
produces ISs, but also gains and creates knowledge about the ISD. Typically, at 
least part of this knowledge can be incorporated into ISD methods.  

The figure identifies several transitions for method refinements. Such 
refinements can occur either before, during or after the use of a method. In the 
former case, method refinements occur during method construction, tool 
selection or adaptation, or method introduction. For example, the capabilities of 
the tool for method adaptation can lead to new method modifications. In the 
latter cases, situations that have taken place during method use are analyzed, 
generating new insights on how to use methods. This experience-based method 
refinement can be characterized using Schön’s term, reflection -in-action (Schön 
1983). In this loop the situation “talks back” and the practitioner reframes the 
situation. Depending on how experiences are externalized (Nonaka 1994), 
refinements can take place during or after method use. Refinements which 
occur during method use  “on -the-fly”  deal mostly with an individual’s 
interpretations, and give new meaning to a constructed method. It must be 
noticed that this type of refinement often occurs without any documentation, 
and thus takes place in the dimension of tacit knowledge (Nonaka 1994). If 
these experiences are made explicit, and thus available for other method users, 
they can be related to the methods constructed and used to modify earlier 
methodical understanding. In this thesis we mostly examine method 
refinements, because we believe that the applicability of methods can only be 
improved when experience is made explicit for future ME efforts. 

According to this a posteriori view of ME, an important factor in local 
method development is the capability of an organization or project to learn of 
its method use, create knowledge about the applicability of a method, and 
utilize this knowledge for refinements. This is true not only of method 
development but also of organizational knowledge creation in general (Nonaka 
1994). In this study our interest is not in how efficiently an organization 
develops ISs, but in how it creates explicit knowledge of the ISD method. Our 
focus will be on defining, refining, validating and discarding ISD knowledge. 
Methods are seen as one part of organizational knowledge, which evolves and 
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needs to be collected, analyzed, maintained and purged. We believe that how 
and to what extent this is done in different situations is of great importance to 
the success of local method development and to the usefulness of methods. 

1.4 Alternative strategies for local method development 

Although local method development steps may seem straightforward, there are  
great differences in how ISD methods are selected and developed locally, and 
how they can be introduced. To highlight some of these differences we have 
analyzed the literature on methods, their selection and development (Davis 
1982, Sullivan 1985, Olle et al. 1991, Kumar and Welke 1992, Brinkkemper 1996, 
Odell 1996, Harmsen 1997). Based on this analysis we distinguish three basic 
strategies for local method development. These are: a text-book approach, a 
contingency approach and a method engineering approach, either at the 
organizational level or at the project level.  

These strategies can be considered as ideal types in different situations. 
They differ in the extent of the changes that are made to methods to meet the 
situation specific needs (cf. Figure 1-2). In a text-book approach a whole method 
is chosen; in a contingency approach selection is largely made by choosing 
individual techniques from a large set; in method engineering selection is made 
by choosing components of techniques (or methods) and by constructing unique 
components. Hence, the method development strategy applied in an 
organization can be identified by studying how different the resulting method 
is when compared to other known methods. It must be noted that these 
strategies are not mutually exclusive; indeed they are often combined. For 
example, some modeling techniques may be chosen as text-book techniques 
because they are considered de facto standards whereas other techniques are be 
developed from scratch or by extending existing techniques (e.g. in Jaaksi 1997). 
These differences will be discussed in more detail in Section 2.5. 

Each method development strategy extends the scope of modifying 
methods for local situations. Thus, the text book approach and contingency 
approach portray a limited adaptation possibility whereas the ME approach 
suggests that ISD methods should be constructed for the use situation. Hence, 
organizations which apply text-book methods believe that development 
situations are generally alike, and thus can be solved with standard solutions. 
Standardization efforts of methods, like SSADM (CCTA 1995), IDEF (FIPS 
1993a) and UML (Booch et al. 1997) are examples of this approach, although 
they also aspire to other objectives such as communication between different 
ISD tools. In contrast, organizations which develop their own methods are 
examples of a different opinion. They believe that development situations in the 
organization or in projects are very different and furthermore this difference 
influences the applicability of methods. Different method development 
strategies also have implications about the maturity of the organization’s ISD 
process (Humphrey 1989) because ME and detailed modification and use of 
methods necessitates that an organization is first able to understand its ISD 
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processes, and second measure them to develop better ISD procedures and 
guidelines. This means that organizations which successfully modify their 
methods to meet their situational requirements can not be at low maturity 
levels. An organization must have at least defined their ISD process (Humphrey 
1989): successful modification of methods in an organization or in its projects is 
not possible if their use process is not known. In the following we shall study 
these three strategies in more detail. 

 
    Text-book             Contingency  Method engineering 
 
 
low                  high

        Degree of modification 
 

 
FIGURE 1-2 Strategies for local method development. 

1.4.1 Text-book approach 

The most common approach to select and introduce methods is probably simple 
trial and error (Smolander et al. 1990). Organizations choose their methods, 
either consciously by selecting one of the well known “text -book” methods 
often backed by consultants, or indirectly by introducing a CASE tool that 
applies a specific method. A new methodical approach is then introduced 
without modification. The text-book approach offers a simple strategy for local 
method development: the method construction and tool adaptation steps do not 
take place. 

The underlying rationale behind this approach is that situations and 
problems in ISD are similar, or at least similar enough to be analyzed and 
solved by applying general methods applicable to “almost” all situations. This 
text-book approach to ISD methods can be characterized as what Schön (1983) 
calls “technical rationality”. According to this approach, situations of practice 
can be scientifically categorized, problems are firmly bounded, and most 
importantly they can be solved by using standardized principles. From the 
technical rationality point of view, we can see ISD methods as universally valid 
techniques for instrumental problem solving. It must be noted that although the 
need for flexibility is recognized in some methods (cf. Wood-Harper et al. 1985, 
CCTA 1995, Booch 1994, Coleman et al. 1994), they do not include mechanisms 
to modify them according to the various characteristics of ISD.  

1.4.2 Contingency approach 

An alternative approach for method selection is based on contingency theory. It 
suggests that there is no universally acceptable method which is applicable in 
all circumstances. Hence, a contingency approach is based on the observation 
that situations of practice can be classified, but are more situation bound than 
the text-book approach expects. Because current methods do not offer general 
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rules for considering situational expectations and deviations (Iivari and Kerola 
1983, Vlasblom et al. 1995), contingency frameworks for method selection try to 
establish this connection by relating methodical needs and available methods. 
Researchers following a contingency approach (e.g. Davis 1982, Kotteman and 
Konsynski 1984, Sullivan 1985, Naumann et al. 1980) have tried to identify 
prominent characteristics (i.e. situation dependencies) which control outcomes 
of the use of methods and predict their suitability. These characteristics can be 
technical, such as the type of an IS or the programming language applied; 
organizational, such as the development culture and maturity; or human, such 
as the level of experience and learning. 

Although the contingency approach in method research is mostly used to 
analyze situational features of methods, it is also applied for method selection 
and development (e.g. Vlasblom et al. 1995, Punter and Lemmen 1996, 
Savolainen 1992). For example, a contingency framework developed in the 
HECTOR project proposed several situational characteristics, like the type of 
project activities, ISD environment properties and method/tool properties for 
tool selection (Savolainen 1992). In contingency frameworks for method 
selection new methods are not necessarily developed; rather they are selected 
from those available. Thus, in contrast to the steps of local method development 
(cf. Figure 1-1), the contingency approach focuses on the selection of an 
available, appropriate method rather than on more detailed method 
construction (Kumar and Welke 1992). This bias towards selecting methods 
from those available leads to “bounded” construction and selection of methods.  

1.4.3 Method engineering 

Although contingency theory has considerably expanded our understanding of 
methods suitability, its a priori assumptions, once applied as a method selection 
framework, neglect possibilities for method choices other than those already 
prescribed. Moreover, contingency-based method selection ignores the impact 
of organizational learning. Both these problems are addressed in local method 
development. The first one deals with the insufficient competence to find 
situation dependencies (cf. Kumar and Welke 1992, Grant et al. 1992). This 
observation is supported by empirical studies of method use (cf. Hardy et al. 
1995, Russo et al. 1995, Wijers 1991, Fitzgerald 1995). They show that situations 
at an organization, project or individual level often cause changes in methods. 
Simply, understanding of methods increases while methods are being used. 
However, this type of knowledge is not usually included in the contingency-
based method selection. 

The second problem comes from selecting methods (Kumar and Welke 
1992). Because varying contingencies will cause changes in methods during 
their adaptation with new tools, their learning becomes expensive, or even 
impossible. If research has indicated that ISD professionals do not have enough 
knowledge and experience of methods (Aaen et al. 1992), how could they be 
competent to choose between methods? Hence, method selection and 
development should be considered in relation to both a priori contingencies and 
cumulated organizational experience. 
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To complement contingency-based method selection researchers have 
proposed an idea of a detailed method construction in close connection with the 
use situations (cf. Brinkkemper 1996, Kumar and Welke 1992). Instead of 
selecting a method purely from an available library according to contingencies, 
ISD methods should be constructed to meet a particular IS development’s 
needs. This approach is called method engineering (ME, Kumar and Welke 1992) 
as it aims to construct or “engineer” an ISD method according to stakeholders’ 
requirements. Simply, the idea behind ME is the same as behind building any 
system: just as ISD develops and maintains systems supporting business 
processes, ME aims to develop and maintain systems for ISD. This is an 
alternative approach since ME assumes that ISD can often not be carried out 
solely according to a set of available methods. In fact, according to the ME 
approach ISD methods should be adapted to local situations even if it requires 
detailed modification of methods. Here, the fundamental assumptions are 
uniqueness and difference in ISD situations which can not be solved solely by 
using general and universally valid methods or general contingency-based 
selection principles. This approach also necessitates more detailed and 
systematic steps of method development (cf. Figure 1-1). In particular, the steps 
of method construction and tool adaptation are emphasized. 

ME approaches can be further distinguished by whether they aspire 
towards an organization-specific or a project-specific method. This division can 
be also found in practice as described in more detail in Section 2.5. The first one, 
organization-based ME, is based on an assumption that development situations  
and thus also supported methods  are alike in an organization and the 
method can be developed to meet these requirements. In the organization this 
method is then believed to be appropriate for all projects. Baskerville (1996) 
calls these methods contingency methods, as they are situation specific for 
certain types of bounded organizational settings. Numerous examples of these 
approaches can be found. For example, the Pandata corporation has developed 
various versions of the SDM method and supporting tool (SDW) to be used in 
the company (cf. Turner et al. 1988).  

Another ME approach is project-based ME, which assumes that methods 
should be “engineered” on a project basis. Because this approach copes with the 
uniqueness of each ISD setting (Baskerville 1996), it focuses on advancing 
method knowledge in the context of a single ISD project. Thus, it is believed 
that development situations differ between various projects. An example of 
local method development effort in this category is Nokia Telecommunications, 
whose OMT++ internal method has been developed to be used for designing 
network management systems for mobile phones (cf. Aalto and Jaaksi 1994, 
Jaaksi 1997). Although this method might be applicable in other divisions or 
projects of Nokia it has been developed from one application and a project point 
of view. 

Although there can be an in-house method in the organization, according 
to project-based ME there is also a possibility to adapt it, or even to develop 
various project variants. For example, a questionnaire based study (Wynekoop 
and Russo 1993, Russo et al. 1995) claims that over 2/3 of the companies have 
developed their methods in-house. It also shows that half of the respondents 
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believed that the organization should use a single method for all projects (i.e. 
follow an organization-wide method). At the same time, however, 89% of 
respondents claimed that methods should be adapted on a project level in 
contrast to using the same method in the whole organization (i.e. follow project 
based ME). These results clearly show a lack of knowledge of local method 
development and adaptation. This may be due to the fact that the question of 
whether an organization has or has not developed an in-house method can be 
understood differently. Thus, the question should not only be whether or not 
methods are developed in-house, but also to what extent they are modified, or 
adapted, and how the modification is done. Unfortunately, the study neither 
explains the variation to different answers, nor does it reveal whether 
organizations that have purchased methods from outside are more willing to 
follow the method than those which have developed a local method. However, 
the study raises several questions that remain largely unanswered. For example, 
to what extent do organizations adapt methods? How are these efforts 
organized? Are ME efforts project-driven or organization-driven? How is 
knowledge related to methods gathered and organized? How are method 
refinements carried out, and what is the role of method-related tools in method 
evolution. In the following section we shall analyze the state of ME research in 
relation to these questions. This will lead us to formulate our research questions 
and research approach.  

1.5 Research questions and research methods 

In this section we shall first describe the research approach adopted and relate it 
to published research on method engineering. Second, we formulate the 
research questions, and finally we describe the research method. 

1.5.1 Research topic 

In this thesis our topic is ME principles for local method development. Reasons 
for selecting this topic are twofold: First, new situations and challenges of ISD, 
such as client-server architectures, object-oriented approaches, or business 
process re-engineering, necessitate the formulation of new methodical 
approaches. Accordingly, instead of selecting methods from the collection of 
available ones (e.g. by using contingency frameworks) organizations are facing 
needs to modify and even to develop local variants of ISD methods (cf. 
Seppänen et al. 1996). At the same time methods must be analyzed, constructed, 
adapted into tools and maintained in a different fashion when compared to 
other method development strategies. 

Second, current approaches to method selection and development do not 
provide adequate support for learning and creation of methodical knowledge. 
Hence, in this study local method development is viewed as a knowledge 
creation process which can not be done in a “one -shot” manner. As cases of 
local method development (e.g. Turner et al. 1988, Aalto and Jaaksi 1994) reveal, 
in-house methods do not remain fixed over time, rather they have a history with 
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various configurations: parts of the methods are modified, some parts are 
excluded, and new ones are included. Therefore, methods must be seen as one 
part of organizational knowledge, which evolves and needs to be collected, 
maintained and shared. Based on this we argue that an important factor in local 
method development is the capability of an organization or a project to learn 
about method use and deploy this knowledge for method refinements. Thus, 
our research approach is anchored on the one hand in beliefs underpinning 
method engineering (Brinkkemper 1990, Kumar and Welke 1992) that focus on 
developing situation-bound methods, and on the other hand in theories of 
organizational learning and knowledge creation (Schön 1983, Nonaka 1994).  

1.5.2 Research domains and related research 

Before we formulate our research questions, we will conduct a survey of related 
research. This allows us to position our research within the context of ME 
research during problem formulation. In their prominent article Kumar and 
Welke (1992) describe ME and suggest four domains that have to be addressed 
in ME:  

1) modular method construction,  
2) stakeholder value based method composition,  
3) need for computer aided support, and  
4) organizational support for ME.  
 
In the following each research domain is discussed in more detail and 

related research is described5.  
1) Modular method construction. Several researchers (cf. Kumar and 

Welke 1992, Harmsen et al. 1994a, Heym 1993) suggest that ME can be carried 
out by using pre-defined and tested method modules. These modules  often 
called a component base (Kumar and Welke 1992), or method fragments 
(Harmsen et al. 1994b)  help specify knowledge about ISD methods in two 
ways. They either describe a method’s static part through its conceptual 
structure, or the dynamic features of a method, i.e. its procedural part. The first 
aspect is incorporated in meta-data models (Brinkkemper 1990) which describe 
the conceptual structure of modeling techniques together with their 
representations. The latter aspect is defined by meta-activity models 
(Brinkkemper 1990), or by process models (Marttiin 1994, Jarke et al. 1994). 
These models contain knowledge about the stages and tasks of a method. 

Most research done in this domain has focused on developing 
metamodeling languages (cf. Welke 1988, Wijers 1991, Smolander 1992, Heym 
and Österle 1992, Rossi 1998, Marttiin 1994, Harmsen et al. 1994a). Principles for 
using pre-defined modules and utilizing metamodels for method analysis and 
refinement have been far less studied. Here research has focused on comparing 
and combining metamodels (e.g. Hong et al. 1993, Henderson-Sellers and 
Bulthuis 1996b) and developing metrics for metamodel-based method 

                                                
5  A more detailed analysis of related research can be found from Tolvanen et al. (1996). 
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comparison (Rossi and Brinkkemper 1996). Moreover, advances in 
metamodeling languages have mostly taken place in meta-data modeling (cf. 
Welke 1988, Smolander 1992), though some process models (Verhoef et al. 1991, 
Marttiin 1994, Jarke et al. 1994) as well as integrated meta-data models and 
process models have been developed (Heym 1993, Marttiin et al. 1995, Harmsen 
et al. 1994a). Major differences among these approaches can be found in their 
modeling power and capability, degree of formality, and ways to represent 
method knowledge. Because ME is a relatively new research field, there is a 
lack of experience in applying metamodeling and modular method construction 
principles. A few cases studying ME practices have focused on relatively small 
methods and mostly on the adaptation of methods to modeling tools (cf. Tagg 
1990, Tolvanen and Lyytinen 1993, Cronholm and Goldkuhl 1994). Also some 
laboratory based experiments on representing method knowledge have been 
carried out (e.g. Wijers 1991, Verhoef 1993). However, they focus on individual 
aspects (i.e. how a single developer understands and uses a method) rather than 
on the use of methods in the large and by many. Hence, most studies reported 
on method modeling can be found from method comparisons and analysis (cf. 
Song and Osterweil 1992, Hong et al. 1993). For these reasons, the essential 
question: “How can we represent, criticize, analyze and refine method 
knowledge adequately to support local method development in practice?” has 
largely remained unanswered. 

2) Stakeholder value based method composition. Because ME can be 
regarded as a change process, it is relevant that constructed methods meet 
users’ requirements. Hence, ME requires methods and guidelines to identify 
stakeholders  such as designers, programmers, IS users and managers  and 
their requirements (Kumar and Welke 1984, 1992). This, in fact, is an essential 
factor in accepting constructed methods. It can be expected that method users 
will more easily learn the methods, accept them, and use them if the methods 
are based on their requirements, in contrast to the situation where introduced 
methods are purely based on requirements outside the organization. The 
involvement of method users has been emphasized in recent method 
development efforts (e.g. UML, Booch et al. 1997) in which method user’s 
requirements and comments are collected more extensively than ever before. 
Although the participation is important it has not been studied as extensively: 
identification of stakeholders, dealing with conflicting requirements, and 
responsibilities in decision making are less studied in the ME literature. 

In this research domain few empirical studies have been carried out. 
Goldkuhl et al. (1992) studied five CASE tool adaptation projects and identified 
different roles and needs for the tool adaptation. In this study, however, the 
research focus was on technical issues dealing with customizable tools rather 
than on local method development. Similarly, other studies of ME (e.g. 
Tolvanen 1995) have focused on a limited number of stakeholders and a few 
contingency factors.  

3) Need for computer aided support. Another research stream in ME has 
focused on developing tools for capturing method knowledge (cf. Heym 1993) 
as well as building metamodeling-based tools that can be customized (cf. 
Teichroew et al. 1980, Chen 1988, Sorenson et al. 1988, Bergsten et al. 1989, 
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Smolander et al. 1991, Rossi 1995, Kelly et al. 1996). These tools, often called 
CASE shells (Bubenko 1988), metasystems (Sorenson et al. 1988), or metaCASE 
tools (Kelly 1994), offer facilities to tailor CASE tools with desired methods. 
Hence, as ISD methods are supported by CASE tools, similarly metamodeling 
languages are increasingly supported by metaCASE tools. This symmetry has 
naturally introduced a more general term CAME (Kumar and Welke 1992, 
Computer Aided Methodology Engineering) to highlight the role of computer-
based tools in ME. 

As in CASE research (cf. Wynekoop and Conger 1991) there is a bias in ME 
research towards building metaCASE and CAME environments rather than 
evaluating them. There are many articles that describe either principles and 
requirements for such environments (cf. Marttiin et al. 1995, Harmsen et al. 
1994a, Goldkuhl and Cronholm 1993, Heym 1993), or represent how one 
particular system has been implemented and how it works (cf. Teichroew et al. 
1980, Sorenson et al. 1988, Bergsten et al. 1989, Chen 1988, Smolander et al. 1991, 
Rossi 1995). There is, however, a paucity of research that describes the use of 
these tools in practice. Only two empirical studies addressing the capabilities of 
adaptable environments was found6: Goldkuhl et al. (1992) studied method 
adaptations carried out with four different tools and five methods. Marttiin et 
al. (1993) made laboratory experiments by adapting the same method to three 
different CASE shells. These studies reveal that CAME tool developers have 
concentrated so far on techniques that allow tool adaptation rather than on 
developing techniques and principles for utilizing tool based knowledge about 
methods for example in method selection, method composition, construction, 
and reuse. Yet, without proven ME principles, the development of advanced 
tool support for ME will be slowed down. 

4) Organizational support for ME. The use of ISD methods always 
involves a supporting organizational structure and mechanisms that ensure 
method selection, development, training, use, and maintenance. The key 
research question here is: “How should ME be organized inside a company 
together with its ISD efforts?”. This research domain is hardly tackled in the ME 
literature although methods are actually developed, taught and used locally 
(Wijers and van Dort 1990, Aaen et al. 1992, Aalto 1993): because organizations 
develop their own versions of methods, these tasks are already being managed 
somehow. Few discussions available (cf. Bubenko 1988, Tagg 1990, Tolvanen 
and Lyytinen 1993, Tolvanen 1995, Nissen 1996) study the roles and tasks 
needed for method engineering. Research in this domain has so far focused 
mostly on proposing an organizational position of a method engineer. Studies 
of the other people involved or tasks and organizational structures and 
mechanisms needed to carry out ME in practice are missing. 

                                                
6  Most articles related to use of metaCASE tools (e.g. Tagg 1990) describe only the current 

adaptation product but do not evaluate the adaptation process.  
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1.5.3 Problem formulation 

The goal of this thesis is to improve the situational applicability of ISD methods 
that forms a part of a modeling environment. This objective is examined as a 
problem of method engineering. Our special interest is in incremental aspects of 
ME. Any organization that builds ISs not only delivers systems as an outcome, 
but also learns and creates knowledge about ISD methods. In fact, knowledge 
on ISD and ISD methods is one of the most valuable assets in ISD organizations: 
methods can be seen as a part of organizational knowledge, which evolves and 
needs to be collected and shared in an organization. Consequently, creation of 
new knowledge about ISD methods can be characterized as an incremental 
learning effort in contrast to selecting methods solely in a “one -shot” manner 
and using them as readily applicable standards. 

According to the incremental approach, an important factor in local 
method development is the capability of an organization or a project to learn 
about method use, externalize the experiences into explicit knowledge, and 
utilize the experiences for method refinements and knowledge creation (cf. 
Schön 1983, Nonaka 1994). In incremental ME method knowledge is managed 
by using metamodels combined with method experiences and supported by 
CAME tools. Our primary interest is not in how efficiently an organization 
develops ISs, but in how it creates information and knowledge about the ISD 
and about the ISD methods it applies. Our research objective can also be seen as 
an aim to develop methodical guidelines for ME. Method engineering is driven 
by a method, i.e. a metamethod. In fact, Kumar and Welke (1992) define ME 
itself as a “method for designing and implementing ISD methods”.  

The motivation for our problem formulation is based on two observations: 
first, many organizations tend to develop their own methods, and second, there 
is a lack of principles and guidelines to carry out local method development 
(Russo et al. 1995). Although there is a plethora of methods available for ISD, 
hardly any could be found for local method development and for method 
engineering. To develop principles for method engineering the following 
research problem is formulated: 

 

How does metamodeling support the local development and adaptation 
of ISD methods? 

 
This question is divided into two more specific questions: 
1) How completely can meta-data models represent knowledge about 

ISD methods for modeling tools? This problem can be defined as a method 
modeling (i.e. metamodeling) problem. It deals with the modeling power of 
metamodeling languages and inspects semantic data models as a basis for 
metamodeling. The problem is examined by seeking metamodeling language 
constructs to specify detailed method knowledge. Thus, this research question 
deals with extending support for metamodeling. We use the term meta-data 
model to denote a description of static method knowledge, in contrast to the 
dynamics of methods which are captured with process models or meta-activity 
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models (Tolvanen and Lyytinen 1993), or with other type of metamodeling 
languages (cf. Section 3.2.2). Strategies for meta-data modeling include 
modeling of a single technique (i.e. its conceptual structure and representations) 
and integration of techniques into a method. We concentrate on meta-data 
modeling because most customizable ISD tools focus on changing the static part 
of method support, and similarly most reported cases of tool adaptation deal 
with specifying static aspects of methods (e.g. Tagg 1990, Goldkuhl et al. 1992, 
Nissen et al. 1996). 

This question is important since appropriate metamodeling constructs are 
needed to describe the methods being developed and adapted (Wijers 1991, 
Brinkkemper 1996). Research in this area (cf. survey on ME research, Section 
1.5.2) has focused so far on modeling single techniques or a relatively small 
collection of techniques. Moreover, if we want to apply metamodeling as a 
vehicle for method construction (Kumar and Welke 1992) and tool adaptation 
(Tolvanen and Lyytinen 1993) this question is of great importance: a detailed 
metamodel is a pre-requisite for developing tool support for a method. In terms 
of the steps of local method development (cf. Figure 1-1), this research question 
deals with method construction and tool adaptation. 

2) How can experience of method use together with metamodels be 
applied for method refinements? Because knowledge in general (Nonaka 1994, 
Schön 1983) and of method use in particular is created by individuals, the 
ability to build up and capture experience is important for local method 
development. Our subject here is experience of method stakeholders (such as 
designers, tool experts, method engineers) which can be used to improve in-
house methods. The question deals thus with principles of method refinement. 
Method refinement is investigated through a process of organizational learning 
(Schön 1983) in which experience about methods is obtained during method 
use, and knowledge is created through a continuous dialog with the collected 
experience and assessment of method use (cf. Nonaka 1994). 

Two factors motivate this research question. First, method modeling has 
not been studied from the viewpoint of incremental method development, i.e. 
how experiences can be used for method refinement. The traditional approach 
(cf. Brinkkemper 1996) has been to construct methods once in the beginning of 
each ISD project rather than to provide mechanisms to gather experiences and 
relate them to the available method specifications. To extend the ME process we 
propose mechanisms for evaluating and improving the situational applicability 
of methods applied in modeling tools. In terms of the steps of local method 
development (cf. Figure 1-1), this question deals with advancing or refining 
methods based on experience. Second, empirical studies on method modeling 
and construction have been laboratory experiments or small cases (cf. Wijers 
1991, Verhoef 1993, Tolvanen and Lyytinen 1993). Because of bias in individual 
developers (e.g. Wijers 1991), we lack knowledge of how organizations or teams 
develop their own methods. In this thesis we demonstrate the viability of the 
proposed incremental approach in two cases of method engineering. Thus, 
method development and method refinements are studied here in a 
longitudinal rather than snapshot manner, and on a project level. One reason for 
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this can be found from our survey of ME research (cf. Section 1.5.2) which 
reveals that we lack knowledge of how ME efforts can be organized. 

To summarize, this thesis puts forward some principles for incremental 
ME. These principles aim to systematize local method development. Our special 
focus is on the evolutionary nature of method knowledge. We argue that an 
important factor for the success of ISD methods is how an organization or a 
project creates and maintains method knowledge. In incremental ME 
metamodels can be used for capturing method knowledge, analyzing methods 
used, and refining methods based on available experience of method use. By 
finding answers to these questions, we can analyze available ME approaches 
and extend the principles and methods of ME. By doing so we can improve the 
flexibility of ISD methods and overcome the problems faced in the dominant 
“one -shot” introduction and use of standardized methods. In terms of domains 
of ME research (see Section 1.5.2), and the problems formulated above the thesis 
focuses on the first research domain: construction of methods based on meta-
data models. The problem addressed, however, is also related to other research 
domains of ME. In the domain of tool support CAME tools can implement the 
proposed metamodeling capabilities as well as support experience gathering. In 
the domains of organizational support and stakeholders’ roles the incremental 
principles suggest how experiences can be collected and analyzed in an 
organization. Finally, whereas most studies on ME have focused on developing 
metamodeling languages and tools our study deals with the process of actual 
method construction and development.  

1.5.4 Research methods 

Selection of research methods is always dependent on the research setting and 
problem. At the same time, problem formulation can be done in favor of a 
particular research method. In this thesis we apply two kinds of research 
methods. The first research method, used to study the metamodeling related 
question, “how completely can meta -data models represent knowledge about 
ISD methods for modeling tools?”, is conceptual: we model 17 ISD methods and 
validate their meta-data models by implementing methods in computer-aided 
tools. These method specifications are then used to analyze method knowledge 
as part of modeling tools and to extend languages for method modeling. This 
type of inductive approach has rarely been applied to such an extent for 
analyzing and developing metamodeling languages for ME (Tolvanen et al. 
1996). Thus, the selected research method complements other research 
approaches applied (cf. Tolvanen et al. 1996). 

The second question, “how can experience of method use together with 
metamodels be applied for method refinements?”, is studied both conceptually 
and empirically. In the conceptual part we analyze the literature on ME and 
relate it to the mechanisms of knowledge creation and organizational learning. 
In the empirical part we follow an action research strategy (Rapoport 1970, 
Susman and Evered 1978) also applied in IS research (Wood-Harper 1985, 
Jönsson 1991, Checkland 1991). The need for empirical approach is obvious 
because ME is a relatively new research area, and thus has received little 
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attention to theoretical and research methodical issues. Especially in 
(meta)methods and ME efforts we could find neither reported cases nor 
systematic studies which aim to develop metamethods7. This observation 
implies that ME needs to be studied in its natural setting, i.e. in real life 
organizations. In other words, we believe that it would be difficult and hard to 
develop principles for ME in a purely deductive way.  

In the study of incremental ME we examine two cases in which methods 
were developed and adapted to local needs. Both of these cases cover all the 
steps of local method development (cf. Section 1.3). They allow us to build a 
rich understanding of method development, and demonstrate the feasibility of 
the incremental approach. The main benefits of applying an action research 
strategy is to gain in-depth and first-hand understanding of the processes that 
take place in an organization in a natural setting. In the studies we gather 
requirements related to methods and capture this information in meta-data 
models. The data about an organization’s method development effort is 
collected by interviewing method engineers and users, and by observing the 
ME process. Also, the modified CASE tools are used to analyze the methods as 
they are supported with tools. As an outcome of the data collection we obtain 
different versions of methods (in terms of metamodels and adapted tools) 
together with reasons for method refinements. On the data analysis side, the 
explicit relation of method specifications to their changes offers a mechanism to 
indicate and explain method evolution. 

In principle, surveys, field studies and laboratory experiments are all 
appropriate in studying method development. For example, in studying local 
method development and use of in-house methods, Russo et al. (1995) used 
surveys and Smolander et al. (1990) carried out a field study. Moreover, Wijers 
(1991) performed three laboratory experiments to study method knowledge as 
understood and used by ISD professionals. However, these approaches focus on 
obtaining a snap-shot view of practice, or do not offer a possibility to analyze 
the richness and detail of ME. Most importantly, they do not capture changes in 
ISD methods as well as an action research method does. In our opinion, these 
are of great importance when examining incremental ME.  

The use of action research does not come without cost: The study does not 
meet the standards of “positivist” research because the approach offers few 
possibilities for statistical generalization and the researcher can not exercise 
control over experimental conditions. However, several researchers have 
advocated an action research approach in systems development research (cf. 
Galliers and Land 1987, Galliers 1992, Wood-Harper 1985, Checkland 1991), 
because the nature of method development and use of methods emphasizes a 
close interaction between theory and practice. 

                                                
7  Although the literature offers some metamethods which include aspects of ME in 

addition to method construction, they focus on an a priori view of ME (cf. Section 3.2) 
and have not been validated or even demonstrated in real-world ME efforts (Tolvanen et 
al. 1996). 
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1.5.5 Limitations of the study 

This study has several limitations. One notable limitation is the definition of an 
ISD method. As the title of the thesis suggests our view of methods is limited in 
how methods relate to modeling tools, such as CASE. We are interested only in 
those parts of ISD methods that can be modeled, formalized, and supported in 
computer-aided environments. Therefore, implicit or hidden parts of methods, 
such as their value orientation, are excluded from the study.  

The second limitation relates to the focus on meta-data models and use of 
semantic data models. The former means that our interest in ME is only in static 
aspects of the method, namely the conceptual structure behind modeling 
techniques. The latter means that metamodels are developed on the basis of 
semantic data models which by themselves have limitations in IS modeling and 
presumably also in method modeling. The semantic data models are selected as 
a basis for metamodeling because they provide support for incremental ME in 
which maintainability, modularity, ease of use and support for communication 
among stakeholders are important. Moreover, most large metamodeling efforts 
(Hong et al. 1993, Heym 1993, Henderson-Sellers and Bulthuis 1996a, 1996b, 
Hillegersberg 1997) apply semantic data models, and most repositories apply 
semantic data models in their schema (CASE Outlook 1989). 

The third limitation relates to the research method. Despite the benefits of 
action research studies, such as its closeness to the real world and focus on 
detail and change, the results can not be statistically generalized. Rather, they 
allow us to suggest conjectures (Yin 1993) on an incremental basis. The studies 
can demonstrate that the suggested ME approach can be useful rather than 
justifying it to be universally beneficial. A thorough examination of incremental, 
evolution based ME necessitates a longer time scale and larger samples than 
applied here. 

1.6 Outline of the thesis  

The thesis is divided into seven chapters (cf. Figure 1-3). After this introduction 
and problem formulation, Chapter 2 surveys major lines of research on ISD 
methods, defines ISD, and characterizes the role of a method and tools in its 
enactment. We shall also clarify mutual relationships between ISD methods and 
computer-aided environments such as CASE tools. In Chapter 3 we survey the 
literature on metamodeling and method engineering. Our goal here is first to 
introduce some principle elements of ME, and second to examine what kind of 
ME tasks and metamodeling languages have been proposed to address method 
development. The limitations of current ME approaches, especially related to 
representing method knowledge and improving methods in use, form a 
motivation for the development of an incremental ME approach. 
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FIGURE 1-3 Structure of the thesis. 

In Chapter 4 we study the issue of representing method knowledge, modeling 
and implementing a large portion of ISD methods into a modeling tool. Thus, 
our focus here is on studying the first research question, “how completely can 
meta-data models represent knowledge about ISD methods for modeling 
tools?”. We study what construct s are needed for metamodeling languages by 
using content analysis to obtain method knowledge from 17 ISD methods. This 
leads us to propose some extensions to ME and especially to the languages it 
applies.  

Chapters 5 and 6 concentrate on the second research question: “how can 
experience of method use together with metamodels be applied for method 
refinements?”. Chapter 5 puts forward principles of incremental ME, and 
studies method development through experience-based method refinement. We 
propose some ideas for understanding method evolution and the dynamic 
nature of ME: how the applicability of methods can be evaluated and 
maintained in changing ISD environments. These principles are applied in two 
cases (Chapter 6) in which we study local method development in practice. We 
apply the proposed ME principles together with existing tools to investigate the 
incremental ME approach. In these studies our primary interest is not on how 
efficiently an organization develops ISs, but on how they learn about methods 
during their use, and how this knowledge can be incorporated back into 
methods. Finally, in Chapter 7 we shall recapitulate major findings of the thesis, 
and propose issues inviting future research. 



2 INFORMATION SYSTEM DEVELOPMENT: 
METHODS AND TOOLS 

Two types of knowledge are essential in method engineering: knowledge of IS 
development and knowledge of method development. In this chapter we focus 
on the first of these, information system development, and especially on 
development methods and tools.  

In the following we shall first define ISD and characterize the role of 
methods and tools in its enactment. Second, in Section 2.2 we shall survey 
methods based on their characteristics and alternative structures of method 
knowledge. Third, in Section 2.3 we shall clarify the mutual relationship 
between modeling tools and ISD methods, referred to here as method-tool 
companionship. Fourth, in Section 2.4 we shall discuss the paradoxes of method 
use by looking at the acceptance of methods in general and commercial “t ext-
book” methods in particular. This leads us to propose an alternative view of 
method development, which helps explain the reasons for local method 
development.  

2.1 Information system development methods 

We define ISD as “a change process taken with respect to object systems in a set 
of environments by a development group using tools and an organized 
collection of techniques collectively referred to as a method to achieve or maintain 
some objectives” (Welke 1981, Lyytinen 1987). ISD is understood to include 
development of both manual and computerized parts of an object system. An IS 
can therefore include both manual and computer-supported parts. Although the 
definition emphasizes essential components of ISD, such as its social nature and 
varying objectives, in this thesis we shall mainly focus on the italicized parts of 
the definition, i.e. on the role of methods and techniques, and their supporting 
tools.  
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By a technique we mean a set of steps and a set of rules which define how a 
representation of an IS is derived and handled using some conceptual structure 
and related notation (Smolander et al. 1990). Olle et al. (1991) and Wijers (1991) 
call this knowledge a way of modeling. This definition is illustrated in Figure 2-
1. By using a technique, system developers perceive, define and communicate 
on certain aspects of the current or desired object system. These aspects are 
defined by the conceptual structure of the technique and represented by the 
notation. By a tool we generally mean a computer-based application which 
supports the use of a modeling technique. Tool-supported modeling 
functionality includes abstraction of the object system into models, checking 
that models are consistent, converting results from one form of model and 
representation to another, and providing specifications for review (Olle et al. 
1991). 

Examples of modeling techniques are data flow diagrams and activity 
models. Other techniques can be found from Table 4-1. As a technique, a data 
flow diagram identifies and names the objects (e.g. process, store) and 
relationships (e.g. data flow, control flow) which it considers important in 
developing an IS. Other techniques include other sets of objects and 
relationships. Modeling techniques also have a notation and a representation 
form. In a data flow diagram the notation for a process is a circle, and for a data 
flow a solid line with an arrow-head. The representation form of a data flow 
diagram is a graphical diagram. Furthermore, a technique defines some 
principles on how the models should be derived (e.g. decomposition of 
processes while modeling with data flow diagrams). In other words, a modeling 
technique specifies which kind of aspects of an object system need to be 
perceived, in what notation each aspect is represented, and how such 
representations should be produced.  

A method can be considered as a predefined and organized collection of 
techniques and a set of rules which state by whom, in what order, and in what 
way the techniques are used (Smolander et al. 1990)8 to achieve or maintain 
some objectives. In short, we call this method knowledge. Thus, our definition 
of method includes both the product and process aspects, although dictionaries 
define the term “method” as meaning “the procedure of obtaining an object” 
(Baskerville 1996) and therefore emphasize the process rather than the 
representation (i.e. product of the method use). In contrast, Wijers (1991) notes 
that most ISD method text-books focus on feasible specifications rather than on 
the process of how to develop such specifications. In addition, a method also 
includes knowledge about method users, development objectives and values. 
We will analyze the types of method knowledge in more detail in the next 
section. 

                                                
8  We aim to avoid the use of methodology altogether; the use of this term has become 

confused as it originally means the study of methods, but is also used as a synonym for a 
method. 
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Examples of methods include Structured Analysis and Design (SA/SD, 
Yourdon 1989a), and the object-oriented methods of Booch (1991) and 
Rumbaugh et al. (1991). A short example of method knowledge is in order. The 
method knowledge of SA/SD can be discussed in terms of the techniques (e.g. 
data flow diagram, entity-relationship diagram) and their interrelations. In 
SA/SD the overall view of the object system is perceived through a hierarchical 
structure of the processes that the system includes. This overall topology is 
completed by data transformations; how data is used and produced by different 
processes, how it is transformed between processes, and where it is stored. 
Moreover, the data used in the system needs to be defined in a data-dictionary 
and interrelations between data need to be specified with entity-relationship 
diagrams. Thus, methods describe not only how models are developed but also 
how they are organized and structured. Furthermore, since ISD methods aim to 
carry out the change process from a current to a desired state they should also 
include knowledge for creating alternative design solutions and provide 
guidelines to select among them (Tolvanen and Lyytinen 1994). 

FIGURE 2-1 The role of methods in ISD (based on Lyytinen et al. 1989). 

SA/SD and other methods put forward a defined and a limited number of 
techniques including their conceptual structures and notations. In the same way 
as there is variety in techniques, there is also diversity among methods (Welke 
and Konsynski 1980). Different methods include different types and sets of 
techniques. Interrelations between techniques can be defined differently even 
between methods which use the same techniques, and the procedures for 
building and analyzing models can be different. Although there is diversity 
among ISD methods they include similarities, e.g. they apply the same concepts 
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and notations. To understand these differences and similarities we shall analyze 
several methods in more detail by describing types of method knowledge.  

2.2 Types of method knowledge 

The literature suggests many approaches to analyzing and characterizing 
different facets of methods including their structure, content and use (e.g. Olle 
et al. 1982, 1983, 1986, 1988, Lyytinen 1986, Hackathorn and Karimi 1988, Wijers 
1991, Blum 1994, Krogstie and Sølvberg 1996). These different categorizations 
are almost as numerous as the methods available. For the purposes of ME, we 
combine some of them which have been applied in ME research (Wijers 1991, 
Kronlöf 1993, Jarke et al. 1998) to analyze what type of knowledge ISD methods 
contain.  

The categorization applied here is illustrated in Figure 2-2, whose shape 
leads us to call it a shell model. According to the model, methods are based on a 
number of concepts and their interrelations. These concepts are applied in 
modeling techniques to represent models of ISs according to a notation. 
Processes must be based on the concepts and they describe how models are 
created, manipulated, and used with the notation. The concepts and their 
representations are derived, analyzed, corrected etc. by various stakeholders. In 
addition, methods include specific development objectives about a ‘good’ IS, 
and have some underlying values, “weltanschauung” and other philosophical 
assumptions (Olle et al. 1991, Wijers 1991, Krogstie and Sølvberg 1996).  

Conceptual
structure

Notation

Process

Participation and roles

Development objectives and decisions

Values and assumptions

 

FIGURE 2-2 Types of method knowledge. 
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The shape of a shell emphasizes that different types of method knowledge are 
neither exclusive, nor orthogonal. Each type of knowledge complements the 
others and all are required to yield a “complete” method, although many 
methods focus only on the concepts and notations included in modeling 
techniques. To illustrate relationships between different types of method 
knowledge we can use the concept of functional decomposition as an example 
(cf. Table 2-1). In the procedural guidelines of Structured Analysis (DeMarco 
1979) this concept is described as a top-down refinement of the system starting 
from the high level diagram. In the modeling technique this concept is 
implemented as the possibility for every process to have a sub-diagram, and in 
the balancing of the data flows between the decomposed process and its sub-
diagram. The concept of decomposition also affects other method knowledge in 
several ways: the method should explain who identifies, specifies, and reviews 
decompositions; the partitioning of the system into a hierarchical structure 
dominates the design decisions and reveals the underlying assumptions of the 
method, i.e. that an IS can be effectively designed by partitioning the system 
based on its processes. 

 
Because of these dependencies it is often impossible to focus only one type of 
method knowledge. For this thesis, this means that metamodeling the 
conceptual structures behind modeling techniques is not meaningful if other 
parts of the method knowledge are not considered. Similarly, it is not 
meaningful to use a modeling technique just to represent the designs if the 
underlying values or design objectives are not known. Therefore, when 
specifying functional decompositions we need to also consider aspects related to 
the process, or how various design alternatives can be sought using data flow 
diagrams.  

Accordingly, in the following we shall analyze examples of method 
knowledge using the shell model. The analysis of method knowledge is based 

TABLE 2-1 Examples of method knowledge. 

Type of method knowledge Examples of method knowledge 

Conceptual structure Each process may have sub-processes 

Notation Representing sub-diagrams for processes, 
balancing the data flows between decomposed 
process and its sub-diagram 

Process Top-down modeling of processes 

Participation and roles Division of labor based on sub-processes 

Development objectives  
and decisions  

Design choices are made by partitioning the 
system into sub-processes  

Assumptions and values An IS can be effectively designed by 
partitioning its processes 
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on the methods studied in Chapter 4 and on a method survey carried out by 
Tolvanen and Lyytinen (1994). The analysis allows us to understand methods in 
more detail as subjects of ME: the applicability of a method is determined partly 
by how well its specific composition of method knowledge is suitable for the 
ISD task at hand. By highlighting various aspects of methods, the shell model 
also provides a clear delimitation of the types of method knowledge that 
interest us (conceptual structures of modeling techniques). Consequently, the 
shell model is also applied in Chapter 3, where we inspect what types of 
method knowledge are addressed with available ME approaches. 

2.2.1 Conceptual structure 

During ISD it is impossible to analyze and represent the system to be built in its 
full richness. It is therefore necessary to restrict attention to a smaller number of 
concepts which are meaningful and sufficient to conceptualize and interpret the 
relevant parts of the object system. Such a conceptualization consists of a set of 
concepts, relationships between them and constraints applying to them, forming 
a conceptual structure.  

The conceptual structure forms the basis for other types of method 
knowledge and therefore all ISD methods are based on a conceptual structure. 
Some of the concepts are applied directly in notations, e.g. a class with a 
rectangular symbol as in Rumbaugh et al. (1991), whereas some are related 
more to the process, e.g. a top-down modeling approach via decomposition; or 
to design objectives, e.g. clear responsibilities on data usage. Because of the 
importance of the conceptual structure most arguments supporting a specific 
ISD method deal with promoting specific concepts. Similarly, most research on 
method analysis and comparison (e.g. CRIS-conferences, Olle et al. 1982, 1983, 
1986, 1988) focus mainly on the conceptual structures of methods. It must be 
noticed that while defining what aspects can and must be considered during 
ISD,  the conceptual structure of a given method also excludes some other 
aspects as irrelevant. In this way methods can be seen as enforcing a particular 
world view via their conceptual structure (Welke and Konsynski 1980). The 
conceptual structures behind different methods differ for various reasons, but 
most importantly they vary because of differences in the domain, levels of rigor, 
and other types of method knowledge considered. These differences are 
described in the following. 

First, because of different ISD contingencies, and differences in the 
systems being built (from business administration systems to automated 
robots), a variety of fundamental concepts exist. This is also one of the main 
reasons why so many methods have been developed. For example, methods 
which aim to develop single systems (e.g. Yourdon 1989a, Jackson 1976, Ross 
and Schoman 1977) include concepts such as local functions, data structures, 
data flows, control flows, and functional decomposition. Methods for managing 
system architectures (e.g. IBM 1984) focus on internal business processes, data 
sharing and access rights. Methods for business modeling (e.g. Vepsäläinen 
1988, Ciborra 1987, Macdonald 1991) include concepts such as organizational 
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structures and responsibilities, value adding, production and transaction costs 
(cf. Tolvanen and Lyytinen 1994).  

Second, conceptual structures can differ based on their rigor and degree of 
formality. These explain how well and strictly the relationships between the 
concepts, constraints and verification rules are defined mathematically. Some 
less formal and general concepts of a method, such as flexibility in the face of 
business changes, e.g. in BSP (IBM 1984), are loosely related to other concepts of 
a method, whereas some other concepts can be defined in more detail. For 
example, SA/SD (Yourdon 1989a, p 278) defines that each process must be 
specified with a decomposition or process specification, but not with both. 
Typically, methods which focus on earlier phases of the ISD life-cycle, such as 
business modeling or requirements engineering, include less rigorous 
conceptual structures compared with methods targeted for later phases, such as 
software design. For example, in BON (Walden and Nerson 1995) the concept of 
a class is related closely to the equivalent concept applied in a specific object-
oriented programming language called Eiffel (Meyer 1992). A more rigorously 
specified method leads to more uniform descriptions and process, but it will 
also limit the system developers’ freedom in method use situations by reducing 
the opportunities for contextual modification of the method. 

Third, conceptual structures differ among methods in how they cover 
other types of method knowledge. For example, most methods, like UML 
(Booch et al. 1997), focus only on the concepts behind modeling techniques. In 
contrast, other methods like BSP (IBM 1984) also specify procedural guidelines, 
different user roles, and even state which kinds of deliverables are considered 
good. Thus, the conceptual structure of BSP also includes concepts which are 
related to other types of method knowledge, such as processes, participants and 
design objectives. 

2.2.2 Notation 

Concepts defined as part of the conceptual structure can be discussed and 
represented only by using some kind of a notation. In a modeling technique, a 
notation is always associated with a conceptual structure (cf. Figure 2-1). The 
association between notation and the conceptual structure defines the semantics 
of the notation. Notations can be characterized according to the degree of their 
underlying formal semantics into formal (logic, rules), semi-formal (structured 
and object-oriented methods), and free form (e.g. rich pictures in (Checkland, 
1981)). The degree of formality reflects the underlying conceptual structure, and 
methods apply modeling techniques with different degrees of formality in 
different phases of the ISD life-cycle, typically moving from informal to formal 
(Pohl 1996).  

To understand the method knowledge behind notations, its relation to the 
underlying conceptual structure must be clarified. This relationship is also 
called the conceptual-representational dimension (Smolander et al. 1990). 
Viewed from the notation point of view, each notational construct in a modeling 
technique must be related to some part of the conceptual structure. Ideally, each 
concept of the modeling technique has only one notational representation, e.g. a 
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symbol. This principle minimizes the overload of notational constructs, and 
guarantees that all concepts can be represented in the technique. Accordingly, 
the completeness of representations (Batani et al. 1992, Venable 1993) or 
representational fidelity (Weber and Zhang 1996), i.e. availability of only one 
notational construct for each concept, is a well-known criterion for dealing with 
interpretations between modeling concepts and notations. For example, to 
describe classes, a modeling technique must have a related construct (i.e. apply 
the concept defined in the conceptual structure of the method) and define how 
it is represented (e.g. the “cloud” symbol in Booch (1991)).  

From the conceptual structure point of view, each concept does not 
necessarily have a single notational construct, and may not be supported in the 
notation at all. The former can be characterized as construct redundancy and the 
latter as construct deficiency (Weber and Zhang 1996). Although these 
situations can be considered undesirable they are typical: notations are not 
necessarily designed to cover the whole conceptual structure, and object system 
characteristics can be represented by using several notational constructs and 
modeling techniques. Examples of the former are modeling techniques which 
apply only a subset of the concepts defined in the conceptual structure. For 
example, the graphical modeling technique EXPRESS-G is a subset of the 
EXPRESS language (ISO 1991). An example of construct deficiency is the 
concept of ‘object life-cycle’ which does not have any single modeling construct 
or notational symbol, but can be perceived from a state model of a class (i.e. 
through instances). Similarly, in BSP (IBM 1984) one key concept is to establish 
clear data responsibilities. During modeling this is achieved by allowing only 
one (or as few as possible) process to create a single data class. Therefore, a 
concept of ‘clear data responsibility’ can be represented only by perceiving the 
whole system architecture derived within BSP, as no single construct is 
available in the modeling technique to represent that notion. In fact, one can 
claim that ‘clear data responsibility’ is related to design objectives or to 
underlying values of the method but not to the modeling technique. Although 
this claim is true it must be noticed that the modeling technique and notation 
should also support modeling of data responsibilities. Otherwise, such a design 
objective can not be represented and alternative choices to achieve it can not be 
analyzed (Tolvanen and Lyytinen 1994). 

Furthermore, all aspects of an IS can not be represented with one modeling 
technique, and so methods apply multiple techniques, sometimes even to the 
extent of using several techniques to describe the same aspect. Such different 
views can serve important goals including communication, analysis, 
understanding and prediction. As a result, a concept can be perceived in 
different ways via the different notations applied by different modeling 
techniques. Hence, construct redundancy is typical in a whole method because 
it allows the user to interrelate models.  

First, different notations can be used to represent models based on the 
same conceptual structure or the same concepts. An example of the former can 
be found from UML (Booch et al. 1997) which applies two modeling techniques 
with different notations yet based on the same underlying semantics, namely an 
event trace diagram and a collaboration diagram. An example of the latter is the 
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concept of a class which can be represented as a graphical rectangle notation in 
a diagram or as a string in a cluster chart table (e.g. Walden and Nerson 1995). 
Second, a notational element may be related to more than one construct of a 
technique. In this case, the interpretation of the notation depends on the context 
in which the notation is used. For example, a rectangle can represent an entity 
in the data modeling context, whereas it represents a terminator in the data flow 
view. Therefore, the relationship between conceptual constructs of modeling 
techniques and notations can be many-to-many. On the other hand, all 
modeling related concepts do not necessarily have notational constructs at all. 
In particular, concepts related to connections between models (and modeling 
techniques) are often defined weakly, if at all (Tolvanen and Lyytinen 1994), 
and thus often have no notation. For example, in most of the object-oriented 
methods it is difficult to notice from a state model which states belong to 
different objects (i.e. instances of a class). This limitation, of course, comes from 
the limitations of representation-related completeness (Venable 1993) and shows 
overload of notational constructs (Weber and Zhang 1996). In other words, the 
notation does not distinguish all parts of the conceptual structure. 

Independently of the notation, modeling techniques can be classified 
according to their representation form, the type of format in which the model is 
represented. The most frequently used representation forms include graphical 
diagrams, which dominate most methods; matrixes, often used in methods for 
IS planning (IBM 1984, Andersen 1991); tables, mostly used in methods for early 
phases of ISD (e.g. Critical Success Factors (Rockart 1979) or Root Definition 
(Checkland 1981)), indented lists (Goldkuhl 1993); text related to other 
representations or as separate textual specifications (e.g. Class Description 
(Coleman et al. 1994), or mini-specs (Yourdon 1989a)) and hyper-text (Isakowitz 
et al. 1995). Independence of the notation means that the same model can be 
described in different representation forms but still have the same notational 
constructs. For example, a graphical data flow diagram can also be represented 
in a matrix, and the notation elements, e.g. symbols for processes, can be the 
same (Kelly 1997). The representation form also implies some mappings to a 
technique and its underlying conceptual structure: For example, a graphical 
representation with nodes and links implies that a conceptual structure 
distinguishes between objects and relationships. The modeling techniques 
analyzed in this thesis are mostly graphical, but include also matrix and tabular 
representation forms. 

2.2.3 Processes 

Method knowledge also covers procedural guidelines which describe how an 
ISD effort should be carried out. The process aspect of the method can be 
distinguished based on several criteria, but most often it includes modeling 
related processes (way of working) and management related processes (way of 
controlling, Olle et al. 1991). The former describes how the ISD method 
produces its results, the outcomes of the method use, and the latter how the 
project is planned, organized, and managed. For this thesis, the former is of 
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greater importance, since it is related more closely to the modeling techniques 
studied here. 

Based on our definition of a modeling technique, processes define in what 
order, and in what way the techniques are used to produce the desired models. 
To be useful, processes must be based on the conceptual structure of the 
method. For example, in SA/SD (Yourdon 1989a) a concept of decomposition is 
reflected in a modeling process as a top-down refinement of the system starting 
from the context diagram. The possibility to add one sub-diagram for every 
process must also be supported by the conceptual structure. In contrast, a 
conceptual structure can also restrict some selections to be made in process. For 
example, it can include some process-related rules, e.g. that every data flow 
diagram, except the context diagram, must have a higher level process defined.  

The process aspect of the method, however, can not be found explicitly 
from every method. For example, methods may claim to cover the whole life-
cycle of ISD, but actually they offer support for only a few tasks, and are based 
on limited views of ISD (Kronlöf 1993). The processes can be further divided 
into those which manipulate elements of the conceptual structure and those 
which manipulate notations (Lyytinen et al. 1998). Thus, the latter actions deal 
mostly with the “cosmetics” of the models, such as placing external entities on 
the border of data flow diagram, or placing super-classes above sub-classes. 

2.2.4 Participation and roles 

ISD is a group activity in which multiple people participate in different roles, 
e.g. managers, programmers, designers, and end-users (Olle et al. 1991). Some 
methods also aim to describe these group aspects, such as organizational 
structures, responsibilities, and roles that the participating people have. For 
example, BSP (IBM 1984) defines the stakeholders and different roles needed to 
define system architectures.  

It must be emphasized that most methods do not describe organizational 
structures related to method use or roles. In fact, most of the methods analyzed 
in Chapter 4 implicitly assume that they are used only by IS professionals, and 
mainly by analysts and designers. Partly the participation is implicitly defined 
according to the intended domain of use: methods which aim to develop a 
single system naturally have a more restricted set of stakeholders than methods 
which aim to manage multiple systems or re-design business processes 
(Tolvanen and Lyytinen 1994). Those which identify roles and other 
participation-related issues are usually tied to specific ISD tasks in which the 
participation of end-users or domain experts is important. 

2.2.5 Development objectives and decisions 

Methods are not only used to describe the current system, they also help to 
improve the current situation by carrying out the change process. To this end 
methods also describe how feasible specifications can be sought or alternative 
solutions generated (Tolvanen and Lyytinen 1994). This is based on the 
method’s implicit or explicit rationale on how a “good” I S should be developed. 
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Development objectives are general statements about types of solutions 
considered desirable, whereas development decisions are more explicit and 
closely related to method use. Examples of the former are the formulation of a 
system architecture so that it is flexible (e.g. IBM 1984), or re-designing business 
processes so that hierarchical structures are flattened (Hammer and Champy 
1993). The latter are more concrete and describe how the objectives can be 
obtained. In IS integration methods (e.g. Kerner 1979, IBM 1984, Katz 1990) the 
main development decision is made based on the degree of (de-)centralization 
in the organization, and this choice then provides a basis for determining 
application boundaries. Some IS design methods recognize technical issues, 
such as hardware capacity, available database management system, and 
operating mode (Tolvanen and Lyytinen 1994), which should be considered 
while seeking design solutions. 

Development objectives and decisions are related to other types of method 
knowledge. For example, it is hard to achieve an objective if it can not be 
perceived, represented and assessed within the method. Therefore, 
development objectives and decisions should be closely related to the process, 
notation and the conceptual structure. Sometimes the biggest differences 
between methods are found in the development objectives: the conceptual 
models can be partially or even totally alike, but the underlying development 
objectives can be different. For example, both architecture planning methods 
(Kerner 1979, IBM 1984, Katz 1990) and BPR methods (Harrington 1991) apply 
the same concept of a ‘business process’, yet architecture planning methods 
consider business process structures largely as immutable, while BPR methods 
aim to change them.  

Unfortunately, the link between the objectives and notations and processes 
often remains unclear. It is rare that all important development decisions are 
described explicitly, and if described they relate to specific tasks considered 
problematic by the method developer. For example, Rumbaugh et al. (1991) 
describe four different approaches which could be chosen to create a schema for 
a relational database from class diagrams, mainly based on how an inheritance 
relationship should be transformed into a relational model.  

2.2.6 Values and assumptions 

Methods are always based on some underlying philosophical assumptions or 
“Weltanschauung”. These can also be called the “invisible” or “hidden” 
assumptions behind methods (Wijers 1991), or the way of thinking (Olle et al. 
1991). For example, Krogstie and S� lvberg (1996) differentiate methods based 
on three views, constructivistic, objectivistic and mentalistic, based on how 
reality (in ISD the system to be developed) is observed and what kind of 
relationship it has with the models. 

The distinction between development objectives and underlying values is 
important since many methods claim to have specific values, but they remain 
hidden in the method. Another situation is that two methods can aim for the 
same development objective but with different types of decisions and concepts. 
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In fact, most of the methods do not explicitly define or even recognize the 
underlying assumptions. 

2.2.7 Summary of method knowledge 

In this section we described method knowledge using the shell model. The 
distinction of different types of method knowledge is relevant for our study to 
restrict our view of modeling techniques while seeing their role in context. This 
means that we can focus on those parts of the conceptual structure which are 
applied in IS modeling. 

The shell model also emphasizes the dependencies between different types 
of method knowledge. Because of these dependencies it is impossible to focus 
on only one type of method knowledge. In this thesis this means that modeling 
of conceptual structures behind modeling techniques is not meaningful if other 
parts of the method knowledge are not considered. Most noteworthy is the 
conceptual-representational dimension: the dependency between a conceptual 
structure and a notation. While the notation itself is not one of our interests, the 
modeling of notational constructs is needed because both the development and 
use of modeling techniques is difficult without notations and representational 
forms. 

2.3 Information system development tools 

The shell model allows us to illustrate the tool support addressed in this thesis: 
ISD tools include at least a part of method knowledge. Typically tools contain 
parts of the conceptual structure as their schema definition, support modeling 
with certain notations, or support the process definition and management 
(Odell 1996). Tool support is important for our research questions because tools 
can ensure that method knowledge is also applied and does not remain only as 
method descriptions (i.e. described method vs. method in use). 

While the shell model concentrates mainly on the “deep -structure” of the 
method knowledge behind ISD tools, the tools also provide support for the 
surface and physical structures of methods (Wand 1996)9. Deep structure 
denotes those aspects of method knowledge which reflect the domain under 
development, whereas surface structure and physical structure deal with 
properties of modeling tools. Surface structure describes user-interface 
characteristics of an ISD tool, such as how method knowledge behind a 
modeling technique is visible in dialogs, menu commands and reports. This 
resembles the notational part of method knowledge. Physical structure denotes 
the technical means applied in the implementation of the ISD tool. 

In this section our focus is on tools which support the use of methods, i.e. 
way of supporting (Wijers 1991). This formed the third italicized part in our 

                                                
9  Originally Wand (1996) used the taxonomy of deep, surface and physical structures to 

identify aspects of IS, but because ISD tools are also ISs, we use it here to define method 
knowledge in ISD tools. 
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definition of ISD (cf. Section 2.1). First, we briefly characterize ISD tools in terms 
of how they support different phases and tasks of ISD. Second, we describe 
relationships between methods and tools in more detail through the concept of 
method-tool companionship. This allows us to explain how tools can support 
modeling techniques. This is relevant for our research questions, since we seek 
to apply metamodels in specifying modeling techniques enacted by ISD tools. 
Thus, it is possible to describe the underlying elements of methods (i.e. a 
metamodel) on which these tools are based (Teichroew et al. 1980). This focus 
also means that we believe that the use of metamodeling in local method 
development is most beneficial when related to customization of tools. 
Naturally, metamodeling can be applied for reasons other than local method 
development (cf. Brinkkemper 1990), but local method development aiming 
only to specify and compare methods takes us only half-way, because the 
usefulness of a method is realized only when it is applied. Using metamodels 
without considering their support in ISD tools would be the same as designing 
an IS without implementing it. 

2.3.1 Tool support for information system development 

Since the 1970’s numerous attempts have been made to support methods via 
computer tools (i.e. software applications) (Bubenko et al. 1971, Waters 1974, 
Teichroew and Hershey 1977). Technological developments have lead to a large 
number of tools that cover nearly all tasks of ISD. At the same time the term 
CASE (Computer-Aided System Engineering) has been extended to denote all 
types of computer tools from business modeling and requirements capture to 
implementation tools.  

The concept of CASE is broad and it includes compilers, project 
management tools, and even editors10. In this thesis we examine CASE tools 
(and methods) in the context of modeling. These modeling tools are usually 
used to support early phases of ISD. As already mentioned, the term method is 
restricted in this thesis to mean that part of the method knowledge that it is 
possible to capture into a formalized part of a tool. Types of methods and tools 
deployed during different phases of ISD are described in Table 2-2. 

As shown in the table, support for business process re-engineering and 
development include both methods and tools (cf. Spurr et al. 1994). On the 
method side, process maps, workflow models, task structures and action 
diagrams are applied (Harrington 1991, Goldkuhl, 1992, Lundeberg, 1992). On 
the tool side, computing power is applied for example to benchmark, compare, 
and simulate business processes through models. GDSS (Group Decision 
Support Systems), CSCW (Computer Supported Cooperative Work) and 
requirements engineering tools can be used in gathering information and 

                                                
10  The need to identify characteristics of different CASE products has lead to several 

classifications (cf. Chen et al. 1989, Nilsson 1989, McClure 1989) where boundaries are 
quite fuzzy, like upper- (front-end), lower- (back-end) and mid-CASE as well as toolkits, 
workbenches and integrated CASE environments. It is also possible to classify tools 
based on the level of integration: drawing tools without a repository support, project 
repository-based tools, and organization-wide repository-based tools. 
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organizing it into a structured format so that it can be used in later phases of 
ISD. The methodical aspects of these tools rely on brain-storming, interviews 
and cooperation. In the system analysis and design phases the upper-CASE 
tools support methods such as conceptual data modeling (ER models and 
derivatives) and structured analysis and design (e.g. data flow diagrams, 
decomposition diagrams and state transition diagrams). Most CASE products 
nowadays focus on supporting object-oriented methods, and recently tool 
support has been extended towards business modeling (Wangler et al. 1993). In 
this thesis we also concentrate on business modeling methods which, to a large 
extent, lack computer support (Stegwee and Van Waes 1993). 

 

The relationship between methods and tools is most obvious in the construction 
phase: program code written in a high-level language is compiled into machine 
code. The availability of compilers renders programming methods and 
languages practicable, because there is little point in writing first in some 
programming language and then making a translation by hand. During 
construction and maintenance, computer aided tools can support version 
control, configuration management, and reverse engineering.  

2.3.2 Method-tool companionship 

Though the technical realization of the companionship between tools and 
methods can vary, the need to integrate tools and methods is obvious (Forte and 

TABLE 2-2 Examples of methods and tools in the phases and tasks of ISD. 

Phase Type of methods  Type of tools 
Business process re-
engineering and 
development 

business modeling, process 
modeling, work flow 
modeling, task structures 

work flow modeling tools, 
simulators, business 
modeling tools 

Requirements engineering brain-storming, 
interviews, requirements 
definition and design 
techniques 

GDSS, CSCW, 
requirements  
engineering tools 

System analysis data modeling, structured 
analysis, object-oriented 
analysis 

upper-CASE, 
interface design tools 

System design data modeling, structured  
design, object-oriented 
design 

upper-CASE,  
interface design tools 

Construction mapping from high-level  
language to machine 
language, version control 

editors and compilers, 
debuggers, 4GLs, code 
generators, verifiers, 
performance analyzers 

Operation and 
maintenance 

version control, reverse 
engineering, configuration 
management 

documentation and 
reporting tools, reverse 
engineering tools 
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Norman 1992). On the one hand, tools mechanize operations prescribed by 
methods by storing system representations, transforming representations from 
one type of model to another, and displaying representations in varying forms. 
On the other hand, tools empower users by enhancing correctness checking and 
analytical power, by freeing them from tedious documentation tasks, and by 
providing multi-user coordination (access and version control). None of these 
features could be easily available in manual method use. The companionship 
between tools and methods has also evolved in response to technical 
innovations (Norman and Chen 1992). These require extensions to existing 
methods or entirely new types of methods to support their development (e.g. to 
cope with distributed systems (Olle 1994)), or then allow new types of methods 
because technical innovations can be applied (e.g. simulation of state models). 

CASE tools do not provide the same level of support for all types of 
method knowledge. For example, there are more tools that support model 
building, representation and checking than there are tools that guide processes 
or provide group support (Tolvanen et al. 1993). Naturally, some aspects of 
methods lend themselves more easily to automation than others (Olle et al. 
1991). Nevertheless some method knowledge need to be present in an ISD tool. 
The presence of methods can also be viewed using CASE tool support 
functionality, i.e. each type of functionality necessitates different method 
knowledge. In the following these are discussed based on support for four 
different design steps (Olle et al. 1991): abstraction, checking, form conversion 
and review. Olle et al. (1991) also include a step for decision making, but since it 
can only be supported through other steps and can not be automated (cf. Olle et 
al. 1991) we exclude it from the analysis of method-tool companionship.  

1) Abstraction deals with CASE tool support for capturing and 
representing aspects of object systems. The majority of steps in design deal with 
abstractions, and thus it is also the most supported step (Olle et al. 1991). On the 
level of method-tool companionship this requires that a tool includes all the 
modeling related parts of the conceptual structure and employs notational 
representations for them in modeling editors. 

2) Checking of system descriptions is needed to ensure that models are 
syntactically consistent with method knowledge. Hence, this design step can be 
carried out only after some aspects of the object system have been abstracted 
into models. Checking operates mostly on the conceptual structure and deals 
with constraints and rules of the method (also called verification rules (Wijers 
1991)). Although some checking activities can be carried out by using 
alternative representation forms, such as matrixes for cross-checking, checking 
operates mostly on the non-notational concepts. Therefore, to achieve 
companionship this requires that the conceptual structure of the method 
includes not only concepts related directly to representation (i.e. abstraction) 
but also include information to carry out checking. For example, in most object-
oriented methods, the link between a state model and a class in a class model is 
vaguely defined (one good exception is Embley et al. 1992): A state model can 
include states from several classes and therefore a tool can not analyze whether 
all attributes of the class have values during its life-cycle. To carry out this type 
of checking, the method specifications should include a reference from each 
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state to a corresponding class, or have state models that are used for instances 
(i.e. objects) of a single class only (as in Embley et al. 1992). 

These type of rules concerning the conceptual structures of methods are 
largely absent, because most methods are developed from a “pen -and-paper” 
mindset. As a result, we do not have many methods which are developed 
specially for CASE environments and take full advantage of automation. 
Furthermore, in methods which apply multiple modeling techniques, the need 
for checking is stressed. Also, if multiple tools are used, method integration is a 
prerequisite of successful tool integration. 

3) Form conversion deals with transforming results from one phase or task 
to another, e.g. analysis models to design models. During a form conversion an 
underlying conceptual structure, a notation, or a representation form changes. 
Examples of such conversions, found in many CASE tools, are model analysis, 
reporting functions, and code generation. To support these, the conceptual 
structure should include types and constraints which are not necessarily 
required for the abstraction or checking steps. For example, to generate program 
code (e.g. C++ or Java) from a class model each operation representing a 
method in generated code should include return types as well as access levels 
(i.e. public, private, protected). These constructs are often missing from 
conceptual structures of text-book methods. As a result, CASE vendors need to 
extend methods in order to provide additional tool functionality. It should be 
noted that not all conversions can be fully automated, but rather often require 
human interaction.  

4) Review deals with semantic validity of system descriptions, whereas 
checking focuses on syntactic properties of the model. Because the review step 
is often carried out together with the users or experts in the object system 
domain, the notation part of method knowledge is emphasized here. To ensure 
that models describe all relevant parts of the system, the notation should be 
sufficient to represent them. Naturally, the adequate support of the notation 
reflects the underlying conceptual structure. 

Since the effectiveness of the tool is always dependent on the method it is 
important how a method or its parts are implemented in a tool. In other words, 
which aspects and which level of detail of method knowledge are supported. In 
our research, this means that the applicability of methods is partly dictated by 
how well the tool supports their techniques. Hence, method-tool 
companionship is based mainly on supporting the conceptual structure and its 
related notation, and secondly the modeling process and design objectives. The 
modeling process is relevant because the user interface (i.e. interface structure 
(Wand 1996)) dictates how the tool can be used and thus affects processes 
related to modeling: how models are created, how they are accessed, etc. The 
design objectives are relevant to method-tool companionship because tools 
should also support generation of design alternatives or produce solutions 
automatically.  
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2.3.3 Remarks on modeling tool support 

In the majority of current CASE tools method integration has been implemented 
only partially. Tool developers have concentrated more on producing technical 
solutions such as repositories and intelligent knowledge-based support in their 
products, while the methodical part has been given a lower priority. Hardly any 
CASE tool developers have introduced methods which have been developed 
especially for CASE environments (Tolvanen and Lyytinen 1993). Furthermore, 
methods which have been coded as a part of a tool, what we call method-
dependent CASE, do not allow the further development or extension of 
methods according to the situation specific needs. We believe that this 
technically-driven development of CASE has partly led to the rigidity and weak 
support of users’ native methods. 

In our opinion the promise of CASE tools does not lie in the long run in 
the automated support of old “pen and paper” methods, but in innovative and 
new uses of computer based methods. Against this backdrop the surprisingly 
slow diffusion of CASE tools is also more understandable. Research into 
introducing CASE in an organization reveals that the main problems in the 
introduction are not the technical changes, but the methodical and cultural 
changes which the use of the new tool will inevitably cause (Aaen et al. 1992, 
Aaen 1992, Loh and Nelson 1989, Smolander et al. 1990). These observations are 
obvious, because the effective use of CASE tools is not possible without an 
adequate experience and knowledge of method use (Humphrey 1989). 
Introducing method-dependent CASE tools causes changes in the way of 
working and in the use of methods. Limited possibilities to adapt the tool into 
an organization’s own standards has often led to growing dissatisfaction among 
users (Wijers and van Dort 1990). 

In contrast to the tool-driven approach, one should select tools so that they 
fit into the local domain and ISD situations. Several studies of CASE tools (see 
e.g. Marttiin et al. 1995, Smith et al. 1990) speculate that tool development will 
lead to method-independent CASE tools, instead of tool-driven development. In 
the same vein, Bubenko (1988) examines several alternative strategies for 
selecting CASE tools and introduces seven possible ways to exploit CASE. Four 
of these, building your own CASE tool, ordering your own CASE tool, 
integrating several tools and experimentations with research prototypes, (others 
are wait and see, limited experimentation and buying a method specific CASE 
tool) allow the adaptation of organizations’ methods with the tools. Whereas 
these researchers have pointed out the demand for flexible CASE support, the 
technological point of view has still been dominant. Therefore, the opportunities 
for flexibility in CASE-supported ISD is still at most modest. This problem is 
discussed from the viewpoint of tool adaptation in Chapter 3. 

2.4 Paradoxes of ISD methods 

Despite the efforts poured into method development and research, there seems 
to be no universal agreement whether methods are useful in ISD at all (Lyytinen 
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1987, Cotterman and Senn 1992, Wynekoop and Russo 1993). For example, 
Wynekoop and Russo (1993) summarize several fundamental questions on ISD 
methods which are largely unanswered. Of these questions two are especially 
important to our study: “are methods actually used in practice?” and “why are 
local methods developed?” The importance of these questions is further 
emphasized because of the contradiction between the great efforts made to 
promote text-book methods and their surprisingly low use in practice. In short, 
there are thousands of methods available (Bubenko 1986) and new ones are 
continually developed, but at the same time empirical research reveals that 
many companies do not use them, and if they do then they have developed 
their own variants (Hardy et al. 1995, Russo et al. 1995, Fitzgerald 1995, Flynn 
and Goleniewska 1993).  

As a result, it seems that method development is relatively easy since so 
many of them exist, but methods developed by others do not meet method 
users’ requirements. We can find reports and studies about organizations which 
have found their local methods applicable or even reported success stories of 
method use (Jaaksi 1997, Nissen  et al. 1996). These observations lead us to 
analyze two paradoxes of methods in more detail, namely the low acceptance of 
methods and the popularity of local methods. These paradoxes are important to 
our research objective of supporting the development of methods through 
incremental ME. 

2.4.1 Low acceptance and use of methods 

Although the capability of methods to improve the productivity and quality of 
ISD has commonly been acknowledged, systematic use of methods is still 
surprisingly low (Chikofsky 1988, Danzinger and Haynes 1989, Necco et al. 
1987, Smolander et al. 1990, Aaen et al. 1992, Fitzgerald 1995). Thus, there is a 
paradox here between the claimed advantages of methods, which should 
indicate high use, and the empirical observations revealing low acceptance of 
methods. This paradox is further emphasized when we consider the amount of 
work both industry and academics put into the development and study of 
methods. 

The low acceptance of methods is reported by many professionals, 
confirmed by empirical research and recognized in many studies focusing on 
the use of tools. For example, Yourdon has estimated (reported in Chikofsky 
1988) that only 10% of software professionals have actively used structured 
methods in their daily practice, and 50% of organizations have tried them at 
some time. Nevertheless, 90% of developers are familiar with structured 
methods, emphasizing the low acceptance of methods. 

In addition, several empirical studies on the use of methods or tools 
confirm the estimations on the low use of methods. A study by Fitzgerald (1995) 
into 162 organizations observe that only 40% of them apply methods. Another 
study by Necco et al. (1987) into 97 organizations shows that 62% of companies 
used a structured approach. A study by Hardy et al. (1995) indicates that 
method use can be as high as 82%. As can be seen, these studies have different 
or even conflicting results. One reason for the variety lies in the selection of the 
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sample and in the definition of ‘method use’. First, samples are not 
homogeneous. For example, Fitzgerald (1995) included small companies which 
did not have large ISD projects, companies which applied packaged software, 
and companies which had outsourced ISD. These companies were also found to 
be less favorable to the use of methods, which explains the lower use rate 
found. On the other hand, studies concentrating on method use normally show 
higher rates of method use, e.g. 82% in Hardy et al. (1995). Nevertheless, a 
study by Russo et al. (1995) which focused on organizations using methods still 
found that 7% of organizations which had claimed in an earlier survey to have a 
method did not use it. Hence, even if the sample organizations would be the 
same, respondents can have a different understanding of what methods and 
method use mean. 

Second, distinctions between levels of method use is important, especially 
the borders between systematic, ad-hoc, and no use of methods. What does it 
actually mean when ISD professionals say that they follow some method? For 
example, how fully should method use be defined and documented, how 
completely should they be followed, and how widely spread and obligatory 
method use should be in an organization before we can make a judgment that 
methods are actually used. For example, although in the survey by Hardy et al. 
(1995) 82% of organizations claim to use methods, it does not mean that they 
always follow them. In a partial solution to this problem, Fitzgerald (1995) 
suggests a distinction between formalized and non-formalized methods: a 
formalized method denotes a commercial or a documented method, and a non-
formalized a non-commercial or an undefined method. An organization’s own 
methods could fall into both categories. By considering only the use of 
formalized methods the rate of method use drops considerably: from 40% to 
26% (Fitzgerald 1995). A field study by Smolander et al. (1990) partly confirms 
these findings by showing that the methods applied were mostly a collection of 
loosely coupled informal techniques. Moreover, Russo et al. (1996) characterizes 
method use based on frequency — used always, seldom or occasionally — to 
find out the adherence to methods. This categorization shows that most 
organizations having a method actually apply them (66%).  

Thus, the diversity of the meaning of method use and the lack of 
knowledge regarding how methods are actually used explains differences in 
survey results. It seems that the use of surveys to study method use and 
commitment to methods and their actual usage is difficult. As a result, 
researchers (Wynekoop and Russo 1993, Galliers and Land 1987) have 
advocated diversity of research approaches. In the case of method use this 
would generally indicate field studies, case studies, and action research. 

Empirical studies, however, reveal the major benefits and drawbacks of 
method use. Major benefits include enhanced documentation, systematized ISD 
process, meeting requirements better, and increased user involvement 
(Smolander et al. 1990, Hardy et al. 1995). Organizations which do not use 
methods consider the improvements caused by methods to be modest: methods 
are considered labor-intensive, difficult to use and learn, and as having poorly 
defined and ambiguous concepts (McClure 1989, Brinkkemper 1990). Methods 
are also seen as limiting and slowing down development, generating more 
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bureaucracy and being unsuitable (Smolander et al. 1990). Hence, introduction 
of a method changes the prevailing practices of ISD to such an extent that the 
method is abandoned or at least its use is made voluntary. 

To summarize, method developers have partly failed in introducing 
methods which would be acceptable by the ISD community at large. There is 
some empirical evidence which explains which aspects of methods and their use 
situations influence their success (or failure) (Wynekoop and Russo 1993). The 
research focus seems to be more on the internal properties and characteristics of 
methods than on their use situations (Tolvanen et al. 1996). Of course, one may 
state that the idea of methods is not to apply them as given. In reality, most 
methods are proposed as universal, i.e. to design inventory systems, automatic 
teller machines, or mobile phones without considering situational characteristics 
(Fitzgerald 1996). 

2.4.2 Popularity of local method development  

A second paradox is related to the use of local methods in contrast to applying 
third-party methods (i.e. commercial or text-book methods). Surveys 
investigating method use in organizations (Pyburn 1983, Smolander et al. 1990, 
Flynn and Goleniewska 1993, Hardy et al. 1995, Fitzgerald 1995, Russo et al 
1995) as well as case studies and descriptions of organization specific methods 
(Kronlöf 1993, Aalto 1993, Jaaksi 19 97, Vlasblom et al. 1995, Nissen et al. 1996, 
Kurki 1996, Tollow 1996) reveal that organizations tend to develop their own 
local “variants” of methods, or adapt them (Nandhakumar and Avison 1996) to 
their specific needs. Hence, there is a paradox here between method developers 
proposing situation-independent methods and method users who have 
developed situation-bound methods. 

Surveys indicate that local methods are more popular than their 
commercial counterparts (Fitzgerald 1995, Russo et al. 1995). This partly 
explains the low acceptance of CASE tools which normally necessitate the use of 
a fixed method (Wijers and van Dort 1990, Aaen et al. 1992). Among the 
surveys, both Russo et al. (1995) and Fitzgerald (1995) show that 65% of the 
organizations which use methods have developed them in-house: their own 
method is preferred over a third-party one. Other studies obtain similar figures: 
62,5% (Flynn and Goleniewska 1993), 42% (Russo et al. 1996), 36% (CASE 
Research Corporation cited in Yourdon 1992), and 38% (Hardy et al. 1995) of 
organizations have developed their own methods. Hardy’s study, furthermore, 
claims that 88% of the organizations adapted the methods in-house; the same 
percentage was found in the study by Russo et al. (1995). Thus, although 
organizations develop their own methods, methods need to be adapted to 
different use situations in the same way as with third-party methods. This 
means that organizations’ own methods do not completely fit with the use 
situations in their projects. Some studies (Hardy et al. 1995), however, have 
found that organizations which have developed their own methods are more 
satisfied with them than users of third-party methods. This is quite obvious, 
since otherwise the local method would hardly have been developed and 
maintained. On the other hand, few would announce that they have developed 
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a bad method. Thus, it seems natural that methods developed locally are 
considered better than third-party methods.  

Unlike surveys of method use, surveys of local method development get 
surprisingly similar results, although it would be expected that the distinction 
between local and external methods as well as between levels of adaptation 
would be more difficult to make. However, since surveys do not go into details, 
they do not provide answers about what local method development actually 
means, or what aspects of method knowledge are modified. 

To examine local method development more closely, other research 
methods such as case studies and field studies are required (Tolvanen et al. 
1996). Although local methods are typical in organizations that actually use 
methods, their selection, development, and applicability is less studied 
(Wynekoop and Russo 1993). With alternative research methods the 
modifications of ISD methods could be inspected in detail, e.g. what the 
development of local method or method adaptation means, as well as how in-
house methods differ from third-party ones and how extensive the 
modifications are. These questions are only partly answered in case studies and 
reports on local method development (cf. Aalto 1993, Jaaksi 1997, Vlasblom et 
al. 1995, Nissen et al. 1996, Kurki 1996, Tollow 1996) as they mostly focus on 
outcomes rather than on differences between local and text-book methods, or 
how the local method is developed. However, these results are important as a 
motivation for our aim to develop means for carrying out local method 
development efforts. 

To sum up, many of the organizations or projects which apply methods do 
not use the methods proposed by others. Commercial methods are modified for 
example by simplifying or by combining them with other methods (e.g. Jaaksi 
1997), or then organizations develop their own methods. This is noteworthy 
since commercial methods claim to have a well-thought out conceptual 
structure together with process models and guidance which have worked 
successfully in other ISD efforts. These methods are furthermore backed by 
manuals, training programs, tutorials, and tools, necessary when introducing 
methods. The reason for local method development can not be simply a 
negative attitude towards something developed outside the organization (i.e. 
‘not invented here’ attitude). Development of a local method requires significant 
expenditure of resources which would not be needed if commercial methods 
were applied. The relatively high costs, need for resources and recognized ad-
hoc method development practices (Smolander at al. 1990) would also 
discourage local method development efforts. Thus, it seems that the need for 
more applicable methods is so great that it leads organizations to develop their 
own methods, either organization specific or project specific. 

2.5 Re-evaluation of method use 

The two paradoxes above raise several questions about the acceptance and 
applicability of methods in general, and commercial text-book methods in 
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particular. For example, why develop commercial methods or yet another 
modeling approach (known as the YAMA syndrome, Oei et al. 1992) if hardly 
anyone is going to use it? Based on the paradoxes we take a different starting 
point and re-evaluate the prevailing view of method use. Instead of viewing 
methods as universal, fixed, and readily applicable mechanisms for 
instrumental problem solving we view methods more as being situation-bound 
and describing only part of the knowledge necessary for ISD. Methods are 
related to an organization’s current level of expertise, and they are under 
constant evolution in organizations which apply them. Thus, the re-evaluation 
of method use describes a new understanding of methods and seeks to explain 
the popularity of local methods. 

The re-evaluation does not mean that methods should not be standardized 
or situation-independent, or that commercial text-book methods should not be 
developed. At least 14% of organizations are still using text-book or commercial 
methods as specified and without adaptation (Fitzgerald 1995). These methods 
also provide a starting point for development of local methods. In this study we 
are, however, concerned with the rest of the organizations: those which develop 
their own methods, those which adapt available methods, and those 
organizations which could benefit from methodical support once methods have 
been defined and constructed to meet their contingencies. Accordingly, in the 
two following sections we shall define and discuss methods from a different 
angle suggesting a complementary view of methods  especially of their 
development and use.  

2.5.1 Situation-bound methods 

Instead of viewing methods as universally applicable, we advocate that method 
knowledge is situational. Deriving partially from the popularity of local method 
development, this is by no means a new claim: several researchers (Wood-
Harper 1985, Checkland 1981, Parkinson 1996) also emphasize the importance 
of situational awareness. For example, Wood-Harper (1985) claims that since 
method use takes place in real-life situations “a method can not be separated 
from the problem situation and the analyst’s intention and beliefs”. As a result, 
the applicability of method knowledge is always determined in the use 
situation. 

Similarly several method developers (e.g. Yourdon 1992, Walden and 
Nerson 1995, Booch et al. 1996) argue for situation-dependency and 
modifiability of methods. Yourdon (1992) supports user-driven method 
selection by proposing that each developer should use the method that best 
supports the given situation. Walden and Nerson (1995, p 122) make remarks on 
extending the use of object-oriented methods to enterprise modeling: 
“enterprise modeling needs more than the basic object -oriented concepts to be 
expressive enough. This may very well be true for complicated cases, but the 
additional needs are probably quite different for different types of 
organizations”. Similarly, although UML (Booch et al. 1996) seeks to 
standardize object-oriented modeling techniques, its developers have 
recognized the need to modify the techniques, in particular to better serve 
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different target programming languages. This is especially relevant to UML 
since it seeks to provide a design-oriented language that provides one level of 
abstraction over programming languages. Also, methods which are maybe best 
known for their fixed and standardized approach, namely IDEF (FIPS 1993a, 
1993b) and SSADM (CCTA 1995), have abandoned the idea of applying them 
strictly as specified, and even recommend modifications (Fitzgerald 1996).  

Similarly, organizations which have introduced methods have found 
situational adaptation a necessity. It must be noted that situations affecting the 
applicability of a method can occur at different levels of an ISD organization: 
organization, project, or even individual level. For example, in the context of IS 
planning, Pyburn (1983) states that IS planning must be adapted to the specific 
organizational context. In the context of software development and use of 
object-oriented methods Jaaksi (1997, p 71) claims that “every method needs 
adaptation when taken into use”. This means that ISD projects should not be 
considered as all being the same, as in practice each is to some degree unique 
(Parkinson 1996). Finally, at the individual level, Wijers (1991) conducted 
laboratory studies on method use and showed that individual developers tend 
to change the method while using it. 

Although the situations in which methods are used can be different and 
even opposite between the levels of an ISD organization, the more general levels 
set conditions on the situational adaptability at the lower levels. For example, 
an organization-wide method can influence the adaptations made at the project 
or at the individual level. Unfortunately, there is not much knowledge on how 
situations at different levels influence local method development. We 
acknowledge situations from different levels, but like in most ME literature, we 
emphasize situations which are project specific. This does not mean that we 
exclude other type of situations; rather the project focus is stressed for relating 
the developed ME principles to other ME approaches. As discussed in Section 
3.2, most ME approaches start by defining methods for the ISD project. 

A main problem addressed in this thesis is how to make method 
development happen according to situational requirements. Methods as 
described in the literature offer few “built -in” possibilities for modification, and 
do not provide mechanisms for carrying out required modifications. For 
example, the methods analyzed in Chapter 4 do not define how customization 
can be carried out, which are the situational dependencies having an bearing on 
method modifications, and which parts of method knowledge (e.g. technique, 
process, etc.) should be a target for modifications. For example, one major 
difference in the newest version of SSADM (CCTA 1995) compared to its 
predecessors is that it allows and even recommends method adaptation (earlier, 
adaptation was not allowed). However, little if any guidance is given on how 
different parts of the method knowledge should be modified. Typically, guided 
adaptation includes selecting a full or a limited version of a method (e.g. Booch 
1994). This approach offers, however, very limited adaptability in terms of 
method knowledge. This is not a criticism of “standard” methods, but shows 
how difficult it is to adapt a standard. One can also claim that build-in 
adaptation guidelines would not solve the problem because they would make 
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methods even more complex, difficult to learn, introduce and use, and thus 
decrease their acceptance even further. 

To summarize, situation-independent and universal methods are not 
possible because ISD situations are so different. Applicability of a method in 
one situation does not mean that it provides successful results in other 
situations. Similarly, contingency theories (Davis 1982, Kotteman and 
Konsynski 1984, Sullivan 1985) suggest that the creation of a method which can 
give the best support in all situations is impossible. This also partly explains 
why text-book methods are not widely used and why organizations use their 
own locally developed methods. As a result, the YAMA syndrome, mostly used 
in a negative meaning, is a natural consequence of the need for situation-
dependent methods. If organization or project-specific methods work better and 
their users are more satisfied with them (cf. Hardy et al. 1995) then why apply 
third-party methods? In fact, one could even state that we should have more 
methods and variety in method knowledge to cover various situational 
characteristics of ISD. It must be noticed that different situations do not 
necessarily explain all local method development efforts and the YAMA 
syndrome, since organizations can develop their own methods for marketing 
purposes, or then because they do not have time to learn from outside. 
Similarly, an organization’s own methods can be promoted to sell consulting or 
tools (e.g. Frost 1994). 

2.5.2 Tacit method knowledge 

The underlying paradigm behind many ISD methods is scientific reductionism 
(Baskerville et al. 1992). This rests on the assumption that the solution can be 
achieved through a sequence of steps, decisions, and deliverables pre-defined in 
the method knowledge (Fitzgerald 1996). The expectation of a complete and 
explicit set of methodical knowledge is, however, too narrow. 

The dominant approach underpinning many methods can be characterized 
as what Schön (1983) calls “technical rationality”: situations in practice can be 
scientifically categorized, problems are firmly bounded, and they can be solved 
by using standardized principles (Tolvanen 1995, Fitzgerald 1996). This view of 
development and use of methods is by no means wrong or “bad”: it has 
produced a great deal of knowledge about ISD and led to the development of 
useful routine procedures which are generally known and used (Fitzgerald 
1995). In fact, the main principle of method development can be said to be to 
provide knowledge about ISD which is explicit and applicable for future ISD 
efforts. However, not all tasks of ISD fit the view of scientific reductionism. In 
other words, it is not possible to have full knowledge about the problem (and 
thus the applicable method) beforehand, nor can pre-defined method 
knowledge cover all possible situations. Moreover, part of the knowledge 
related to ISD in general and to methodical knowledge in particular is tacit and 
thus can not be expressed. Therefore, we claim that the technical rationality is 
too narrow to address and explain the use of methods as it takes place in 
practice. As a result, it is our belief that system development can not be 
completely carried out by following pre-defined methods. 
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A liberating perspective to support method development is what Schön 
(1983) calls “reflection -in-action”. Her e, the fundamental assumptions are 
uniqueness of situations and tacit, intuitive knowledge (Nonaka 1994). Part of 
our knowledge of ISD is based on our reflection on the situations in which we 
find ourselves, rather than being found solely by using predefined methods. 
Thus, methods need to be maintained based on reflections from practice, 
transforming tacit knowledge into explicit knowledge. The importance of tacit 
knowledge partly explains the low acceptance and use of methods, and why 
successful ISD efforts can be carried out a-methodically (Baskerville et al. 1992) 
without the use of any “explicit” method. Hence, method is not everything. On 
the other hand, all ISD efforts can not be carried out based on pure intuition and 
tacit knowledge (Jaaksi 1997). Therefore, we see the views of reflection-in-action 
and technical-rationality as complementary views of method development and 
use: both explicit and tacit knowledge are necessary and useful for successful 
ISD. Accordingly, a good method should take both aspects into account, on the 
one hand, providing knowledge which can be rigidly followed as routines, and 
on the other hand allowing human creativity and spontaneous. 

2.5.3 Method use is a learning process 

The other assumption behind scientific reductionism (Fitzgerald 1996) is that 
the developer can obtain detailed knowledge about the problem situation and 
about applicable methods. This view expects that all necessary knowledge 
about the method, whether it is tacit or explicit, is available beforehand. In 
addition to this expectation of complete and explicit methodical knowledge the 
introduction of methods as readily available “routines” is seen as being easy, 
and the use of a method assumed to lead to solutions which are repeatable. For 
example, one of the goals of JSD (Cameron 1989) is to eliminate personal 
differences and even creativity from the development process. According to this 
view the key problem for IS developers would be to select the right method 
rather than to use it.  

We question this by emphasizing that method use is a learning process in 
which the current level of expertise is crucial to successful ISD (Curtis 1992, 
Hughes and Reviron 1996). The learning process occurs at two levels; in the 
domain of IS, and in the domain of ISD. The former means learning about 
successful (or unsuccessful) ISs. The latter means that any organization that 
builds ISs, not only delivers systems  they also learn how to carry out ISD, 
and use methods. This learning about methods means that they gain experience 
about the applicability of methods. This experience can complement the method 
knowledge they already possess. 

The importance of learning about ISD and methods over time was already 
recognized by Vitalari and Dickson (1983) and Davis and Olsen (1985). 
According to Argyris and Schön (1978, p 2 -3) this forms a double loop of 
learning in which “error is detected and corrected in ways that involve the 
modification of an organization’s underlying norms, policies and objectives”. 
Single-loop learning is related to immediate tasks, in which error detection 
“permits the organization to carry on its present policies”. In the context of ISD 
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the double-loop learning means modification of the ISD methods. Because ME 
aims to improve ISD methods, it can be viewed as a learning process in which 
an individual (Schön 1983), or even an organization (Nonaka 1994), creates new 
knowledge about methods and how to apply them. Similarly, Curtis et al. (1988) 
have suggested that both the developer and user learn through the dialectic 
approach, and Floyd (1987) has advocated a second-order learning process in 
which past experiences are guidelines for using a method. 

The emphasis on learning is important in our discussion because it allows 
us to explain the low acceptance and use of methods. Although experience is 
known to be crucial to ISD it is not easy to build up and maintain. In fact, we 
claim that knowledge about methods can be mostly achieved only by using 
them. This means that a long time is needed for introducing methods into 
organizations (Bubenko 1986, Lundeberg et al. 1981), which partly explains why 
organizations do not use methods: the introduction of methods is a long 
standing investment which bears fruit only after a relatively long time. For 
example, Lundeberg et al. (1981) estimated that at least one year is required to 
introduce a method into an organization. In fact, the first projects where 
methodical principles are used can often show a decrease in productivity (Aaen 
et al. 1992).  

Another factor explaining the low use of methods is organizations’ 
surprisingly shallow knowledge and experience of methods (see Aaen et al. 
1992), and their poor capability to manage ISD (see Humprey 1988). For 
example, a survey by Aaen et al. (1992) observed that more than half of the 
organizations considered their knowledge and experience of methods small. 
Similar results have been found in other surveys (cf. Smolander et al. 1990).  
Research on software process maturity (Humprey 1988) has shown that 
understanding of one’s own work must precede any further steps in method 
definition and improvement.  

2.5.4 Evolution of methods explained 

Instead of viewing methods as finished articles, a view which few method 
promoters take, methods must be viewed from an evolutionary perspective. 
Shifts in method knowledge are known (Joosten and Schipper 1996) and an 
examination of current developments in the field of object-oriented methods, 
workflow methods or business process re-engineering methods gives no reason 
to expect that this would change in the near future. An indication of method 
evolution is that organizations must deal with different method versions, as for 
example with SSADM (CCTA 1995), introduce new method types, such as 
object-oriented methods, and abandon old methods which have been found 
inapplicable for new technologies and applications (Bubenko and Wangler 
1992).  

Basically, two different types of evolution exist: those reflecting general 
requirements of technical evolution and business needs, and those relevant to 
the ISD situation at hand. The former deals with the general historical 
perspective and the latter with how these general requirements are adapted into 
local situations and how they affect the method evolution.  
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2.5.4.1 Historical perspective 

The method literature includes several reviews of the development and use of 
ISD methods (e.g. Welke and Konsynski 1980, Bubenko 1986, Norman and Chen 
1992, Moynihan and Taylor 1996). Most of these explain method evolution 
though an interaction with available or emerging technologies which are used 
either in the developed systems or in the ISD tools. 

Bubenko (1986) analyzed methods from a historical perspective: the need 
for methods has grown while the complexity and size of ISs has increased. The 
earliest methods were developed in the 1960’s when the first large scale batch 
and transaction-processing systems were developed. Furthermore, the 
emergence of databases in the 1970’s lead to the introduction of data modeling 
techniques. At the same time structured design and analysis methods derived 
their origins from structured approaches and from the evolution in 
programming languages. Similarly, Welke and Konsynski (1980) characterize 
advances in technologies, such as database management systems, which were 
reflected in ISD methods. Likewise, today these surveys could be extended to 
object-oriented technologies, mobile phones, business process changes, and 
multimedia. As a result, Welke and Konsynski emphasize that method 
developers should be aware of technological developments, as they form one 
key factor in improving and maintaining methods. 

Likewise, Norman and Chen (1992) explain method evolution in terms of 
an evolution of applications developed. They also relate method evolution to 
CASE tools. Although they primarily discuss the evolution of CASE, a close 
connection to parallel advances in methods are recognized. For them new 
applications drive the creation of methods and later lead to the development of 
CASE tools. Thus, method developers should follow advances in technologies 
which could support new forms of ISD methods.  For example, the emergence 
of graphical user interfaces and CASE tools supported the introduction and use 
of methods (Chikofsky and Rubenstein 1988). 

Another indication of a method’s historical evolution can be found by 
studying different versions of commercial methods such as SDM (Turner et al. 
1988), and SSADM (CCTA 1995). These were developed over long periods of 
time. For example, SDM (System Development Method), has been developed 
and updated since 1974 because of the changes in software tools, organizational 
impact of ISs, and the need to support system maintenance (Turner et al. 1988). 
Even the newer object-oriented methods have a history of different versions, 
such as OOD/UML by Booch (1991, 1994, Booch et al. 1997) or MOSES 
(Henderson-Sellers 1992, Henderson-Sellers and Edwards 1994). Accordingly, 
some efforts have been made to identify evolution paths between different type 
of methods, or even to construct a family tree of methods (Smolander et al. 
1989). Similarly, there are plenty of studies available which extend methods to 
support some useful or required design or analysis task, such as distribution 
(Olle 1994), client-server architecture (Frost 1994), or information systems 
planning (Stegwee and van Waes 1993). 
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2.5.4.2 Method evolution in organizations 

Another viewpoint on method evolution can be taken by analyzing how 
organizations develop their methods. This viewpoint is also relevant to our 
research question about incremental ME. Although organizations’ local methods 
are relatively common we do not know why and how organizations develop 
their methods, or how frequently methods are refined or updated (Wynekoop 
and Russo 1993). Since ME is not studied empirically enough (Tolvanen et al. 
1996) we must rely on reported cases (cf. Aalto 1993, Jaaksi 1997, Kronlöf 1993, 
Vlasblom et al. 1995, Russo et al. 1995, Nissen et al. 1996, Tollow, 1996, Kurki 
1996, Cronholm and Goldkuhl 1994, Bennetts and Wood-Harper 1996). 

In the following the evolution of local methods is inspected by analyzing 
the “end -products” of ME efforts. This analysis is carried out by focusing on 
two dimensions of method evolution: the first dimension analyzes how much 
the locally developed method has changed, and the second dimension how 
often the method modifications have taken place. These dimensions are 
illustrated in Figure 2-3 and their measures are discussed below. These 
dimensions along with the analyzed ME cases allow us to partly explain what 
method development or adaptation involves. 
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Frequency of
modifications

Low

Low   High
    Degree of modifications

  

FIGURE 2-3 Characterizing local method development: the degree and frequency of 
modifications.  

2.5.4.2.1 Degree of modifications 

The degree of modifications defines how large the changes are that are made to 
the local method to improve its applicability. These modifications can be (cf. 
Harmsen et al. 1994): 

1) tied to the selection paths provided by a method, 
2)  based on combining methods, or 
3)  based on the development of an organization’s own method. 
This classification allows us to distinguish how much a method used in an 

organization differs from other methods. The degree of modifications could also 
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compare two changes at different times in the same local method by analyzing 
the number of method components changed at each time. This alternative 
dimension is excluded here because ME cases are not reported in such detail 
that categories could be formed. Hence, in the following each degree of method 
modifications is discussed by analyzing the current method in use (instead of 
the current changes). 

1) Selection paths within a method describe one extreme of ME. Here the 
only possible modification alternatives are those provided by the method (i.e. 
built-in flexibility), and thus are limited to a few contingency factors. Examples 
of these contingencies include development of small versus large systems, the 
use of prototyping, and the use of application packages (e.g. in SDM, Turner et 
al. 1988). It is, however, unrealistic to expect that methods should include a 
much larger set of contingencies and condense them into modification 
guidelines (Hardy et al. 1995). One clear reason for this is the vast amount of 
possible contingencies, and even if these could be identified, the growing size of 
methods.  

2) A combination of methods for internal use occurs when a chosen 
method, and its possible selection paths, do not meet the situational 
contingencies. In a combination (or integration as defined in Krönlof 1993) the 
local method is based on the constructs offered by several commercial methods, 
and partly based on modified or totally new constructs. A study by Russo et al. 
(1996) shows that 37% of the methods used in organizations are combinations of 
commercial and in-house methods. Accordingly, the adaptation can be carried 
out either by combining available methods (or method parts, sometimes called 
fragments, e.g. Harmsen 1997), or by modifying a single method for internal use 
(e.g. Bennetts and Wood-Harper 1996, Nuseibah et al. 1996). An example of the 
former is Object-TT (Kurki 1996), which is a company specific method 
developed by combining available techniques from a larger set of text-book 
methods. As Object-TT focuses on modeling, it is heavily dictated by the 
available notations and their underlying concepts. An example of the latter is 
the modification of the Information Engineering (Martin and Finkelstein 1981) 
method reported in Russo et al. (1995).  

3) An organization or a project which develops its own methods faces 
situations which are outside the set of situations to which known methods are 
suited. Minor modifications into known methods are no longer sufficient, and 
thus the developed method does not have any close “relative” among other 
methods. Ryan et al. (1996) characterizes this category as an effort to develop 
new conceptual structures (models in their terminology) and related notations. 
An example of a company which has developed its own methods is USU, a 
consulting company (reported in Nissen et al. 1996). The method developed, 
called PFR, focused on rapid requirements capture in team workshops and 
individual interviews.  

Locally developed methods are often considered propriety and 
information about them is difficult to obtain. Many of the methods which can 
today be characterized as commercial have a background in an organization’s 
internal needs. For example, Business Systems Planning (IBM 1984) was 
originally developed to solve the problems which IBM noticed in the 
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management of its own ISs. Similar histories are shared by Objectory (Jacobson 
1992) and Octopus (Awad et al. 1996). 

2.5.4.2.2 Frequency of method modifications 

The second dimension, the frequency of method modifications, explains how 
often a method is changed (Hardy et al. 1995). More specifically, it measures 
how often changes in ISD situations are reflected in methods. From the 
available cases four basic categories can be found: 

1) advances and changes in external methods, 
2) changes in an organization’s ISD situations, 
3) a project-by-project basis (once ISD project starts), or 
4) continuous refinements within a project.  
In the following each category is discussed in more detail. 
1) Method modifications based on advances in external method 

knowledge are typical in organizations where methods follow a national or 
industry standard (e.g. SSADM (CCTA 1995), IDEF (FIPS 1993a), OMG-UML 
(OMG 1997)), or a method-dependent CASE tool. Thus, new versions are the 
result of externally decided modifications. Because of the slow standardization 
process such modifications are carried out infrequently, and do not necessarily 
relate to organization specific situations. Similarly, if the method is supported 
by a method-dependent CASE tool, the vendor can dictate the frequency of new 
versions. Method changes in this category do not normally occur more often 
than once a year. 

2) Method modifications based on changes in an organization’s ISD 
situations deal with local method development in which contingencies related 
to the whole organization change and are reflected in methods. Examples of 
such changes are outsourcing ISD, introducing new technologies (e.g. Bennetts 
and Wood-Harper 1996), or starting to develop new type of IS. Hence, the 
relevant contingencies here are the same for the whole organization. Examples 
of organization-wide ME initiatives are reported in Cronholm and Goldkuhl 
(1994) and Kurki (1996). This type of organization-wide method change can 
occur many times a year. The possibility for in-house method modifications 
may also be restricted by the CASE tool, as most tools demand a one-shot 
adaptation (Cronholm and Goldkuhl 1994). Partly for this reason larger 
organizations have also implemented their own tools (e.g. SDW in Pandata 
(Turner et al. 1988)) or even applied metamodels to achieve flexibility in 
changes (e.g. the TDE environment in Nokia (Taivalsaari and Vaaraniemi 
1997)). 

3) Method modifications on a project-by-project basis are considered in 
ME research to be the most typical. Each project is characterized by individual 
features which need to be mapped to methods. Modifications are not made 
during the method use but only at the beginning of every project11. Because 

                                                
11 It must be noted that organizational units other than a whole company or an ISD project 

can be identified, such as a department, teams related to developing and maintaining a 
certain IS, and an individual. Because of the lack of empirical studies on local method 
development already mentioned, we can not focus here on method modifications 
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each project is dealt with individually this approach is relevant to project-based 
ME (cf. Section 1.4.3). For example, in a case reported by Bennetts and Wood-
Harper (1996) the successful use of a local method has encouraged an 
organization to adapt methods for individual projects. Hence, the changes in 
methods are always based on the schedules of the projects (i.e. a timeframe of 
months in general). 

4) Continuous method refinement happens when ISD contingencies are 
uncertain or change rapidly, e.g. when a new method or methods are used in a 
new area. Although methods are typically introduced as a whole, the ME efforts 
analyzed show that method adaptations occur frequently during an ISD project. 
These modifications do not occur only at the individual level, but also in ISD 
projects, and in the longer run in the whole organization. 

Studies on individual developers’ method use (e.g. Wijers 1991) show that 
methods are gradually changed during their use: e.g. new concepts and new 
rules are added to the modeling techniques. These personal modifications are, 
however, often tacit and not shared with other developers. Method 
modifications are also performed in team-based method use. In this case 
method modifications are documented and available for others. For example, in 
Nissen et al. (1996) method modifications related to a supporting tool caused 
modifications to the method, to the supporting tool, or to both: after the initial 
method was developed, modifications were made based on feedback from 
method introduction during internal workshops, during and after the pilot 
project, and finally after running a few application projects. Third, method 
modifications also occur in organizations’ methods, although not as frequently 
as in project-dependent methods. For example, clear method modification 
phases can be found from the ME practices related to the development of one 
method in Nokia (Aalto 1993, Aalto and Jaaksi 1994, Jaaksi 1997): OMT as a 
text-book version in 1991, modifications resulting in OMT+ in 1993, and further 
modifications to create OMT++ in 1994. Moreover, the OMT variant had several 
smaller and more frequent modifications which were made during its 
development (Jaaksi 1997). 

2.5.4.2.3 Examples of method development efforts 

Table 2-3 summarizes the analysis of ME efforts based on the two dimensions 
discussed above: degree and frequency of method modifications. The table 
includes ME cases which have been reported adequately enough to be 
classified. It would be of great interest to also analyze the degree and 
comprehensiveness of each individual method modification step, rather than 
looking at the end-product. Unfortunately this is not possible because most of 
the cases do not describe the method development processes. Furthermore, they 
usually describe only one or two types of method knowledge which have been 
modified, like the modeling technique or the ISD process. This naturally makes 
the classification of ME cases in the Table 2-3 difficult. For example, the method 
engineers can describe the method developed as a combination of available 

                                                                                                                                           
occurring in organizational units other than a whole organization or an individual ISD 
project. 
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methods (e.g. Jaaksi 1997), but a more detailed analysis of method knowledge 
can reveal that the method includes many aspects which are not covered by 
other methods. A simple combination of methods would not lead to such a 
large modification. 

TABLE 2-3 Examples of local method development efforts. 

continuous   Aalto 1993/Jaaksi 
1997, Nissen et al. 
1996 

project-by-project 
basis 

Frequency of 

 Bennetts and Wood-
Harper 1996 

Tollow 1996 

modifications 
organization 

contingency based 

 Kronlöf 1993, Kurki 
1996, Cronholm and 
Goldkuhl 1994 

 

 
external method 

based 

 
FIPS 1993a, CCTA 
1995 

  

     within a method           combine methods           own method 
Degree of modifications 

 
The analysis of the cases reveals that different approaches for local method 
development are applied. It must be noted that the sample of ME cases is small 
and thus no firm conclusions can be made, but the analysis does provide some 
hints about local method development. In some cases it seems to be applicable 
to follow a standard method and limited adaptation, whereas in other cases 
larger and more frequent method changes are required. Because of the paucity 
of empirical research on local method development, the reasons behind these 
choices are largely unknown. The analysis of method development practices, 
however, reveals which approaches are not used at all, and can be considered 
unlikely in ME. None of the organizations has developed its own and radically 
different method in a short period of time. All the reported cases indicate a 
more gradual method development process. This is also a reason for developing 
principles for incremental ME.  
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2.6 Summary and discussion 

In this chapter we have defined ISD, and described methods and tools. First, for 
the purposes of metamodeling, methods were seen to consist of different types 
of method knowledge. This analysis focused on method knowledge related to 
modeling techniques, i.e. on the conceptual structure and notations. Thus, we 
excluded other aspects of methods and their development. Second, we have 
described the relationship between modeling tools and methods: the method-
tool companionship. This allowed us to show what type of computer support is 
needed to develop tool support (i.e. abstraction, checking, form conversion and 
review).  

Third, we discussed method use through the notion of method paradoxes. 
The analysis of method use revealed that the applicability of existing methods is 
not at all clear, because many ISD organizations do not use the available 
standard-like methods at all, and have developed their own partially or 
completely new methods. As a result, the IS research community must admit 
that we do not know well enough how methods are actually used in 
development situations, and how important the role of methods is in the success 
(or failure) of ISD efforts. These paradoxes led us to refine the currently 
dominating view of methods: we defined methods to be situation-bound 
instead of universal and standard. We acknowledged that a method is not the 
sum total of ISD knowledge, as much knowledge about ISD is tacit and can not 
be provided as readily applicable routines. We emphasized expertise and 
learning, and viewed methods as evolutionary. 

Based on the IS research literature, there appear to be at least three 
possible ways to research method use. The first is to continue the widely 
followed research approach to develop new situation-independent and 
universal methods, compare them conceptually (e.g. frameworks), and use them 
in cases. However, this approach, despite its use in multiple studies, has proven 
to be inadequate for resolving problems related to the wider acceptance of 
methods. The second option is to pursue comprehensive empirical studies on 
methods in realistic environments (e.g. as proposed by Wynekoop and Russo 
1993). Although this proposition is basically correct, it is not a realistic approach 
for today’s organizations. First, they can not stop their ISD efforts and wait for 
the results. Second, the results of these empirical studies can become obsolete 
even before they are ready, because of the rapid evolution of the business world 
and technology. For example, there is not much empirical evidence on the 
usefulness of object-oriented methods, although this is one of the challenges for 
ISD in many organizations today. Similarly, there is a paucity of research 
examining the usefulness of metaCASE tools (Tolvanen et al. 1996). 

The third option is method engineering: to focus on mechanisms that 
support local method development and use. Although many companies are 
“rolling their own”, using local, in-house methods, method development seems 
to be carried out in an ad-hoc manner by selecting tools and methods on a trial-
and-error base. Organizations do not have any principles to guide ME efforts: 
selecting and constructing methods for particular needs, checking the 
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completeness of methods, or organizing method development efforts. 
Moreover, organizations face problems in finding and developing tool support 
and collecting experience of method use. All these reasons motivate the 
development of systematic principles for ME. In the following chapter, we shall 
describe approaches or strategies for method selection, construction, and tool 
adaptation. 



3 METHOD ENGINEERING: METHODS AND 
TOOLS 

Two types of knowledge are essential in method engineering: knowledge of 
information system development and knowledge of method development. In 
this chapter we focus on the latter, method engineering and especially on the 
methods, modeling languages and tools of method engineering.  

The chapter is organized as follows. In Section 3.1 we define ME and in 
Section 3.2 we analyze different ME approaches based on their ME process, the 
types of method knowledge they consider, and the factors or criteria driving 
ME. These must be described to understand the principles of incremental ME 
(cf. Chapter 5) necessary to extend the current ME principles. Moreover, tool 
adaptation as a mechanism to obtain method-tool companionship leads us to 
explain the role of CAME, metaCASE and CASE tools. In short, we shall focus 
on creating and maintaining knowledge about modeling techniques in ISD 
tools. Accordingly, in Section 3.3 we describe metamodeling languages by 
focusing on how to specify the conceptual structures of modeling techniques. 
The presentation of metamodeling languages is accompanied with a 
metamodeling example. This presentation is needed to understand the 
constructs of metamodeling languages and the evaluation of the metamodeling 
languages carried out in Chapter 4. 

3.1 Defining method engineering 

The need for systematic principles to develop situation-specific methods has led 
to the emergence of method engineering (Bergstra et al. 1985, Kumar and Welke 
1992). In a similar vein to ISD, we define method engineering (ME) as a change 
process taken with respect to an ISD object system in a set of ISD environments by 
a method engineering group using a metamethod and supporting tools to achieve or 
maintain methods for ISD. Figure 3-1 illustrates the relationship between method 
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engineering and ISD. In the following we describe this relationship and define 
ME in more detail by explaining each italicized key concept of the definition. 
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ISD methods
and CASE tools
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 IS specifications,
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ME group
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FIGURE 3-1 Method engineering and information systems development. 

Both ISD and ME are social processes, in which a number of people act and 
have an interest. At the level of ME, method engineers form a group which 
perceives the current state of ISD. They are in charge of defining, choosing, 
modeling and producing method specifications and customizing tools in a 
similar way to the ISD group creating IS specifications and implementing them. 
This also distinguishes method engineers from researchers, since the latter are 
more interested in studying methods (even with metamodels and metamethods) 
rather than implementing methods for the organization. Method engineers can 
therefore be considered as developers of ISs for ISD. Often they can be the same 
group as those carrying out ISD. Furthermore, because the end-users of ISD 
applications include ISD professionals, they can be expected to be more aware 
of technical possibilities and thus more demanding than end-users of other type 
of ISs. This partly explains the importance of stakeholder value based ME 
(Kumar and Welke 1984, 1992) which emphasizes the role of method users in 
ME efforts. By stakeholders we mean people who have an interest in method 
development and method use. These include method experts, tool experts, 
managers of ISD, IS developers, and IS users. Studies in ME, however, have so 
far concentrated on developing concepts and principles for ME (Brinkkemper 
1990, Heym and Österle 1992), whereas only a few discussions (see e.g. 
Bubenko 1988, Tagg 1990, Nissen 1996) study the role of method engineers and 
other stakeholders.  

Both ISD and ME aim to deliver an IS, often a computerized one. Method 
engineers carry out a change process resulting in methods and tools which 
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support some tasks of ISD. An example of such a system is a CASE tool 
customized to support a specific method. During the ME process, a method, or 
its part, is created, modified, and removed to achieve or improve situation-
specific methods. Thus, the goal of ME is to improve ISD by providing better 
methods and supporting tools. In the ME literature situation-specific needs are 
understood as a closer relationship between the method and the characteristics 
of ISD situations (Vlasblom et al. 1995), required problem solving capabilities 
(Punter and Lemmen 1996), or stakeholders’ values (Kumar and Welke 1984, 
1992). The “better” in turn implies that the constructed method can be 
compared in detail with other alternative situation-bound methods or their 
parts. Each of these approaches to achieve the objectives related to methods is 
discussed in more detail in the next section. 

Both ISD and ME can be supported by methods. To differentiate methods 
between these two levels we use the prefix meta to denote methods and tools at 
the metalevel, e.g. metamethods, metamodeling and metaCASE. This 
distinction is also important for this thesis since we focus on studying ME rather 
than ISD. Like ISD methods, metamethods can be viewed through the 
taxonomy of method knowledge (cf. Section 2.2). First, a conceptual structure of 
a metamethod includes concepts specific for engineering ISD methods. Second, 
the specifications of an ISD method are communicated with a metamodeling 
notation. Together, the metamodeling concepts and notation form a 
metamodeling language. As in the term metamethod, the prefix “meta” means 
that the metamodeling language represents parts of the ISD method in terms of 
a model of a method, i.e. a metamodel (Brinkkemper 1990, van Gigch 1991). 
Third, a metamethod includes procedures for metamodeling and constructing 
methods, and a set of criteria to meet the situational requirements of methods. 
However, other types of knowledge necessary to carry out ME supported by a 
metamethod, like the participation and different roles, have been studied far 
less in ME literature (cf. Tolvanen et al. 1996).  

Like ISD, ME too can be supported by tools. This symmetry has 
introduced the term CAME,  Computer Aided Methodology Engineering 
(Kumar and Welke 1992) to highlight the role of tools in ME. In this thesis we 
regard the supporting tools of method engineers as metaCASE tools (Kelly 1997), 
also called metasystems (Sorenson et al. 1988), or CASE shells (Bubenko 1988). 
These tools offer facilities to tailor CASE tools to specific methods.  

Finally, an ME process is not performed just once because the ISD 
environment changes. This is emphasized in the definition by the inclusion of the 
maintenance of methods into ME. The environment also includes stakeholders, 
who have different, changing, or even conflicting objectives. For example, 
developers can require methods which minimize errors in a developed IS, 
managers want the method to improve productivity, and IS users want 
understandable design documents. The changes and experiences of the 
method’s use raise new requirements for methods and their tool support. As a 
result, a method constructed at one point of time is not necessarily applicable in 
the next similar project, or even later in the same project. Therefore, methods 
have to be maintained and revised. This observation leads to an evolution-based 



 
69 

approach where methods are developed incrementally for local and changing 
needs.  

3.2 Method engineering approaches 

In working towards more complete principles for ME it is necessary to place 
this work in the context of similar work reported in the literature. Accordingly, 
in the following subsections we describe the currently prevailing view of 
“ideal” ME in term s of its process, criteria, and deliverables. This allows us to 
analyze alternative ME approaches and describe their underlying assumptions, 
as well as their weaknesses and strengths. Moreover, and most importantly, the 
view of current ME principles allows us to describe what are their differences in 
relation to our focus on ME, namely to engineer modeling techniques for tools. 

3.2.1 Method engineering process 

The general structure of a ME process (cf. Smolander et al. 1990, Tolvanen and 
Lyytinen 1993, Brinkkemper 1996, Cronholm and Goldkuhl 1994, Grundy and 
Venable 1996, Harmsen 1997) is illustrated in Figure 3-2. The model follows the 
notation of data flow diagrams (Yourdon 1989a) in which processes are circles, 
external entities are rectangles, and data stores are rounded rectangles. The 
arrows describe data flows between processes, externals and stores.  
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FIGURE 3-2 A data flow diagram specifying ME process. 

In the following we outline the ME process by describing each step, namely 
method selection, method construction and tool adaptation. These are described 
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as processes in the figure. It must be noticed that the figure does not include all 
steps of local method development (cf. Figure 1-1), such as method 
introduction, use, or collection of experiences, since the ME literature does not 
provide any systematic principles for these, although the tasks are usually 
acknowledged.  

In the method selection process the ISD environment is analyzed 
according to ME criteria. The criteria for methods can be divided into situation-
independent and situation-dependent parts. The former criteria are considered 
desirable for most methods regardless of the situation for which they are 
developed. Examples of these universal criteria are: easiness to learn, simplicity 
of use, good support for communication between stakeholders and good 
support for transitions between different tasks or phases of ISD. These criteria 
cover more than one type of method knowledge, but can also be specific only to 
certain types of method knowledge. In our case of constructing modeling 
techniques examples of general criteria include readability and easy to use.  

The latter type of criteria are relevant when we want to increase the 
applicability of a method for a given situation. Jarke et al. (1998) call these 
method adaptation criteria, and they are of primary interest for incremental ME. 
They include classifications of relevant aspects of methods which should be 
considered to satisfy the objectives for the method. For example, in carrying out 
IS planning, the degree of centralization of the target organization is suggested 
as one criteria (Sullivan 1985). If the organization is centralized, IS planning can 
be performed better with BSP (IBM 1984), whereas de-centralized organizations 
can be analyzed better with CSF (Rockart 1979). Among the ME criteria we can 
distinguish between criteria which relate to contingencies, development 
problems, and stakeholders’ values. These criteria are reviewed in more detail 
in Section 3.2.3. 

The selected method (or methods) which meet the ME criteria are 
constructed, possibly with new method components. This means combining 
method knowledge from different methods as well as from different types of 
method knowledge. By focusing on method components (or fragments, 
Harmsen 1997), and therefore introducing smaller changes, methods can be 
maintained or even integrated (e.g. Kronlöf 1993) if required. For example, if 
the programming language changes from C++ to Smalltalk, the method 
knowledge is modified slightly: it is no longer permissible to use multiple 
inheritance. Since all criteria are not necessarily met with existing methods, new 
method knowledge needs to be defined, and some of the method components 
may need to be removed. The new method configuration is stored into a 
repository for future selections.  

Finally, the method constructed needs to be adapted into a CASE tool. 
Generally speaking tool adaptation deals with customizing or building a tool 
for the method, or choosing a set of tools which cover all the method knowledge 
(for selection strategies see Bubenko 1988). If this adaptation is not carried out 
then the contribution of the method construction is limited, because a tool could 
ensure that the method is used as intended. ME without tool adaptation would 
be the same as developing IS specifications without implementing associated 
computer-based support. Method introduction also involves non-computer 
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supported parts, such as production of manuals, tutorials, etc., which are not 
included into the adapted tool. Basically, tool adaptation includes building 
method-tool companionship, namely the support for abstractions, model 
checking, form conversion and review (cf. Section 2.3.2). This adaptation 
requires that the constructed method is modeled with a modeling language 
offered by the customizable CASE tool. If the CAME tool provides translation of 
the metamodels into a CASE tool (e.g. Rossi et al. 1992), or method use can be 
tested in the same tool where the tool adaptation is performed (e.g. Kelly 1997), 
the tool adaptation becomes easier and faster. Hence, an outcome of a successful 
ME process is a fully functional computer-based IS for ISD. This defines what 
developers can store into the repository of an ISD tool, how system descriptions 
can be represented, retrieved, checked, transformed, and how descriptions are 
managed.  

3.2.2 Types of method knowledge considered 

Ideally speaking all sorts of method knowledge and their relationships can be 
subject to ME: from the underlying conceptual structure to the assumptions and 
value-orientations of a method. Practically speaking, methods usually only 
address a few types of method knowledge (Jarke et al. 1998), and methods can 
be modified by changing only one or a few types of method knowledge (e.g. 
Kronlöf 1993).  

Although the types of method knowledge are related, each type can be 
viewed independently and represented using a number of alternative 
representation schemes and mechanisms resulting in different kind of 
metamodels. Clearly, no method construction is possible without some sort of 
(explicit or implicit) metamodeling. Thus behind all approaches there are some 
metamodeling formalisms (cf. Section 3.3). In the following a set of ME 
approaches are analyzed based on their focus on different types of method 
knowledge. These ME approaches are taken from a survey of ME research 
(Tolvanen et al. 1996) and the approaches are summarized in Table 3-1. It must 
be noticed that a single approach may belong to more than one category, as they 
typically cover at least modeling of conceptual structures, even if only as the 
foundation for the modeling notation, procedural guidelines, participation or 
values. 

Because all methods are based on some concepts, ME approaches address 
the conceptual structure, at least those concepts related to the other type of 
method knowledge addressed. There are, however, ME approaches which focus 
mainly on conceptual structure, such as Mercurio et al. (1990), Essink (1988), 
Olle et al. (1991), and Heym and Österle (1992). In general, these frameworks 
present conceptual structures or suggest reference models of methods. Hence, 
here the objective of ME is to identify and establish relevant concepts of ISD and 
include them in the conceptual structure of the method. A short example of a 
conceptual structure is now in order. For example, the conceptual structure of 
most object-oriented methods includes the concept of inheritance, its relation to 
other concepts, and possibly constraints, such as single inheritance or 
recursivity. Although this conceptual structure also includes relationships to 
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notations, or to processes, they are often too general to define methods in such a 
detailed and formal manner that computer support can be built based solely on 
such a conceptual structure. 

 
The most studied ME approaches are those operating at the notational level, but 
related to conceptual structures (Tolvanen et al. 1996). These approaches define 
modeling techniques (e.g. Teichroew et al. 1980, Sorenson et al. 1988, Welke 
1988, Smolander 1991, Saeki and Wenyin 1994, Venable 1993). Some of them 
(e.g. Sorenson et al. 1988, Welke 1988, Smolander 1991, Kelly et al. 1996) are also 
used as a conceptual schema for modeling tools. Notation-based ME is more 
concise than those based on conceptual structures: it focuses only on the 
concepts related to modeling. For example, it defines how the concept of 
inheritance is represented, related to the representations of other concepts, and 
how the constraints of the inheritance are supported in a modeling technique. 
Hence, while focusing on modeling techniques they address the conceptual-
representational dimension (Smolander et al. 1990) by defining how concepts 
are represented. This is typically achieved by relating conceptual structures to 
their representation definitions (e.g. Smolander et al. 1991, Wijers 1991). For 
example, Smolander et al. (1991) link the conceptual content of a method into a 
graphical, diagram-oriented representation. In Kelly (1994) this approach is 
extended into a matrix representation. As a result, these method definitions can 
be applied at the ISD level as a modeling technique. The metamodels 
representing modeling techniques are often characterized as meta-data models 
(Brinkkemper 1990). This thesis investigates notation-based ME, and therefore 

TABLE 3-1 Method engineering approaches and types of method knowledge 

Type of method knowledge Method engineering approaches 

Conceptual structure Essink 1988, Mercurio et al. 1990, Olle et al. 
1991, Heym and Österle 1992 

Notation Teichroew et al. 1980, Sorenson et al. 1988, 
Welke 1988, Bergsten et al. 1989, Smolander 
1991, Wijers 1991, Bommel et al. 1991, Venable 
1993, Hofstede 1993, Tolvanen et al. 1993, 
Saeki and Wenyin 1994, Oei and Falkenberg 
1994, Bronts et al. 1995, Kelly et al. 1996, 
Grundy and Venable 1996, Harmsen 1997 

Process Wijers 1991, Hofstede and Nieuwland 1993, 
Tolvanen et al. 1993, Marttiin 1994, Jarke et al. 
1994, Rolland et al. 1995, Rolland and Prakash 
1996, Harmsen 1997  

Participation and roles Tolvanen et al. 1993, Harmsen 1997 

Development objectives  
and decisions  

Jarke et al. 1994, Rolland et al. 1995, Oinas-
Kukkonen 1996 

Assumptions and values Kumar and Welke 1984, 1992 
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we describe in Section 3.3 only those metamodels and metamodeling languages 
which support a notation-based approach. 

ME approaches that concentrate on the processes of method use are less 
developed than those that concentrate on the conceptual structure and notations 
of methods12 (Tolvanen et al. 1996). They can be divided into those that specify 
the relationships among the modeling tasks (e.g. Wijers 1991, Hofstede and 
Nieuwland 1993, Rolland and Prakash 1996, Jarke et al. 1994) and those that 
emphasize the specification of modeling products and the tasks needed to make 
them change (e.g. Marttiin 1994). The former can be used to describe, for 
example, when and how inheritance structures are identified, and the latter also 
in which technique it is represented. These processes are represented in process 
or meta-activity models (Brinkkemper 1990). A process model is always related 
to the conceptual structure of a method, but it can also be related to the notation 
based metamodels, as in the latter example. The manipulation of models is 
always dictated by tasks and decisions, whether or not these are defined in an 
explicit process model. In this thesis, we do not consider the process-based 
approaches to modeling techniques. The strategies of integrating a meta-data 
model and a process model are discussed in Wijers (1991), Marttiin et al. (1995), 
Tolvanen et al. (1993), and Kinnunen and Leppänen (1994). Classifications of 
process models can be found from Dowson (1987) and surveys from Curtis et al. 
(1992) and Finkelstein et al. (1994). 

Other types of method knowledge are more poorly addressed in the ME 
literature. One reason is the absence of such descriptions in the method books. 
At the level of ISD participation, ME approaches define the stakeholders 
involved and the organizational structures related to method use. The 
metamodel of Tolvanen et al. (1993) includes agent models which specify the 
activities performed and the agents involved. The Method Engineering 
Language (MEL) of Harmsen (1997) allows the entry of different roles, such as 
responsibility, for method components. Therefore, a participation model of ISD 
defines, for example, who is responsible for finding and creating inheritance 
hierarchies with class diagrams. 

At the level of modeling decisions a variety of design rationale approaches 
are proposed. These aim to record the design decisions made based on a 
predefined schema (Ramesh and Edwards 1993). Originally the decision-
oriented models focused on decisions behind designs not behind methods, e.g. 
why an inheritance between two classes is defined as virtual. Design rationale 
can be also modeled in two other ways which are beneficial to ME: decisions 
related to method use and decisions related to method construction. An 
example of the former could be an IS developer’s justification why a concept of 
virtuality is used in inheritance structures. Approaches of this type focus on 
decisions related to the ISD process. The proposal of Rolland et al. (1995) 
focuses on the specification of successive transformations of the modeling 
product, from the viewpoint of the consequences of decisions. Jarke et al. (1994) 

                                                
12 Although numerous process models have been proposed for software engineering (cf. 

Armense et al. 1993), some of which can be used in principle to specify method-related 
processes, we restrict our attention here to those explicitly developed for ME. 
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propose a traceability model for tracing processes defined in a guidance model. 
An example of the latter would be a method engineer’s justification of why a 
metamodel includes a concept of inheritance. Oinas-Kukkonen (1996) proposes 
metamodel-related rationale, but does not explain its use in more detail. For 
example, to which types of method knowledge should the decisions on method 
use be related? Should it be used for recording why a certain concept was used, 
why it was represented in a specific diagram, or why it was specified in a 
certain phase of ISD, etc.  

Finally, to our knowledge only Kumar and Welke (1984, 1992) have 
directly focused in the ME literature on the development objectives and values 
underlying methods. They proposed an ISD-Personal Value Questionnaire (ISD-
PVQ), consisting of 86 value concepts, with which a method stakeholder’s 
values can be collected and their relevance can be assessed within three 
different groups, addressing technical values, such as timeliness of information; 
economical values, such as ISD costs; or socio-political-psychological values, 
such as system responsiveness to people. 

Although all types of method knowledge can be modeled with ME 
approaches, it does not mean that all types of method knowledge are modeled 
fully. First, there are many activities like brainstorming sessions, meetings, etc. 
which are not even considered to be modeled with current ME approaches. 
Second, part of the knowledge applied in carrying out ISD is tacit and therefore 
not expressible. As a consequence, aspects of method knowledge which can not 
be made explicit can not be improved through method engineering principles, 
nor supported by ISD tools. Finally, it must also be noticed that there are 
dependencies between different types of method knowledge (cf. Figure 2-2). 
Therefore, in local method development it is not meaningful to focus solely on 
one or a few types of method knowledge. For example, the balancing rules 
(Yourdon 1989a) necessitate that a notation-related metamodel can recognize 
mappings between data stores and entities, although these mappings do not 
have a notational counterpart. Hence, it must be noticed that metamodeling is 
difficult, if not impossible, to perform meaningfully without considering other 
types of method knowledge. 

3.2.3 Criteria for constructing methods 

ME approaches must be also characterized according to the driving factors or 
criteria used to engineer methods: it is not useful to perceive and model method 
knowledge if you do not know how it should be analyzed, constructed and 
maintained. Accordingly, most important to the success of ME is not how well a 
method can be represented, but how the applicability of a method is improved.  

In the following, ME approaches are analyzed based on which kind of 
criteria they apply to achieve the methodical requirements of ISD. In principle, 
these approaches fall into three categories, namely those describing the method 
use environments, also known as contingency frameworks; those emphasizing 
the importance of problems at hand to be solved by the method; and those 
focusing directly on method users’ requirements. These approaches are 
summarized in Table 3-2.  
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TABLE 3-2 Method engineering approaches and criteria. 

Criteria Method engineering approaches 

Contingency based Heym 1993, Vlasblom et al. 1995, Hoef and 
Harmsen 1995, Punter and Lemmen 1996, van 
Slooten and Hodes 1996, Harmsen 1997, 
Brinkkemper 1996 

Problem based Jarke et al. 1994, Punter and Lemmen 1996 

Stakeholder value based Kumar and Welke 1984, 1992 

 
It must be noticed that the three categories are not necessarily the same 
approaches as those addressing types of method knowledge. Many of the 
approaches discussed earlier focus mostly on metamodeling but do not 
explicitly describe what should be done with the metamodels. Compared to 
research on metamodeling languages, the criteria for engineering methods seem 
to be less studied. It must also be noticed that they can overlap. For example, a 
contingency framework can also include some criteria related to different type 
of problem situations or aspects of the stakeholders’ values. Moreover, the same 
criteria can be recognized with more than one type of method engineering 
approach.  

Each approach focuses on different aspects of ME, and they are therefore 
limited to some extent. Below, we discuss their weaknesses and strengths as 
principles for carrying out ME.  

3.2.3.1 Criteria based on contingencies 

The majority of ME approaches apply contingency frameworks (cf. Section 
1.4.2) to characterize an ISD environment and to find situational requirements 
for methods. This characterization is performed through an analysis of the 
project’s context (Slooten and Hodes 1996), its environment (Harmsen 1997, 
Harmsen et al. 1994b) or the profile of the situation (Vlasblom et al. 1995). The 
content and objective of these approaches, however, are the same. The 
applicability of a method is understood as the closest possible relationship 
between the characteristics of the ISD situation and the characteristics of the 
method. 

The approaches analyzed use either an external contingency framework 
(e.g. van Slooten and Hodes 1996), or relate some situation characteristics 
directly to metamodels (Heym 1993, Heym and Österle 1991, Harmsen 1997). 
An example of the former is the work of Punter and Lemmen (1996), who aim to 
apply a contingency checklist to define project strategies and method objectives. 
An example of the latter is Heym and Österle’s (1992) work where they collect 
characteristics of a method into a metamodel based on fixed classification 
schema. This classification includes parts focusing on the method (e.g. project 
management, risk management, system development), application type (e.g. 
expert, office or real-time system), and life-cycle of ISD (e.g. analysis, 
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maintenance). The advantage of relating contingency factors to the metamodels 
is the close relation between factors and method components, whereas the 
external contingency lists are often not explicitly related to method knowledge.  

The advantages of using contingency frameworks are obvious. They 
provide a high-level view of methods, and by covering several characteristics 
they help identify characteristics of methods which might not otherwise be 
noticed at all. Also, research has identified a wide variety of different ISD 
characteristics. However, the use of the contingency approach in great detail is 
costly as it requires a large amount of resources and skills to manage different 
methods and situational characteristics (Avison 1996, Kumar and Welke 1992). 
Its effective use is difficult, because it is almost impossible to classify, or to 
identify, relevant contingencies beforehand. Moreover, and general to all 
method development efforts, a combinations of various methods might be 
impossible because of different and possible conflicting underlying 
philosophies (Avison 1996).  

To cope with the cost part, Punter and Lemmen (1996) aim to provide a 
ready-made contingency list. However, such a list operates at the general level 
of method knowledge, and does not allow other method choices than those 
already prescribed. Examples of the use of contingency frameworks deal with 
method knowledge in general, such as how much analytic modeling should be 
used instead of prototyping, or whether methods should be customized (e.g. 
Slooten and Hodes 1996). As a result, they can not be applied effectively in the 
detailed construction of methods. For example, it is unclear how factors like the 
stability of goals (in Slooten and Hodes 1996) or the amount of resistance can be 
related to the construction or even selection of modeling techniques. Similarly, 
most of the contingency-based ME criteria do not identify method knowledge in 
detail. As an example, the concept of inheritance is not addressed in any of the 
frameworks, although some of the mappings are relatively straightforward; 
such as single inheritance in class diagrams when a specific programming 
language is used. Because method knowledge is not addressed in detail, 
construction and maintenance of methods is not possible with the contingency 
frameworks discussed above.  

Similarly, the cases related to detailed ME, such as customization of 
techniques or tasks of the ISD process, discussed in Section 2.5.4 (e.g. (Russo et 
al. 1996, Jaaksi 1997, Aalto 1993, Nissen et al. 1996, Kurki 1996, Tollow 1996, 
Cronholm and Goldkuhl 1994) or field studies about ME (Smolander et al. 1990) 
reveal that contingency frameworks for method selection are not used. 
Similarly, the reported cases of ME (cf. Section 2.5.4) did not apply any 
contingency frameworks. This does not mean that contingencies do not describe 
characteristics of applicable methods. Instead it indicates how difficult they are 
to use in the detailed engineering of methods. Finally, and maybe most 
importantly, it should be noticed that none of the contingency criteria have been 
validated for the task they have been proposed for. Although some of them 
have been recognized to be relevant in past projects (e.g. Slooten and Hodes 
1996), their usability in method construction has not been clarified. As a 
consequence, we do not know whether they are relevant for method 
construction, which deals with detailed method knowledge. 
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3.2.3.2 Criteria based on problem solving 

An alternative and more detailed approach is to seek applicable methods or 
their parts based on their description and problem solving capabilities. This 
approach is closely related to the method knowledge behind modeling 
techniques: how can relevant aspects of the object system be adequately 
described with modeling techniques, and how they allow us to find alternative 
solutions. This approach is more widely applied in practice (e.g. Jaaksi 1997, 
Tollow 1996) because it is simpler and does not require as much knowledge and 
resources to carry out as the contingency approach. As emphasized by Jaaksi 
(1997, p 76), ME efforts take place under financial pressure to solve practical 
problems. Accordingly, work done by other method developers is considered as 
a contribution to the method only when it can be expected to produce a 
significantly better solution (Jaaksi 1997). As March and Simon (1958) have 
recognized, organizations tend to find satisfactory rather than optimal solutions. 
The significance of a method solution is evaluated based on the problems at 
hand, not only by characterizing contingency factors and their changes.  

The use of problem-driven ME criteria in practice does not mean that it is 
better. It has, however, some other advantages in addition to those mentioned. 
First, since it is problem-focused and derives method requirements from the 
current case, it is not so idealistic as the contingency-based approach. Second, it 
is more open to new concepts of methods, because it is not restricted to 
applying existing method-related situation characterizations. For example, in 
Tollow (1996) difficulties in developer and end-user communication led to the 
development of more readable and understandable notations. The resulting 
modeling techniques were not available in other methods and thus had new 
concepts and rules. Third, it is more open to the requirements of detailed 
method knowledge. For example, in Jaaksi (1997) the interest in the modality of 
dialogs of the user interface was added to the dialogue diagram. This modeling 
technique was constructed by using the notation of state diagrams with added 
new concepts, e.g. to describe which of the windows is the main window, 
which are modeless, and what kind of tasks the user performs with the 
windows. 

Problem-driven ME also has shortcomings. It focuses only on problems 
identified at the moment and provides little generalization possibilities through 
frameworks. As with contingencies, the formulation of a problem-driven 
method construction framework is difficult because of their generality and loose 
connections to detailed method knowledge. For example, the framework of 
Essink (1988), used by Punter and Lemmen (1996) in their MEMA model, 
characterizes the problem domain according to four levels of abstraction (i.e. 
object system, conceptual IS, data system and implementation) and eight aspects 
(e.g. goals, dynamics, process structures). Methods are then allocated to the 
same MEMA model for selection and construction. This approach would, for 
example, locate  ER diagrams and class diagrams under the same problem 
solving situation. Thus, no distinction can be made between these modeling 
techniques, or between different dialects of them. Instead, an inductive 
approach has been proposed (Jarke et al. 1994): a framework should be 



 
78 

developed from expected problems and applied to method refinements. This 
aspect is analyzed in more detail in Chapter 5. 

3.2.3.3 Criteria based on stakeholders’ values 

Kumar and Welke (1984, 1992) address the importance of stakeholders’ values 
or design ideals as requirements of methods. A major difference and strength of 
their ISD-PVQ technique is the emphasize on participation in ME: the users’ 
requirements are the most important aspect of ISs and therefore also of ISD 
environments. Thus, the applicability of a method is considered according to 
how well it supports the method stakeholders’ (developers, end-users, 
managers, etc.) values and expectations of ISD. Simply, the methods developed 
are more easily accepted if they satisfy the requirements of the method users. 

ISD-PQV has also been applied in practice (Kumar and Welke 1984), 
revealing the domination of technical and economical aspects of ISD at the 
expense of other values. The need to change the focus of methods from technical 
aspects of ISs is also noted by several other researchers (e.g. Lyytinen 1986, 
Avison 1996). The traditional perspective has been to see an IS as a technical 
innovation and focus less on behavioral and social consequences (Lyytinen 
1986). The implication for ME is twofold: on the one hand, methods should 
include participative and social components to compensate for the bias towards 
technical and economic issues. Thus, stakeholder-driven ME approaches could 
be used to move the focus of the ISD group towards other values and design 
ideals. On the other hand, the current values of stakeholders are also major 
reasons for the dominance of “hard” valued methods.  

3.2.4 Implementation into ISD tools 

The steps of ME can be supported by CAME tools. This means that the 
deliverables, metamodels and ME criteria, can be stored in and retrieved from 
the CAME repository, and methods can be compared, versioned, and adapted 
into a CASE tool. The most studied tool functions have been capturing method 
knowledge (cf. Heym and Österle 1993 , Harmsen et al. 1994a, Verhoef et al. 
1991), and building generic CASE toolkits which can be customized for different 
methods (cf. Teichroew et al. 1980, Chen et al. 1989, Sorenson et al. 1988, 
Bergsten et al. 1989, Smolander et al. 1991, Rossi 1995, Grundy and Venable 
1996, Kelly et al. 1996). The latter type of tools also interest us since we believe 
that the results of ME efforts should be applied in ISD as a situational method. 
Because of this focus, we view both the method and the supporting tool as an 
end-product of the ME process.  

The ISD tools can be further divided into two broad categories based on 
how they model the object systems (Lyytinen 1987). These categories include 
data-oriented and process-oriented approaches. In ME a similar division can be 
also observed: there is a variety of metalanguages and CAME tools that model 
the methods and support the storage of IS models made according to method 
definitions (Sorenson et al. 1988, Smolander 1991, etc.). In the process camp  
with fewer representatives than the data-oriented camp  research has focused 
on process representations and tools which support the enactment of defined 
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processes (Hofstede, et al. 1993, Wijers 1991, Hidding et al. 1993, Pohl 1996). 
Since our focus is on the conceptual structure behind modeling techniques we 
focus on data-oriented CAME tools. 

In practice CAME technology is quite new. This can be observed from 
CAME research which focuses mostly on tool building rather than investigating 
their usefulness or usability (Tolvanen et al. 1996). For example, to our 
knowledge only Marttiin et al. (1993) have analyzed metaCASE tools more 
systematically in terms of their capabilities for establishing method-tool 
companionship. The earliest pioneer SEM, (Teichroew et al. 1980) was 
introduced only at the beginning of the 1980’s. Most current CAME tools are 
outcomes of research projects, including MetaView (Sorenson et al. 1988), 
MetaEdit (Smolander et al. 1990a, MetaCase 1994),  RAMATIC (Bergsten et al. 
1989), Quickspec (Meta Systems 1989), MetaPlex (Chen 1988), IPSYS Toolbuilder 
(Alderson 1991), and MetaEdit+ (Kelly et al. 1996). During the last years 
commercial CAME tools, such as IPSYS Toolbuilder, MetaEdit+ (MetaCase 
1996a, 1996b) and Paradigm+ have also begun to appear in the market. 
Commercial CAME tools are called metaCASE tools13 and we apply this term 
because of its wider use. Marttiin et al. (1996) present a framework for 
comparing and evaluating CAME functionality. Isazadeh and Lamb (1997) and 
Kelly (1997) review and make partial comparisons of sets of CAME and 
metaCASE tools. 

MetaCASE tools use a set of primitives, which allow them to describe a 
given method quickly and provide a set of mechanisms to implement tool 
support for the modeled method. To establish method-tool companionship (cf. 
Section 2.3.2) the method must be described using the metamodeling language 
the tool applies. Ideally the metamodeling language used in method 
construction is the same as that required by the tool, but often the tool-related 
metamodeling language limits the adaptation (Cronholm and Goldkuhl 1994), 
or other less formal metamodeling languages are used during the construction 
and design phase. The result of a ME process is a customized CASE tool which 
can assist ISD. The customized CASE tool is expected to produce, through its 
support for the situation-specific method, positive effects on the resulting IS or 
on the process of its development. In this sense metaCASE tools provide a new 
approach to establish symbiosis between methods and tools, and offer more 
degrees of freedom in method and tool selection (Tolvanen and Lyytinen 1993). 

The CASE tools developed should not be viewed only as tools for making 
abstractions. They should also include other functionality which are affected by 
the method: checking, form conversion and review (cf. Section 2.3.2) are all 
design steps which need to be taken into account during adaptation. First, 
checking of the models is always dictated by the underlying metamodel. 
Because some rules of the method knowledge can not be guaranteed or even 
checked at modeling time, but only after models are made, the tool adaptation 
also includes the implementation of consistency checking reports. Second, form 

                                                
13  The terms CASE shell (Bubenko 1988) and metasystem (Sorenson et al. 1988) have also 

been used. These terms usually refer only to functions which allow the implementation 
of CASE tool support for a selected method. 
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conversions between different IS models (Fraser et al. 1991) or to programming 
languages are driven by the underlying metamodel. In fact, requirements to 
change metamodels often occur because of the demands to generate certain 
programming code or analysis reports (cf. Section 5.1.2). Third, review of ISD 
deliverables with end-users is largely carried out via the IS representations (i.e. 
notations). This may require the use of less formal notations, or simplified 
versions of the modeling techniques applied by IS developers (e.g. Tollow 
1996). 

Finally, an additional advantage of using metamodel-based tools is that 
we can apply them to collect information on method use. In other words, using 
metamodels we can examine in a systematic and rigorous fashion how 
developers perceive the IS, in what notation the system is described, and how 
the models are checked. For example, in relation to experience gathering the 
metaCASE tools can be used to find which method knowledge is used or not 
used during ISD. This aspect is discussed in more detail in Chapter 5. 

3.2.5 Summary and discussion  

The ME approaches described are proposed for representing various aspects of 
method knowledge and for constructing this knowledge to meet different kinds 
of situational requirements. The survey reveals a mechanistic view of ME 
approaches: ME aims to develop methods by specifying and constructing them 
like machines, and little attention, at least in the published ME literature, is 
given to the introduction and use of methods. The approaches analyzed (cf. 
Tables 3-1 and 3-2) also have a narrow view of the ME process and examine 
method knowledge only at a coarse granularity. Regarding the types of method 
knowledge at the metalevel (i.e. knowledge behind the methods of ME), most 
research has only focused on metamodeling languages and conceptual 
structures, and little effort has been expended on other domains, such as what is 
the ME process in greater detail or what decision and criteria are relevant to 
ME. Other more specific limitations of the ME approaches are discussed below. 

First and foremost, almost all approaches assume a priori construction of 
methods. Although some of the metamethods (e.g. Brinkkemper 1996, Punter 
and Lemmen 1996, Harmsen 1997) acknowledge the importance of experiences, 
they do not propose principles for identifying, collecting, and analyzing 
experience-based method knowledge. If learning from method use is ignored, 
methods can not be maintained or redefined based on experiences. This shows 
that the approaches assume either explicitly or implicitly that contingencies and 
problems are known beforehand and they are stable during the use of the 
method constructed. Any changes after method construction, e.g. during tool 
adaptation, method introduction, or method use, are not incorporated into the 
methods. Although some of the ME approaches acknowledge the changes, they 
do not include any steps or provide any mechanisms for refining methods. 
These approaches do not fit with our view of method knowledge as 
evolutionary (cf. Section 2.5.4): methods have evolved and changed in general 
and in organizations, and there is no reason to expect that they would not 
evolve in future. To our knowledge, only Jarke et al. (1994) focus on analyzing 
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method use as a part of ME. They propose a traceability model to record 
process-related experiences. Yet their a posteriori ME approach does not consider 
the refinement of other types of method knowledge based on such feedback. 

Second, most of the ME approaches are biased towards the selection of 
ready-made method components (or fragments). Their construction phases 
mostly consist of composing existing method knowledge, and method choices 
other than those already available are not considered. As a result, the ME 
approaches expect that someone has already proved a method or its component, 
and it is known to be applicable in specific ISD contingencies or problem 
solving situations. This is paradoxical, since there has been little research 
evaluating methods according to criteria used in method construction. 

Third, the criteria (i.e. contingencies, problem characteristics, or values) 
used in the ME approaches are far too general to direct detailed method 
construction. Because of this, the proposed situation characterizations do not 
support detailed analysis, construction, and refinement of method knowledge. 
At best, the characterizations can be used to “prefer” a certain collection of 
techniques and methods. For example, the approaches do not distinguish 
techniques of object-oriented methods from techniques of structured methods. 
Although these general driving factors of ME are important in understanding 
and structuring method knowledge, the examples of local method development 
show that methods are developed at a far more detailed level. Similarly, the 
studies on individual designers’ understanding and use of methods indicate 
that method knowledge is different at the detailed level (Wijers 1991): for 
example, method knowledge is applied differently even at the level of single 
concepts of a modeling technique.  

To summarize, none of the ME frameworks provide explicit principles for 
collecting and analyzing methods a posteriori and therefore do not explain how 
method refinements can be carried out. In this sense, they aim to deliver a 
method in terms of a constructed method, while little attention is paid to 
analyzing how the method is used and whether it has been successful. 

3.3 Metamodels and metamodeling languages 

This section discusses metamodels and metamodeling languages as used in this 
thesis to describe tool-supported modeling techniques. This discussion is 
important because all ME is based on some formalism and because it deals with 
our research question on modeling method knowledge. Accordingly, in the next 
subsections we shall define metamodels and metamodeling. This is followed by 
a representation of different types of metamodels, and especially metamodels 
which are based on semantic data models. 

3.3.1 Defining metamodeling and metamodels 

Models play a crucial role in ME, as in all engineering. Only those aspects of a 
method can be engineered which can be made explicit through a representation. 
Modeling of methods is not important only in constructing methods, but has 
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also proven to have advantages in systematizing and formalizing weakly 
defined methods (Tolvanen and Lyytinen 1993), providing a more “objective” 
approach to comparing methods (Hong et al. 1993, Rossi and Brinkkemper 
1996), supporting standardization efforts (e.g. Booch et al. 1997, OMG 1997), 
and examining linkages between ISD methods and programming languages 
(Hillegersberg 1997). Metamodeling is also successfully used in building 
flexible modeling tools (Kelly 1997, Kelly and Smolander 1996), interfaces 
between tools (CDIF 1997), and repository definitions (CASE Outlook 1989). 
Metamodels can differ greatly based on their purpose and the type of method 
knowledge considered. For example, Brodie (1984) analyzed various semantic 
data models and showed that there is a need for application-specific data 
models. Similarly, the ME frameworks and underlying metamodels focus on 
different types of method knowledge (cf. Section 3.2.2). 

In its simplest form we can say that a metamodel is a conceptual model of 
an ISD method (Brinkkemper 1990). Metamodels can be further divided into 
different types depending on what type of method knowledge is modeled. 
Hereafter, we use the term metamodel to refer to a meta-data model which 
describes the static aspects of a method. Consequently, metamodeling can be 
defined as a modeling process which takes place one level of abstraction and 
logic higher than the standard modeling process (van Gigch 1991). The 
relationships between modeling and metamodeling are illustrated in Figure 3-3.  

In metamodeling, the focus is on method knowledge applied in modeling. In 
the case of meta-data modeling this means the conceptual structure and 
notation of the method. Accordingly, the resulting metamodel captures 
information about the concepts, constraints, rules and representation forms used 
in modeling techniques. IS developers use this knowledge —  although often 
unconsciously —  in IS modeling tasks (see Smolander et al. 1990). Clearly, no 
modeling is possible without some sort of (explicit or implicit) metamodel. The 
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FIGURE 3-3 Metamodeling and modeling (after Brinkkemper 1990). 
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same is also true for metamodeling as it also uses its own methods and tools 
which, in turn, can be described one level higher in metametamodels (and so ad 
infinitum).  

Kotteman and Konsynski (1984) show that at least four levels of 
instantiation are necessary to integrate the modeling of the usage and evolution 
of ISs. A similar observation underlies the architecture of the ISO IRDS 
(Information Resources Dictionary Standard, (ISO 1990)), and in the universal 
framework for information activities by Auramäki et al. (1987). The levels and 
their hierarchy are illustrated in Figure 3-4.  

The application level includes application data and program execution. An 
example of the former could be “Juha -Pekka Tolvanen” and an example of the 
latter the procedure by which this data has been added or removed in the 
application. This level corresponds to the instances of class-based languages and 
to instantiations of an IS model.  

The IRD level includes database schemata and application programs, plus 
any intermediate specifications, and also specifications of non-computerized 
activities (e.g. business processes and work flows). This corresponds to the class 
level of class-based languages and instantiations of a metamodel (i.e. IS 
models). An example of the information at this level would be a definition of 
“customer” information as part of the database schema.  

The IRD definition level specifies the languages in which schemata, 
application programs, and specifications are expressed. It may also contain the 
specification of possible static and dynamic inter-relationships between these 
languages, for instance how various design models are linked. This corresponds 
to the metaclass level of languages such as Smalltalk, and instantiations of a 
metametamodel (i.e. metamodels). An example of the information at this level 
would be the specifications of the ER diagram technique and its component 
types, such as “entity” or “cardinality”.  
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FIGURE 3-4 ISO IRDS repository framework. 
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Finally, the IRD Definition Schema Level specifies a metametamodel 
according to which the IRD Definition level objects can be described and 
interlinked. An example would be ‘concept’ (Wijers 1991) or OPRR’s ‘Object’ 
metatype (Smolander 1992). 

As the right side of the figure illustrates, these four levels can be grouped 
into interlocking level pairs. The interlocking is necessary since making sense of 
instances is not possible without type level information. To illustrate the 
interlocking pairs in Figure 3-4 the boxes are joined, and to represent that the 
number of instances is normally greater than the number of types the figure is 
in the shape of a pyramid. Thus, the hierarchy can be understood as being 
instantiations in which the higher level forms the type definitions for the lower 
level instances, in the same way as classes define objects, and metaclasses define 
classes. A level pair can also be intuitively understood as a database where the 
upper level is the schema and the lower level the database state. 

The lowest pair, IS use, corresponds to application databases, consisting of 
a schema and of a database state used in daily business. At the database state 
level the data element “Juha -Pekka Tolvanen” is useless if its type information 
is not known (e.g. row in a customer table of a database). The middle pair, ISD, 
corresponds to data dictionaries or CASE tool repositories used to store models 
of IS. IS modeling tools also operate at this level. For example, an ER diagram 
describes a “customer” as an entity. The topmost pair, ME , corresponds to meta 
databases, such as metaCASE tools or CAME tools which store models of 
methods, i.e. metamodels. Here the metamodeling language plays the role of 
type information and modeling technique metamodels are viewed as instances. 
For example, an “entity” is described as an object type, an instance of the 
metatype ‘Object’, in an ER diagram metamodel. On the ISD level, types 
included in a metamodel determine what one can observe or describe about the 
application level while using the method.  

Our research questions focus on the topmost pair of the IRDS framework. 
The first question on metamodeling constructs seeks to find applicable concepts 
and constraints for metamodeling languages, i.e. to define metametamodels. In 
other words, metametamodels provide constructs for metamodeling languages. 
The second research question on incremental ME deals with how the applicable 
instances of the ME level, i.e. metamodels can be recognized and constructed for 
ISD. Hence, the research itself can be placed above the IRD schema level, i.e. on 
a fifth level.  

Although we mostly operate with concepts of the ME level we sometimes 
need to refer also to instances on the ISD level. To distinguish the concepts and 
the level on which we currently operate we use the following naming 
conventions. On the IRD schema level, we use the term metatype to denote any 
of the concepts used in a metamodeling language. On the IRD definition level, 
one of these metatypes is instantiated to describe a certain method component, 
resulting in what we call a type (i.e. an instance in a metamodel). Hence, in ME, 
an entity object type refers to an instance in a metamodel. This then itself plays 
the role of type on the ISD level, when it is instantiated to an entity used as an 
element in a model of the object IS. 
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Since some of the metamodeling constructs refer to instances of models, 
i.e. to the IRD level we need to refer to them also. For example, to refer to all 
entities described in an ER model we use the term instances of an entity object 
type. Because the naming becomes complicated we use apostrophes to refer to 
things on the IRD definition level. Hence ‘entity’ means the type described in a 
metamodel. This means the same as an entity object type although the latter is 
more precise, since it mentions also the metatype. Because in most cases the 
metatype is clear, e.g. it is clear that ‘class’ is an object type not a relationship 
type, we normally use the shorter naming version. 

3.3.2 Types of the meta-data modeling languages examined 

Starting from Teichroew et al. (1980), most of the meta-data modeling languages 
rely on some existing semantic data model (Hull and King 1987). Two types of 
semantic models, ER-based models and NIAM-based models, have been 
investigated in particular. Extensions of the ER model (Sorenson et al. 1988, 
Welke 1988, Smolander 1991, Venable 1993) seek to improve its expressive 
power by suggesting new integrity constraints (Welke 1988, Smolander 1991, 
Kelly and Tahvanainen 1994) and verification rules (Wijers 1991), and by 
representing complex objects (Venable 1993). The NIAM-based conceptual 
metamodeling formalisms (Bommel et al. 1991, Hofstede et al. 1993, Hofstede 
and Weide 1993) pursue similar goals, but are often founded on a more formal 
basis than the ER-based modeling languages.  

The reasons for applying semantic data models in ME are the same as in 
ISD. They are easy to use, support communication, and yet are powerful and 
formal enough to describe methods and implement them in customizable ISD 
tools. Moreover, methods in CASE tools are largely based on semantic data 
models and thus their users are familiar with them. Some models, like ER or 
NIAM, are even applied at both levels. Because of the symmetry between 
models in ME and ISD the semantic data model based metamodels should be 
easy to use and understand for method users. This is especially relevant for 
incremental ME in which metamodels are constantly used to refine ISD 
methods. The requirement for ease of use is further highlighted if the users of 
the modeling tool or their customizers are not familiar with a specific 
programming language.  

Second, support for communication is especially important when multiple 
method stakeholders need to agree on and participate in ME. Also, metamodels 
can be applied for teaching (Mathiassen et al. 1996) and method related helps 
can be generated from metamodels (e.g. MetaCase 1994). Support for easy use 
and communication are achieved by the use of graphical representation in 
metamodeling languages. Although some metamodeling languages seek to 
model methods totally with graphical constructs (e.g. CoCoA (Venable 1993)), 
in practice they all include some graphically “invisible” metamodeling 
constructs. In other words, not all constructs of the metamodeling language 
have notational support. Most of the approaches aim to add extra constraints 
(Smolander 1992, Ebert et al. 1996), or whole constraint languages (e.g. ter 
Hofstede 1993) to existing graphical metamodeling languages. Another 
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approach is to apply graphical metamodeling languages to describe only a 
subset of the metamodeling constraints (e.g. Harmsen 1997).  

From the method user point of view, easiness and support for 
communication could be better achieved with a natural language, rich pictures, 
or with other similar techniques, but they would not satisfy the third 
requirement of formality. Moreover, these do not reflect any knowledge specific 
to ME and metamethods: they do not explicitly describe or implicitly provide 
guidance on which components, rules, or constraints of methods should be 
considered during ME. In addition to pure representation of methods, 
metamodeling languages should provide a formal basis for building tool 
support. This means that all essential method knowledge must be captured into 
the formal metamodel.  

The modeling power and formality of metamodeling can also be 
supported by other types of metamodeling languages. For example, for this 
purpose Saeki and Wenyin (1994) adapted an object-oriented modeling 
language called Object-Z. Ahituv (1987) introduces a formal metamodel which 
views an information system as the data flow that moves from one state to 
another, and by which some existing methods can be modeled. The work of 
(Oei et al. 1992, Oei and Falkenberg 1994, Oei 1995) introduces a formal 
language for modeling methods and transforming them into a method 
hierarchy. Also set-theoretical constructs (Bergsten et al. 1989), and predicate-
logic (Brinkkemper 1996, Harmsen 1997) have been applied to metamodeling. 
However, these fail in other criteria as they neither support communication nor 
are they as easy to use as semantic data models (although some of them like 
MEL have close connections with the data modeling side). Semantic data 
models provide better modularity and maintainability, which are particularly 
important for incremental ME. Moreover, the development of metamodeling 
languages mainly to satisfy the modeling power aspect is questionable because 
this requirement can already be supported with programming languages. 
Hence, if we concentrate only on achieving the greatest possible modeling 
power, assembler or C++ is close to the ultimate metamodeling language.  

The requirements formulated above are important for incremental ME and 
direct us to focus on semantic data models. Additional reasons for this focus are 
the popularity of semantic data models as repository schemas (CASE Outlook 
1989), and the dominance of their use in large metamodeling efforts (Hong et al. 
1993, Heym 1993, Henderson-Sellers and Bulthuis 1996a, 1996b, Hillegersberg 
1997) when compared to other types of metamodeling languages. The former 
reason allows us to test and validate the metamodels in a tool environment (cf. 
Section 4.2.3), and the latter reason to compare the metamodels. 

3.3.3 Modeling power of meta-data models 

Like other modeling languages, metamodeling languages focus on specific 
aspects of the domain to be modeled, and therefore lead to different types of 
representations. One major difference between these languages is therefore how 
well they describe various types of method knowledge. This is related to our 
first research question, since our aim is to improve the metamodeling power of 
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semantic data models. Ideally, a metamodeling language should capture 
method knowledge as completely as possible (Griethuysen 1982, Welke 1988, 
Brinkkemper 1990, Tolvanen et al. 1993). By complete we mean the 100% 
principle suggested by Griethuysen (1982) in the context of metamodeling, and 
Welke’s (1988) “no loss” criterion in the context of a repository metamodel.  

In the following we consider a small example to illustrate the use of 
different semantic data models in metamodeling. This allows us to describe 
different approaches to define method knowledge and to introduce them for 
later evaluation (cf. Section 4.5). We focus mostly on widely-known 
metamodeling languages. These are summarized in Table 3-3 and illustrated in 
the following subsections together with an example. The metamodeling 
languages mostly follow ER-based models, except NIAM which can be 
considered as an object-relationship model (Kim and March 1995), and MEL 
which is based on first-order predicate logic, but uses an ER-based graphical 
notation. 

TABLE 3-3 Examples of metamodeling languages. 

Acronym Metamodeling language name References 

ASDM ASDM Heym and Österle 1992, 
Heym 1993 

CoCoA ComplexCoveringAggregation Venable 1993, Grundy and 
Venable 1996 

ER Entity-Relationship model Chen 1976 

GOPRR Graph-Object-Property-Relationship-
Role model 

Marttiin et al. 1995, Kelly et 
al. 1996 

MEL/MDM Method Engineering Language Harmsen 1997 

NIAM Nijssen’s Information Analysis Method Nijssen and Halpin 1989, 
Hofstede 1993 

OPRR Object-Property-Relationship-Role model Welke 1988, Smolander 1992 

 
The metamodeling example is based on a small piece of method knowledge as 
follows:  

 
In object-oriented design the life-cycle of class instances must be 

specified with one or more state models. A state model contains states 
and transitions between two states. A state must be specified by a name 
and a class may have only one state with a given name. Each transition 
must be specified with an action which is executed when a transition 
occurs. An action is specified as an operation of a class. 

 
This example deals mainly with knowledge related to a single modeling 

technique, but also includes a connection to class diagrams. The example is 
quite common in object-oriented methods (e.g. Coad and Yourdon 1991a, 
Rumbaugh et al. 1991) but is made more explicit than is often possible to find 
from method text-books. 
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The metamodels made were reviewed by the users or developers of 
metamodeling languages, except the metamodel made with ASDM and MEL. 
Users of these metamodeling languages were not available, and their 
developers did not respond to our inquiries. 

3.3.3.1 Entity-Relationship model 

The ER model has been commonly applied as a schema for repositories (CASE 
Outlook 1989), and most of the meta-data modeling languages originate from 
the ER model. Therefore, several versions and dialects of ER modeling exist. 
They vary based on whether attributes are allowed only for entities, whether 
inheritance of entities is allowed, etc. (cf. Batani et al. 1992). Here we apply a 
version of the ER model which allows the definition of attributes attached to 
entities, and recognize cardinality constraints between entities (in an ER model 
this constraint defines how many times instances of an entity can participate in 
a relationship). 

The reasons for extending the ER model for metamodeling are the same as 
in extending it for IS modeling  its limited modeling power. Figure 3-5 
illustrates limitations of the ER model with two versions of our state model 
example.  

State

Transition

State name State name

Action
Class name

Attributes

Operations

Class

State model State

Transition SourceDestination

Includes

Has

M

M 1

M

M

1
1

M

M

1

 

FIGURE 3-5 Two metamodels of state model defined with the ER model. 

In the figure, entities are illustrated with a rectangle, relationships with a 
diamond, and attributes with an ellipse. The cardinality constraints (1 or M in 
the metamodel) are shown side-by-side with the related entity. The metamodel 
on the left defines that each state can participate in several transition 
relationships, and that states have state names. No information is given for 
example on the state model itself, nor that transitions must be specified with an 
action.  
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To specify all rules in the example, the metamodel could be defined 
differently. For example, to specify that transitions are defined with an action, a 
transition could be defined as an entity instead of a relationship. The larger 
metamodel on the right illustrates this possibility. The cardinality constraint 
value one defines furthermore, that a transition can not be an n-ary relationship. 
However, when an entity type is used to represent a transition no distinction 
can be made between design elements that can exist independently (i.e. states) 
and design elements which exist between independent design elements (i.e. 
transitions). Thus, in the latter version of the metamodel, there is no explicit 
constraint (cf. Brodie 1984) to distinguish between transitions and states. 
Moreover, the metamodel does not specify method knowledge adequately 
because it allows transitions which are “unconnected” to states. This distinction 
between states and transitions could be made with the first version of the 
metamodel since in the ER model relationships can exist only when related to 
entities. This constraint is thus inherent in the ER model (a basic semantic 
property of the ER model, Brodie 1984). Moreover, other method knowledge 
related to state modeling with object-oriented methods is not defined 
adequately in either of the versions. For example, mandatory action names, 
unique state names, and the requirement that every class must be specified with 
state models are not captured with the ER model. 

3.3.3.2 ASDM and the reference model of information system development 

ASDM is a semantic data model developed at the University of St. Gallen and it 
has been used to describe the reference model of ISD (Heym and Österle 1992, 
Heym 1993). ASDM has also been used for metamodeling according to the rules 
defined in the reference model (Heym 1993). The reference model includes the 
widest range of method knowledge as it aims to cover other knowledge in 
addition to that defined in modeling techniques (part of deliverable model of 
the reference model). These extensions, excluded here, deal with the ISD 
process, versioning of metamodels, guidelines for integrity, and method related 
contingencies. Each of these is also represented with different metamodeling 
languages. Based on the reference model another, existing, metaCASE tool was 
used to develop a tool called MERET (Heym and Österle 1993), which could 
represent and compare methods, but not implement them into a CASE tool. 

ASDM is used as a notation to metamodel modeling techniques (cf. Heym 
and Österle 1992). The notation of the language follows the ER model and 
initially Chen’s (1976) version of ER model was used to define methods. The 
extensions in ASDM deal with inheritance, aggregation and identifying 
different concepts in the modeling techniques. These concepts are subtyped 
from an entity type. Because of these extensions, our state model example can 
be specified more adequately than with the standard ER model (cf. Figure 3-6).  
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FIGURE 3-6 A metamodel of a state model defined with ASDM (adapted from Heym 1993, 
p 210). 

Although the same entity symbol of ASDM is applied for most of the method 
concepts, the reference model classifies them into meta-entity types, meta-
relationship types and meta-attribute types. Hence, a ‘transition’ is considered 
as a relationship type and an action as an attribute type. Furthermore, meta 
entity types are subtyped into fundamental entity types (i.e. state) and 
structural entity types (class name) although this can not be easily noticed from 
the graphical metamodel. Typically, structural entity types are results of an 
aggregation relationship. 

The metamodel based on the reference model shares some of the 
limitations already discussed for the ER model. Links between modeling 
techniques are not defined, uniqueness of state names is not defined, and 
because minimum cardinalities can not be specified we can not define 
mandatory relationships. Although the reference model distinguishes 
techniques and their components, the “explains” (Heym and Österle 1992, p 11) 
relationship does not allow the definition of any rules of the technique-related 
connections other than the maximum cardinality. Hence, for example, the rule 
that each class must be specified in one or more state models can not be 
included in the metamodel. Moreover, the metamodels developed in Heym 
(1993) do not include these types of connections. The focus of the reference 
model, as reflected in its name, is on more general method knowledge and 
therefore it lacks detailed metamodeling capabilities. In fact, Heym and Österle 
(1993) aim to describe all method related knowledge at a high level of 
granularity to understand and compare methods. 

3.3.3.3 Object-Property-Relationship-Role model 

The OPRR model has been developed by Welke (1988) and Smolander (1992). 
The focus of the OPRR model has been from the beginning to specify single 
modeling techniques. It extends the largely unspecified ‘role’ concept of the ER 
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model to clarify the way in which objects participate in a certain relationship. In 
other words, the role defines what “part” an object plays in a relationship 
(Smolander 1992). A role can have also properties. OPRR applies the same 
representation as the ER model and the role type is represented by a circle. 

This model forms a specification language for graphical method 
representations in the MetaEdit tool (Smolander et al. 1991). MetaEdit can be 
applied as a CASE tool (MetaCase 1994), metaCASE tool (Smolander et al. 1991), 
or even to customize other metaCASE tools (Rossi et al. 1992). To better address 
tool implementation and formalization of OPRR Smolander (1992) has added 
additional constraints into OPRR, namely identifying properties, a duplication 
policy for object types (whether homonyms are allowed), direction for 
relationships and modeling technique related data types. A useful feature of 
MetaEdit is that a graphical OPRR representation can be built up, and compiled 
in this environment at any time during metamodeling. Therefore the 
implementation of the CASE tool is easy and straightforward after the graphical 
representation of the method in OPRR has been achieved (see Tolvanen and 
Lyytinen 1993). This possibility allows testing the metamodel (cf. Figure 3-7) as 
a “specification” for IS modeling.  

M0
Transition from

M0
Transition to

State

Action

Name

Transition

 

FIGURE 3-7 A metamodel of a state model defined with OPRR. 

Regarding extensions to the ER model, the transition now has an action, and 
states are identified based on their names (double lined ellipse). The duplication 
policy is also used for states (although not represented in the graphical notation 
of OPRR): there can not be two different states with the same name. In modeling 
this means that copies of the same state are allowed, and changing the name of 
one state is reflected in all copies of that state. The uniqueness of states would 
make better sense if a state had other properties, like actions executed in the 
state (as in OMT, Rumbaugh et al. 1991).  

Because OPRR focuses on specifying single techniques, a connection 
between a class and a state model can not be specified. Of course, the 
relationship could be specified with a normal OPRR relationship (like with the 
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second version of the ER-based metamodel) but no distinction could be made 
between relationships between techniques and within a technique. Moreover, 
mandatory actions can not be specified, nor actions referring to operations of a 
class, nor that state names are dependent on the class they belong to. Thus, 
according to the OPRR metamodel a state model of another class can not use the 
same names for states (referring to different states). 

3.3.3.4 Method Engineering Language 

MEL is a language for describing and manipulating (i.e. selecting and 
assembling) parts of ISD methods. It is designed specifically to support ME 
(Brinkkemper 1996, Harmsen 1997). Because of its general focus on supporting 
all ME tasks, MEL describes both product (i.e. conceptual structure and 
notation) and process aspects of method knowledge. In this sense it is very 
similar to ASDM (Heym 1993) although MEL has not been applied so 
extensively to model ISD methods. Like ASDM MEL too has a supporting tool, 
called Decamerone, for describing methods and customizing a third-party 
repository (Maestro II). The selected repository, however, limits the number of 
possible methods supported. Therefore Decamerone is limited to combining 
existing methods which can be already stored with Maestro II (e.g. the support 
for object-oriented concepts has only later been added into Maestro II). 

Although MEL is founded on first order predicate logic, its relation to 
semantic data models can be easily detected. Moreover, MEL also includes a 
graphical modeling language which is a subset of MEL and very similar to the 
ER and OPRR models. Figure 3-8 illustrates the metamodel of our example, 
both with a textual and a graphical part of MEL. Parts of the metamodel which 
are related to guiding the method selection and modeling process are excluded. 

 
 
 

PRODUCT StateModel; 
IS_A Product; 
LAYER Diagram; 
( - State; 
  - Transition 
). 
 
PRODUCT State; 
LAYER Concept; 
PART OF StateModel; 
ASSOCIATED WITH {(StateTransition_1, source),  
(StateTransition_2, target)}. 
 
PRODUCT Transition; 
LAYER Concept; 
PART OF StateModel; 
ASSOCIATED WITH {(StateTransition_1,  
has_source), (StateTransition_2, has_target)}. 
 
ASSOCIATION StateTransition_1; 
ASSOCIATES (State, Transition); 
CARDINALITY (0,n; 1,1). 
 
ASSOCIATION StateTransition_2; 
ASSOCIATES (State, Transition); 
CARDINALITY (0,n; 1,1). 

FIGURE 3-8 A metamodel of state model defined with textual and graphical part of MEL. 
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Target  0,n
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As the metamodels illustrate the textual and graphical part are largely 
equivalent. Since the graphical part is only a subset of MEL it is not adequate to 
define all the method knowledge of our example. The limitations are similar to 
the limitations of OPRR. In MEL additional constraints can be specified with 
predicate logic. For example, the following constraint to deny recursion could 
be added to a transition relationship:  

 
Rule1: forall T1 in transition forall A1, A2 in 
State [has_source (T1, A1) and has_target (T1, A2) 
implies not (A1=A2)];  
 
These types of additions are possible for all metamodeling languages, but 

they provide limited help for method modeling since they do not guide towards 
modeling relevant aspects of methods. In other words, aspects which are not 
required in ME at all can be defined as well. This is paradoxical because the aim 
of methods is to focus attention on relevant aspects of IS, but on the metalevel 
(i.e. metamethods) this requirement is often ignored. Moreover, as already 
discussed, these extensions do not support maintainability, ease of use and 
communication as well as semantic data models.  

By inspecting the definition of MEL and example metamodels it is unclear 
how all method knowledge related to the example can be specified with the 
predicate logic extensions. These include identity and different scopes: for 
example that each state must have a unique name among states of the class, and 
that actions must refer to operations defined for the related class. Unfortunately, 
the metamodels made to illustrate the use of MEL include only a few examples 
of detailed metamodels of modeling techniques. 

3.3.3.5 ComplexCoveringAggregation 

CoCoA (ComplexCoveringAggregation) has been developed to support 
conceptualization and data modeling of complex problem domains (Venable 
1993). As stated in the name of the model, its extensions deal with modeling 
aggregations which cover entities and named relationships, n-ary relationships, 
alias naming, and entity categories (through the named roles they participate 
in). CoCoA has also been applied in metamodeling (Venable 1993) and method 
integration, and is intended to be used as a metametamodel for a modeling tool 
(Grundy and Venable 1996). Most of the metamodeling efforts carried out with 
CoCoA have focused, however, on data modeling techniques, and larger 
metamodeling efforts including whole methods have not, to our knowledge, 
been reported. 

Since method knowledge can also be considered as a complex object, i.e. as 
involving shared method elements and multiple levels of granularity, CoCoA 
performs better than the earlier metamodeling languages (cf. Figure 3-9). The 
metamodel specifies most of the method knowledge, such as identification of 
modeling techniques and their components: that more than one state model for 
a class is possible; and that transition relationships are binary. Furthermore, a 
covering aggregation is used to describe the components of the modeling 
technique (large gray box), and that a class can have several attributes and 
operations. Moreover, an “action” alias is used to denote that class operations 
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are applied in transitions. This means that actions which are not described as 
operations should not be possible. However, the dependency to operations of a 
state model related class (or its superclasses) can not be specified. 
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State model
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FIGURE 3-9 A metamodel of a state model defined with CoCoA. 

All method knowledge related to our example, however, is not specified even 
with CoCoA. First, no possibility exists to define which attribute values are 
mandatory: it should not be possible to define states without state names, or 
transitions without actions, but the CoCoA metamodel does not distinguish 
between mandatory and optional values. One possibility would be to model 
mandatory properties with a single aggregate, like an attribute of a class, with 
multiplicity value of one-to-one (1,1). Second, as in the ER model, the distinction 
between a transition and a state is not clear since they are not sub-typed as in 
ASDM (Heym 1993). However, with a minimum cardinality the mandatory 
participation of each transition in both possible roles is guaranteed. The 
difficulty to distinguish types which refer to a modeling technique (e.g. state 
model) and its components (e.g. state) also exists because both are represented 
as entities. Moreover, if the state model applied n-ary roles, the number of role 
instances a relationship instance can or must have can not be specified with 
CoCoA. Third, there is no specification of the requirement that a class can not 
have several different states with the same name. Implicitly, we can expect that 
each name must be unique, but CoCoA does not restrict the scope of instances 
in which the uniqueness should be valid. For example, along all class diagrams, 
classes with the same name typically denote the same class (e.g. Booch 1991), 
but several classes can have states named similarly but which still refer to 
different states.  
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3.3.3.6 Nijssen’s Information Analysis Method 

NIAM (Nijssen’s Information Analysis Method) has been developed primarily 
to support information analysis (Verheijen and Van Bekkum 1982, Nijssen and 
Halpin 1989) but it has also been applied in several metamodeling efforts (e.g. 
Wijers 1991, Hofstede 1993). It is also a good example of method evolution since 
several versions of NIAM exist with a wide variety in the terminology. In the 
metamodeling effort we have applied basic NIAM with the PSM extension 
(Hofstede 1993). To our knowledge, no modeling tool using NIAM as a 
metametamodel is available. 

The NIAM/PSM based metamodel of the state model example is 
illustrated in Figure 3-10. A state, a transition, a class, an attribute and an 
operation are defined as object types and illustrated with circles. As with the ER 
model, NIAM does not distinguish between relationships and objects. Although 
transitions could be modeled as a relationship, the constraints could not be 
specified as it is defined with an object type. Attributes, also called label types 
(ter Hofstede 1993) or slots (Verheijen and Van Bekkum 1982) are similarly 
represented with circles but the name of an attribute is described in brackets.  
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FIGURE 3-10 A metamodel of a state model defined with NIAM. 

The linkages between attributes and object types are described with 
relationships (also called a bridge type or a fact type) although one-to-one 
relationships (e.g. between a class and a class name) could also be defined by 
adding the attribute name in brackets below the name of the object type. The 
use of relationships has the advantage of illustrating different constraints. A 
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total role constraint, illustrated as a black dot on the object or attribute type part 
of the relationships, specifies a mandatory role. For example, each state must be 
described with a state name and all state names must belong to at least one 
state. The uniqueness constraint, illustrated with arrows in role symbols, shows 
which instances of a role or concatenation of roles must be unique. For example, 
only one instance of a class name can appear in the relationship between classes 
and class names. The uniqueness constraint is also used to define that each state 
can have only one state name, and the same state name can be used as a value 
for many states. The rule of the example that a class may have only one state 
with a given name could be added to the metamodel as a relationship with a 
uniqueness constraint, but then no difference could be made between different 
kinds of relationships (i.e. those defined between states and transitions of STD 
and those defined for describing constraints). The total role constraints in input 
and output roles define that each state has an input or an output of a transition 
and that each transition has a state as an input or output. This specification can 
not be used as a metamodel for guiding modeling actively. According to the 
constraints, creation of the first state would require creation of a transition 
which could not be possible because other states are not available.  

Although NIAM can support most constraints of a state model it does not 
address multiple interconnected techniques. Therefore, the metamodel includes 
PSM extensions (ter Hofstede 1993). Modeling techniques are defined as schema 
types and illustrated as rounded boxes around technique related types. The 
linkage between state models and classes is described as a NIAM relationship. 
This relationship can be distinguished from other relationships because it is 
drawn outside the schema types. The total role constraint and the uniqueness 
constraint are used to define that each state model must be related to only one 
class (i.e. other classes can not refer to the same state model). Finally, linkages 
between the values of actions and operation names can not be defined with the 
graphical constraints of PSM/NIAM. As with MEL, additional grammars like 
LISA-D (Hofstede et al. 1993) have been proposed and could be used. For 
example, a correspondence between an operation name of a class and an action 
of a transition would then be:  

 
Action of Transition PART-OF State model is-explosion-of 
Class has THAT Operation name EQUALS Action. 

3.3.3.7 Graph-Object-Property-Relationship-Role model  

GOPRR (Graph-Object-Property-Relationship-Role) has been developed from 
the OPRR data model (c.f. Smolander 1991, Marttiin et al. 1995, Tolvanen et al. 
1993, Kelly et al. 1996, Kelly 1997). It has been developed specifically for 
metamodeling. The GOPRR model is implemented in a MetaEdit+ metaCASE 
tool (Kelly 1997, MetaCASE 1996a) which enables GOPRR-based metamodels to 
be instantiated at any time in the same tool as a model.  

We will apply GOPRR in method analysis and metamodeling in Chapter 
4. Therefore, the GOPRR model is described in more detail in the appendix. 
Here we briefly define the main extensions to OPRR. As the extra G in the 
acronym indicates, the main extension is a graph metatype. It is a collection of 
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all other GOPRR types (including the graph type) chunked together into a 
modeling technique. The GOPRR model also offers three semantic relationship 
types between graphs and other non-property types (i.e. object, relationship and 
role types): inclusion, decomposition, and explosion. Inclusion means that a 
graph may consist of instances of particular object types, relationship types and 
role types. Moreover, an object type in a graph type may be either decomposed 
or exploded into another graph. 

In addition to the graph metatype, GOPRR extends OPRR with an 
abstraction mechanism to generalize and specialize non-properties. It applies 
single inheritance, where an ancestor can contain a number of descendants, but 
each descendant can have only one ancestor. Cartesian aggregation is defined so 
that non-property types can contain any number of property types; in the other 
direction, a property type can be shared by many non-property types. GOPRR 
also applies cardinality constraints in a different way than in OPRR. In GOPRR, 
cardinality defines a minimum and a maximum number of instances of a role 
type a relationship type instance may have. In other words, this defines whether 
relationships are binary, specific n-ary, or whether some roles are optional. 
Other additions of GOPRR include local names for properties and a collection 
data type14. These are described in the example and in the appendix. 

Because of these extensions GOPRR can capture almost all the method 
knowledge related to our example. GOPRR does not have a standardized 
graphical notation (Kelly 1997). Rather, metamodels are specified through forms 
represented as windows in MetaEdit+ tool (e.g. Rossi and Tolvanen 1995). One 
main reason for this choice is the relatively large number of constraints which 
are not best represented with a graphical notation. If they were added to 
increase the picturability (cf. Venable 1993) it would make GOPRR-based 
metamodel representations inherently complex. Graphical notations have, 
however, been implemented for metamodel representations. Following Kelly 
and Tahvanainen (1994) and Hillegersberg (1997) we have defined a similar 
graphical notation to make metamodels readable and more comparable with 
notations of other metametamodels. This notation is used to illustrate the 
example metamodel in Figure 3-11. 

In the GOPRR representation used, a technique is defined as a graph type 
represented with a window symbol. Inclusion is described by drawing 
components (i.e. types) inside the window symbol of a technique (i.e. graph 
type). The relationship between a property and a non-property includes the 
local name of the property in that non-property, whether it is unique there, and 
whether it is the identifying property. For example, a class name is defined as 
an identifier and is unique among all classes. These constraints are not added to 
the property type because GOPRR supports reusability of types and these 
constraints may be different in other places where the property type is used 
(Kelly 1997). The data type of operations of a class is ‘collection’, and this is 
illustrated with a double-lined ellipse. Hence, the metamodel specifies that each 
class can have a collection of operations and each operation can be defined 
                                                
14  Recently GOPRR has been extended with multiplicity constraints, and with checking of 

property values through a constraint specification language (Kelly 1997). 
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through its name and return type. More generally, a property type can also be 
linked to GOPRR types other than an object type.   
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FIGURE 3-11 A metamodel of a state model defined with GOPRR. 

Property sharing is used in the metamodel to define that both transitions and 
operations refer to the same operation name. For the purpose of state modeling, 
an operation is called an action by defining the local name. Modeling the life-
cycle of classes with state models is specified with an explosion link represented 
as a dotted line with a cross in a box and an arrowhead from the class to the 
state model.  

The GOPRR metamodel, however, does not define all method knowledge. 
Mandatory actions and state names can not be defined because the metamodel 
does not differentiate between optional and mandatory values. A recent 
addition to GOPRR for checking property values, however, can support the 
definition of mandatory properties. The uniqueness of state names depending 
on the class can not be specified because the uniqueness constraint is relevant 
among all instances (as with class names). Mandatory explosions (i.e. each class 
has at least one state model) and that only one class can refer to a single state 
model can not be specified. Moreover, although operation name and action refer 
to the same property type, similarly to the CoCoA alias, no restriction can be 
defined on the population of property type values. Hence, an action in a state 
model can refer to any operation defined for any class. The correct definition 
should be that an action can refer to any of the operations of the related class or 
its superclasses. 

3.3.4 Constructs of metamodeling languages 

In this section we defined metamodeling in the context of ME and described a 
set of metamodeling languages. Our focus is on semantic data models because 
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of their support for communication, ease of use, and a formal enough basis to 
enable metamodel-based tool adaptation.  

The set of metamodeling languages is illustrated by modeling a small 
example of method knowledge. With respect to our first research question of 
representing method knowledge “completely”, the metamodeling exercises 
were used to analyze the modeling power of the metamodeling languages. This 
revealed both similarities and differences among the constructs provided for 
metamodeling, although the example was so small that not all limitations or 
strengths could be described. This would require modeling a larger sample of 
ISD methods, as performed in Chapter 4. The metamodeling exercises, however, 
clearly showed the limitations of the basic ER model and showed how 
additional constraints are used to model methods. 

In this thesis our main interest is on finding essential metamodeling 
constructs which could be used as predefined and generalized 
(meta)knowledge about modeling techniques. In other words, constraints like 
cardinality in the ER model and explosions in GOPRR already guide engineers 
to identify, capture and construct certain aspects of method knowledge (i.e. for 
each relationship at least the maximum cardinality must be examined). The 
currently used constraints, however, are not adequate as the metamodeling 
example clearly demonstrates. Hence, instead of applying programming 
languages or additional grammars (e.g. Harmsen 1997, (ter Hofstede et al. 1993, 
Saeki and Wenyin 1994) we seek constructs which are relevant in metamodeling 
with semantic data models. The limited number of metamodeling constructs 
will help method engineers to focus on perceiving known rules about method 
knowledge, speed up the metamodeling process, and support communication 
among the participants in ME efforts. Hence, our aim is to find constructs 
specific to our domain of metamodeling, in the same way as developers of ISD 
methods try to find constructs specific to their domains of application. 

3.4 Summary of method engineering approaches 

In this chapter we defined method engineering and placed our research in the 
context of ME research. We analyzed the current understanding of ME in terms 
of its process, the type of method knowledge “engineered”, and the criteria 
used in method construction. First, related to the ME process, the analysis 
shows the dominating a priori approach. Most principles are targeted toward 
method selection and construction, and little attention is paid to analyzing 
whether the constructed method is applicable in the task for which it has been 
promoted, or could the method be improved. Hence, information about 
methods and ISD contingencies is expected to be known completely in advance.  
Moreover, learning from method use and the evolution of methods are ignored. 

Second, we surveyed the ME criteria that have been proposed to construct 
methods. These explain how the situational applicability of methods can be 
improved. Of these approaches, we discussed those based on contingencies, 
problems, and stakeholders’ values. Each of these approaches is limited in its 
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ability to guide method construction in detail. They are too general to provide 
guidelines for constructing techniques or their parts for situational needs; they 
rely on existing problems and contingencies; and they do not support the 
creation of new knowledge originating from an organization’s own experiences. 
Finally and maybe most importantly, none of these approaches seems to be 
used systematically in an organization’s local method development efforts. This 
is especially important since empirical studies of local method development 
reveal that few organizations apply systematic customization processes 
(Smolander et al. 1990, Cronholm and Goldkuhl 1994), but rather follow ad-hoc 
practices (Hardy et al. 1996, Hughes and Reviron 1996). 

Third, based on the shell model (cf. Section 2.2) we analyzed which types 
of method knowledge are identified and subject to ME. We focused on 
metamodeling languages targeted to representing the conceptual structures 
behind modeling techniques. These are also most widely studied in the ME 
literature. Since conceptual models describing methods should be based on 
some knowledge representation scheme, we furthermore described a set of 
metamodeling languages. We illustrated, through a small example, various 
grammatical and notational constructs applied in metamodeling languages. 
This example showed some differences and limitations in the metamodeling 
constructs, and it serves as the background for a more detailed analysis of their 
metamodeling support in the next chapter. 



 

4 MODELING METHOD KNOWLEDGE FOR 
MODELING TOOLS 

4.1 Introduction 

One part of engineering, and therefore also of method engineering, is concerned 
with model building, analysis, and implementation tasks. Accordingly, it is of 
great importance to understand how knowledge about model building, 
analysis, and implementation can be captured, represented, and analyzed 
(Welke 1988, Wijers 1991, Brinkkemper 1996). Therefore, in this chapter we shall 
focus on our first research question (cf. Section 1.5.3) dealing with constructs of 
metamodeling languages: 

Metamodeling constructs are needed to model method knowledge as 
completely as possible. By completely we mean the 100% principle suggested 
by Griethuysen (1982), which has also been applied to the metalevel by 
Brinkkemper (1990). The principle states that a metamodel should describe all 
relevant aspects of a method. According to this ideal, a metamodeling language 
should be capable of modeling all aspects of the method knowledge. It must be 
noticed, however, that our focus is on meta-data models (i.e. on the static 
conceptual structure behind modeling techniques, cf. metamodels in Section 
3.3.3), and therefore we exclude the modeling of other types of method 
knowledge (e.g. such as processes in Brinkkemper (1990), or participation in 

“How completely can meta -data models represent knowledge about ISD 
methods for modeling tools?”  
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Tolvanen et al. (1993)). Instead of focusing on general data modeling constructs 
like classification, generalization, and aggregation provided by semantic data 
models (Brodie 1984), we shall focus on specific constructs in metamodeling 
languages that are essential in modeling methods. These constructs extend 
available data modeling languages in several ways and provide a basis for 
modeling method knowledge more completely. The proposed constructs are not 
necessarily essential in other modeling domains, as some deal with specifying 
knowledge about single techniques (i.e. their conceptual structures, rules and 
constraints), and some with integrating multiple techniques into a method.  

In seeking essential constructs for meta-data modeling we will follow an 
inductive approach. We shall analyze in detail what kind of knowledge ISD 
methods in computer-aided modeling tools include, as well as how and to what 
extent this knowledge can be included into a metamodel which is based on a 
semantic data model. The analysis of 17 ISD methods carried out as a 
metamodeling task also includes tool adaptation for each method. This allows 
us to obtain a detailed understanding of the structure and content of method 
knowledge. The resultant patterns, categories and rules of a method, defined 
here as part of method knowledge, are used to derive requirements for 
metamodeling (Patton 1990). To our knowledge (cf. Tolvanen et al. 1996) this 
kind of approach has not been applied to such an extent for analyzing and 
developing languages for method engineering15. Because of the inductive 
research approach, the proposed requirements for metamodeling can not be 
claimed to be complete, but rather they represent an essential set of constructs 
needed to model the modeling techniques of the selected “sample”. Additional 
requirements for metamodeling languages may be found if more ISD methods 
were included in the study.  

We will assess the metamodeling capabilities of available metamodeling 
languages based on the derived requirements: how do they satisfy the essential 
need to capture and specify method knowledge and serve as a metametamodel? 
Hence, this assessment extends the analysis of metamodeling languages 
described in Section 3.3.3. It must be noted that our aim here is not to develop a 
new metamodeling language, but rather determine a set of constructs applicable 
for metamodeling, and which are necessary for “good” metamodeling 
languages. The results of the assessment can be applied by developers of 
metamodeling languages to improve their languages, and also by metamodelers 
to specify methods more completely. These extensions will also be applied to 
specify metamodels in the action research studies reported in Chapter 6. 

The chapter will proceed as follows. In the next section we describe the 
research method in more detail and discuss the metamodeling process. In 
Section 4.3 we describe some of the metamodels which were developed and 
CASE tools which were modified. Section 4.4 defines the essential 
metamodeling constructs needed to model a single technique as well as a 

                                                
15  A typical research approach is based on the selection of one (or a few) ISD methods as 

examples, and on studying how they can be represented with the proposed 
metamodeling language (e.g. Smolander 1992, Welke 1988, Hofstede 1993, Saeki and 
Wenyin 1994). 
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complete method. In Section 4.5 a set of metamodeling languages is assessed in 
terms of how they support metamodeling. Based on this assessment we identify 
some limitations in the modeling power of semantic data models and highlight 
aspects of method knowledge which can not be captured with their data 
modeling constructs. This provides motivation for further research to extend 
semantic data models with additional constructs. Section 4.6 summarizes the 
chapter. 

4.2 Method selection and method modeling process 

Before analyzing and describing requirements for metamodeling languages we 
shall first clarify our research method. We discuss how ISD methods were 
selected for the study, how they were modeled, and how they were adapted 
into a modeling tool. Each of these steps is described in the following 
subsections in more detail.  

4.2.1 Selecting methods for the study 

In the selection of ISD methods we used several criteria. First, we chose 
methods which are well-known or widely-used. This criterion ensures that the 
metamodeling constructs are needed for modeling most of the methods used 
today. Second, because we focus on representing method knowledge in 
modeling tools, only those methods that could be supported through computer-
aided modeling tools were selected16. In fact, the selected methods are already 
supported by another computer-aided environment, either in a method-
dependent CASE tool or in a metaCASE environment. Availability of tool 
support also shows that the selected methods are known, and that they have 
users. Otherwise there would hardly be such tools available.  

Third, the primary criterion for method selection was to find a set of ISD 
methods which represent diverse approaches and exploit different kinds of 
conceptual structures. This selection criterion ensures that the metamodeling 
constructs identified are valid for a wide variety of methods, not just, for 
example, for modeling object-oriented methods. Therefore the chosen methods 
include data modeling techniques, IS planning techniques, structured design 
and analysis methods, object-oriented methods, and business modeling 
methods. The relatively large number of object-oriented methods included can 
be explained by the fact that they include more techniques and have richer 
conceptual structures than other methods (Rossi and Brinkkemper 1996). As a 
consequence, it is expected that the modeling of object-oriented methods will 
necessitate the use of more powerful metamodeling languages. Table 4-1 
provides a summary of the selected methods together with their individual 
modeling techniques (i.e. each method consisting of one or more techniques). 

                                                
16  The excluded methods typically focus on early phases of ISD, such as blackboard and 

brainstorming based methods. Similarly, methods related to project management, 
configuration management etc. are excluded from our study. 
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TABLE 4-1 Methods selected for metamodeling. 

Methods analyzed  Individual techniques  

Activity Model 
(Goldkuhl 1992, 1989) 

Activity model 
Goal list 
Problem list 

Demeter (Lieberherr et al. 1994) Demeter 

BON, Business Object Notation 
(Walden and Nerson, 1995) 

System chart 
Cluster chart 
Event chart 
Scenario chart 
Creation chart 
Static model 
Dynamic model 

BSP, Business Systems Planning  
(IBM 1984) 

Problem table 
Process/entity matrix 
Process/organization matrix 
Process/system matrix 
System/entity matrix 
System/organization matrix 

EXPRESS (ISO 1991) EXPRESS-G 

Fusion  
(Coleman et al. 1994) 

Object model 
Operation model 
Object-interaction graph 
Visibility graph 
Inheritance graph 

IDEF, Integration Definition 
(Ross and Schoman 1977, FIPS 1993a, 1993b) 

IDEF0 
IDEF1 
IDEF3 

ISAC, Information Systems Work and Analysis of 
Changes  
(Lundeberg et al. 1981, Lundeberg 1982)  

A-graph 
I-graph 
Problem table 
Table of problem groups 
Table of needs for changes 
Table of interest groups 
C-graph 
D-graph 

JSD, Jackson’s System Development  
(Jackson 1976, Cameron 1989) 

Data structure diagram 
Program structure diagram 

 (continues) 

 

 

TABLE 4-1 (continues). 
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OMT, Object Modeling Technique  
(Rumbaugh et al. 1991) 

Class diagram 
Data flow diagram 
State transition diagram 
Use case model 

OOA/OOD, Object-Oriented Analysis and Design  
(Coad and Yourdon 1991a, 1991b) 

Object diagram 
State transition diagram  
Service chart 

Moses 
(Henderson-Sellers and Edwards 1994) 

O/C model 
Event model 
Inheritance model 

OODA, Object Oriented Design  
(Booch 1994) 

Class diagram 
State Transition diagram 
Object diagram 
Module diagram 
Process diagram 

OODLE, Object-Oriented Design Language  
(Shlaer and Mellor 1992) 

Information model 
State model 
Action data flow diagram 
Object access model 
Process table 

OSA, Object-Oriented Systems Analysis 
(Embley et al. 1992) 

Object-relationship model 
Object-behavior model 
Object-interaction diagram 

SA/SD, Structured analysis and design  
(Gane and Sarson 1979, Yourdon 1989a, Ward and 
Mellor 1985) 

Data flow diagram 
RT data flow diagram  
Entity relationship diagram 
Structure chart 
State transition diagram 

UML, Unified Modeling Language  
(Booch and Rumbaugh 1995, Booch et al. 1996, 
Booch et al. 1997) 

Class diagram 
Use case diagram 
Operation table 
Collaboration diagram 
State diagram 
Composite diagram 
Component diagram 
Deployment diagram 

 

4.2.2 Metamodeling process 

The structure of the metamodeling process is summarized in Figure 4-1. The 
universe of discourse is that of the selected methods, in contrast to modeling the 
“real world”. Each method was examined and modeled using a metamodeling 
language in a metaCASE tool. The outcome of the metamodeling effort, i.e. the 
metamodel produced, was adapted into a tool environment and validated by 
trying out the method in system modeling.  
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FIGURE 4-1 Structure of method modeling. 

Like any modeling task, metamodeling is driven by a number of objectives. In 
our case metamodeling was based on a content analysis of the published 
method literature. We tried to follow as closely as possible the method 
descriptions given in the reference books (cf. Table 4-1) rather than deviating 
slightly to better suit an envisaged use situation. Content analysis can be 
defined as a process of identifying, coding and categorizing primary patterns in 
data (Patton 1990). In our metamodeling study, relevant data about methods 
was first collected and identified through the method literature. The method 
literature basically describes the concepts, languages, notations and possible 
requirements in building tool support for a method. Second, the data was 
classified into distinct types, allowing us to simplify and systematize the 
conceptual structure of methods. In our case the classification was based on the 
metamodeling languages. Naturally, a metamodeling language with a given 
classification schema restricts our view of methods. Third, the methods were 
documented as completely as possible via the metamodels. 

Another objective for the metamodeling task was the method-tool 
companionship: the metamodeling task was conducted by examining how 
selected methods could be supported by a tool. Therefore, the metamodels were 
“executable” and implemented into a modeling tool (see Section 4.2.3).  

The actual method modeling was conducted in two phases. In the first 
phase, winter 1992-1993, we analyzed a set of methods and developed a set of 
tentative metamodels (reported in Tolvanen and Rossi 1996). The second phase 
took place in 1995-1996, when we analyzed and modeled the same methods in 
more detail. We thus modeled the methods twice. During the first round, we 
limited our focus to modeling individual techniques and their conceptual 
structures, whereas in the second phase we focused on method integration, i.e. 
how different techniques could be combined to form a “whole” method. 
Because of our interest in tool-supported methods we applied two 
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metamodeling languages that are supported by metaCASE tools, OPRR (Welke 
1988, Smolander 1992) and GOPRR (Marttiin et al. 1995, Kelly et al. 1996) 
respectively17. These metamodeling languages were applied because of the tool 
support available for metamodeling and testing the metamodels (cf. Section 
4.2.3), because they succeeded relatively well in the metamodeling exercise (cf. 
Section 3.3), and because our own metamodeling experience was mostly with 
these languages. 

During method modeling we distinguished the following set of tasks that 
OPRR (Tolvanen and Lyytinen 1993) and GOPRR related metamodeling must 
follow. These tasks, applied in several successful metamodeling efforts (cf. 
Tolvanen and Lyytinen 1993, Rossi and Brinkkemper 1996, Hillegersberg et al. 
1998), provided a more detailed view of the classification process of content 
analysis as adapted to metamodeling. These tasks are: 
1)  Identification of the techniques in the method. Because each method can 

consist of one or more techniques we first need to identify them (as listed in 
Table 4-1). Most often an ISD method proposes a number of separate 
techniques with different concepts and supporting notations, but a technique 
can also include concepts that are shared with other techniques. For example, 
in Embley et al. (1992) an object-behavior model (used for describing a life-
cycle of a single object through state transitions) can include interaction 
relationships which are also applied in object-interaction models. Some 
techniques can also be subsets of other richer and more complex techniques 
in the same method. For example, in Fusion (Coleman et al. 1994) and in 
MOSES (Henderson-Sellers and Edwards 1994) an inheritance graph includes 
only a subset of the concepts used within an object model. 

2) Identification of object types. The modeling of an individual technique 
starts with resolving what kind of object (or entity) types a technique 
recognizes. Object types can be defined as basic elements of a technique that 
can exist independently of other types in a technique. Examples of object 
types in a data flow diagram are ‘process’, ‘store’, and ‘external’. 

3) Determination of properties for each object type. Each object type has zero 
to many properties that characterize object type instances. Since object types 
typically account for the majority of properties of a technique and properties 
can be shared with other types (Rossi and Brinkkemper 1996), this task is 
distinguished as a separate task. Identification of properties that belong to 
types other than object types are discussed in task 6. Examples of property 
types are ‘identifier’ and ‘name’ for an object type ‘process’.  

  It must be noted that in GOPRR a property type can have an internal 
structure, an identity constraint, and a local name. For example, the property 
type ‘operations’ is of collection data type, and refers to the ‘operation’ object 
type which it contains. This object type in turn consists of other property 
types such as an ‘operation name’ and a ‘return type’ (cf. Figure 3-11). In 
addition to defining a set of property types, one of them can be defined as an 
identifying property type. In GOPRR, the identifying property defines which 

                                                
17  These languages are discussed in Section 3.3.3, in the appendix, and in Tolvanen and 

Rossi (1996). 
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property type is used as the non-property type’s name. For example, a name 
of a class comes from its ‘class name’ property type, rather than from e.g. its 
attributes (i.e. the ‘attributes’ property type). When attached to non-
properties, a property type can be re-labeled in the context of the attached 
non-property. This allows to define property sharing between non-property 
types: instances of two or more non-property types can refer to the same 
property values (cf. Kelly 1997). 

4) Determination of  relationships. Object types are connected to each other 
through a number of relationship types. This task deals with the 
identification of those relationship types that connect object types. Examples 
of relationship types are ‘data flow’ in a data flow diagram and ‘inheritance’ 
in a class diagram. It must be noted that these can not be defined as an object 
type in GOPRR because that would lead to incorrect method definitions: in 
the context of data flow diagrams this would allow data flows which are 
unrelated to processes. 

5) Determination of roles. After object and relationship types have been 
identified, connections between these types need to be established. In the 
metamodeling languages we applied, these connections are specified by 
using role types. Examples of the role types are ‘sender’ and ‘receiver’ 
connected to the ‘data flow’ relationship type, and ‘subclass’ and ‘superclass’ 
connected to the ‘inheritance’ relationship type.  

6) Allocation of properties to relationship types and role types. As with object 
types, relationship and role types can also have properties. These can 
typically be allocated to relationship or role types after all types have been 
identified. 

7) Determination of metamodels for individual techniques deals with making 
all possible connections between the object, relationship and role types in a 
single technique. The connections can be further specified according to the 
cardinality: a minimum and a maximum number of instances of a role type a 
relationship type instance can have. 

8) Determination of linkages between separate techniques is needed to form a 
whole method. Thus, the previous steps are carried out for each technique 
individually. In general, these linkages define interactions between 
techniques in two directions: horizontal and vertical (Lyytinen et al. 1991). In 
the horizontal direction connections or constraints between types or instances 
in different techniques are specified. For example, data stores in data-flow 
diagrams are redefined for cross-checking with ER models. The vertical 
direction refers to linking semantically equivalent descriptions at two 
consecutive levels of abstraction, such as connecting an ER model with its 
representation in a relational schema, or transforming a data  flow diagram 
into a structure chart (Yourdon 1989a). 

9) Determination of the representational part of the method. The use of 
methods in modeling tools necessitates the specification of notations such as 
graphical symbols. The representations are needed because the descriptions 
derived using the method are created, compared, and communicated by 
humans (Harel 1988). Accordingly, we must define symbols and location 
information for the elements of the method. Examples of symbols are bubbles 
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for processes (Yourdon 1989a), and a cloud for classes (Booch 1991). 
Examples of location include placing elements in the horizontal axis of a 
matrix and drawing superclasses above subclasses in a diagram. Typically 
representations are expected to correspond one-to-one to the types specified 
in a metamodel (Venable 1993). The representation aspect in a modeling tool 
also includes dialogs, menus, and toolbars: to be used in a tool these must be 
defined for the method as well. 

10)Analysis and evaluation of the metamodel. Because method specifications 
in the literature are often inconsistent, ambiguous and informal there are 
several alternative ways to model a method. At this step different modeling 
alternatives, or even versions of metamodels, are analyzed and assessed 
based on the available method descriptions and modeling tools developed, to 
ensure that all knowledge of a method is captured in the metamodel. At the 
same time, we also discuss limitations of the metamodel and point out 
constructs for modeling ISD methods more completely with a metamodeling 
language. 

 
Metamodeling, however, is not as straightforward a process as described 

above. Rather it is an iterative process in which alternative ways to model 
method knowledge are tried out, analyzed and compared on the basis of their 
results (Tolvanen and Lyytinen 1993). For example, when several options for 
understanding and modeling methods were available (e.g. because of poor or 
imprecise descriptions of methods) we often tried several alternatives. This 
naturally led to iteration between metamodeling tasks, and developing and 
testing many versions of metamodels (at least two versions of each technique 
were developed). Some of these metamodeling alternatives are discussed in 
Section 4.3, in which the metamodels of three methods are represented. Also 
some pieces of the methods already modeled by others (such as in Olle et al. 
1991, Welke 1988, Brinkkemper 1990, Smolander 1992, ter Hofstede 1993, 
Venable 1993, Hong et al 1993, Kinnunen and Leppänen 1994, Marttiin et al. 
1993, Ebert and Süttenbach 1997, Süttenbach and Ebert 1997, Booch and 
Rumbaugh 1995) were used to suggest alternative metamodeling decisions and 
help validate that all parts of the method knowledge were captured. 

Although the inductive research approach followed allows us to 
generalize requirements for metamodeling languages, it also raises some 
problems. The first one deals with the expressive power of the chosen 
metamodeling languages (i.e. OPRR and GOPRR). Their predefined 
classification schemata will influence our view of methods. Second, the 
metamodeling languages applied could not describe all method knowledge. 
However, those parts of the method knowledge which we were not able to 
classify according to the metamodeling language, and thus not described in the 
metamodels, were recorded into a diary. These additional descriptions were 
attached into the metamodels as free-form descriptions and are also partly 
discussed in Section 4.3 when we evaluate the metamodels. In fact, most aspects 
of methods which could not be modeled are generalized as requirements for 
metamodeling languages in Section 4.4. Because the tools were driven by the 
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metamodels developed, these unclassified aspects of methods were not taken 
into consideration during the tool implementation.  

4.2.3 Tool implementation 

As mentioned above, method modeling included an examination of how the 
selected methods could be modeled and supported by a modeling tool. 
Consequently, methods were adapted into two metaCASE tools, called 
MetaEdit (Smolander et al. 1990, MetaCase 1994) and MetaEdit+ (Kelly et al. 
1996, MetaCase 1996a, 1996b). By adaptation we mean a representation of a 
given method in a tool in such a way that the CASE tool can support modeling 
tasks as prescribed by the method (Tolvanen and Lyytinen 1993). In the selected 
metaCASE tools the adaptation is relatively easy and straightforward since 
metamodels are almost directly applicable as method specifications in the tool. 

More important than the tool support, however, was the possibility to 
validate the metamodels. In every modeling task, the lack of correspondence 
between the real-world and the model raises a question of validity. 
Correspondence between ISD methods and metamodels is no exception. In our 
case, tool-related metamodeling offered mechanisms to ensure an equivalence 
between the metamodels at the type level (i.e. IRD definition level) and system 
models at the instance level (i.e. IRD level) by modeling with the method: each 
element in a model must have a corresponding element in the metamodel. In 
this sense, the metamodels include only those concepts that are essential, and 
can be supported by a modeling tool. This also confirms that the metamodels 
are as complete as possible. Accordingly, the method examples shown in the 
following sections include both the type level definitions (i.e. metamodels) as 
well as some instance level descriptions (i.e. models). Similarly, Wijers (1991) 
claims that complete metamodels are so complex that a full verification of them 
without tool support is unmanageable. Tool support allowed us to check that 
metamodels were complete in terms of the metamodeling language used, and to 
make queries on the metamodels (e.g. what kind of relationships are possible 
between selected objects, what properties are shared between elements of a 
technique, etc.). The method specifications described in the following section 
were produced by querying the metamodels that were stored in the repository.  

4.3 Metamodels for method knowledge 

In this section we shall analyze what kind of knowledge ISD methods include 
and how this knowledge can be represented. This provides a basis for 
identifying essential metamodeling constructs. Method modeling is illustrated 
by representing metamodels of three methods, namely Business Systems 
Planning (IBM 1984), Structured Analysis and Design (Yourdon 1989a) and 
Unified Modeling Language (Booch and Rumbaugh 1995, Booch et al. 1996, 
1997). These methods were selected as examples because of their different 
nature and area of use, and because they demonstrate various kinds of 
knowledge incorporated into methods. Metamodels of other methods are 
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available through the CASE tools adapted (cf. appendix), and can be found in 
Tolvanen and Rossi (1996).  

In the following, method knowledge is inspected on two levels. First, on 
the metalevel, we apply the ten phases of metamodeling by specifying 
individual techniques and by showing how techniques of a method are 
interconnected. Second, we briefly demonstrate tool support by showing 
instance level models as they are represented in a modeling tool. 

4.3.1 Business Systems Planning 

The modeled BSP was based on IBM’s Guide on Information Systems Planning 
(IBM 1984). 

4.3.1.1 Metamodel of BSP 

In the following the metamodel is discussed based on the metamodeling steps 
and the use of the GOPRR metamodeling language. 

1) Identification of techniques. BSP includes six techniques: five matrix-
based techniques that focus on relationships between business processes, data 
classes, systems, and organizational structures of a company, and a problem 
sheet to analyze the business problems faced during the development of IS 
architectures. Although the method also includes other project management 
oriented techniques such as GANTT diagrams, study work plans, and product 
lifecycle models, we focus here on design-related techniques. The techniques of 
the BSP are defined as graph types with the GOPRR language, and can be 
defined as follows (cf. appendix): 
 
Graph types = {  Process/Organization Matrix, Process/System   
   Matrix, Process/Entity Matrix, System/Entity  
   Matrix, System/Organization Matrix, Problem  
   Table} 
 

2) Identification of object types. In BSP, we distinguish five object types, 
namely: ‘business process’, ‘data class’ (or entity), ‘organizational unit’, 
‘system’, and ‘problem’18. A business process is defined as “a group of logically 
related decisions and activities required to manage resources of the business”. A 
data class denotes “a logical grouping of data related to things that are relevant  
to the organization” (IBM 1984, p 29). An organizational unit denotes 
departments involved in the study, and a system either existing or planned 
information system. The object types can be defined as a set: 
 
Object types = { Business process, Organization, Entity, System, 
   Problem} 
 

3) Determination of properties for each object type. Each object type is 
described with its naming property, that conveys the meaning of an instance. 
Because the name identifies all instances of an object type it is supposed to be 
unique in order to avoid homonyms. As a result, it is not possible to have for 

                                                
18  Hereafter we use apostrophes in the text to denote the types of a method. 
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example entities or systems with the same name (i.e. values). The ‘problem’ is 
further characterized with six properties: a ‘problem cause’ to specify the reason 
for the problem, a ‘problem result’ to specify what is the outcome of the 
problem, e.g. how an organization must currently perform because of the 
problem, a ‘value’ to relate estimated costs to the problem, a ‘causing process’ to 
attach a business process that is related to the problem, a ‘causing entity’ to 
attach an entity related to the problem, and a ‘suggested solution’ to describe a 
proposed strategy for solving the problem. 

4) Identification of  relationships. Each of the matrix-based techniques 
focuses on specifying some relationships between two different object type 
instances. Accordingly, a relationship called ‘data usage’ defines the 
information needs of processes. A ‘system support’ relationship defines the 
systems that each process uses, and it is also applied in another technique to 
define units of an organization that use systems. Thus, this relationship type 
describes similar kinds of connections of systems in two different techniques, 
reducing the number of concepts in the metamodel. A ‘responsibility’ is used to 
relate stakeholders to processes: which units of an organization are involved 
with the process. Finally, a ‘usage’ relationship specifies the entities managed 
by the systems.  
 
Relationship types = {Responsibility, System support, Data  usage, 
       Usage} 
 

5) Determination of roles. In BSP all relationships are binary relationships 
with two different object types. In GOPRR these relationships are defined 
together with the role types and their cardinality rules. The role types identified 
are ‘uses’ and ‘used’ for the ‘data usage’ relationship; ‘uses’ and ‘supports’ for 
the ‘system support’ relationship; ‘performs’ and ‘is part of’ for the 
‘responsibility’ relationship; and ‘system part’ and ‘data part’ for the ‘usage 
relationship’. Although each object type could have their own role types, and 
thus we could minimize the number of role types in the metamodel, we choose 
separate role types for each relationship type. According to the GOPRR data 
model, each role has a cardinality when bound to object and relationship types 
(cf. Kelly 1995), defining the minimum and maximum number of role type 
instances a relationship can have. In BSP all role cardinalities are one to one 
(1,1): a relationship must be connected to only one instance of each role type. 
The role types can be defined as a set: 
 
Role types = {  Uses, Used, Supports, Performs, Is part of,  
   System part, Data part } 
 

6) Allocation of properties to relationship types and role types. In BSP 
all information related to connections between object types is related to 
relationship types. The ‘data usage’ relationship type has a property type called 
‘type of use’ since data use can be based on creation in which a process creates 
an instance of an entity, or on using the information contents of an existing 
entity (more specific usage types, such as update or read, can also be used).  

A ‘responsibility’ relationship type specifies responsible organizational 
units for each process.  This involvement can be as a major responsible decision 
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maker in a process, having a major involvement in a process, or having some 
involvement in a process. The ‘support’ relationship type has a property called 
‘status’ describing whether the system support for the organizational unit or 
process is current, planned, or hybrid (i.e. current and planned). Finally, the 
‘usage’ relationship type does not carry additional properties. The allocations of 
property types to other types can be defined as follows: 
 
Properties = {  Name, Organization name, Entity name, System  name, 
Relationship name, Type, Owner, Costs,   Value adding, Value, 
Problem result, Suggested   solution, Problem cause, Causing 
process,    Causing entity, Responsibility type, Support 
 status, Data usage} 
 
Properties of types = { 
 <Organization, {Organization name, Owner}>,  
 <Business process, {Name, Type, Value adding, Costs}>, 
 <System, {System name}>,  
 <Entity, {Entity name}>, 
 <Problem, {Problem cause, Problem result, Value, Causing  
  process, Causing entity, Suggested solution}>, 
 <Responsibility, {Responsibility type}>, 
 <System support, {Support status}>,  
 <Data usage, {Data usage}>,  
 <Usage, {Relationship name}>} 
 

7) Determination of metamodels for individual techniques builds up the 
individual techniques by defining the bindings (Kelly 1995, Kelly 1997) from the 
relationship types as follows:  
 
Process/Entity Matrix = {<Data usage, {<Used, {Entity}>, 
  <Uses, {Business process}>}>} 
 
Process/Organization Matrix = { 
  <Responsibility,{<Performs,{Organization}>, 
         <Is part of, {Business process}>}>} 
 
Process/System Matrix = {<System support, {<Uses, {Business process}>, 
                 <Supports, {System}>}>} 
 
System/Entity Matrix =  {<Usage, { <Data part, {Entity}>, 
               <System part, {System}>}>} 
 
System/Organization Matrix = { 
   <System support, {<Uses, {Organization}>, 
          <Supports, {System}>}>} 
 

8) Determination of linkages between separate techniques. Since the 
data gathered with BSP is interrelated, each object type except a ‘problem’ is a 
part of several other techniques. Because the instances of object types are the 
same in the matrices, i.e. an instance of the ‘organization’ object type can exist in 
two modeling techniques, no actual linkages are defined in the meta-data 
model. In fact, the use of the same instances between the techniques is more 
dependent on the process in which the matrices are built, and thus should be 
represented with a process model. 

9) Determination of the representational part of the method. BSP 
presumes a matrix and a table for representing models. Each object is 
represented through its name shown on the axis of a matrix. The relationships 
are located in the cells and only two relationship types have symbols according 
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to the value of their properties: the ‘responsibility’ property can be denoted 
with different types of cross (i.e. X, X with a dot, and /), a ‘usage’ relationship 
between the ‘data class’ and the ‘system’ object types is shown with an X, and 
the rest of the relationships show the value of the relationship’s property. 

10) Analysis and evaluation of the metamodel. The described metamodel 
of BSP has some limitations because of the restrictions made to BSP, and 
because of the metamodeling language applied. Naturally, BSP could be 
modeled differently. To gather information on the distribution of processes and 
data classes19, a ‘process’ could be further characterized with additional 
properties, namely ‘security’, ‘auditability’, ‘volume’, and ‘responsiveness’. For 
distribution analysis each ‘data class’ could be specified with its ‘use’, ‘audit’, 
‘security’, ‘occurrence’ and ‘currency’ properties. These properties could be 
attached to the ‘process’ and ‘data class’ types in the process/data class matrix, 
or a separate matrix (i.e. a new technique) could be created. The definition of 
data classes could also be supported by attaching a new property for 
categorization: a data class denotes a person, a place, a thing, a concept, or an 
event. Furthermore, to allow a description of each business process and data 
class a ‘description’ property could be attached to the corresponding object 
types. It must be noticed that the search for new method alternatives can lead to 
modifications of a method or even to the creation of a wholly new technique. 

The metamodeling language also caused limitations to the specifications of 
BSP. Only those concepts of the method that could be described by the GOPRR 
model (and can be supported by the CASE tool) were specified20. First, we 
could not describe that each instance of an object type in a matrix must 
participate at least in one relationship and can participate in many relationships.  
This rule requires a constraint type for object type multiplicity in the 
metamodeling language, as discussed in more detail in Section 4.4.1.6. Later 
extensions of GOPRR include, however, such a multiplicity constraint (Kelly 
1997). Second, we did not describe that a data class can not be created by more 
than one process although it could be possible to divide the data usage 
relationship into two different types, i.e. ‘create data class’ and ‘use data class’ 
relationship types, and a ‘create data class’ could have only one connected 
process.  

Third, the metamodel does not specify the grouping of a set of processes, 
and the composition of a set of data classes, processes, and their connections 
into a module of an architecture plan. This would require a constraint for 
describing a composite of objects and relationships as discussed in Section 
4.4.2.2. The main reason for excluding these rules of the method was the limited 
                                                
19  The analysis of distributed information systems is an extension of a basic BSP and thus 

excluded from our method analysis. For the same reason, an optional technique for 
analysis of critical success factors was also excluded. Similarly, techniques for ranking 
development priorities and project management were not included. 

20  It must be noted that not all method knowledge described with the GOPRR model is 
included into the set-based definitions. These include cardinality constraints of roles, 
data types of properties, identifiers of types, and uniqueness of property types. These 
are, however, implemented in the tool-based metamodels and contained into the 
discussion of the essential constructs of metamodeling languages in Section 4.4. 
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tool support: the tool used did not provide support for representing these 
constructs of a model in a matrix form as described by the method.  

Fourth, we could not describe mandatory properties, so it was not possible 
to define for example that each business process must have a non-empty name. 
The specification of mandatory properties would require an additional 
construct in the metamodeling language (cf. Section 4.4.1.3). Finally, we could 
not describe the heuristic rules of the method. An example of these rules is the 
recommended population of 30-60 data classes that could be found in an 
average organization and specified within the matrix models (i.e. modeling of 
data classes should not be more detailed in system architecture plans). 
Similarly, the capturing of multiplicity of types would require an additional 
metamodeling constraint as discussed in Section 4.4.1.9. 

4.3.1.2 Instance models of BSP 

Because the methods modeled were also adapted in a modeling tool we can 
demonstrate the tool support by showing instance level models made with the 
metamodel developed. The examples of BSP include two matrixes, namely 
process/entity and system/ organization. Both contain instances of all types of 
the techniques. In the ‘process/entity’ matrix the horizontal axis contains 
entities, and the vertical axis contains processes. The cells of this matrix include 
data usage relationships: how each process uses each data class. In the 
‘system/organization’ matrix units of an organization and systems are shown. 
The former on the vertical axis and the latter on the horizontal axis. The cells 
describe the current status of the system support for each organization. 

 

 
 

 

FIGURE 4-2 Instance models described with BSP. 
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These examples show that the metamodel is complete, because it can represent 
matrixes as described in the method book, and also follow the constraints of the 
method. For example, it is not possible to relate two business processes directly 
through a ‘system support’ relationship type. Both of the matrixes show 
instances of all types found from these techniques, expect role instances which 
do not have any explicit representation in BSP. All in all, the correspondence 
between the elements of the metamodel and the instance level is clear. 

4.3.2 Structured Analysis and Design 

Although there are several structured methods available (e.g. DeMarco 1978, 
Gane and Sarson 1978, Yourdon 1989a) we selected Yourdon’s (1989a) version 
with the original ER model (Chen 1976) for closer analysis. It includes more 
individual techniques than other dialects with a structured approach and 
describes the linkages between different techniques in more detail. 

4.3.2.1 Metamodel of SA/SD 

As with BSP, the metamodel of SA/SD is discussed following the 
metamodeling steps and documented with the GOPRR metamodeling language. 

1) Identification of techniques. The main techniques for analysis and 
design include a data flow diagram (DFD) for describing a network of 
functional processes, an entity relationship diagram (ERD) for specifying the 
stored data layout of a system, a structure chart (SC) for describing data 
interfaces between components, and a state transition diagram (STD) for 
specifying the time-dependent behavior of a system. According to the GOPRR 
language these techniques can be defined as the following graph types: 
 
Graph types = { Data Flow Diagram, Entity Relationship Diagram, 
   Structure Chart, State Transition Diagram} 
 

2) Identification of object types. Unlike BSP, in SA/SD each individual 
technique has separate object types. DFDs have three object types, ‘process’, 
‘store’ and ‘external’ (sometimes also called a terminator). ERDs contain three 
object types, ‘entity’, ‘attribute’ and ‘relationship’, and both SCs and STDs 
include only one object type, ‘module’ and ‘state’ respectively. 
 
Object types = { Process, Store, External, Attribute, Entity,  
   Relationship, Module, State} 
 

3) Determination of properties for each object type. Because of the pen-
and-paper mentality of SA/SD each object type is described with only a few 
properties, shown also in the diagrams: only a naming property type is used for 
most of the object types. The name must be unique among all components to 
avoid homonyms in the data dictionary. In GOPRR a property type can be 
renamed with a local name, hence the same property type (i.e. the ‘name’) can 
be labeled with a ‘store name’ and a ‘process name’ but they still refer to the 
same property type. Because Yourdon and some other method developers have 
proposed the use of numbering for processes a ‘process ID’ is also defined. 
Other modeling information on object type instances is typically added into an 
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additional data dictionary including, for example, a definition and examples of 
each instance. Therefore, in the metamodel a ‘documentation’ is added for each 
object type. The ‘attribute’ object type is furthermore characterized with two 
additional property types: ‘type of data’ (e.g. integer, Boolean) and ‘constraints’ 
(e.g. primary key, not null). 

4) Identification of  relationships. Since each technique includes different 
object types the relationship types are separate between techniques as well. In 
DFDs, SCs and STDs only one relationship type exists. A ‘data flow’ describes 
the movement of chunks or packets of information between the object types of 
DFDs; a ‘call’ specifies a synchronous hierarchy of modules in SCs; a ‘transition’ 
describes possible changes between states. In ERDs two different types of 
relationships exist, one between an ‘entity’ and a ‘relationship’, called ‘in 
relationship’, and one between an ‘attribute’ and the other object types called 
‘attribute of’. In other words, both entities and relationships can have attributes. 
 
Relationship types = { Data flow, In relationship, Attribute of,  
    Call, Transition} 
 

5) Determination of roles. In SA/SD all relationships except the ‘data 
flow’ are binary with two instances of role types. According to our GOPRR 
definition of roles, a ‘data flow’ has two roles called ‘sends’ and ‘receives’. Since 
data flows can diverge, a cardinality constraint for a receiving role is one-to-
many (1,M). In GOPRR, a cardinality constraint defines how many instances of 
a given role type can exist for a relationship type instance (Kelly et al. 1996). The 
other role types identified are listed in set form below. The ‘sends’ and 
‘receives’ roles are also used for the ‘transition’; an ‘owner part’ and an 
‘attribute part’ are used for an ‘attribute of’ relationship type; an ‘entity part’ 
and a ‘relationship role’ is used for the ‘in relationship’; and a ‘call from’ and a 
‘call to’ for the ‘call’ relationship type. The minimum and maximum 
cardinalities for the other roles are one-to-one (1,1): an instance of a role type 
must be connected to only one instance of a relationship type. The set of role 
types is: 
 
Role types = { Receives, Sends, Entity part, Owner part, Attribute 
 part, Relationship role, Call from, Call to} 
 

6) Allocation of properties to relationship types and role types. In ERD 
relationship types do not have any explicit properties: they just relate object 
types together. A ‘data flow’ can be characterized with its name and 
‘documentation’ property type, a ‘call’ has a ‘call name’ and a ‘parameters’ 
property type to specify the parameters sent in the subroutine calls. A 
‘transition’ relationship type is characterized with three property types: a 
‘condition’ that must be met to change the state, an ‘action’ that the system takes 
when the state is changed, and ‘documentation’ for adding a textual description 
of the transition into the data dictionary. 

Role types have properties only in the ERD technique. The ‘entity part’ has 
a ‘cardinality’ property for specifying how many times an instance of the 
‘entity’ can relate to another instance of the ‘entity’ through a relationship. The 
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properties and their allocation to object, relationship, and role types are 
specified in GOPRR as follows: 
 
Properties = {Process name, Process ID, Documentation, Name, Flow 
 name, Cardinality, Constraints, Type of data, Attribute 
 name, Relationship name, Entity name, Module name, 
 Parameters, Call name, Action, Store name, Condition, 
 State name} 
 
Properties for types = {  
  <Process, {Process ID, Process name, Documentation}>, 
  <Store, {Store name, Documentation}>,  
  <External, {Name, Documentation}>,  
  <Data flow, {Flow name, Documentation}>, 
  <Attribute, {Attribute name, Type of data, Constraints, 
         Documentation}>,   
  <Entity, {Entity name, Documentation}>,  
  <Relationship, {Relationship name, Documentation}>,  
  <Entity part, {Cardinality}>, 
  <Module, {Module name, Documentation}>,  
  <Call, {Call name, Parameters}>, 
  <State, {State name, Documentation}>,  
  <Transition, {Condition, Action, Documentation}>} 
 

7) Determination of metamodels for individual techniques. Types in 
each individual technique are defined by mappings from the relationship types 
as follows: 
 
Data Flow Diagram ={<Data flow,{<Sends, {Process}>,  
 <Receives,{Process, Store, External}>}>, 
 <Data flow,{<Sends, {Store, External}>,  
 <Receives, {Process}>}>} 
 

This definition follows the rules of DFDs preventing data flows between 
stores and externals. Real-time extensions to the DFD could be included by 
defining the related types and bindings as follows: 
 
Real-time Data Flow Diagram = { 
 <Signal flow, {<Event from, {Control}>,  
        <Signal to, {Process, External, Control,  
         Buffer}>}>, 
 <Signal flow, {<Event from, {Process, External, Buffer}>,  
           <Signal to, {Control}>}>, 
 <Discrete data flow, {<Sends, {External, Store, Buffer}>,  
           <Receives, {Process}>}>, 
 <Discrete data flow, {<Sends, {Process}>,  
           <Receives, {Process, Store, External, 
         Buffer}>}>, 
 <Deactivation flow, {<Event from, {Control}>,  
         <Deactivated, {Process}>}>, 
 <Continuous data flow, {<Sends, {Process}>,  
          <Continuous, {Process}>}>, 
 <Activation flow, {<Event from, {Control}>,  
     <Activated, {Process}>}>} 
 
Entity Relationship Diagram = {  
  <Attribute of, {<Owner part, {Entity, Relationship}>,  
        <Attribute part, {Attribute}>}>, 
  <In relationship, {<Entity part, {Entity}>,  
         <Relationship role, {Relationship}>}>} 
 
Structure Chart = {<Call, {<Call from, {Module}>, 
               <Call to, {Module}>}>} 
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State Transition Diagram = {<Transition, {<Sends, {State}>,  
           <Receives, {State}>}>} 
 

8) Determination of linkages between separate techniques. Unlike in 
BSP, techniques of SA/SD model a system using techniques that do not share 
types, i.e. use the same type in several techniques. Thus, each technique focuses 
on separate types in describing the system. Instance information can, however, 
be shared as discussed below. In the following the top-down approach and 
balancing rules of SA/SD are modeled with GOPRR using explosion and 
decomposition based linkages. First, because the DFD forms the dominant view 
of the system, each process can be decomposed into a submodel of a DFD (i.e. 
functional decomposition). Processes can also be exploded into a SC to specify 
subroutines and modules of a process, and into a STD to specify which 
transitions change the state of the controlling process and send or receive data 
flows from other processes. Second, as data stores of DFDs and entities of ERDs 
must be balanced, each data store in a DFD can be exploded into an ERD to 
specify the schemas of the database. Matching store names to entity names on 
the instance level is achieved in GOPRR by using the same property type for 
both types. Only their local name may differ (i.e. the metamodel definition 
shows local names for store and entity, but they refer to the same property 
type). Third, the STD allows decomposition to partition states. The same 
partitioning could be applied for the SC as well. It is not defined here, because a 
single SC should not include modules of several processes. Instead, according to 
SA/SD the process should be decomposed into subprocesses that have a 
simpler structure in terms of a number of modules and their subroutines. 
 
Data Flow Diagram: 
Explosions = { <Store, {Entity Relationship Diagram}>,  
 <Process, {Structure Chart, State Transition Diagram}>} 
Decompositions =  {<Process, {Data Flow Diagram}>} 
 
State Transition Diagram: 
Decompositions =  {<State, {State Transition Diagram}>} 
 

9) Determination of the representational part of the method. In SA/SD 
all techniques are graphical notations except the process specification. During 
method implementation all graphical representations were defined as 
illustrated in Figure 4-3. Notational aspects that were not possible to define 
during the adaptation are the representation of relationships in a functional 
decomposition (i.e. relationships mapping to parent diagram and represented as 
“dangling” links with one connected object type only), and the tree structure of 
the SC diagram (i.e. each calling module should be located above the modules 
called). Other techniques do include similar location recommendations though. 
For example, in DFD externals are most often placed on the sides of a diagram. 

10) Analysis and evaluation of the metamodel. Because of the several 
informal definitions of SA/SD, it is possible to model techniques in many ways. 
For example, a ‘decision’ in the SC could be included into the metamodel either 
by specifying a new role type, such as a ‘decision’, by adding a relationship 
type, such as a ‘call based on decision’, or by adding a property type for the 
‘call’ relationship (see also Welke 1988). Moreover, supertype/subtype 
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relationships and indicators for associative object type in ERD are not 
modeled21. Also, the data dictionary and process specification are not included, 
although one can form a dictionary by using information entered into the 
documentation properties attached to types (i.e. using form conversion 
mechanisms, cf. Section 2.3.2).  

A more important aspect of evaluation is how completely the SA/SD 
method is modeled and therefore implemented into a CASE tool. Because of 
limitations in GOPRR and OPRR, some aspects of SA/SD were not captured 
and supported by tools. First, in a data flow diagram a process should be 
described in more detail either with an additional subdiagram or with a 
structure chart, but not by using both techniques. Such a restriction between 
explosion and decomposition can not be specified with GOPRR. These require a 
more detailed definition (cf. Section 4.4.2.3). Second, iteration calls between the 
modules could not be restricted with GOPRR, requiring an additional 
metamodeling constraint (cf. Section 4.4.1.8). Third, transformations that could 
be automated, such as transformations from a DFD into a SC at the same level, 
are not supported. Fourth, and similarly to the BSP metamodel, identifiers and 
uniqueness of property values were not defined adequately. It was not possible 
to restrict these to the scope of a single diagram. For example, according to the 
metamodel each name of a state is unique among all diagrams, not just inside 
one diagram as required. To model these rules a metamodeling language 
should allow the specification of different scopes for the method rules (cf. 
Section 4.4).  

Fifth, the metamodel does not support all the balancing rules of SA/SD, 
such as a correspondence of data stores to entities (based on their names) or 
correspondence of conditions in state transition diagrams to data flows. 
Furthermore, dependencies of the property values should be included into the 
metamodel as well: the possible values for a condition in a state transition 
diagram can be only those defined in data flows that a related control process 
receives. Modeling of the balancing rules and dependencies of related instances 
would require additional metamodeling constructs as discussed in Section 
4.4.2.4. Finally, the metamodel does not include multiplicity rules defining the 
number of roles an object can participate in (cf. Section 4.4.1.5). 

                                                
21  Modeling of these concepts, however, is taken into account and specified in the 

metamodel of UML (cf. Section 4.3.3). 
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4.3.2.2 Instance models of SA/SD 

Figure 4-3 illustrates an example of the use of two techniques in the modeling 
tool. The upper window shows some processes and data flows of a sales system. 
To show instances of property definitions and a decomposition, a process called 
verify orders is viewed with its properties, and the status bar of the window 
shows that the process is decomposed into a subdiagram. The lower window 
shows a structure chart. 

FIGURE 4-3 Two instance models of SA/SD: a data flow diagram and a structure chart. 

4.3.3 Unified Modeling Language 

After modeling two relatively simple methods we shall next model one of the 
most complex methods found, the Unified Modeling Language (UML). Because 
the standardization of UML was under development at the time of 
metamodeling, the metamodels discussed here are based on several 
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publications about the method and its versions (cf. Booch and Rumbaugh 1995, 
Booch et al. 1996, 1997). 

4.3.3.1 Metamodel of  UML 

As with the earlier metamodeling cases, specification of UML follows the 
metamodeling process described in Section 4.2.2. 

1) Identification of techniques. UML includes as its main techniques a 
class diagram, a collaboration diagram and a use case diagram. Other diagram 
types22, mentioned below as graph types, have a simpler structure and they are 
not applied as often. We also make some simplifications in techniques by 
joining the category diagram and class diagram as they include the same types. 
The only difference is that a category diagram shows instances of a ‘category’ 
only, whereas class diagrams can include instances of both a ‘class’ and a 
‘category’. The composite diagram has been included in the graph types to 
support context diagrams for instances of classes (called composites in UML). In 
a later extension (Booch et al. 1996, 1997) all techniques are expected to use 
categories, renamed now as package, for organizing large models. 
 
Graph types = { Class diagram, Use case diagram, Collaboration diagram, 

State diagram, Component diagram, Deployment diagram, 
Operation table, Composite diagram} 

 
2) Identification of object types. Because of the unfinished documentation 

and relatively complex conceptual structure of UML, several alternative 
interpretations and consequent modeling decisions of object types can be made. 
First, template classes are not distinguished as a separate type because template 
parameters denoting generic classes are not mandatory, i.e. a ‘class’ without 
defined template parameters is considered to be an ordinary class. Second, a 
utility class is not identified as its own object type. Rather it is distinguished 
with a property attached to each class (discussed in the next task).  

In addition to the object types of a class diagram, the GOPRR metamodel 
includes some constraints of UML modeled as object types, such as an 
alternative association (i.e. ‘or-constraint’) and ‘parallel inheritance’. Parallel 
inheritance hierarchies, however, could also be described with a property type 
referring to another hierarchy of the same superclass (i.e. to another inheritance 
relationship). The fourth major modeling alternative would be to distinguish 
objects of a class diagram and a collaboration diagram into separate types 
instead of using a single type in both techniques. Overall, the following set of 
object types describes one possible outcome of object type identification. 
 
Object types = { Class, Instantiated class, Object, Category, Or-

constraint, Parallel inheritance, Actor, Use case, 
Operation specification, Note, Node, Specification, 
Main program, Body, State, Stop, Start} 

 

                                                
22  We also excluded the event trace diagram since it is based on the same underlying 

semantics as the collaboration diagram (Booch and Rumbaugh 1995). 
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3) Determination of properties for each object type. Compared to other 
types of methods, object-oriented methods in general, and UML in particular, 
have more property types. For this reason they are specified here distinct from 
other metatypes. In contrast to the methods above, in UML some properties are 
atomic, single valued, whereas others consist of a set of other property types. 
For example, an attribute of a class has a more detailed internal structure with 
its own property types (such as an initial value and a data type of an attribute). 
In the following we first define the properties of object types and later the non-
atomic properties.  

A class is identified by its name and by the name of a possible category to 
which it belongs. Although class names must be unique in the enclosing 
category, the same class name can be used as a type of a parameter. In GOPRR 
this is modeled by using both global and local names for property types (see 
also the metamodel of state diagrams in Section 3.3.3). For example, a property 
type ‘class name’ can be renamed with a local name for describing a data type 
of a parameter.  

An ‘Is utility?’ property type is used to define global attributes and 
operations; ‘overridability’ (e.g. deferred, leaf, extensible, virtual) is used to 
define how a class may be overridden by a subclass. ‘Template parameters’ is 
used for defining generic classes called templates in UML. An object type 
‘instantiated class’ refers to a template class in two ways: properties of 
‘instantiated class name’ refer to a name of a template class, and ‘values’ is a set 
of template parameter values. An ‘instantiated class’ can not have its own 
attributes or operations as these are derived from the template class. Categories 
are identified by a ‘category name’ and it has an additional ‘documentation’ 
property type. These are also added to ‘class’ and to ‘instantiated class’. 

A ‘class name’ is the same property for ‘object’ and ‘class’ object types, 
showing that an object can not belong to other classes than those defined. 
Hence, objects are dependent on the existence of classes. Other property types 
for an ‘object’ are a ‘multiplicity’ type for specifying the number of instances a 
related class can have at a time; and ‘values’ which denotes instances of an 
attribute of a class. Notes are specified by one property type only, named here 
‘description’.  

Other object types of UML are identified and described just by their name 
and additional ‘documentation’ property type. Only a ‘node’ object type can 
have a ‘multiplicity’ property type, and a ‘state’ object type has ‘attribute 
values’ and ‘operations’ property types. The name spaces of identifying 
properties are distinguished by using separate property types for identifiers of 
object types, except in a dependency diagram. Here, the metamodel uses the 
same property type ‘name’ for identifying several object types. By defining the 
instances of this property type as unique we can specify that the same value for 
a property can not be used to identify other instances of object types in a 
deployment diagram. Thus, instances of ‘specification’ and ‘body’ can not have 
the same value for this property. 
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Properties for object types = { 
<Class, {Class name, Is utility?, Category, Stereotype,  

   Overridability, Attributes, Operations, Documentation,  
   Template parameters}>, 

<Category, {Category name, Documentation}>, 
<Instantiated class, {Instantiated class name, Values,  

    Documentation}>, 
<Object, {Object name, Class name, Values, Multiplicity}>, 
<Note, {Description}>,  

 <Use case, {Use case name, Documentation}>,  
 <Actor, {Actor name, Documentation}>, 
 <State, {State name, Attribute values, Operations,  

   Documentation}>,  
 <Operation specification, {Name, Responsibilities, Inputs,   
  Returns, Modified objects, Preconditions, Postconditions}>, 
 <Specification, {Name, Documentation}>,  
 <Main program, {Name, Documentation}>,  
 <Body, {Name, Documentation}>,  
 <Node, {Name, Stereotype, Multiplicity, Documentation}>} 
 

In UML, some property types have an internal structure. Each attribute has 
a basic format requiring property types for an ‘attribute’, namely an ‘attribute 
name’, a ‘data type’, an ‘attribute type’, and an ‘initial value’. Similarly, an 
‘operation’ has an ‘operation name’, ‘parameters’ and a ‘return value’. The 
‘parameters’ property type is a collection consisting of parameters each having 
three property types, namely a ‘parameter name’, a ‘parameter type’ and a 
‘default value’. To support specific programming language constructs some 
additional property types are attached for both attributes and operations. These 
include ‘constraints’ and ‘visibility’ (e.g. public, private, protected in C++). 
Moreover, ‘overridability’ (applicable for both classes and operations) and 
‘method body’ are also attached for operations. Finally, parameters for template 
classes have a name and a type.  
 
Derived property types = { 

<Attributes, {<Attribute, {Attribute name, Data type, Attribute  
type, Initial value, Constraints, 
Visibility}>}>, 

<Operations, {<Operation, {Operation name, Parameters, Return  
   value, Constraints, Visibility,  
   Overridability, Method body}>}>, 

<Parameters, {<Parameter, {Parameter name, Parameter type,  
   Default value}>}>, 

<Template parameters, {<Template parameter, {Parameter name,  
   Parameter type}>}>} 
 

4) Identification of  relationships. In UML, there is a clear distinction 
between methods which apply several relationship types, and those using only 
one or two relationship types. More specifically, class diagrams and use case 
diagrams apply more relationship types than other techniques. In the following 
definition the number of necessary types is reduced by applying a 
‘dependency’, a ‘note connection’ and an ‘inheritance’ relationship types in 
several techniques instead of having their own variants in each technique. 
 
Relationship types = { Association, Ternary association, Aggregation, 

Instantiation, Dependency, Note connection, 
Inheritance, Connection, Message link, Uses, 
Extends, Participation, Transition} 
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5) Determination of roles. As in other methods, binary relationships 
dominate in UML. Some of the relationships are, however, n-ary at the instance 
level and some also at the type level. At the instance level, an ‘inheritance’ and 
an ‘association’, like their subtypes ‘aggregation’ and ‘ternary association’, 
necessitate roles with a maximum cardinality greater than one. For example, a 
‘specialization’ role type in an ‘inheritance’ relationship can have more than one 
instance. Hence the maximum cardinality for a ‘specialization’ role type is 
many. At the type level, UML has optional role types connected to the 
relationship types which already have two other role types. Hence the 
minimum cardinality constraint of GOPRR is defined here as one for mandatory 
roles and zero for optional role types. Since all optional role types (i.e. ‘link 
attribute’, ‘or’ and ‘parallel’) can occur only once in a related relationship type 
instance, the maximum cardinality defined for them is one.  

As with relationships the same role types are used in several techniques, 
such as ‘specialization’ and ‘note part’, reducing the size and complexity of the 
metamodel. The set of role types is: 
 
Role types = {Instantiates, Is instantiated, Note part, Object part, 

Has dependents, Is dependent, Associates, Qualified 
association, Link attribute, Specialization, 
Generalization, Parallel, Or, Part, Whole, Sends, 
Receives, Uses, Participates, Is used, Extends, Is 
extended, Receive message, Send message, Connected} 

 
6) Allocation of properties to relationship types and role types. 

Compared to the earlier methods, UML relationship and role types have many 
properties. This is also highlighted by adding some additional programming 
language specific property types. For example, the ‘inheritance’ relationship 
type has property types ‘visibility’ and ‘virtual?’ denoting inheritance structures 
in C++. In addition, associations can be defined as derived, messages have a 
‘sequence’ for numbering, ‘arguments’ sent and values returned along the 
message, an ‘indicator’ for describing exclusive iteration and condition 
indicators of a message, and a ‘link type’ for typing message links (e.g. 
association, argument, global, variable).  

Association role types have several property types. These include a 
description of the role names, their visibility (i.e. public, private, protected), the 
existence of an explicit order of the set of classes associated with a single object, 
how the role outside the class is accessed (i.e. read, write, both or none), and 
how many instances of the class can be associated with one instance in another 
class with ‘multiplicity’. Multiplicity is also needed for describing how many 
components an aggregate class can have, and how many aggregates a 
component class can be part of.  

In the ‘state diagram’, the ‘transition’ is also specified with several 
property types: an ‘event’ triggering a state transition, a ‘condition’ to be met 
before the state transition can occur, and an ‘action’ resulting in a change in the 
state of the object. The action is realized by sending a message to an object or 
modifying a value of an attribute. Both events and actions have arguments, 
which refer to a specific value corresponding to a parameter. Finally, a role type 
‘receive message’ has an additional ‘adornment’ property.  
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Properties for relationship and role types = { 
<Inheritance, {Visibility, Virtual?, Discriminator}>, 
<Association, {Association name, Is derived?}>,  
<Ternary association, {Association name, Is derived?}>,  
<Aggregation, {Name}>,  
<Associates, {Role name, Visibility, Access, Multiplicity,  

  Ordered?}>,  
<Part, {Multiplicity}>,  
<Qualified association, {Role name, Visibility, Access,  

 Multiplicity, Ordered?, Qualifier}>,  
<Whole, {Multiplicity}>, 
<Message link, {Sequence, Name, Arguments, Return type, Link  

    type, Indicator}>,  
<Receive message, {Role name, Adornment}>,  
<Transition, {Event name, Arguments of event, Condition, Action,  

Arguments of action, Documentation}>,  
<Connection, {Name}>} 
 

7) Determination of metamodels for individual techniques. In the 
following bindings for each technique are described. In the class diagram, both 
associations have four roles, of which a ‘link attribute’ and ‘or’ constraint are 
optional. Inheritance hierarchies between categories and classes are 
distinguished. Thus, inheritance hierarchies between these object types can not 
be mixed. Both of these hierarchies have an optional ‘parallel’ role showing to 
simultaneous specializations. A use case diagram also allows inheritance among 
categories, although use cases could also be considered as classes with their 
own inheritance hierarchy. Moreover, use cases can be related with ‘uses’ and 
‘extends’ relationships and connected to actors with ‘participation’ 
relationships. 

Other graph types have simpler bindings: a composite diagram is used for 
describing the associations and aggregations of objects in the context of a class, 
and a collaboration diagram focuses on message sending between the objects. A 
state model is similar to that modeled with SA/SD and an ‘operation table’ has 
no bindings. Finally, the component and deployment diagrams describe the 
physical design and apply a dependency structure among all object types as 
described below. 
 
Class Diagram = { 
 <Instantiates, {<Instantiates, {Class}>, 
       <Is instantiated, {Instantiated class, Object}>}>, 
 <Dependency, {<Has dependents, {Category, Class}>,   
        <Is dependent, {Class, Category, Object,  

      Instantiated class }>}>, 
 <Note connection, {<Note part, {Note text}>,  
     <Object part, {Object, Class, Category}>}>, 
 <Inheritance, {<Specialization, {Class}>,  
      <Generalization, {Class}>, 
      <Parallel, {Parallel inheritance}>}>, 
 <Inheritance, {<Specialization, {Category}>,  
      <Generalization, {Category}>, 
      <Parallel, {Parallel inheritance}>}>, 
 <Inheritance, {<Specialization, {Instantiated class}>,  
      <Generalization, {Instantiated class}>, 
      <Parallel, {Parallel inheritance}>}>, 

<Aggregation, {<Whole, {Class}>,  
      <Part, {Class}>}>, 
 <Association, {<Associates, {Class}>,  
      <Associates, {Class}>, 
      <Or, {Or-constraint}>, 
      <Link attribute, {Class}>}>, 
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 <Ternary association, {<Associates, {Class}>,  
         <Associates, {Class}>, 
              <Or, {Or-constraint}>,  
          <Link attribute, {Class}>}>} 
 
Use case diagram = { 
 <Dependency, {<Has dependents, {Category}>,  
     <Is dependent, {Category}>}>, 
 <Uses, {<Uses, {Use case}>,  
    <Is used, {Use case}>}>, 
 <Note connection, {<Note part, {Note text}>,  
     <Object part, {Actor, Use case, Category}>}>, 
 <Extends, {<Extends, {Use case}>,  
       <Is extended, {Use case}>}>, 
 <Inheritance, {<Specialization, {Category}>,    
         <Generalization, {Category}>}>, 
 <Participation, {<Participates, {Actor}>,  
        <Participates, {Use case}>}>} 
 
Composite diagram = { 

<Aggregation, {<Whole, {Object}>,  
      <Part, {Object}>}>, 
 <Association, {<Associates, {Object}>,  
      <Associates, {Object}>}>} 
 
Collaboration Diagram = { 
  <Message link, {<Send message, {Object}>,  
        <Receive message, {Object}>}>, 
  <Note connection, {<Note part, {Note text}>,  
      <Object part, {Object}>}>} 
 
State Diagram = { <Transition, {<Sends, {Start, State}>,  
       <Receives, {Stop, State}>}>, 
   <Note connection, {<Note part, {Note text}>,  
       <Object part, {State}>}>} 
 
Component Diagram = { 

<Dependency, {<Has dependents, {Category, Specification, Main  
  program, Body}>,  

     <Is dependent, {Category, Specification, Main 
program, Body}>}>, 

<Note connection, {<Note part, {Note text}>,  
     <Object part, {Category, Specification, Main  
          program, Body}>}>} 
 
Deployment Diagram = { 
 <Connection, {<Connected, {Node}>,  
     <Connected, {Node}>}>, 
 <Dependency, {<Has dependents, {Node}>,  
     <Has dependents, {Node}>}>, 
 <Note connection, {<Note part, {Note text}>,  
     <Object part, {Node, Category}>}>, 
 <Dependency, {<Has dependents, {Category}>,  
     <Is dependent, {Category}>}>} 
 

8) Determination of linkages between techniques. Because UML 
suggests several modeling techniques, linkages between them are vital to 
integrate models. The following explosion and decomposition operators were 
specified: categories can be attached to class diagrams which can also contain 
other categories. A class can also be exploded to a collaboration diagram 
showing the interaction between its objects, to an operation table for describing 
a functional model (also applicable for actors, use cases, states and for objects of 
a collaboration diagram), and to a state model for describing the temporal 
evolution of an object of a given class. A class can also be decomposed into a 
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composite diagram to describe a specific context for its instances. Similarly 
classes, actors and use cases can have related state models through an explosion 
link. State models can be nested through decompositions of states into substates. 
Finally, a decomposition of categories into instances of the same graph type is 
added to class, use case, component and deployment diagrams. 
 
Class Diagram: 
Explosions = { 

<Class, {Collaboration diagram, Operation table, State diagram}>} 
Decompositions = {<Class, {Composite diagram}>, 

<Category, {Class diagram}>} 
 
Use Case diagram: 
Explosions = {<Actor, {Operation table, State diagram}>,  
    <Use case, {Operation table, State diagram}>} 
Decompositions = {<Category, {Use Case diagram}>} 
 
Collaboration Diagram: 
Explosions = {<Object, {Operation table}>} 
Decompositions = {} 
 
State Diagram: 
Explosions = {<State, {Operation table}>} 
Decompositions = {<State, {State diagram}>} 
 
Component Diagram: 
Explosions = {} 
Decompositions = {<Category, {Component diagram}>} 
 
Deployment Diagram: 
Explosions = {} 
Decompositions = {<Category, {Deployment diagram}>} 
 

9) Determination of the representational part of the method. On the 
notational side, the following aspects could not be represented. First, nested 
forms could not be specified in the same diagram with categories, composites 
and state diagrams. As the definitions show this was partly solved by using 
explosion and decomposition structures, even though the relationships between 
the components of two or more categories can not then be represented. Second, 
concurrent substates could not be represented by partitioning the state symbol. 
Third, different symbols for classes could not be defined based on the values of 
their properties, such as an additional box above the class symbol if parameters 
are defined (i.e. a symbol for the parameterized class).  

10) Analysis and evaluation of the metamodel. In addition to the 
representation dependent aspects, the metamodel of UML could have been 
made differently. Some aspects of the textual method description were not 
included, since they were not supported by the parallel metamodel definition 
given by Booch and Rumbaugh (1995). Metamodels could also include 
additional programming language specific constructs. In fact, Booch and 
Rumbaugh, even though seeking for a standard notation for object-oriented 
methods, recommend situation-bound modifications to align concepts closer to 
a specific programming language (e.g. Booch and Rumbaugh 1995, p. 4).  

A more important aspect of evaluation is how completely UML could be 
adapted in a CASE tool. This aspect is discussed in the following. The modeling 
of UML emphasizes the need of scopes for identity and uniqueness of 
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properties. An identifier consisting of two property type instances could not be 
modeled, nor could the dependency between partial identifiers: the same 
category should not have more than one class with the same name, and the 
same class should not have more than one instantiated object with the same 
name. Modeling of these would require additional constructs in the 
metamodeling language. 

The design orientation of UML and its close relationship to programming 
languages necessitates support for the naming policy of attributes and 
operations, such as the naming of classes in Smalltalk with a capitalized first 
letter (Hopkins and Horan 1995). Some of these syntax definitions would 
require dynamic changes in other property types. For example, if a parameter is 
not defined a colon should be omitted from the operation specification. These 
would require a specific syntax for property values and for checking of 
property type values (cf. Section 4.4.1.4). The GOPRR model could not describe 
the multiplicity rules which were applied in the OPRR metamodel. For 
example, the UML metamodel does not include restrictions on multiple 
inheritance (i.e. a class can participate several times in a specialization role) or 
that a class can be part of multiple classes through the aggregation relationship. 
To model multiplicity rules of methods an additional metamodeling construct 
would be needed (cf. Section 4.4.1.6). 

Because of the wide variety of different graph types, the modeling of UML 
also highlights requirements to model interconnected methods and complex 
objects. In interconnections, the metamodel does not allow an operation to be 
exploded into an operation table. Instead this is carried out by exploding the 
whole class. Nor can we represent that each state diagram needs to be 
connected to a class diagram (through an explosion), or to a higher-level state 
(through decomposition). Modeling of these would necessitate a more detailed 
specification of interconnections (as discussed in Section 4.4.2.3). In a similar 
vein, complex objects could not be specified adequately with a decomposition, 
or an explosion. An example of such a situation is when a component in a 
complex object (e.g. a substate) can belong to many aggregate objects (e.g. to 
composite states). Among states, the substates can belong only to one composite 
state, whereas an object can belong to more than one composite class (Booch and 
Rumbaugh 1995, p 11, 33). Modeling these complex objects completely would 
require additional constructs in metamodeling languages (as discussed in 
Section 4.4.2.2). Finally, modeling UML requires a specification of related 
properties; i.e. two or more property instances have the same value. An 
example of this is the requirement specifying that a state model should not have 
an action that is not defined as an operation in the related class, or that a state 
should not have attribute values that are not equivalent to those defined in a 
related class. Similarly, an operation in a class diagram and a message in a 
collaboration diagram can have several common values, such as name and 
arguments, which refer to the same property instances. To model this sharing of 
the same values among different types would require additional constructs in 
the metamodeling language(cf. Section 4.4.2.4). 
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4.3.3.2 Example models 

Part of the tool adaptation for UML is shown in Figure 4-4. The figure illustrates 
a class diagram for a banking application in which all classes belong to a 
stereotype interface that enables code generation for Corba IDL (Iona 1997). The 
cardinalities of the aggregation relationship are shown between classes named a 
bank and an account: a bank has multiple accounts, but each account must 
belong to only one bank. Inheritance relationships based on single and multiple 
inheritance are shown as lines with an arrowhead. Multiple inheritance is 
illustrated as the class named premium account inherits both current account 
and deposit account. 

Since UML includes more complex data types than earlier methods, we 
show dialogs below the class diagram to illustrate the properties of a class and 
an attribute. The property dialog of an attribute newAccount refines the 
instance selected from the attribute list of the bank class.   

FIGURE 4-4 An example class diagram of UML. 
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4.3.4 Summary 

Metamodeling, if properly performed, leads to a detailed understanding of the 
phenomena under examination. In this section we inspected the conceptual 
structure of methods in computer-aided modeling tools. Of all 17 methods 
modeled, three were taken into a closer examination. The structures of the 
methods were identified, classified and represented with meta-data models. 
Moreover, CASE tool support was created using the metamodel to validate the 
method specifications. These efforts form the background for our study of 
requirements for method modeling languages in the next section. 

4.4 Requirements for metamodeling languages 

In this section we shall investigate requirements for metamodeling languages 
using an inductive method. In the inductive analysis (Patton 1990) the 
underlying patterns, categories and rules of modeling techniques are used to 
identify and generalize metamodeling requirements. In our case the 
identification of method knowledge was based on an examination of 17 ISD 
methods. 

Although we could examine general requirements for (meta)modeling, 
like simplicity and ease of reading (cf. Brinkkemper 1990, Venable 1993), our 
emphasis is on constructs which increase the modeling power of meta-data 
models: what constructs are needed to extend available semantic data models to 
capture and represent method knowledge. Our focus is on providing explicit 
constraints which deal with a combination of mechanisms provided by the data 
modeling language (Brodie 1984). Because our focus is on semantic data 
models, and mostly on ER extensions, the inherent constraints are the basic 
properties of the semantic data model. For example, there is a distinction 
between entities and relationships.  

Table 4-2 summarizes the proposed metamodeling constructs derived 
from our inductive analysis. In the following each construct is described in 
more detail: in section 4.4.1 we describe constructs essential for modeling single 
techniques, and in section 4.4.2 constructs related to modeling multiple 
interconnected techniques and complete methods. When describing each 
metamodeling construct, we show examples of method knowledge that indicate 
the need for that construct. The examples of method knowledge are based on 
the methods summarized in Table 4-1.  

In addition to the metamodeling constructs, modeling methods requires 
specifications of the checking mode and recognition of the different scopes for 
the constraints. These are described in more detail below. 
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By checking mode we mean the strategy to guarantee that the rules of the 
method defined are followed. The checking is performed on the instance level 
data either actively or passively. In active checking the rules of a method are 
mandatory and must be satisfied at all times. In practice actively checked rules 
are verified each time rule-related instances are created, changed, or removed. 
An example of active checking is the identifier of a process in a data flow 
diagram. Because processes must always have identifying numbers, the 
construct of a metamodeling language describing an identity must be an active 
constraint. Passive checking, on the other hand, refers to rules of a method 
which are not mandatory, and are only checked at the modeler’s request. 
Typically, passive constraints are applicable only for completed models. Table 
4-2 summarizes which checking types are useful with the proposed 
metamodeling constructs. In addition to supporting computer-aided checking, a 
passive constraint type is needed to model methods which allow the modeler to 
specify incomplete or conflicting models, or when active checking is not 
possible in practice, e.g. because of the heavy demands on computational 
resources if the rule was checked. Typical examples of method rules which are 
passively checked are instructions and recommendations, such as the number of 

TABLE 4-2 Essential constructs of a metamodeling language. 

Metamodeling construct Checking Scope of metamodeling constructs 

 Passive or 
active 

method model dependent 
type 

Identifying property a x x x 

Unique property a x x x 

Mandatory property a  x   

Data type of properties a x   

Cardinality a x   

Multiplicity a & p x x  

Multiplicity over several role types p x x  

Cyclic relationship a x   

Multiplicity of type a & p x x  

Inclusion a  x  

Complex objects a x x  

Explosion a & p x x  

Polymorphism a & p x x x 
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activities in ISAC graphs (Lundeberg et al. 1982), or that each data class in BSP 
should have only one relationship which creates it. In practice, a data class in 
BSP may be created by several processes. Hence, to allow the latter situation the 
‘data usage’ relationship type in the metamodel should be specified as being 
passively checked (IBM 1984). Instead of rigidly enforcing consistency rules, 
passive constraints can provide some advantages by providing information 
about possibly conflicting data (Nuseibah et al. 1993). 

The scope of method knowledge denotes the instance space in which the 
rules of the method are relevant. In contrast with what is assumed in most 
metamodeling languages, not all rules of method knowledge can be specified 
within a single scope. For example, the uniqueness of a class name and a state 
name have different scopes (see also the example metamodels in Section 3.3.3): 
the former is usually unique among all classes defined in all models, even 
among different techniques (e.g. Henderson-Sellers and Edwards 1994), but the 
latter need only be unique within a single state model (cf. Embley et al. 1992), or 
in the context of the dependent class (cf. Booch et al. 1997). The need for 
different scopes of capturing method knowledge is also recognized by other 
metamodelers (Hochstettler 1986, Hofstede 1993, Süttenbach and Ebert 1997). 
Among the methods analyzed we identified three different kind of scopes for 
metamodeling constructs: a method, a model and a dependent type. 
Accordingly, a metamodeling language should recognize these scopes. In the 
following, each scope is described in more detail using uniqueness of properties 
as an example. 

1) A method is the largest scope used. It refers to rules that are relevant in 
all instances of a method used in an ISD project. For example, in many object-
oriented methods the name of a class must be unique within all the models 
made (e.g. Booch 1991): Two classes with the same name can not refer to 
different classes. Also, if two or more models (e.g. an object model and an 
inheritance graph (Coleman et al. 1994)) describe a class which has the same 
name they must denote the same class, even if some of their property types, or 
the relationships that they participate in are different. As a result, in a 
metamodel a ‘name’ of a ‘class’ must be specified uniquely within the scope of a 
whole method. 

2) A model refers to rules that are enforced for all instances within the 
scope of a single model (based on one technique, or schema types (as in 
Hofstede 1993). For example, inside a single state transition diagram the names 
of states must be unique, but other diagrams can have states with the same 
name which, however, refer to different states. Thus, a uniqueness constraint 
within the scope of a whole method would be too restrictive and would not 
describe the method knowledge adequately. 

3) A dependent type is the smallest scope which focuses on constraints 
that are relevant for instances that are dependent on the existence of other 
instances (i.e. masters). An example of a dependent uniqueness rule can be 
found from an entity relationship diagram in which an entity can not have two 
different attributes with the same name. However, attributes with the same 
name denoting different instances are allowed within the scope of a model and 
a method. For example, another entity can have an attribute with the same 
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name, but denoting still to a different attribute. Thus, naming of attributes is 
dependent on the master element (i.e. in our example of an instance of the 
entity). 

The scopes are embedded within each other, and therefore a more general 
scope includes limited scopes: if a scope is defined for the whole method it 
includes also scopes for a model and for a dependent type. For example, a 
constraint for unique class names within the method scope prevents also the use 
of the same class names inside a model. Any scope, however, does not exclude 
the possibility of defining other scopes for the same metamodeling construct. 
Consider a multiplicity construct as an example. At the scope of a model a data 
store does not need to participate in instances of both ‘receive’ and ‘send’ role 
types of the ‘data flow’ relationship type, but in the scope of a whole method, 
each ‘data store’ must participate in instances of both role types. This means that 
among IS models an instance of the ‘data store’ object type must have both 
updating and reading data flows but in a single diagram at least one data flow 
must be connected to the data store (i.e. unconnected data stores should not be 
included). Hence, the multiplicity rule can be defined separately for each scope. 
The use of method scopes are summarized in Table 4-2, and discussed in more 
detail in the following subsections. 

4.4.1 Modeling single techniques 

In this section we shall describe the metamodeling constructs that were needed 
to model the 72 individual techniques selected (cf. Table 4-1). The first four 
constructs will focus on specifying characteristics of property types, and the 
next four on connections between object types. Finally, the last construct 
address the multiplicity of types. 

4.4.1.1 Identifying property constraint 

Once types of a method have been introduced, their instances must be identified 
by using an identifier inside the scope. For example, in a class diagram a ‘class’ 
has a ‘name’ (e.g. Rumbaugh et al. 1991), in a data flow diagram a ‘process’ has 
a ‘process ID’, and in BSP (IBM 1984) an ‘entity’ has an ‘entity name’ as an 
identifying property. The identity of instances is typically based on an 
identifying property. Relationship type instances can be identified based on the 
participation with object type instances and/or its properties. In the former 
case, relationships do not have identifying properties, or in many cases they 
have no properties at all. An example of the latter case is message passing 
diagrams (e.g. Coleman et al. 1994) in which messages are distinguished by a 
number specifying timing and the sequence of message passing because several 
messages can be exchanged between the same object type instances.  

Because some object types, like ‘start’ and ‘end’ states (e.g. in Booch 1991, 
Booch et al. 1996) do not have properties they must be identified based on the 
context (e.g. a start state of a given state transition model), or have an internal 
identifier. The former means that the context forms another part of the 
identifier. The latter one is typically used in CASE tools. Text-book methods, 
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however, do not recognize internal identifiers because of their ‘pen and paper’ -
mentality.  

In the methods analyzed all three types of scope were used. First, in most 
object-oriented methods (e.g. Rumbaugh et al. 1991, Coad and Yourdon 1991a) 
the ‘name’ of a ‘class’ and the ‘number’ of a ‘process’ form identifiers inside all 
models of a project (i.e. method scope). Second, the ‘name’ of a ‘state’ identifies 
states inside a single state transition diagram, but not within a whole method, 
since two or more state transition diagrams can have states with the same name 
(referring to different states). Third, an identifier can be dependent on other 
instances. For example, in UML (Booch and Rumbaugh 1995) classes can have a 
scope according to the enclosing category: the identity of a ‘class’ object type is 
dependent on the ‘category’ object type it belongs to. Similarly, in ISAC 
(Lundeberg et al. 1981) the code of an elementary information set recognizes the 
instances only as a subset of a non-elementary information set. Therefore, the 
master (i.e. a category in the former and a non-elementary information set in the 
latter example) also has an identifier, and it forms part of the identifier for 
instances of dependent type. 

The identity constraint can be characterized as an active constraint since in 
modeling tools they can be analyzed each time an instance of the property type 
(i.e. value) is created, changed, or deleted. Active checking, however, can lead 
to time consuming computation and usually CASE tools can not analyze 
identifiers actively. For example, active checking at the level of the whole 
method necessitates that all models and their instances are inspected. 

4.4.1.2 Unique property constraint 

A unique property constraint specifies that an instance of a property type has a 
unique value inside the enclosing scope. The unique constraint prevents the 
homonym problems which almost every method warns against: the use of the 
same value for different instances of a property type. Typically an identifier 
must be unique, but also other properties may need to have unique values.  

Among the methods analyzed a unique constraint is needed in all method 
scopes. A unique property based on the dependent type can be found from class 
diagrams (e.g. Rumbaugh et al. 1991) in which a class can have only one 
attribute with the same name. Similarly, in the ER model (Chen 1976) a name of 
an attribute must be unique among the attributes connected to an entity. A 
unique property constraint within a model is relevant for example in data flow 
and state transition diagrams in which names of processes and states must be 
unique inside the diagram. Among relationship types a unique property for a 
message passing sequence (Coad and Yourdon 1991a, Coleman et al. 1994) is 
relevant inside a single model. In the method scope the identifying number 
should be unique among all instances of a ‘process’ object type.  

In addition to different scopes, a metamodeling language should be able to 
specify uniqueness of the same property types for several object types. For 
example, in Coad and Yourdon (1991a) both abstract classes (i.e. a ‘class’) and 
classes with instances (i.e. a ‘class-&-object’) must share the same property type. 
Similarly in Booch (1991) a ‘metaclass’ and an ordinary ‘class’ can not have the 
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same value for class names (i.e. class name values are unique among both 
types). 

A uniqueness constraint can be considered as being passively checked at 
least in the scope of a method, since all values of a given property type are not 
necessarily available and thus can not be checked instantly. In contrast, a model 
and a dependent type have a limited number of instances and thus can be 
checked actively. 

4.4.1.3 Mandatory property constraint 

Some methods include rules which state that properties must have values at all 
times (i.e. null values are not accepted). Accordingly, a metamodeling language 
must distinguish mandatory and optional instances for property types. 
Generally, properties are optional, but identifying properties are mandatory. 
For example, a ‘number’ as an identifier and the ‘name’ of a ‘process’ object 
type in a data flow diagram are mandatory, but in UML (Booch and Rumbaugh 
1995) the ‘name’ of a ‘state’ is optional. To ensure that data dictionaries can be 
formed parallel to modeling (as proposed in Yourdon 1989a), a documentation 
property type used in the metamodel of SA/SD for creating a dictionary must 
be defined as mandatory.  

The mandatory constraint is not restricted to any specific scope, such as 
being dependent on instances of other types, or used in a model. Thus, we 
expect that the only scope for mandatory instances of property types is the 
whole method. Furthermore, this constraint can be checked actively in a 
computer-aided environment each time the property value is changed, or a new 
instance of a property type is created. In practice a need for passive checking 
would most likely arise because all properties are not necessarily known while 
creating models, leading to undefined property values. 

4.4.1.4 Data type of properties 

Design information captured in properties of other types are specified with 
various data types. From a metamodeling point of view, data types are needed 
to restrict the possible values of properties. Recent methods, such as most of the 
object-oriented ones, tend to have complex data types. One explanation for this 
is CASE tool support, which on the one hand demands data type definitions to 
implement the tool support, and on the other hand offers mechanisms to 
manage larger models and more complex data types.  

Among the most typical data types are integer, string, text, and Boolean. A 
number is commonly used as identifying property or for describing the order 
among relationships (e.g. Coleman et al. 1994, Coad and Yourdon 1991a). A 
string is used for short descriptions; a text for a larger body of specifications 
such as definition in a data dictionary or pseudo code (Yourdon 1989a). Boolean 
describes single-value “on -off” or “true -false” characteristics such as the 
persistence of a class (Henderson-Sellers and Edwards 1994). In addition to 
plain data types, some methods, such as ISAC (Lundeberg et al. 1981) and BON 
(Walden and Nerson 1995) include more detailed specifications for the internal 
structure of each data type. For example, in ISAC, only one-digit numbers can 
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be used for identification of activities, and in UML (Booch and Rumbaugh 1995) 
the possible values for visibility are limited to three (i.e. public, private, 
protected) and access of attributes into four (i.e. writeread, write, read and 
none). Some methods have more complicated rules for the textual description: 
in IDEF (FIPS 1993a, p 11) arrow labels can not consist of reserved words, and 
in ISAC the numbers of information sets also include the number of the activity 
creating the set. In BON (Walden and Nerson 1995) the structure of textual 
properties is the most extreme: there is a whole language for defining instance-
related assertions through properties related to other instances. Thus, a 
metamodeling language should provide, together with the method-related data 
types, the possibility to specify the syntax of data types, and for checking the 
syntax. This requirement, however, goes beyond the typical use of data 
modeling languages as discussed in Section 4.5.3. 

In addition to the property types which can be understood of having one 
value only as above, a metamodeling language must also identify collections. 
Collections are mostly used in object-oriented methods. For example, a class can 
have multiple attributes and operations.  

Property type definitions can also be extended by defining default values 
and predefined values. These mean that a metamodel defines some instance 
values for property types. A default value defines a single instance for a 
property type to be applied if nothing is added. Thus, it is usually applied with 
property types defined as mandatory. Predefined values are typical in the 
cardinality constraints used in data models because they apply different naming 
policy for cardinality values. Some expect symbols instead of numbers: some 
describe cardinality with number only (typically a maximum value), whereas 
others describe cardinality as a pair of values (i.e. minimum and maximum). 
Checking a data type can be done actively. Because data types do not focus 
specifically to any scope of the constraint, the method scope as most general 
seems to be most applicable. 

4.4.1.5 Cardinality constraint 

A cardinality constraint defines a minimum and a maximum number of 
instances of a role type a relationship type instance can have. A role construct, 
used either explicitly or implicitly in all major semantic data models, defines the 
part played by an object in a relationship, such as in NIAM, (Nijssen and 
Halpin 1989, ter Hofstede 1993), OPRR (Welke 1988, Smolander 1991), or 
CoCoA (Venable 1993). The minimum number is typically 1 in the roles of 
binary relationships, since a relationship can not normally exist independently 
without connected objects. For example, a ‘message passing’ relationship in an 
object diagram (Coad and Yourdon 1991a) must have both ‘send’ and ‘receive’ 
roles. It is also possible, however, to define the minimum constraint as zero to 
denote relationships that do not need to have other role(s). For example, the 
object interaction graphs of Fusion (Coleman et al. 1994) allow one to define 
message passing between objects in which the sender outside the model 
boundary is not specified. More typical situations of zero minimum cardinality 
are cases in which a relationship can be extended with an optional role type, e.g. 
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with an associative object type (Yourdon 1989a) in entity relationship diagram, 
or with a creation of an object in data flow diagrams (Rumbaugh et al. 1991). 
Hence, the minimum constraint for the optional role type is normally zero and 
for a mandatory role at least one. Consequently, the deletion of mandatory roles 
(minimum cardinality one) removes also the whole relationship and related 
instances of role types. Moreover, if ternary relationships have their own 
modeling constructs, as in the class diagram of UML (Booch and Rumbaugh 
1995) the minimum role cardinality is 3: Each relationship must have at least 
three instances of a role type. Otherwise the relationship is a binary one and 
should be defined with a different relationship type. 

Within the methods analyzed the maximum cardinality of a role is either 
one (1) or many (M). The maximum cardinality is one in binary relationships 
with two role types, e.g. in the relationships of a structure chart, a module 
diagram (Yourdon 1989a) and a platform diagram (Booch 1991). Thus, if an 
instance of a ‘call’ relationship type exists in a structure chart it can not have 
more than one instance each of ‘send’ and ‘receive’ role types. The maximum 
cardinality of a role type is many in n-ary (sometimes also called branching) 
relationships. For example, an ‘inheritance’ relationship (also called 
generalization, gen-spec, supertype) in object-oriented methods can have only 
one (1,1) ‘superclass’ role but one to many (1,M) ‘subclass’ roles. 

None of the methods modeled include restrictions on the cardinality rule 
within different scopes. Since they implicitly expect that the same instance of a 
relationship can exist only among the same role type instances, the most 
relevant scope is a method. This allows us also to support methods which use 
the same relationship type instances in several techniques (e.g. an inheritance in 
Henderson-Sellers and Edwards (1994)). Moreover, checking of both minimum 
and maximum constraints for the role cardinality are active: They can be 
checked each time a relationship is created, an existing role is deleted, or a new 
one added. 

4.4.1.6 Multiplicity constraint 

A multiplicity constraint is needed to define a minimum and a maximum 
number of role instances an object instance may have. With the minimum value 
we can define that an object instance must be connected to at least a specific 
number of instances of this role type, and with the maximum value that an 
object type instance can not be connected to more than a specific number of 
instances of this role type. The need for the minimum constraint can be found 
from modeling a state diagram (e.g. Booch 1991) in which a ‘start state’ must be 
connected to at least one ‘send’ role of a ‘transition’ relationship, and from 
techniques that are based on tree structures, such as JSD (Cameron 1989). An 
example of the maximum constraint is inheritance found from most class 
diagrams allowing only single inheritance (e.g. Rumbaugh et al. 1991): a class 
can only participate once in a subclass role. 

Typically, a multiplicity constraint for a role is zero-to-many (0,M): an 
object type does not need to be connected to an instance of a specific role type, 
but it can be connected to many instances of that role type. Other common 
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values found for minimum multiplicity are one for mandatory roles, and two 
for object types which must occur at least twice in a specific relationship (e.g. a 
‘condition’ object must participate in at least two ‘connector’ relationships (Coad 
and Yourdon 1991a). Hence, the multiplicity value for a ‘condition connector’ 
role type should be two-to-many (2,M). 

Methods use multiplicity constraints within the scope of a model or a 
method. An example of the former is a ‘start state’ in a state transition diagram: 
each start state must be connected to one state and thus the minimum 
multiplicity constraint must be checked for each instance of a start state. A 
typical example of the latter scope can be found from data flow diagrams in 
which an instance of a ‘data store’ must participate in instances of ‘send’ and 
‘receive’ role types of a ‘data flow’ relationship type, but not necessarily in one 
diagram (Yourdon 1989a, p 282). Similarly among all collaboration diagrams 
(Booch and Rumbaugh 1995) each instance of an ‘object’ must send and receive 
at least one message, but not necessarily inside the same model.  

A maximum constraint can be checked actively, but the minimum 
constraint is passive: it can not be satisfied during model building, unless it is 
zero, because objects can exist while they are not related to other objects (i.e. 
connected to a role type instance). 

4.4.1.7 Multiplicity over several role types 

In addition to the multiplicity constraint, modeling of method knowledge 
requires constraints between different role types. Basically, this constraint is 
needed to prevent instances of object types that are not participating in any 
relationships. In other words, this constraint supports a rule stating that an 
object type instance must participate in at least one of the specified roles. In 
NIAM (Hofstede et al. 1993) this constraint is called a total role constraint. 
Examples of method knowledge necessitating the multiplicity constraint over 
several role types are those of ISAC and SA/SD within the scope of a model. An 
‘information set’ instance must participate either in a ‘predecessor’ instance, or a 
‘successor’ instance (Lundeberg et al. 1981), and a ‘data store’ instance must 
participate at least once in a ‘send’ or a ‘receive’ of a ‘data flow’ (Yourdon 
1989a). The multiplicity rules identified among the methods analyzed do not 
require more complex multiplicity constraints, such as mandatory participation 
among two or more of the specified roles, or maximum multiplicity over several 
roles. Together with the cyclic relationship constraint, modeling techniques 
using tree structures, such as JSP (Cameron 1989), can be specified: one of the 
modules must be the root of the tree. 

All these constraints are originally specified to be applicable inside a 
single diagram only, i.e. in the scope of a model only. Although the methods 
modeled do not apply this constraint within other scopes, it could be applied 
for the scope of the whole method as well (e.g. no more than 10 flows to an 
external).  

Although the metamodeling construct could be checked actively when an 
object is created or a relationship deleted, passive checking is more suitable. The 
reason for this is simple: all objects and relationships to be checked are not 
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necessarily available and models would too often encounter this rule leading to 
heavy model checking. 

4.4.1.8 Cyclic relationship 

A cyclic relationship involves connections between instances of object types via 
instances of a single relationship type, thus forming a cycle. Basically, in the 
methods analyzed two types of cyclic relationships exist: a direct one, in which 
the same instance of an object type can participate in both ends of the same 
relationship type instance, and an indirect one, in which the cycle can be formed 
via one or several additional instances of object types (with associated 
relationship type instances). It must be noted that the indirect cyclic relationship 
necessitates two or more instances of a relationship type. Table 4-3 illustrates 
examples of different cyclic relationships found in the methods modeled. 
Accordingly, a metamodeling language should distinguish both of these cyclic 
relationships types and allow method engineer to allow or prohibit them. 

TABLE 4-3 Examples of cyclic relationships in the methods modeled. 

 Cyclic relationships allowed Cyclic relationships not allowed 

Direct 
cycle 

Transitions in state model (Yourdon 
1989a, Rumbaugh et al. 1991) 

Message passing in object-
interaction graph (Coleman et al. 
1994) 

 

Message passing in message trace 
diagram (Booch and Rumbaugh 
1995) 

Call relationships in structure chart 
(Yourdon 1989a) 

Inheritance in class diagram 
(Coad/Yourdon 1991a) 

Indirect 
cycle 

Message passing in message trace 
diagram (Booch and Rumbaugh 
1995) 

Information flow in A-graph 
(Lundeberg et al. 1981) 

Inheritance in class diagram 
(Coad/Yourdon 1991a) 

Data structure diagram (Jackson 
1976) 

 
An example of a direct cyclic relationship can be found in state transition 
models (e.g. Rumbaugh et al. 1991, Booch 1994) which allow a transition from a 
state to itself, and in the object interaction graph of Fusion (Coleman et al. 1994) 
in which an object can send a message to itself. In other techniques, direct cyclic 
relationships are prohibited: in a message trace diagram (Booch and Rumbaugh 
1995) an object can not send a message to itself, in a structure chart a module 
can not call itself (Yourdon 1989a), and in all object-oriented methods a class can 
not inherit itself. Inheritance serves also as an example of a prohibited indirect 
cyclic relationship. Similarly, indirect cyclic relationships are not possible in tree 
structures, as in JSD (Jackson 1976). Data flows in data flow diagrams, 
transitions in state transition models, and message passing in object diagrams 
(Coad and Yourdon 1991a) can form indirect cyclic structures. None of the 
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methods analyzed, however, restricts the “length” of an indirect cyclic 
relationship structure, nor presents any specific scope for this type of constraint. 
Because the dimensions above are not totally orthogonal, only three basic 
patterns of cyclic relationships were found: those allowing both types (e.g. state 
models), those allowing indirect relationships only (e.g. A-graph), and those 
forbidding both types (e.g. tree structures like JSD). Thus, cyclic relationships 
which allow direct cyclic relationships but not indirect ones were not found 
from the methods. 

Metamodeling constructs for cyclic relationships were not dependent on 
instances of the same or other relationship types. For example, a data flow from 
a process to itself can occur even if the same process receives a control flow 
(Ward and Mellor 1985), i.e. has instances of other role types. 

The checking of both cyclic relationships types can be carried out actively 
although in most CASE tools the checking of the indirect type is passive because 
of its high computing requirements. Here, all relationships and objects 
participating in these relationships should be available. The scope of the 
constraint is all models since none of the methods included any more specific 
scope. 

4.4.1.9 Multiplicity of types 

A multiplicity construct for types is needed to define how many times instances 
of the same type must or can exist inside the enclosing scope. For example, 
ISAC (Lundeberg et al. 1981) has rules which specify that a maximum of 9 
instances of a given type (‘activity’ or ‘information set’) should exist inside a 
single graph. In IDEF (FIPS 1993a) the possible number of functions in a model 
should not exceed 6, and also BSP (IBM 1984) recommends the number of data 
classes or business processes in an IS architecture plan. The multiplicity 
constraint is relevant for both object and relationship types. In most methods, 
the multiplicity constraint for object types is one-to-many (1,M): They must 
have one to many instances. However, the multiplicity of the ‘start’ state in most 
state transition models is zero-to-one (0,1): start states are optional and only one 
start state can exist in a model. Whereas object types can have different 
minimum and maximum values for multiplicity, relationship types are 
restricted only to a possible mandatory existence (i.e. with a minimum value). 
For example, at least one instance of a ‘data flow’ must exist in a data flow 
diagram and one instance of a ‘transition’ in a state transition diagram, but an 
‘inheritance’ does not need to have instances in a class diagram. None of the 
methods analyzed include rules which set a maximum number for the 
occurrence of instances of relationship types. 

Multiplicity of types should not be confused with multiplicity of the same 
instance: how many times the same instance, e.g. a process named Verify 
Orders, exists in a model. A metamodeling construct for instance multiplicity 
seems to be unnecessary since none of the methods includes such restrictions. 
Typically, to simplify crossing relationship lines in a model an instance can be 
replicated and all copies have the same properties. For example, in SA/SD 
(Yourdon 1989a) the same instance of the ‘store’ object type can be drawn to 
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many places in the data flow diagram. The same relationship instances can also 
occur, as in OSA (Embley et al. 1992): an interaction relationship can occur both 
in the object-behavior model and in the object-interaction graph and it has the 
same properties for both instances (e.g. a trigger and an action). However, it 
must be noted that the same relationship type with the same instance 
information can not occur in any method more than once between the same 
object type instances (i.e. no duplicate relationships are allowed). This 
constraint is an inherent constraint (cf. Brodie 1984). As a result, it is not 
necessary to specify this constraint with an additional construct of a 
metamodeling language. 

In the methods analyzed the multiplicity constraint is applicable at the 
level of a single model (e.g. ISAC), and of a whole method (e.g. BSP). 
Furthermore, although the multiplicity can be checked actively each time a new 
instance of a type is added, it should not be restrictive: it should be possible to 
create models that violate the multiplicity rule during modeling. Checking 
minimum values actively would also be inappropriate, since new models would 
violate the constraint. 

4.4.2 Modeling interconnected techniques and methods 

In this section we describe those metamodeling constructs essential to model 
interconnected techniques. Although the proposed constructs are mainly a 
prerequisite for modeling a whole method, some of the required constructs are 
useful for modeling single techniques. 

4.4.2.1 Inclusion of types 

The first requirement in specifying a whole method is the allocation of types 
into techniques. For this purpose, a metamodeling language must include a 
construct called inclusion (according to Tolvanen et al. 1993). The inclusion can 
be defined as an aggregation which can exist only between a technique and its 
types. For example, at the technique level the ER model includes entity, 
relationship and attribute types. At the type level, the GOPRR definition allows 
us to describe the graph type ‘ER model’ and its components. The type level 
cardinality for inclusion is many to many, since types can belong to many 
techniques and a technique usually consist of multiple types. For example, in 
the GOPRR metamodel of BSP the ‘business process’ belongs to three different 
techniques (cf. Section 4.3.1).  

In addition to object types, relationship types and role types can belong to 
multiple techniques. For example, an ‘interaction’ in OSA (Embley et al. 1992) 
can belong both to interaction models and state models, and an ‘inheritance’ in 
MOSES (Henderson-Sellers and Edwards 1994) can be part of class and 
inheritance diagrams. Because of the similarities in the type level method 
definitions, these methods also explicitly allow the occurrence of the same 
instances in different techniques. For example, the same instance of an 
‘interaction’ defined in an object-interaction model describing message passing 
between a set of objects can also be used to define an external trigger in an 
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object-behavior diagram describing possible states of a single object (cf. Embley 
et al. 1992). 

 The checking of inclusion can be regarded as active since this constraint is 
already specified in the metamodel and does not necessitate an instance based 
evaluation: each time an instance is created or an existing instance is added to a 
model it must satisfy the type level definition. Because of the focus on 
specifying a type of a technique, the inclusion constraint is relevant only within 
the scope of a model. 

4.4.2.2 Complex objects 

The majority of the methods modeled, especially the object-oriented ones, apply 
complex objects. By a complex object we mean an abstraction mechanism which 
allows us to build aggregate-component structures among the types of the 
method. The aggregate object suppresses details of the underlying relationship 
between components (Smith and Smith 1977). Complex objects are also 
distinguished from aggregation of attributes used to define attributes of entities 
(Alegic 1988). In line with Iivari (1992) we make a distinction between the 
concept of a relationship and a complex object. The former is used for example 
in most dialects of ER-based data modeling languages. In fact, the ER model 
proposed by Chen (1976) only included relationships. Because our interest is on 
the type level definitions of methods it must be noted that instance level 
aggregation structures, such as aggregation (in Rumbaugh et al. 1991) and 
whole-part (in Coad and Yourdon 1991a), can be described with relationships in 
the metamodel. Complex objects are used as modeling constructs in specifying 
functional decomposition (cf. Yourdon 1989a), aggregation (cf. Coleman et al. 
1994), concurrency (cf. Booch and Rumbaugh 1995), and clustering (Walden and 
Nerson 1995). Hence, our focus here is on those structures that are not described 
with relationship types and necessitate the use of complex objects. Several 
studies on metamodeling (e.g. Smolander 1991, Venable 1993, Saeki and 
Wenyin 1994) reveal limited support for modeling complex objects (sometimes 
also called hierarchical structures) with data model based metamodeling 
languages.  

4.4.2.2.1 Analysis of complex objects in methods 

Iivari (1992) reviews complex objects as a conceptual abstraction mechanism 
and classifies them into five dimensions. These are: 1) dependent/independent, 
2) connected/unconnected, 3) mandatory/optional, 4) exclusive/shared and 5) 
recursive/non-recursive. In the following we describe the categories in more 
detail and apply them at the metalevel to recognize the different kinds of 
complex objects used in methods. Based on the analysis we found 11 different 
kind of complex objects summarized in Table 4-4. The five first rows of the table 
correspond to the various structures of complex objects proposed by Iivari 
(1992). 

1) The dependent/independent dimension defines whether a component 
object can exist independently of the aggregate object. If a method employs 
dependent components it leads to a top-down process of model building, since 
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it is not possible to create components without an available aggregate object. 
Similarly, in a dependency situation, deleting an aggregate object will delete all 
of its components in that scope. An example of a dependent complex object is a 
functional decomposition in a data flow diagram (Yourdon 1989a). Here a 
process can be divided into a new subdiagram describing its subprocesses. 
Another example is a composite (Booch and Rumbaugh 1995) in which a class 
must exist before its component objects (i.e. instances of a class) can be defined. 
Functional decomposition is also applied in other methods, e.g. ISAC for 
defining activities with A-graphs (Lundeberg et al. 1981), in IDEF for 
decomposition of functions (FIPS 1993a), and in other techniques that employ 
data flow diagrams (e.g. Rumbaugh et al. 1991, Shlaer and Mellor 1992). Here 
we handle all these as examples of functional decomposition. An example of an 
independent complex object is a clustering (Walden and Nerson 1995): a cluster 
symbol (with an attached name) can be drawn around a set of classes to specify 
that they belong to the same group. Because empty clusters are meaningless, 
one or more component classes must exist. None of the methods analyzed, 
however, includes a multiplicity rule which specifies the required number of 
instance components. The construct for defining dependent components can be 
checked actively each time a dependent component is created or an aggregate 
deleted.  

2) Connected/unconnected defines whether the internal relationships 
between the components of a complex object can be omitted. This dimension is 
not valid for metamodeling, since connected components are always possible: 
None of the methods offers rules which state that the internal relationships can 
not be specified together with the aggregate object. 

3) Mandatory/optional describes whether a complex object can or cannot 
exist without any specified component. ‘Mandatory’ necessitate the existence of 
components and a bottom-up modeling approach. Typically, methods which 
propose their own object type(s) as an aggregate object expect that components 
exist before the aggregate object is specified. For example, a boundary in an 
object model (Coleman et al. 1994) should not be specified without the existence 
of its components (i.e. an empty boundary is not possible). Similarly, empty 
categories in UML (Booch and Rumbaugh 1995) are meaningless. In contrast, 
methods applying the same type both as an aggregate and a component often 
propose a top-down refinement, although a bottom-up approach is also 
possible. For example, in a data flow diagram, a process can exist even though it 
is not decomposed into a subdiagram. A mandatory rule can be checked each 
time an aggregate object is created or its component deleted. 

4) The components of an aggregate can either be exclusive or shared. 
Techniques which form hierarchies, like composite (Booch and Rumbaugh 
1995), functional decomposition (Yourdon 1989a) or clusters (Walden and 
Nerson 1995) presuppose that a component can not directly belong to more than 
one aggregate object. In contrast, a boundary (cf. Coleman et al. 1994) allows 
that a class (a component) can belong to many functional systems shown 
through boundaries (an aggregate). Similarly, aggregation structures in object-
oriented methods specified with a complex object (e.g. Coleman et al. 1994) 
instead of a relationship type (as in OMT, Rumbaugh et al. 1991) allow shared 
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component classes. The notation used here for an aggregation as a complex 
object, however, easily leads to complex representations once components are 
shared due to overlapping aggregate representations. Moreover, components 
that are defined to be exclusive must be checked during modeling: the same 
instance of a component type can not belong to another complex object. 

5) Recursive/non-recursive complex objects. This final dimension in 
Iivari’s classification defines whether or not the component objects can be of the 
same type as the aggregate object. An example of a recursive complex object is a 
subject (Coad and Yourdon 1991a) which can contain classes or other subjects. 
None of the methods modeled had rules which required non-recursive 
structures. 

TABLE 4-4 Structures of complex objects in methods. 

Dimensions Yes No 
Dependent 
component 
objects? 

composite, functional 
decomposition, nested states 

aggregation, boundary, category, 
cluster, object group, process 
group, subject, subsystem 

Connected 
component 
objects? 

aggregation, boundary, 
category, cluster, composite, 
functional decomposition, 
nested states, object group, 
process group, subject, 
subsystem  

- 

Mandatory 
component 
objects? 

boundary, category, cluster, 
object group, process group, 
subject, subsystem 

aggregation, composite, 
functional decomposition, nested 
states 

Exclusive 
component 
objects? 

category, cluster, composite, 
functional decomposition, 
nested states, process group  

aggregation, boundary, object 
group, subsystem, subject  
 

Recursive 
complex objects? 

aggregation, boundary, 
category, cluster, composite, 
functional decomposition, 
nested states, object group, 
process group, subject, 
subsystem 

- 

Independent 
relationship of the 
aggregate? 

aggregation, category, 
composite, nested states 

boundary, cluster, functional 
decomposition, object group, 
process group, subject, subsystem 

Aggregated 
relationships? 

category, cluster, object group, 
subsystem 

aggregation, composite, 
functional decomposition, nested 
states 

 
 
The five structures applied here reveal some similarities and differences in the 
use of complex objects as a modeling construct in ISD methods. There are, 
however, additional differences between the structure and behavior of complex 
objects that are not yet addressed. For example, the structure of a composite is 
not similar to a decomposition used in data flow diagrams, nor is a subsystem 
(cf. Henderson-Sellers and Edwards 1994) similar to a subject (cf. Coad and 
Yourdon 1991a). To identify these differences two additional dimensions are 
required, namely independent/dependent relationships of the aggregate object 
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and aggregated/non-aggregated relationships. Both of these dimensions are 
included in Table 4-4 as the last two rows. 

6) The independent/dependent relationship of an aggregate object 
specifies whether an aggregate object in a complex object can participate in 
relationships which are independent of the relationships of its components. For 
example, one difference between the structure of a composite and functional 
decomposition is that in the composite an aggregate (i.e. class) can have 
relationships, such as inheritance, which are not related to its components. 
Naturally, the components representing instances of a class have attributes 
which the class may have inherited. Similarly in nested state models (Yourdon 
1989a, 267, Booch and Rumbaugh 1995, p 33) a state which has substates (i.e. a 
composite state in UML) can participate in transitions which are not defined for 
any of its substates. The important difference in this dimension is that in 
functional decomposition a decomposed process can not have relationships 
other than those included in a subdiagram. This dimension also reveals other 
differences between relationships of complex objects. Some aggregates (i.e. 
boundary, subject, and process group) do not participate in any relationships by 
themselves but only through their components. Here a complex object is 
concerned with a collection of its components without any specific relationships 
(cf. Kim et al. 1989). 

The case of dependent relationships, however, does not necessarily lead to 
the use of the same instances of relationship types both for a composite and for 
an aggregate. We did not include this difference among the dimensions of 
complex objects, since the difference can be specified in metamodels simply by 
allowing object types to participate in different relationship types. Independent 
relationships do not require instance-based checking, since they are already 
allowed on the type level. In contrast, dependent relationships of an aggregate 
and its components originating outside the complex object must be checked 
actively. 

7) Aggregated/non-aggregated relationships define whether relationships 
of components connected outside the same complex object are collected into a 
new instance of the same or a different relationship type. Thus, we expect here 
that the relationships of components are compressed into new aggregated 
relationships. This dimension is valid only for those aggregates of complex 
objects which can participate in relationships. Examples of aggregate 
relationships can be found from some object models: a subsystem (MOSES, 
Henderson-Sellers and Edwards 1994) or a cluster (BON, Walden and Nerson 
1995) has its own relationships “collecting” the relationships among the 
components of different subsystems or clusters. In MOSES these aggregate 
relationships are called a collaboration and in BON a compression of client 
relationships. The aggregated relationships can be of the same or a different 
type from the components’ relationships. In the former case an object group (cf. 
Walden and Nerson 1995) can not sent or receive messages that are independent 
of the messages being send or received by its components. An example of the 
latter case is a category dependency describing only client-supplier 
relationships of the categories. These dependencies are, however, based on 
underlying relationships between classes of different categories. Methods which 
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do not allow aggregated relationships either apply exactly the same instances of 
relationships for the components, such as in functional decomposition, or allow 
relationships for the aggregate which are independent of the relationships of its 
components (as discussed in the sixth dimension). An aggregation of 
relationships requires that each time a first relationship is created or the last one 
deleted the same operation should be executed for the aggregated relationship 
as well. This demands active checking of aggregation rules. 

4.4.2.2.2 Metamodeling constructs for complex objects 

If we assume that all these dimensions are orthogonal, we can obtain 128 basic 
alternatives for complex objects. All possible alternatives identified in Table 4-4 
are not necessarily, however, relevant for metamodeling of complex objects. The 
analysis of complex objects shows that some complex objects follow a similar 
structure. A subject (Coad and Yourdon 1991a) and a boundary (Coleman et al. 
1994), nested states and a composite (Booch and Rumbaugh 1995), and an object 
group (Walden and Nerson 1995) and a subsystem (Henderson-Sellers and 
Edwards 1994) belong to the same categories in Table 4-4. These similarities 
limit the number of different structures found among the methods into 8. As a 
consequence, the metamodeling language must support the modeling of each 
conceptual structure of complex objects to capture method knowledge. In the 17 
methods selected we found 11 complex object types. It must be noted that other 
alternative types for complex objects are also possible. 

In addition to the seven dimensions of complex objects, the possible scope 
of this construct divides methods into two categories: those treating complex 
objects globally within the scope of a method, and those allowing different 
complex objects of the same aggregate object in different models. Functional 
decomposition and clustering according to the system view belong to the first 
category. Each decomposed process or cluster has the same components even 
though they would be represented in different models. Composite and subjects 
are examples of the model scope. A class can participate in multiple composite 
structures, each structure describing its instances (objects) in various contexts. 
Similarly, the same subject can have different components in different class 
diagrams. 

To summarize, the following aspects of complex objects need to be 
recognized and represented with a metamodeling language. First, since all 
methods allow relationships to be described between components the second 
dimension  connected component objects  seems useless in metamodeling. 
Thus, we expect that a metamodeling language will not need to distinguish 
complex objects based on the possibility to have relationships among the 
components. Iivari (1992) too has doubts about system models that do not 
specify internal relationships. Second, dependency and mandatory components 
are alternatives since complex objects can be defined either in a top-down, or in 
a bottom-up manner. In most situations of IS modeling both of these strategies 
are possible. Thus, the methods analyzed here provide either one or both of the 
options. Third, a metamodel should define whether the same object can or can 
not be a component in many complex objects. None of the methods proposes 
other restrictions, such as a component having to belong to a specific number of 
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complex objects. Fourth, since non-recursive complex objects were not found, 
recursive structures do not need to be distinguished in the metamodeling 
language. Fifth, it should be possible to define complex objects in which an 
aggregate object can participate in relationships separately from relationships 
that its components have outside the complex object. Methods apply either the 
same relationship types for the aggregate object as its components have, like in 
nested state models, or new relationship types, as in dependencies of categories 
in UML. Finally, a metamodeling language must have constructs to distinguish 
relationships of components which must be aggregated to from relationships of 
the aggregate. 

4.4.2.3 Explosion 

One of the most common approaches to integrate techniques is linking of a type 
in one technique to a set of types described in another technique. We call this 
metamodeling construct an explosion in the GOPRR model (Kelly et al. 1996). 
According to our analysis of complex objects, explosion structures are typical 
between different techniques, and they do not carry as much semantic 
information about the instance level linkages as complex objects. For example, 
relationships of the exploded type are meaningless as the relationships in the 
target model are based on another technique. According to most object-oriented 
methods the behavior of a class from a class diagram (see also example 
metamodels in Section 3.3.3) or a use case from a use case diagram can be 
described with state diagrams (cf. Coad and Yourdon 1991a, Booch and 
Rumbaugh 1995). Similarly, according to the balancing rules of SA/SD 
(Yourdon 1989a, p 283) each control process must be associated with a state 
transition diagram. Various explosion structures can be characterized according 
to 1) the type of the explosion source, 2) the cardinality of the explosion, 3) an 
exclusive or shared explosion target, and 4) active/passive checking of 
explosion cardinality constraints. Each of these characteristics is described 
below. 

1) Type of the explosion source. Among the methods analyzed, three 
different kind of explosions could be found depending on the metatype that 
forms the source of the explosion. First, an object type, like a ‘data store’ or a 
‘class’, can be a source for the explosion. A second possible source type is a 
relationship, such as a ‘transition’ which in a state model explodes into a data 
flow diagram (Rumbaugh et al. 1991). Third, a property type of an object or a 
relationship type can also be refined by explosions. For example, in Coad and 
Yourdon (1991a) each ‘service’ of a ‘class’ can be described in service charts. 

2) Cardinality of explosion. Among the methods analyzed, several 
limitations to the number of explosion links are defined. These constraints can 
be represented by attaching cardinality constraints to explosions. Both a source 
type and a target technique must have a cardinality constraint and both a 
minimum and a maximum cardinality are needed for a complete definition. At 
the source part, a cardinality defines how many explosion links an instance of 
the source type can or must have. Typically, the minimum cardinality 
represents whether an explosion is mandatory, and a maximum cardinality 
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specifies if more than one explosion link is allowed. An example of the 
minimum cardinality can be found from SA/SD (Yourdon 1989a) in which each 
data store must be described in more detail with an ER diagram, and in a data 
dictionary. Most object-oriented methods generate a need for a maximum 
cardinality: in most methods, the states of a class can be described in several 
state models. Therefore, the total cardinality at the source type is zero-to-many 
(0,M). Moreover, because in a data flow diagram a process can be specified only 
in one process specification the maximum cardinality is one.  

At the target part, the minimum cardinality specifies whether a target 
model needs to be linked to one or more instances of the source type. For 
example, in Yourdon (1989a) no floating process specifications are allowed, and 
in Coad and Yourdon (1991a) service charts unconnected to a service of a class 
are not allowed. Especially in cases of multiple possible explosion links to the 
target technique, the minimum cardinality of the explosion target is zero. For 
example, in OMT (Rumbaugh et al. 1991) each data flow diagram does not need 
to be connected to an object type ‘state’ as it can be a target for an explosion of 
an relationship type ‘transition’ as well. Thus, the minimum cardinality for an 
explosion link between a ‘state’ and a ‘data flow diagram’ is zero. The 
maximum cardinality of the target type on the other hand specifies whether 
more than one instance of a source type can explode into the target model. 
Although in most situations only one explosion link is allowed for the same 
target, some methods, like FUSION (Coleman et al. 1994) or OMT (Rumbaugh 
et al. 1991), allow many instances of a source type to explode into the same 
instance model. Hence, the maximum cardinality is many. In Fusion, a model 
describing interaction between several objects can be a target for several 
explosion links from different instances of an ‘object’ specified in object models. 
Similarly, an UML collaboration diagram specifies messages sent between 
several instances of a ‘class’ described in a class diagram.  

3) Exclusive explosion links restrict whether instances of two or more 
different source types can explode to the same target model (i.e. instance 
model). In SA/SD a process specification can be a target of explosion links from 
two types, as both a ‘process’ and a ‘control’ can have operation specifications. 
These specifications, however, must be defined as exclusive because a process 
specification can belong to only one instance. An example of a shared target 
model is explosion of instances of both a ‘class’ and a ‘class utility’ into the same 
object diagram (e.g. Booch 1991). 

4) Active/passive checking. Because the cardinality as such does not 
describe a precedence between a source and a target this procedural aspect can 
be described with a checking rule: if the checking of the minimum cardinality 
on the target side of the explosion link is defined as active it can be used to 
specify top-down structures of explosion links. In the earlier example of 
exploding a process into process specifications, the mandatory and active 
checking of minimum cardinality assures that process specifications can not be 
specified without a related instance of a ‘process’. If a source element of a top-
down explosion link is deleted, the target models should be removed as well. 
Active checking of the minimum cardinality on the source part, on the other 
hand, can be used to define a bottom-up strategy for modeling explosion 
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structures. None of the methods analyzed, however, applied bottom-up 
structures. In the explosion links analyzed the maximum cardinality for both a 
target and a source can be checked actively. 

Finally, the explosion constraint must be related to either of the two 
possible scopes; a method or a model. The method scope defines that the 
explosion constraint is relevant for all instances of the source type. 
Alternatively, explosions can be relevant for each instance in a model only. In 
the former case, explosions are defined for all instances of the type, and in the 
latter case, the same instance of a source type can have different explosion links 
in different models. An example of the method scope is an instance of a class  
which explodes always to the same state model regardless of the class diagram 
in which it is represented (i.e. a class always has the same lifecycle). An 
example of a model scope is when a transition in a state model explodes to a 
collaboration diagram specifying a scenario in which the transition occurs as a 
message passing (e.g. Booch et al. 1997). 

4.4.2.4 Polymorphism 

Methods consisting of multiple techniques inspect systems from different views: 
each technique focuses on a specific view and these different views are 
integrated in the whole method. In addition to using the same types as a part of 
different techniques on the metalevel (defined with the inclusion construct) 
methods apply polymorphism of types to indicate instance level connections 
(Venable 1993). By polymorphism we denote connections between two or more 
instances of different types based on sharing the same values as their properties. 
Types can also be of a different metatype (e.g. an object which is represented as 
a relationship in another model). In other words, ISD methods use different 
types to describe the same instances. Polymorphism is applied mostly in 
methods which use horizontal integration for connecting instances of different 
models, e.g. names used for data stores in data-flow diagrams being redefined 
for cross-checking with an ER model.  

Different structures of polymorphism can be identified based on 1) 
coverage over one or more techniques, 2) the number of properties shared, 3) 
the number of type instances related, and 4) a possible dependency among the 
types of a polymorphism structure. As a consequence, a metamodeling 
language should be capable of representing all the different structures 
discussed below. These different structures are collected into Table 4-5 together 
with examples to be discussed in more detail below. 

1) Coverage. Polymorphism can exist between types included in one or 
several techniques. An example of the former is a qualifier of an association in 
some class diagrams (e.g. Rumbaugh et al. 1991, Booch et al. 1997). Qualifier is 
also one of the attributes of a class participating in the association, i.e. the value 
for the qualifier must also be defined as an attribute in the related class. As a 
result, it is not adequate to model a qualifier and an attribute only as property 
types, as they need to be related to indicate sharing of the same property values. 
Similarly, a discriminator of the inheritance relationship must be an attribute of 
the superclass. An example of the latter, polymorphism between techniques, can 
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be found from the balancing rules of SA/SD (Yourdon 1989a, p 283). A data 
flow in a DFD and a call relationship in a module diagram, as well as a control 
flow into a control process and a condition of a transition in a state model, 
describe the same instance in different models. Similarly, almost all object-
oriented methods apply polymorphism to describe that an action (or an 
operation) in a state transition model and a service (or a method) of a class 
describe the same instance (Coad and Yourdon 1991a, see also the 
metamodeling example in Section 3.3.3). To specify these structures adequately 
an additional supporting metamodeling construct is required. 

TABLE 4-5 Examples of different kinds of polymorphism in methods. 

In one model In a method 
qualifier/attribute attribute type of a class/attribute value of 

a state, condition/data flow, name of a 
category/name of a class, name of a class/ 
name of an object, name of a data 
element/name of a data set, name of an 
entity/name of a data store, operation of a 
class/ action of a transition, service of a 
class/message, service of a class/ 
operation of a state 
 

One property value Multiple property values 
attribute type of a class/attribute value of 
a state, name of a category/name of a 
class, name of a class/ name of an object, 
condition/data flow, name of a data 
element/name of a data set, name of an 
entity/name of a data store, 
qualifier/attribute 
 

operation of a class/action of a transition, 
service/message, service/operation of a 
state 

Two type instances More than two type instances 
attribute type of a class/attribute value of 
a state, condition/data flow, name of a 
data element/name of a data set, name of 
an entity/name of a data store, 
qualifier/attribute 

service of a class/message, service of a 
class/operation of a state, name of a 
category/name of a class, name of a class/ 
name of an object, operation of a 
class/action of a transition 
 

Independent Dependent 
name of a category/name of a class, name 
of an entity/name of a data store 

attribute type of a class/attribute value of 
a state, condition/data flow, name of a 
class/ name of an object, name of a data 
element/name of a data set, operation of a 
class/action of a transition, qualifier/ 
attribute, service of a class/message, 
service of a class /operation of a state 

 
2) Number of properties shared. Polymorphism can be based on sharing more 
than one property value at a time. This necessitates that more than two property 
types are involved in the polymorphism. The qualifier example, discussed 
above, is based on sharing one value only between two property types: the 
‘qualifier name’ and the ‘attribute name’. Object-oriented methods like MOSES 
(Henderson-Sellers and Edwards 1994) apply polymorphism for several 
instances of property types at the same time: a service of a class in a class 
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diagram and a message in an event model have several common values, such as 
name, parameters, and return types. Hence, when messages are described in an 
event model, properties of a message must refer to a set of the properties of one 
service. According to the majority of method descriptions, it is not possible to 
have messages other than those defined as services of classes. As a result, if one 
of the property type instances is shared, it necessitates also that related instances 
of other property types are shared as well. For example, the same instance of a 
message type can not have different return values as properties. Similarly, in 
UML each object has a class name to indicate the class that the object belongs to, 
and therefore the attribute values of the object must refer to those defined for 
the class. Accordingly, a metamodeling language should also represent instance 
level connections between related properties. 

3) Number of type instances related. Polymorphism can occur between 
more than two instances of types. For example, the same instance of an 
operation of a class may be used as an operation of two or more state 
transitions, or in some state transition diagrams also as operations of states 
(Rumbaugh et al. 1991, Booch and Rumbaugh 1995). Here the same value is 
referred to by property types of multiple non-property types. To distinguish the 
states and related operations of a single object from the operations needed in 
communication between several objects, some techniques (e.g. OSA, Embley et 
al. 1992) include separate relationship types, or even techniques, for this 
purpose. 

4) Dependence on other instances. The dependent type can not have 
other property values than those already defined in other type instances. For 
example, in UML all objects must be connected to a related class by their name 
and therefore it should not be possible to create an object which is not 
instantiated from the defined class. As a result, an object can not refer to classes 
which are not yet defined. A similar kind of polymorphism exists in MOSES 
(Henderson-Sellers and Edwards 1994) between a ‘message’ relationship type 
used in an event model and a ‘service’ of a class used in an O/C model. Thus, in 
a metamodel, a property type of a message called ‘message name’ must share 
values already defined as values of the property type ‘service name’. In other 
words, an object should not call for a method of another object which is not 
available in the called object. 

Dependency is optional in many polymorphism structures. For example, 
the balancing rules in Yourdon (1989a, p 281) between names of entities and 
data stores do not state which of these must be defined first as long as the 
names match in the end. In contrast, methods which propose some guidance for 
applying different types in a specific order require that the dependency is 
defined. For example, in ISAC (Lundeberg et al. 1981) a ‘data element’ instance 
in a data structure diagram is normally defined only after the related ‘data set’ 
instance is defined in a D-graph (i.e. the name of a data element refers to the 
name of a data set). Thus, the procedural part defined in a process model of an 
ISD method usually requires as a counterpart a specific static structure 
(Kinnunen and Leppänen 1994, Jarke et al. 1998).  

In addition to the identification of various structures of polymorphism, 
each type of polymorphism must be defined according to its scope and type of 
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checking. The scope of the polymorphism defines the space from which  the 
property type instances can be shared. Based on the polymorphism structures 
found, all three scopes are possible. The method level includes all instances of 
the property types. For example, in UML ‘class’ has a property type named 
‘category’ for specifying to which category a class belongs. The possible values 
for the ‘category’ are the names of all categories defined in all category 
diagrams or class diagrams. Similarly, an object may be characterized by the 
name of an existing class (e.g. Walden and Nerson 1995, Booch and Rumbaugh 
1995). Polymorphism restricted to the scope of a model limits the possible 
shared instances into those defined in a single model. For example, according to 
the balancing rules of SA/SD (Yourdon 1989a), actions of state transitions must 
correspond to the name of the flows defined in a related data flow diagram in 
which the control process is described. The most complex form of 
polymorphism is based on a dependency on a specific instance of a given type 
in contrast to all instances, or instances of a single model. Among the methods 
modeled their dependency can be found from explosion or from composite 
objects (Venable 1993). For example, a state diagram of a single object (instance 
of a class) can have only those actions as a property of transition, which are also 
used for an object. In other words, the dynamic behavior described in a state 
transition diagram can have only those actions defined as operations of the 
related class in the class diagram. Similarly, a state can have as a property only 
those actions which are defined in the related class (Rumbaugh et al. 1991), and 
the attribute name of an object must match one in its class (Booch and 
Rumbaugh 1995, p 5). In our metamodel-based definition of UML, this would 
require that state variables defined as ‘values’ in our metamodel would be 
related to the attribute definitions of a class. 

The checking of polymorphism can be either active or passive depending 
on the dependency of polymorphism, i.e. dependent or independent. 
Dependent polymorphism implies active checking, as it can be checked at all 
times that a created or modified type can not have other values than those 
defined already (i.e. no new values are created). Independent polymorphism 
can also be checked actively if the modeling tool informs the modeler of the 
available instances of other property types which a created or modified type 
could use as instances of its property types. Active checking, however, would 
necessitate that the polymorphism would be satisfied at all times. For example, 
according to the balancing rules in Yourdon (1989a) it would not be possible to 
create an entity if a data store with the same name would exist and vice versa. 
Thus, independent polymorphism must apply passive checking.  

4.4.3 Summary of the metamodeling constructs 

Modeling of method knowledge has been recognized as one of the main 
research problems in the field of method engineering (e.g. Kumar and Welke 
1992, Kronlöf 1993, Brinkkemper 1996). In this section we have approached this 
problem in an inductive manner by analyzing modeling techniques from 17 
different ISD methods, modeling them into metamodels and adapting them into 
CASE environments. This analysis has pointed out various patterns, categories 
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and rules of methods that a metamodeling language should capture to model 
method knowledge more completely. These were generalized into 
metamodeling requirements by specifying constructs for metamodeling 
languages which extend existing semantic data models  (i.e. metametamodels in 
the context of metamodeling).  

Although the identification of the essential metamodeling constructs is 
based on the examination of 17 ISD methods, we see several ways to explore 
these constructs further. The first and most obvious way is to enlarge the set of 
ISD methods analyzed. Second, the types of methods included could also be 
extended from analysis and design methods into other methods of ISD, like 
project management, programming languages, etc. This is especially important 
since most methods modeled follow the icon-link structure typical in CASE tool 
related methods. It would also be relatively easy to propose a method which 
could not be described with the proposed metamodeling constructs. This means 
that we can not exclude certain metamodeling construct, but rather only 
describe those which were needed for our metamodeling effort. Third, the 
metamodels of the software design oriented methods could be extended 
towards programming languages, as suggested in some references (c.f. Booch 
and Rumbaugh 1995). This would raise new requirements for metamodeling, 
especially related to data types to satisfy the grammatical rules of programming 
languages, as well as analysis of designs by executing or compiling them.  

Finally, other metamodeling constructs could also be identified by 
analyzing metamodeling carried out in practice. For example, in three 
metamodeling experiments, 75% of the concepts identified were involved in 
specialization hierarchies (Wijers 1991, p 174). Although we acknowledge the 
usefulness of inheritance to simplify metamodels and organize elements of 
metamodels into more manageable hierarchies (Rossi and Tolvanen 1995) we 
did not include it among the essential constructs of a metamodeling language 
for one simple reason: all static knowledge of methods could be described 
without inheritance. Furthermore, in the metamodeling literature a variety of 
approaches are proposed for using inheritance: Oei and Falkenberg (1994) 
propose a metamodel hierarchy for organizing techniques and building 
transformations between them, Elmasri et al. (1985) apply inheritance for entity 
types, Kelly et al. (1996) apply inheritance for other types as well as object types, 
and Venable (1993) and Ebert et al. (1996) extend inheritance to also cover the 
relationships that the object type participate in. The limitation on describing 
method knowledge only as it is represented in the literature is recognized in 
Chapter 6: we apply a metamodeling language together with the proposed 
extensions to describe method knowledge based on situations and experiences 
of method use (i.e. also in practice rather than just from the method literature). 

4.5 Evaluation of metamodeling languages 

In this section we shall apply the results of the method analysis to evaluate the 
modeling power of several proposed metamodeling languages. Evaluation of 
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modeling power implies evaluation of the constructs languages offer for 
metamodeling. Similar kinds of assessments or comparisons have been carried 
out by Welke (1988), Venable (1993), Saeki and Wenyin (1994), and Harmsen 
and Saeki (1996). In the following sections we shall first review existing 
comparisons in terms of their focus to clarify how they differ from our 
evaluation. This is followed by an assessment of a set of metamodeling 
languages using the metamodeling constructs identified. The section concludes 
with a discussion of how well semantic data models can serve as a 
metamodeling language from the perspective of modeling power, and in what 
way they should be extended to describe method knowledge more completely. 

4.5.1 Other studies evaluating metamodeling languages 

In his early study Welke (1988) analyzed the modeling power of binary, ER, and 
OPRR models to compare how adequate they are as metamodels for a 
repository (i.e. as metaschema). The focus was especially on how completely 
each metamodel can represent method knowledge, and hence it is close to our 
approach. The suitability of different metamodels is demonstrated by using 
structure charts as an example. In conclusion, the limitations of each 
metamodeling language are discussed and an extended OPRR model, called 
WOPRR, is briefly proposed for modeling larger methods and more complex 
techniques. Smolander (1991) has extended the analysis of the OPRR model 
based on experiences gained building OPRR-based metamodeling tools. 
Limitations of OPRR are identified in two areas. First, OPRR does not provide 
possibilities to model n-dimensional structures, such as the complex objects 
discussed earlier. Second, OPRR does not provide concepts for defining the 
connections between multiple connected techniques that form a whole method.  

Venable (1993) concentrates on modeling complex objects, especially in 
situations of complex covering aggregation in which an aggregate covers both 
entities and their relationships. The modeling language proposed, named 
CoCoA, is compared with a number of other data modeling languages, such as 
the ER model (Chen 1976), entity-category-relationship model (Elmasri et al. 
1985), class model of OMT (Rumbaugh et al. 1991), and NIAM (Wijers et al. 
1992). Although the comparison covers languages used for IS modeling, many 
of them including CoCoA have also been used for method modeling (Grundy 
and Venable 1996). In the comparison two criteria, the richness and problem 
domain correspondence, are relevant to us here. Richness refers to there being 
sufficient semantic concepts to describe relevant aspects of the problem domain, 
i.e. method knowledge. Problem domain correspondence specifies whether the 
constructs of the metamodeling language correspond to the aspects of the 
problem domain (i.e. methods). The analysis reveals a limited support for 
modeling integrated techniques and demonstrates how complex covering 
aggregation is relevant in metamodeling. In CoCoA, a complex covering 
aggregation is mostly used for specifying which object types and relationship 
types are components of a technique. 

Saeki and Wenyin (1994) point out some limitations in ER-based 
metamodels: how to describe constraints and hierarchical structures (i.e. 
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complex objects). Based on their evaluation, they suggest Object-Z as a language 
for method modeling. Object-Z can describe knowledge and rules related to the 
decomposition of processes in data flow diagrams, and constraints of 
relationships, such as data flows between stores. Although their study reveals 
the need for supporting specifications of constraints of method knowledge, no 
classification of relevant constraints or even other constraint types is mentioned. 

Finally, in a study by Harmsen and Saeki (1996) four different 
metamodeling languages are compared. Some languages included in their 
study also address process modeling, but all of them include meta-data 
modeling. The focus of their comparison is on a wider framework of languages 
for method engineering. Because of the breadth and generality of their 
framework, the study does not reveal how well meta-data modeling languages 
can represent method knowledge and how it is related to metamodel-based 
modeling tools. 

Although these studies present comparisons of metamodeling languages, 
our analysis complements them in the following ways. First, we focus on 
languages for meta-data modeling in relation to tools. To our knowledge only 
Welke (1988) has compared metamodeling languages in relation to CASE, and 
especially to a repository. Second, and perhaps more importantly, these earlier 
comparisons were carried out on a relatively general level, since most of them 
do not address detailed requirements for metamodeling. Finally, in line with 
our inductive approach, our comparison is based on a set of constructs found 
essential in modeling a large number of methods. Still, the inductive approach 
limits our analysis to those aspects of metamodeling that are relevant in 
modeling the chosen set of methods. 

4.5.2 Evaluation according to essential metamodeling constructs 

As described in Chapter 3, several languages for method engineering (i.e. 
metametamodels) have been proposed and even implemented into tool 
environments. In this section our goal is to analyze a set of metametamodels 
according to the proposed essential constructs. The selected metamodeling 
languages were already discussed in Section 3.3.3. They were selected because 
of their focus on meta-data modeling, and intention for use as a metametamodel 
in an adaptable modeling tool. Thus, we excluded all those metamodeling 
languages which focus on method representation only and do not enable 
metamodel-based adaptation of modeling tools such as CASE tools. 
Furthermore, those parts of the metametamodels which do not focus on 
modeling techniques were excluded. Hence, from MEL we analyzed only the 
constructs for specifying product fragments and from ASDM we analyzed only 
its deliverable model. 

Because not all the tools applying the selected metamodeling languages 
were available to complement our study the assessment is partly biased: it is 
unclear how the metametamodels proposed can actually serve as a 
metamodeling language for customizable modeling tools. This observation 
emphasizes the need for such a tool-related comparison (Tolvanen et al 1996). 
Tools for MEL (Harmsen 1997), CoCoA (Venable 1993) and NIAM were not 
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available as they exist at the design level only, or include partial 
implementations for the researcher’s purposes only. The most common 
metametamodels implemented into tools (CASE Outlook 1989), such as ER 
(Mercurio et al. 1990) and OPRR (Meta Systems 1989, Smolander 1991, Marttiin 
et al. 1993, MetaCase 1994) are widely described from a tool point of view, and 
also tool-related implementations have been carried out for GOPRR (Kelly et al. 
1996), and ASDM (Heym 1993). The last environment supports only method 
modeling but not the implementation of modeling tools based on the 
metamodels developed. We furthermore acknowledge the differences in 
versions of languages and their evolution, as well as differences in supporting 
even the same language (e.g. Quickspec and MetaEdit for OPRR) (Marttiin et al. 
1993, Smolander et al. 1991). In the analysis we tried to focus on only one 
metametamodel version which is close to the tool environment. Also, additional 
grammatical extensions made for the notations of metamodeling languages, 
such as proposed by ter Hofstede (1993) for NIAM, are excluded, since they 
could be available for other metamodeling languages as well for directly 
enforcing certain integrity constraints. 

In the following we describe the results of evaluation. The results are also 
summarized in Table 4-6: the vertical axis includes the metamodeling constructs 
and the horizontal axis includes the metamodeling languages. A cross means 
that the metamodeling language meets the requirement and a cross in brackets 
that the current support is limited. It is obvious that the evaluation of the 
metamodeling languages is not as clear-cut as Table 4-6 depicts.  
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TABLE 4-6 Support for metamodeling constructs in different metamodeling languages. 

Metamodeling construct Metamodeling language 

 ASDM CoCoA ER GOPRR MEL NIAM OPRR 

Identifying property   (x) (x)  (x) (x) 

Unique property   (x) (x)  (x) (x) 

Mandatory property  (x) x  (x) x  

Data type of properties  (x) (x) (x) (x) (x) (x) 

Cardinality    x    

Multiplicity (x) x (x)  (x) (x) (x) 

Multiplicity over several 
role types 

     (x)  

Cyclic relationship (x) (x) (x) (x) (x) x (x) 

Multiplicity of type        

Inclusion x x  x x   

Complex objects (x) (x)  (x)    

Explosion  (x)  (x)    

Polymorphism  (x)  (x)   (x) 

 

4.5.2.1 Modeling single techniques 

4.5.2.1.1 Identifying property 

Identity of types is considered a relevant construct in most metamodeling 
languages, except in ASDM, CoCoA and MEL. Most languages, however, 
specify identity of object types only, and they do not distinguish the identity 
based on the scopes discussed in Section 4.4.1.1. OPRR allows one identifier for 
object types only, but GOPRR allows identifiers to be defined for other types as 
well (i.e. graph, relationship, and role types). NIAM normally uses a single 
identifier specified in parentheses above the entity name but also other keys, 
distinguished by ‘+’, are possible.  

4.5.2.1.2 Unique property constraint 

Uniqueness of property type instances is considered in ER, OPRR, NIAM and 
GOPRR, but inadequately on the scope side. A common extension to ER models 
for schema design is a uniqueness constraint. In OPRR identifying properties 
are expected to be unique globally (i.e. inside the scope of a method). In NIAM, 
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the uniqueness of label types can be defined by a reference scheme named in 
parentheses under the name of the object type. In addition to this identifier 
description, the uniqueness of label types can be described by a uniqueness 
constraint attached to a role of the label type connecting an object type to the 
label type. Thus, the use of the same label for many object types allows for 
uniqueness inside the scope of a dependent type. Likewise, in GOPRR the 
property can be unique among the instances of related types. 

4.5.2.1.3 Mandatory property constraint 

Mandatory property types are identified explicitly in NIAM only. This is 
achieved by a total role constraint attached to an entity (Nijssen and Halpin 
1989) or an object (ter Hofstede et al. 1993) type connected to a label type. Some 
other metamodeling languages include the possibility to define mandatory 
properties with other constraints. For example, in MEL (Harmsen 1997) a 
required clause can be used to define that certain properties must be available 
in other modeling techniques. In CoCoA the constraint could be supported 
through a simple aggregation with minimum cardinality one but this would 
lead to complex structures if all mandatory values had to be specified as 
aggregations and optional properties as a normal attribute. A common 
extension in the ER model (Teorey 1990) for defining constraints for attributes 
and database implementation considerations is the restriction of null values.  

4.5.2.1.4 Data type of properties 

Since semantic data models underpin the design of database schema, various 
data types are widely recognized and supported, including basic data types 
such as integer, Boolean, and string. Basically only two weakly supported 
modeling constructs are encountered: properties with a specified grammar, and 
collections. On the grammar side, CoCoA,  NIAM, OPRR, and GOPRR support 
more complex data types based on predefined values or intervals for possible 
values. On the collection side, GOPRR has an explicit collection data type which 
can have any of the basic data types as components, or even other types of the 
method. CoCoA allows the definition of attributes (also called properties) as an 
aggregate of other attributes, and with the simple covering aggregation entity 
types may have components of other entity types. For the same purpose NIAM 
has been extended by power types (ter Hofstede et al. 1993). 

4.5.2.1.5 Cardinality constraint 

The cardinality constraint is handled only in GOPRR by separate cardinality 
values for both minimum and maximum cardinality. Moreover, since the 
cardinality constraints are effective in the scope of a model GOPRR adequately 
supports modeling of all possible binary and n-ary relationships. Although 
other metamodeling languages allow n-ary relationships to be specified it is 
only supported at the type level. For example, in CoCoA a relationship can 
consist of more than two roles (i.e. type level), but it can not be specified 
whether instances of a specific role type are necessary (i.e. instance level). In 
NIAM the modeling of a cardinality constraint requires that the relationship is 
considered as an object type (as in ter Hofstede 1993, p 45) leading to difficulty 
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in implementing a method support based on the metamodel: there would be no 
way to distinguish the appearance of objects from relationships if they are of the 
same type. Subtyping of entities could be applied here, as in the reference 
model of Heym (1993). In spite of this, the relationships of methods considered 
as object types can have an occurrence frequency constraint on the related role 
type to include both minimum and maximum cardinality. 

4.5.2.1.6 Multiplicity constraints 

A multiplicity constraint is supported by ER, ASDM, OPRR, CoCoA and NIAM. 
ER and ASDM support only maximum multiplicity (called there cardinality) 
whereas CoCoA, MEL, and OPRR allow to specify minimum and maximum 
multiplicity. NIAM supports minimum multiplicity with a value of one (i.e. 
mandatory participation in a role) by a total role constraint, and maximum 
multiplicity with a value of one (i.e. instances of a role must be unique) by an 
uniqueness constraint. Other multiplicity values for maximum multiplicity can 
be supported by attaching the additional occurrence constraints for roles. This 
possibility is not allowed for minimum multiplicity (Weber and Zhang 1996) as 
required to model some methods (such as service charts in which a condition 
must participate in at least two role instances of the same type). The scope of the 
multiplicity constraint is left undefined in all metametamodels and assumed 
implicitly (once not specified) to cover either a scope of a method or a model. 
CoCoA, however, can capture an aggregation of role types together with the 
related relationship type and therefore supports both scopes of the multiplicity 
constraint. If a role type is only part of a single technique the scope for the 
constraint is a model. If the same role can also be part of multiple techniques 
(overlapping according to terminology of CoCoA) CoCoA could also restrict to 
the scope of the method. In principle support for specifying a scope among a 
limited set of techniques could be supported as well, although this was not 
recognized essential among the analyzed methods.  

Multiplicity over several roles is only supported by NIAM, via a total role 
constraint attached to two or more roles connected to the same object type. 
NIAM, however, does not explicitly define a scope for this constraint and it is 
applied by metamodelers (i.e. ter Hofstede 1993) only for the scope of a model. 

4.5.2.1.7 Cyclic relationships 

Cyclic relationships can be modeled with all metamodeling languages, but only 
in NIAM can a direct recursion be forbidden by defining the cyclic relationship 
(called homogenous binaries by Nijssen and Halpin (1989, p 183)) as  
irreflective, and an indirect recursion by defining the relationship as 
asymmetric. In contrast, no method has relationships which are reflective, or 
symmetric, i.e. none of the object type instances must be related to itself via a 
cyclic relationship, nor does any connection between two object type instances 
necessitate another instance of the same relationship type with different role 
types. 
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4.5.2.1.8 Multiplicity of type 

Modeling the multiplicity of types is not supported in any of the metamodeling 
languages analyzed. Thus, it is not possible to specify rules for restricting the 
number of instances of a given type (i.e. how many instances of an object or 
relationship type must or can occur in the scope of a model or a method). 

4.5.2.2 Modeling multiple interconnected techniques 

Most metamodeling languages focus on modeling single techniques only. 
Accordingly, only a few of them distinguish constructs for modeling multiple 
interconnected methods adequately.  

4.5.2.2.1 Inclusion 

Inclusion is supported in ASDM, CoCoA, MEL, and GOPRR, although in 
CoCoA (Venable 1993, p 116) it is applied only in integrating similar types of 
techniques from different methods. All of them allow the modeling of many-to-
many relationships of the inclusion: the same type can be part of multiple 
techniques, and a technique can consist of multiple types. Because of the 
deficiency of NIAM in this matter it has been extended with schema types by 
ter Hofstede et al. (1993). 

4.5.2.2.2 Complex objects 

One of the most weakly supported constructs in metamodeling languages is the 
modeling of complex objects. Only ASDM, CoCoA and GOPRR support some 
structures of complex objects: ASDM provides a structural entity type; GOPRR 
provides decomposition, instance reuse, and nested data types for modeling 
complex objects. The last of these, however, does not address complex objects 
other than by allowing a component to be modeled as a property of an 
aggregate object (i.e. simple covering aggregation as in CoCoA). CoCoA 
provides complex covering aggregation to model an aggregate object type and 
its components as object and relationship types. As mentioned above, NIAM 
has been extended (cf. ter Hofstede 1993) with a schema type also applicable for 
modeling complex objects. In the following we assess the modeling support 
according to the various structures of complex objects (cf. Table 4-4). 

In ASDM, entity types resulting from recursive aggregations expect that 
the component (called the structural entity type) must belong to exactly one 
aggregate type (called the fundamental entity type). In contrast, in CoCoA and 
GOPRR component elements are not dependent on the existence of an aggregate 
object. Thus, they can not adequately specify methods which apply top-down 
modeling only, such as functional decomposition (Yourdon 1989a) or a 
composite (Booch and Rumbaugh 1995). However, connected components, 
which are recognized as essential in all structures of complex objects, can be 
modeled. The third dimension, mandatory component objects, can be modeled 
only in CoCoA. In GOPRR components are optional, but in CoCoA both 
mandatory and optional components can be specified by a cardinality constraint 
for the covering aggregation, namely one for mandatory and zero for optional 
components. In relation to the exclusive-shared dimension of complex objects, 
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GOPRR and CoCoA support only the shared dimension by allowing the same 
instance of a component type to belong to more than one aggregate object. As a 
result, they can not adequately specify methods which apply complex objects 
with an exclusivity constraint, such as the clusters of BON (Walden and Nerson 
1995), functional decomposition (Yourdon 1989a), composite (Booch and 
Rumbaugh 1995) or nested state diagrams (Rumbaugh et al. 1991, Booch et al. 
1997). 

The fifth dimension of recursive complex objects is supported adequately 
both in CoCoA and GOPRR since only recursive complex objects need to be 
perceived. In CoCoA recursive complex objects are modeled by using the same 
names for the aggregate and the component. Hence, the same instance of an 
entity type is added twice to the CoCoA diagram. In GOPRR, non-recursive 
complex objects can also be described by having two different graph types (i.e. 
techniques), one containing the aggregate type and another for the component 
types. Moreover, the graph type for components should not include the 
aggregate object type. Because this approach requires two different graph types 
the choice of the modeling technique beforehand would not be ideal. 

The metamodeling languages studied do not make any type level 
distinctions between relationships of an aggregate or a component. Thus, they 
all satisfy the sixth type of complex structure, i.e. independent relationships for 
aggregate object types. The final requirement in modeling complex types is 
aggregated relationships. This was not supported in any of the metamodeling 
languages studied. 

4.5.2.2.3 Explosion 

The third essential construct in modeling interconnected methods is the 
explosion from a type of one technique into another technique. For this 
metamodeling requirement GOPRR includes an explicit explosion construct; 
CoCoA does not provide such a construct explicitly and most of the CoCoA 
metamodels are based on techniques of a similar type in which the connection is 
based more on inclusion and use of the same types among several techniques 
rather than explosion structures between techniques (cf. Venable 1993, Grundy 
and Venable 1996). Relationships which are outside the domain of complex 
objects can, however, be distinguished as explosion relationships (see the 
CoCoA example in Section 3.3.3.5). NIAM does not provide support for 
explosions because it does not consider multiple techniques at all. Therefore, 
NIAM has been extended with PSM (ter Hofstede 1993) to support explosions 
by a relationship from an object type in one schema type to another schema (i.e. 
technique). These relationships are usually distinguished from other 
relationships by naming the roles (c.f. ter Hofstede 1993, p 33, 45) since they are 
represented with the same notation and constraint types. Hence, like CoCoA, 
NIAM/PSM does not provide any explicit type level construct. 

None of the metamodeling languages for describing explosions is 
adequate. First, no distinction is made about the scope of explosions. The 
metamodeling languages analyzed thus do not distinguish between explosion 
of a type instance in a model or among all models. Other deficiencies in the 
metamodeling languages can be illustrated by various alternatives of explosion 
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structures, namely type of the explosion source, cardinality of the explosion, 
exclusive or shared explosion target, and dependent/independent explosion 
target. Each of these characteristics was described in Section 4.4.2.3 and will be 
applied in the assessment below. Both GOPRR and extended NIAM (ter 
Hofstede 1993) support explosion structures from object types only, and thus 
can not adequately model explosion from property types, e.g. from a service to 
service charts (as in Coad and Yourdon 1991a), or from relationship types, e.g. 
from a transition to a data flow diagram (as in Rumbaugh et al. 1991). 
Mandatory explosion is supported in NIAM/PSM only with the extended 
graphical constructs (ter Hofstede 1993): a total role constraint on the role of the 
object type participating in an explosion relationship. In principle, other NIAM 
constraints for roles, such as uniqueness and occurrence frequency constraint, 
could also be used for describing other necessary cardinality rules. To our 
knowledge, however, NIAM has not been used to model such an explosion 
cardinality (cf. ter Hofstede 1993, ter Hofstede et al. 1993). If extended in such a 
way, exclusion of explosion links could also be described with the exclusion 
constraint of NIAM added to all role types of explosion relationships. While the 
cardinality of explosion links is unspecified in GOPRR, mandatory explosion 
links can not be modeled. Also, many-to-many relationship between instances 
of object types and graph types are allowed. 

4.5.2.2.4 Polymorphism 

Polymorphism is not supported at all in MEL, NIAM, ER and ASDM. For 
example, ASDM allows the same property type for one entity type only. Other 
languages address it only partially. 

CoCoA offers an entity alias which supports polymorphism among entity 
types only. No entity alias, however, was found from the methods analyzed as 
none of them includes different types which have exactly the same instance 
information. The entity alias seems to have be added into CoCoA mainly to 
support integration of similar kinds of modeling techniques (cf. Grundy and 
Venable 1996). Moreover, CoCoA does not specify the functionality of such an 
alias if an aliased entity occurs in a complex covering aggregation. For example, 
would it have the same relationship instances as well? 

OPRR supports dependencies between elements at the level of single 
valued properties only (Smolander et al. 1991, MetaCase 1994). A reference 
property type links to instances of the same, or another property type. Since the 
property type referred to may be named differently on the metalevel and 
belong to a different object, relationship, or role type, some structures of 
polymorphism can be supported with OPRR. These include methods which 
apply polymorphism in a single technique and share single valued (string) 
property types independently. Sharing of single property values can be 
supported among multiple type instances by using the reference property type 
for each type. Since any instance of the referred property can be used as a value 
for a referring property, the reference scope is the whole method. 

GOPRR extends the support of polymorphism found from OPRR to 
multiple techniques as well as to more complex data types than string or other 
basic data types. If such more complex data types would be used, necessitating 
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the use of instances of object, relationship or role types, the polymorphism is 
supported for multiple values. In GOPRR the sharing of a single instance as a 
property type is called property sharing. GOPRR does not specify any 
dependency to the property sharing, and it is allowed wherever the same 
property type is reused. 

Support for metamodeling of polymorphism can be analyzed through the 
support for each kind of polymorphism structure: the coverage over one or 
more techniques, the number of property type instances shared, the number of 
types related, and the dependency. The metamodeling languages do not make a 
difference between polymorphism with instances of one technique or a whole 
method. OPRR provides support for sharing one property value only; and 
GOPRR extends this to sharing of multiple connected property values through 
sharing non-property types. This necessitates that all interconnected properties 
of a polymorphism structure are collected into a single type. Sharing the same 
property values can not be limited into two or any other number of instances. 
As a result, for example balancing rules of SA/SD requiring correspondence 
between two type instances only can not be modeled. These balancing rules 
state that an instance of an entity name can belong to only one item in the data 
dictionary. Finally, none of the metamodeling languages recognizes 
dependencies among polymorphism structure. 

4.5.3 Limitations of metamodeling based on semantic data models 

Although metamodels represent a great deal of static method knowledge and 
customizable CASE tools can automate them they are not complete. First, our 
metamodeling efforts with GOPRR (and OPRR, Tolvanen and Rossi 1996) show 
that it has limited support for modeling the rule parts of method knowledge. 
Second, none of the languages provides adequate support for metamodeling. 
The obvious reason is the limited metamodeling capabilities of the selected data 
modeling approach. As a result, we need to discuss the limitations of method 
modeling using conceptual data models. This topic is especially important 
because other languages for metamodeling, such as Object-Z (Saeki and Wenyin 
1994) or LISA-D (ter Hofstede et al. 1993) have been proposed, which could 
solve alone, or as extensions, limitations of data model based languages. To 
guide the development of languages for capturing method knowledge or to find 
other complementary approaches, we illustrate in the following some key 
constraint types for metamodeling languages which were not addressed with 
semantic data models. 

The analysis of the limitations of data model based metametamodels is 
supported by our method modeling studies. First, methods include 
transformations in which models based on one technique are transformed to 
another model. This is typical in vertical integration of techniques. According to 
our metamodeling approach this would necessitate changing the types of 
instances. For example, in a transform-centered design (Yourdon and 
Constantine 1989) a network model of processes can be transformed into a 
synchronous structure chart. Similarly, a data transformation based design 
approach used in JSD (Cameron 1989) applies generation of initial process 
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structures from the definitions of the data structures. This is especially relevant 
in CASE tool based methods since they can automate error-prone routines, such 
as transformations. Transformations, however, are examples of method 
knowledge that needs information both about meta-data models for retrieving 
or changing design information (cf. Brinkkemper et al. 1989) and about process 
models (cf. Marttiin 1998, Marttiin et al. 1996) for guiding and executing the 
transformation.  

Another type of method knowledge that can not be captured with static 
metamodeling constructs is heuristic rules and recommendations. For example, 
some object-oriented methods include recommendations on the breadth and 
depth of inheritance hierarchies, the number of public operations for a class 
(Booch 1991), or that a single state model should not specify states of more than 
one class (e.g. Embley et al. 1992). 

Third, dynamic relationships among the instances of the same or different 
type can not be described with data models. Examples of these dynamic aspects 
in method knowledge are the numbering of an instance based on the number of 
its creating activity (Lundeberg et al. 1981), or that functions participating in a 
call relationship can not have child diagrams (FIPS 1993a). Similarly, in 
Yourdon (1989a, p 283) possible values for a condition in a state transition can 
not be found among the properties of the related control process, but from the 
flows it participates in: the possible values for the condition are only those 
names of flows which are coming into the control process. This type of 
polymorphism could not be supported with the proposed constructs. Extensions 
of methods closer to the constructs of programming languages would raise 
similar requirements. For example, an action defined in a state diagram of a 
single class should be characterized as a private method, and a message 
between objects as a public method, in the corresponding method definition of 
the receiving class. Similarly, modeling of method overloading would not be 
possible with the proposed metamodeling constructs. The extension of the 
metametamodels and metamodeling languages in this direction is, however, 
questionable. Some of the dynamic rules on naming, especially on the identifier 
side, originate from pen-and-paper oriented methods (e.g. Lundeberg et al. 
1981) and are not necessary in computer-aided environments. Thus, there 
would not be a need to support these in metamodels either.  

Fourth, none of the metamodeling techniques support grammar 
specification for formal textual descriptions, such as process specifications, data 
dictionaries (Yourdon 1989a), or textual grammars (Walden and Nerson 1995). 
These are especially important to better integrate modeling tools and models 
into other tasks of ISD, such as generating prototypes, program code, or 
visualizing available data and program structures. 

Because of these limitations other metamodeling approaches, such as rule-
based languages or predicate logic, could be more suitable as extensions and 
need to be studied in relation to the criteria proposed here. Various other type 
of languages for metamodeling could also be tested to specify essential 
constructs of metamodeling.  
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4.6 Summary and discussion 

In this chapter, we have analyzed conceptual structures of methods and 
proposed essential constructs for metamodeling languages. These constructs 
were derived from the analysis of ISD methods by modeling the methods and 
by validating the metamodels by adapting them into a modeling tool. Our focus 
on metamodeling has captured static aspects of method knowledge for adapting 
a tool. The constructs are not required only to represent method knowledge, but 
also to “execute” the methods in a computer -aided modeling tool. Each 
construct of a metamodeling language supports the implementation of a certain 
part of the conceptual structure of a method into a modeling tool.  

The proposed constructs were divided into two categories, those for 
modeling a single technique and those for modeling a whole method. In 
modeling a single technique, four constructs deal with modeling property 
types, including their identity, uniqueness, mandatory and data type. One 
construct, type multiplicity, deals with the number of instances of a given type. 
Four of the constructs deal with connections between objects, namely cyclic 
relationships, cardinality, multiplicity of single role type, and multiplicity over 
several role types. Required constructs for modeling interconnected techniques 
were classified into four aspects: inclusion for specifying the types used in each 
technique; complex objects for describing types which are treated as being 
“combined” without explicit relationships; explosion for modeling links 
between types and different techniques; and polymorphism for specifying the 
types of a method whose instances share the same values. These constructs are 
specific for the field of method modeling only, and no suggestions were made 
of their applicability in other domains. 

The analysis of method knowledge together with the proposed 
metamodeling constructs also serves as a vehicle for assessing existing 
metamodeling languages. In short, CoCoA and GOPRR seemed to be most 
comprehensive for specifying method knowledge behind modeling techniques. 
NIAM also succeeded well but only while modeling single techniques.  

In general, the assessment reveals that the current methodical support for 
method engineering is modest. While in recent years some progress has been 
made in outlining conceptual and theoretical principles for metamodeling and 
several metamodel-based tools have been developed (for a survey see Tolvanen 
et al. 1996) we argue that the available metamodeling languages, mostly based 
on data models (CASE Outlook 1989), do not provide adequate support for all 
aspects of method engineering. For example, metamodeling methods offer 
limited constructs for modeling interconnected techniques. Moreover, we 
identified conceptual structures of methods which could not be represented 
with the proposed metamodeling languages adequately or even at all. As a 
result, we have pointed out some areas for improvement. 

It must be noted that we did not discuss method knowledge that could be 
supported already by all the languages, since this can be found directly from 
the metamodels. Similarly, during the assessment of the metamodeling 
languages we did not evaluate which language is more suitable for 
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metamodeling, nor did we try to eliminate the constructs offered by these 
languages although some of them offered constructs which we did not find 
essential. This was especially the case with NIAM (see also Weber and Zheng 
(1996) for the construct overload) since the constraints for equality and 
exclusion were not found to be essential. These constraints along with some 
other might, however, be needed in modeling other methods, or if different 
interpretations of method knowledge and their tool support need to be made. 
The refinement of available languages for metamodeling, however, is outside 
the scope of our study. 

Finally, various interpretations of method knowledge and its modeling 
deserve a closer examination. Like all modeling, our metamodeling effort was 
influenced by alternative interpretations of the method knowledge. Two major 
reasons for the interpretations and alternative versions of metamodels were tool 
adaptation and incomplete, or even inconsistent, method descriptions.  

First, on the tool adaptation side, method developers have not considered 
enough possibilities of computer-aided tools but rather maintained the pen-
and-paper mentality. Moreover, most remarks on tool use were made on the 
representational side, rather than on the conceptual side of method knowledge. 
As a result, in tool adaptation some aspects of method knowledge could be 
modeled differently. For example, there is no need to introduce additional 
textual pages separate from diagrams to view and edit more detailed 
information about the elements of a diagram (e.g. Lundeberg et al. 1981, 
Goldkuhl 1992) if such information can be added directly to the elements. 
Similarly, models do not need property types for entering reference 
information, such as how many representations of this instance exist (Gane and 
Sarson 1978), or whether the process is decomposed or not. Also the identity of 
instances does not need additional reference numbers, such as process 
identifiers, or information codes, widely used in pen-and-paper based methods 
(e.g. Yourdon 1989a, FIPS 1993a, Lundeberg et al. 1981). The balancing rules 
applied in many methods (e.g. Yourdon 1989a) could also be implemented 
differently: instead of referring to names in a polymorphism, we could refer to 
actual instances. Why refer just to a value of a property type, if the whole 
instance of an object type or a relationship type is available. These modeling 
options are typically related to the support provided by a modeling language, 
or a tool.  

Second, a major reason for alternative metamodels was inadequate or even 
inconsistent method descriptions. As a result, we need to make our own 
decisions on what specific concepts and rules mean. For example, in most of the 
object-oriented methods, except OSA (Embley et al. 1992), it is unclear whether 
a state model can include states of more than one object. Instead of providing 
methods for systematizing ISD, method developers should apply 
(meta)methods to systematize ISD methods (Parsons et al. 1997). 



5 EXPERIENCE BASED METHOD EVALUATION AND 
REFINEMENT 

In this chapter our aim is to extend the use of metamodels in maintaining 
method knowledge in evolving ISD situations. Accordingly, we shall develop 
incremental method engineering principles and thus focus on our second 
research question (cf. Section 1.5.3): 

The question deals with extending the dominant a priori ME principles 
through an a posteriori approach. We collect situational experiences of method 
use for refining methods. Whilst current ME approaches focus solely on the 
construction phase and expect information about methods and their use 
situations to be known completely beforehand, we assume that constructed 
methods are not necessarily applicable in the first place, situations in which 
they are applied change, and method users learn through their use. A posteriori 
refinement of methods is based on collecting and analyzing differences between 
intended and actual use of modeling techniques, on studying how techniques 
have supported modeling, and on understanding how they support problem 
solving. In contrast to learning about object systems under development (via IS 
models), our aim is to learn about methods and especially about modeling 
techniques (via metamodels). The proposed principles complement, but do not 
substitute, the ME frameworks and (meta)methods. 

This chapter is organized as follows. First, in Section 5.1 we describe the 
motivation for incremental ME in general, and experience-based evaluation and 
refinement in particular. Second, in analyzing the principles of incremental ME 
it is useful to place this work in relation to other similar work reported in the 
literature. Therefore, in Section 5.2 we describe approaches proposed for 

How can experience of method use together with metamodels be applied for 
method refinements? 
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method evaluation as well as point out some problems and difficulties in such 
evaluations. This leads us in Section 5.3 to propose mechanisms which, through 
the use of metamodels, can help to gather, analyze and communicate 
experiences about the use of modeling techniques. The ME process is explained 
in more detail from the view of a posteriori evaluation and refinement. Finally, 
Section 5.4 summarizes the chapter. 

5.1 Introduction into incremental method engineering 

Before extending ME principles further we need to argue for the necessity of an 
incremental approach and describe why and how the current ME principles are 
inadequate. This is important because there is a paucity of studies focusing on 
principles to support method evolution through ME principles (Tolvanen et al. 
1996).  

In the following subsections we first give basic motivation for the 
incremental approach and define it by taking an a posteriori view of the ME 
process. Second, different scenarios for refining methods are identified. 
Identification is based on analyzing the origins of ISD related experiences and 
distinguishing targets for making method refinements. The section concludes by 
discussing differences between incremental and more radical ME approaches. 
This allows us to describe local method development situations where the 
proposed principles are most suitable. 

5.1.1 Motivation and definition 

The motivation for incremental ME comes from our re-evaluation of method use 
(Section 2.5) and from the limitations of current ME principles (Section 3.2). In 
short, we claim that the situational applicability of methods is difficult to 
achieve solely through a priori ME principles. Major reasons are that 1) the 
required information for method construction is not sufficiently available, 2) the 
criteria that can direct method construction are difficult to identify beforehand, 
and 3) the ISD environment evolves.  

Availability of method knowledge 

In relation to availability, there are not many detailed metamodels available, 
nor readily applicable frameworks of ME criteria which are “filled” with known 
situational characteristics and related to metamodels. Most of the metamodels 
 which come with metaCASE tools, repositories, or are described in reference 
books (e.g. Olle et al. 1991)  focus on a limited number of methods and/or on 
only specific types of methods (e.g. object-oriented methods). Moreover, the 
metamodels described in books are not usually specified unambiguously and 
are at a relatively coarse granularity, at least when compared with the detailed 
metamodels required to model operational techniques. As a result, the pool of 
methods specified with metamodels for comparison and selection is small. 
Moreover, the frameworks of ME criteria, like the contingency frameworks 
applied to ME (i.e. Punter and Lemmen 1996, Harmsen 1997) focus on only a 
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few aspects of methods applicability, and only on general method knowledge 
(see Section 3.2). The combination of metamodels and ME criteria into a larger 
baseline is difficult: different metamodeling languages focus on different types 
of method knowledge at different levels of detail and are not usually related to 
detailed method knowledge. Even assuming that a large body of metamodels 
and related ME criteria were available, the maintenance of this knowledge 
would be a huge or even unrealistic task. This fact also partly explains why 
contingency frameworks operate with method knowledge at a general level. 

As a result, organizations are forced to test methods and try to make them 
more applicable by “learning” and d eviating from them while they are used. 
After all, organizations can not stop developing their own variants although 
theoretically this can be assumed (e.g. Wynekoop and Russo 1993). Similarly, 
the proposed incremental principles take an a posteriori view of ME by seeking 
to understand the applicability of methods through an organization’s 
experiences. The a posteriori view also forms a key distinction to current ME 
principles reviewed in Section 3.2. It must be emphasized that typically the 
experience gathering and method refinements are carried out haphazardly and 
on a trial-and-error basis without any systematic principles (Smolander et al. 
1990, Hughes and Reviron 1996). 

Availability of method engineering criteria 

We claim that it is difficult, if not impossible, to identify beforehand all relevant 
criteria for method construction. For example, the ME criteria of van Slooten 
and Hodes (1996)  resistance of end-users, aspects of the system to be 
analyzed, and management commitment  can hardly be known completely 
beforehand. Furthermore, as argued in Section 3.2 their relationship to method 
knowledge is not clear. In fact, van Slooten and Hodes apply the contingency 
framework in an a posteriori manner to analyze whether the criteria proposed in 
their framework have affected past projects and thus could be relevant to ME. 
How they can be applied to construct methods is not discussed. In contrast to 
the current ME view, cases of local method development (Jaaksi 1997, Tollow 
1996) show that the characteristics and problems to be solved with methods 
were not known beforehand because of uncertainty about the problems.  

As a result, we claim that the requirement for complete prior knowledge is 
both idealistic and unrealistic. Consequently, in situations of uncertainty and 
limited information, the incremental principles focus on improving method 
applicability through promoting small changes to methods while an 
organization obtains experiences and learns both about the method and about 
the IS domain. Although this option is partly dictated by practical needs, it also 
allows the creation of new knowledge based on experience, regarding both the 
method and the ME criteria. This is important, because current ME approaches 
rely on the existing body of information about both methods and ME criteria. 
Therefore, ME must be viewed as a learning process in which experience of 
successful (or unsuccessful) ISD efforts needs to be incorporated into future ME 
efforts: every use situation of methods should evaluate and analyze methods 
with a view to improving them. In fact, keeping the situational dependency of 
method use in mind, the most reliable information about method applicability 
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can be obtained from an organization’s own experiences. This experience-based 
learning is generally an incremental process (Miner and Mezias 1996), and a 
main argument in favor of incremental ME. 

Evolving information system development environment 

A method use environment is hardly stable because situations can change even 
during a short ISD effort. These changes also affect the applicability of methods, 
leaving two options for method engineers: either continue the use of the method 
in its current state, or modify it to support the new situation. The former option 
is chosen at the cost of applicability and the latter at the cost of making a new 
version of the method and transforming models which have already been made. 
This topic is discussed in Section 5.1.3. Changes in ISD situations are common, 
and can be seen also in the documented ME cases (e.g. Cronholm and Goldkuhl 
1994, Nissen et al. 1996, Jaaksi 1997). These show that once methods have been 
adapted to tools, requirements for maintaining and modifying the methods for 
new situations appear immediately. In fact, some of the requirements occur 
already during tool adaptation, or after a pilot use. As a result of this evolution, 
methods must be refined continuously.  

At the level of the ME criteria, changes in the situation have been 
identified as changes in contingencies, shifts in problems of ISD, or changes in 
stakeholders’ requirements and values (Kumar and Welke 1992, Joosten and 
Schipper 1996). On the contingency side, one of the main reasons for 
introducing an ME approach is the inflexibility of contingency based method 
selection (Kumar and Welke 1992): in the worst case, a change in one 
contingency could lead to a selection of a totally different method. Similarly, a 
typical shift in problems to be solved (Checkland 1981) necessitates changes in 
methods: only in the case of a tightly defined and enclosed system can a method 
be presumed to be applicable every time. Finally, neither stakeholders nor their 
requirements are stable. People participate at different times and new people 
can raise different requirements and have different values which need to be 
reflected in methods (Nuseibah et al. 1996). Similarly, stakeholders’ 
assumptions change and they can not know all the relevant criteria (Joosten and 
Schipper 1996).  

To summarize, an incremental approach extends, rather than substitutes, 
the current principles of ME by focusing on experiences of method use, i.e. on 
an a posteriori instead of an a priori view. By evaluating the applicability of 
methods in a given situation it aims to manage and refine methods. The 
accumulated experience can lead organizations to extend, modify or purge any 
part of the method knowledge, such as concepts, constraints, or notations. These 
refinements are gradual and small in nature, hence the name incremental for the 
proposed approach. Gradual means that method refinements are applied to the 
method currently used in a given situation, instead of selecting a radically new 
method. Small changes are a consequence of the gradual changes: applicability 
is achieved by modifying selected parts of the existing method knowledge. 
Before describing the incremental principles in more detail we first take a closer 
look at method evolution.  
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5.1.2 Scenarios of method evaluation and refinement 

In the following subsections we analyze incremental ME according to two 
dimensions: the source of experiences and the target of method refinement. 
Identifying the sources of experiences allows us to find mechanisms to collect 
experiences and make them available for method engineers. Experiences can 
lead to method modifications in different phases of the ME process. This is 
described through the target of method refinements. In the following we shall 
also address relationships between different types of method knowledge by 
describing how requirements imposed on a method’s conceptual structure affect 
notations and supporting tools, or vice versa.  

5.1.2.1 Sources of experiences 

A requirement to modify a method arises when the method does not meet the 
situational requirements. These requirements can be collected while adapting a 
method to a tool, while introducing a method into an organization, or while 
using the method23. Each of these alternative sources can lead to iterations in 
the ME process and to a method modification. In each view the applicability of 
a method is determined based on different criteria:  

1) Tool related feed-back occurs when a customizable modeling tool has 
limitations to support the constructed method (Cronholm and Goldkuhl 1994) 
or it offers possibilities which have not been considered earlier (Tolvanen and 
Lyytinen 1993). For example, most of the ISD methods used today still follow a 
“pen -and-paper” -mentality: they do not take full advantage of computer-based 
modeling environments. Therefore, the applicability of the method is 
determined here through a method-tool companionship. 

2) Introduction of methods. Method refinements can also originate from 
the introduction or “pilot” use of methods (cf. Nissen et al. 1996), when a larger 
group of stakeholders can analyze the constructed method and tool support. 
Here a method is typically assessed in terms of its supporting materials, like 
tutorials, manuals, example solutions and reference models, as well as features 
of the method supporting tool. The applicability is determined mostly 
according to the pedagogical aspects, like how easy it is to learn and introduce 
the method into an organization. Some ME approaches focus on constructing 
methods so that they work as a learning device for teaching ISD methods (cf. 
Mathiassen et al. 1996).  

3) Experience-based feedback occurs when developers face situations in 
which they feel that the constructed method is, or is not, applicable. If the 
method is considered inapplicable, they may rely on their experience more than 
on the use of the method. Hence, the applicability of the method is viewed in 
the light of current circumstances. This type of feedback is important because it 
is founded on actual method use. Several researchers (cf. Wood-Harper 1985, 
Galliers and Land 1987, Galliers 1992, Checkland 1981, Grant et al. 1992) have 
                                                
23  The method modifications can also occur while selecting or constructing the method, but 

we do not consider them because they are discussed in available ME approaches (cf. 
Punter and Lemmen 1996, van Slooten and Hodes 1996). 
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also emphasized the importance of the problem situation in which the method 
is used as a basis for evaluation. 

In this thesis our main interest is on experiences related to method use, 
although the other sources mentioned are also possible starting points for 
iterations. Modifications which arise from the functionality of the tool are 
mostly dealing with technical issues and not related to the applicability of 
modeling techniques. In other words, our primary focus is not on the evaluation 
or improvement of modeling tools and their support for method-tool 
companionship. However, we claim that this type of empirical approach is 
required for evaluating tools (Tolvanen et al. 1996). Similarly, we do not 
consider here the effect of teaching approaches, other method-related materials, 
or the effects of piloting approaches, although we acknowledge their 
importance.  

5.1.2.2 Targets of method refinement 

Collected experience can lead to method modifications at different phases of 
method development. This dimension describes whether the iteration leads to 
re-select a method or its parts (i.e. start the ME process from the beginning), to 
construct the method differently, modify the method only to achieve better tool 
companionship, change the way in which the method is introduced, or to 
interpret the method differently. Each target is described in the following. 

1) Refine the method while using it. This possibility means making 
different interpretations and giving different meanings to the method 
knowledge. This type of refinement takes place in learning-by-doing when an 
individual learns by developing an IS. Moreover, it must be noticed that this 
type of refinement can often occur without any language or documentation. 
Hence, the refinements can also be tacit (Nonaka 1994, Hughes and Reviron 
1996). For method refinements this means that experiences about methods are 
not shared and thus not explicitly used to modify “intended” method 
knowledge. As a result, method refinements performed only while individual 
persons are using the method are difficult to study and systematize, because of 
the tacit nature of method-related experiences. 

An individual person’s refinements can be externalized (Nonaka 1994) by 
making them explicit and thus available to method engineers and other 
stakeholders. Experiences can also lead to organizational learning if they are 
collected and shared in some way with other participants. The remaining four 
phases of method refinement presuppose mechanisms to collect experiences and 
to make explicit changes to method knowledge. 

2) Changes in the introduction or “piloting” phase deal with method 
refinements which change the way in which a method is taught; modify 
method-related materials, such as example solutions, tutorials, manuals; or 
demand more easily learned versions of the method. This last approach is 
commonly used both in text-book methods (e.g. Booch 1991) and in local 
variants (Jaaksi 1997) by developing “light” versions of the method. These are 
simpler and easier to learn, yet applicable for small or “first” projects.  
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3) Refinement of the method in a tool aims to make the use of the method 
easier with the tool. Examples of such modifications are changing the order in 
which the design information is added to the tool, or changing reports for 
consistency checking. Issues related to the tool only, such as the layout of 
dialogs and the order of reports and techniques shown in dialogs or menus fall 
into this category. Because these modifications change the behavior of the tool, 
they are explicit and well-structured changes, but deal with the surface 
structures (Wand 1996) of method knowledge. 

4) Re-constructing a method represents more profound changes to the 
method knowledge. These include modifications to the initially constructed 
method knowledge: existing method components in the metamodel are 
removed or modified. A re-construction of the method also requires 
modifications to the underlying rationale applied for selecting and constructing 
the method in the first place. Ideally, each modification should be evaluated 
based on earlier knowledge of the method’s applicability: why a certain 
methods was not applicable, and how the modification can improve its 
applicability.  

5) Selecting a new method or its parts deals with the most profound 
refinements to methods. Here new method components, like types, constraints, 
and modeling techniques, or totally new methods are selected. These changes 
are also typical when the re-construction requires new components or when 
unforeseen contingency factors arise, or there is a significant change in existing 
factors (van Slooten and Hodes 1996). 

Together the two dimensions, the source and the target, form a space for 
possible method refinements. These are illustrated in the cells of Table 5-1. The 
horizontal axis shows the sources of experience and the vertical axis shows the 
targets of method refinement. The arrows show all possible choices when 
method refinements can take place: from the starting point of an iteration to the 
point of making the refinement. These scenarios are important because they 
allow us to restrict our view to experiences based on method use, and their 
influence on method refinements.  

According to the possible scenarios, experiences about methods can be 
collected before, during or after the use of the method. Our interest in method 
refinements is in those related to experiences gathered from method use which 
can be externalized, i.e. represented, analyzed and refined with metamodels. 
These situations are grayed in the table. Thus, the first four phases of the ME 
process, which can also raise requirements for method refinement, are not 
considered in this thesis. They expect evaluations to be carried out before a 
method is used and are already partly covered in a priori ME approaches. 
Hence, we believe that the applicability of methods can be known only when 
the method is used.  

The selected scenarios also reflect the depth of method refinements 
because all refinements made to metamodels expect modifications to be made to 
later phases of ME, i.e. to tools and their introduction phase. These are, 
however, also supported in most of the ME frameworks (see Section 3.2). 
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TABLE 5-1 Scenarios for incremental method refinements. 

Source 
Target 

Method 
selection 

Method 
construction 

Tool 
adaptation 

Introduction 
of methods 

Method 
use 

Method 
selection 

     

Method 
construction 

     

Tool 
adaptation 

     

Introduction 
of methods 

     

Method use 

 

     

 
 

5.1.2.3 Refinements between types of method knowledge 

Method refinements can not always be carried out by modifying only one type 
of method knowledge. Instead, during the construction phase the modifications 
are interrelated: changes in one part of method knowledge cause changes in 
other parts of the method.  

Based on our focus on modeling techniques, we shall analyze only two 
fundamental types of method knowledge subject to modifications, namely the 
conceptual structure and the notation. These types and their relationships are 
also identified by Kronlöf (1993) and Jarke et al. (1998). Thus, other types of the 
method knowledge shown within the shell model (Figure 2-2) are excluded. 
However, to emphasize the companionship between a method and a tool, we 
also analyze tool-related method refinements. Therefore, method refinements 
can deal with the following interrelations: 1) conceptual structure and notations, 
2) conceptual structure and modeling tool, and 3) notation and modeling tool.  

1) Conceptual structure and notations. The most drastic modifications in 
a method occur when a large portion or the whole conceptual structure is 
changed, as when shifting from structured methods to object-oriented methods. 
Similarly, domains which are less mature, such as business modeling and 
requirements engineering, have less stable concepts and thus are more likely to 
evolve.  

Because the underlying conceptual structures are typically the foundation 
of the method, changes in the conceptual structure affect other types (Jarke et al. 
1998): notations which represent these concepts, processes which operate on 
these conceptual structures, and computer-aided tools which capture, store, 
analyze and retrieve the models representing those conceptual structures. For 
example, adding a new type to the conceptual structure requires changing the 
notations by adding a new notation for that type. Accordingly, the completeness 
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of representations (Batani et al. 1992, Venable 1993), i.e. the availability of a 
notational construct for each concept, is a well-known criterion for dealing with 
the relationship between the conceptual structure and the notation. In contrast, 
changes in notations do not necessarily affect the conceptual structure (cf. Ryan 
et al. 1996, Kronlöf 1993). With respect to method refinements, we identify here 
a causal relationship among interrelated modifications: all changes to the 
conceptual structure should be made before changes in notations. Changes in 
methods, however, often arise from notations because they are the most visible 
part of the method. 

2) Conceptual structure and modeling tool. Method modifications can 
also occur because a tool can not provide the required modeling functionality, 
such as an abstraction mechanism, a checking, or a form conversion. Here the 
method may need to have additional constraints or properties to enable 
consistency  checking, reporting or code generation. For example, most of the 
object-oriented design methods do not recognize whether an inheritance is 
virtual although this information is required for generating header files for C++. 
Although these concepts are added to the tool, they are also defined and 
maintained in the metamodel.  

3) Notation and modeling tool deals with the surface structure (Wand 
1996) of the method knowledge: method refinements are made by modifying 
symbols and notations based on the graphical capabilities of the tool.  

Although most of the metaCASE tools available provide method 
adaptation possibilities (Marttiin et al. 1993, 1996) they focus on modifications 
which are carried out when the tool is introduced. Accordingly, later method 
modifications are difficult, if not impossible (e.g. Cronholm and Goldkuhl 1994, 
Nissen et al. 1996). It must be noted that by method modifications we also refer 
here to situations in which the models made so far are updated along with the 
modified method (e.g. to support reuse of designs). 

5.1.3 Incremental versus “radical” method engineering 

Not all method development efforts are necessarily gradual or require small 
modifications to methods. In general, the literature on the development of 
business processes and on organizational learning distinguishes between 
radical and incremental approaches. For example, business process re-
engineering (BPR, Hammer and Champy 1993) advocates a radical approach in 
terms of the rapidity and magnitude of a change, whereas total quality 
management (TQM, Flood 1993, Oakland 1993) relies on continuous small 
changes. Similarly, there is a wide-spread consensus on the distinction between 
incremental and radical models of learning (Miner and Mezias 1996).  

Generally speaking, the type of change required and the type of learning 
are related: carrying out a radical change necessitates that the organization is 
capable of radical learning (i.e. to implement and introduce a large change 
quickly). Conversely, continuous small changes to existing processes expect 
incremental learning. Both approaches can produce benefits for an organization, 
and both types have advantages and disadvantages. In this sense they provide 
alternative strategies depending on how often the change is made and how 
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large the change is. These alternatives are also valid in ME. By “radical” ME we 
mean a priori ME approaches in which methods are constructed solely in the 
beginning of each ISD project. This type of change is also the one most studied 
in ME research (see Section 3.2). It can be considered radical because each ISD 
project and each ME case is handled separately. A method is expected to be 
introduced once and no reflective learning during the method use is 
incorporated into methods. As described above, incremental ME is based on 
smaller and more gradual changes. At the extreme end of the scale, method 
refinement can be continuous and concurrent with the change requests from the 
method use environment.  

Both modes of ME can be useful, depending on the situation, as both 
modes have their advantages and disadvantages: not all changes to methods 
can be radical, but on the other hand, small gradual changes may hinder 
development efforts which require more substantial changes. This also means 
that not all local method development efforts can be carried out according to 
incremental ME principles. Therefore, in the following we describe 
characteristics of ISD organizations or projects where incremental principles are 
most suitable. These characteristics are summarized in Table 5-2. 

TABLE 5-2 Radical versus incremental modes of method engineering 

 Incremental approach Radical approach 
Availability of method 

knowledge 
Little Considerable 

Selection criteria Uncertain Known 
Duration Long-term Short-term 
Process maturity Mature Immature 
Degree of methodical 

change 
Small Major shifts required 

(e.g. SA to OO) 
Variety in target ISs Few target ISs Consulting house with 

multiple customers 
 
As our motivation for the incremental approach showed, ISD environments 
exist where high levels of uncertainty and unavailability of method knowledge 
are typical and applicable for incremental principles. Areas of ISD where there 
are few methods available are, for example, the development of inter-
organizational ISs (cf. Tolvanen and Lyytinen 1994), hypermedia systems 
(Isakowitz et al. 1995), and networked business processes.  

Second, the longer an ISD project takes the more an organization will 
garner experience and the more likely are method modifications. Moreover, 
longer projects are also often larger and technically more complex, necessitating 
approaches to combine methods. Similarly, in long-term ISD efforts the 
technologies used may change and these changes need to be considered.  

Third, as emphasized in our re-evaluation of method use (Section 2.5.3), 
successful method improvements are tied to an organization’s own experiences 
and to the level of maturity. Therefore, ME efforts relate to the maturity of ISD 
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(Humprey 1988): organizations must have methods in use and an ISD process 
defined before any systematic experience gathering can be carried out. Also, 
method refinement efforts expect that methods are specified  otherwise their 
improvement is difficult (Jarke et al. 1994, Odell 1996). This means that an 
organization using incremental ME principles must be at least at the defined 
level according to the SEI maturity levels. In fact, the higher levels of maturity 
can be partly achieved by using incremental ME principles, in which methods 
are managed and optimized for the current situation. With respect to maturity, 
the organization’s current method situation reflects the mode of ME. 
Incremental ME is not necessarily an optimal strategy for initiating radical 
changes in ISD, e.g. adopting methods to be used for the first time, or moving 
from structured methods to object-oriented methods.  

Fourth, incremental ME principles are more applicable for organizations 
which can invest in method knowledge. Quite often this is possible only when 
the method knowledge can be focused on specific areas. These types of 
situations are typical in ISD organizations which focus on longitudinal projects 
and on developing a limited number or type of applications. In contrast, 
consulting houses which provide services to other organizations find their 
choice of methods largely determined by customers’ requirements. As a result, 
method requirements can change from one customer to another and 
accumulated knowledge can not be utilized as effectively. Hence, in these cases 
the method selection and use can usefully be radical. 

Finally and perhaps most importantly, one reason for following either of 
the ME approaches comes from their projected costs and benefits: how to 
change the method without discarding expensive investments in technology 
and methods. With respect to the technology investments, metaCASE tools are 
seen as offering one solution (Seppänen et al. 1996), as they decrease the costs 
and resources needed to manage method knowledge, and also provide a 
platform for cost-effectively building new CASE tools for a changed method, or 
different versions of methods. This also explains our interest in analyzing 
method use in modeling tools: metaCASE tools which support situation-specific 
evolution of methods are already available (Kelly 1997), but ME principles are 
not. With respect to method investments and the process of finding, analyzing 
and refining methods, it is the task of this thesis to decrease the costs related to 
ME. In other works, the incremental ME principles provide mechanisms to 
identify method refinement possibilities, manage method evolution, and 
automate part of the method refinement process. These decrease the costs of 
method improvements and thus of the benefits obtainable from engineering 
methods appropriate to the situation. 

5.1.4 Summary  

Most of the ME frameworks are based on an a priori view of ME in which no 
method refinements are expected during or after method use (cf. Section 3.3). 
Therefore, no principles or systematic guidelines for ME during and after 
method use have been proposed. To overcome this narrow view we analyzed 
the possibilities for iterations in the ME process. These possibilities were called 
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method refinement scenarios. Based on this analysis we focused on specific 
scenarios which originate from method use experiences and lead to 
modifications in method knowledge or method-tool companionship. Hence, our 
interest is concerned with the deep structure of method knowledge: 
modifications of the conceptual structure, and its relation to notations. 

Experience gathering and refinement should take place in modeling tools. 
This means that modeling experiences from tool-based method use are collected 
and analyzed. Although the analysis of “pure” tool support deals mostly with 
minor changes in the surface structure of a method (Wand 1996), our focus on 
method use with modeling tools is important for a number of reasons. First, 
method use in CASE forms a foundation for examining the underlying 
conceptual structure and notations. It makes ISD more transparent and the 
products accessible. Second, through the use of metaCASE technology we can 
allow method engineers to inspect the usage of methods. Third, by necessitating 
the use of a formal metamodel we expect that method modifications can be 
made explicit and formal. Finally, the resulting method refinements are also put 
into use through the tool adaptation. This means that method modifications can 
be shared quickly and can lead to learning in a whole ISD organization. 

An incremental approach can be distinguished from other ME principles 
by identifying when and how method knowledge is constructed. In the radical 
mode, ME is viewed largely as an a priori method construction process, whereas 
in the incremental mode experiences of method use are collected and analyzed 
for the purpose of method refinements. Our focus is on this latter view. We 
claim that the applicability of the method can not be achieved based on a priori 
construction, but instead need to be investigated while using the method. This 
allows us to evaluate not only the applicability of a priori constructed methods, 
but also the relevance of the criteria that drive method construction. 

We also identified ME situations which are most suitable for the proposed 
ME principles. These situations are characterized by high uncertainty and 
unavailability of method knowledge, and by a changing ISD environment. 
Hence, ISD projects which lack method knowledge or criteria for method 
construction benefit from incremental ME principles. Similarly, organizations 
which carry out long-term ISD efforts, often related to specific products, can 
take advantage of the incremental approach. Finally, incremental ME forms a 
part of various types of ISD improvements (Humprey 1988, Odell 1996). 
Therefore, organizations searching for long-term process improvement need 
incremental ME principles to improve their ISD processes.  

5.2 Evaluating the applicability of modeling techniques 

In this section we shall analyze some proposed approaches and their 
weaknesses in evaluating ISD methods. Most research on methods is based on 
the assumption of applicable methods. ME research is no exception: otherwise 
ME principles would not be proposed. ME research includes, however, one 
major difference to most method research, namely the situational dependency. 
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Whilst method developers often aim to prove the general applicability of 
methods, ME research is interested in improving the method use in given 
circumstances. We examine method applicability based on the situation in 
which it is applied. This is also emphasized in our re-evaluation of method use 
(cf. Section 2.5.1). Similar definitions are also proposed by Fitzgerald (1991) as 
an “applicability to the  case or circumstances”, by Schipper and Joosten (1996) 
as “serving in the intended purpose”, and by Kitchenham et al. (1995) as 
focusing on specific cases in which a method is used. 

Our focus is on studies which address the applicability of modeling 
techniques. First, we shall analyze which kind of approaches the developers of 
text-book methods have applied for validating their methods, and what 
validation approaches are proposed for situational methods. The former covers 
evaluation of methods in general and the latter focuses on evaluating methods 
in their use situations. Our interest is in approaches which can be used to 
collect, analyze and apply experiences to refine methods. This means that the 
evaluation approach should not only analyze whether and how a method has 
met the applicability requirements, but also how it could be improved. 
Therefore, the analysis does not include approaches which are not linked to 
evaluating method knowledge or which do not offer opportunities for method 
improvements, such as Kitchenham et al. (1995) and Jayaratna (1994). Second, 
we acknowledge some key problems related to method evaluation. Some of 
these problems are partly solved with the systematic ME principles proposed.  

5.2.1 Evaluation and validation of text-book methods 

The applicability of a method forms a core assumption in all method 
development. Most method development efforts, however, do not aim to 
validate the proposed method at all. Only a few are in any way proven or 
justified for the tasks for which they are promoted (Fitzgerald 1991). As a result, 
it is difficult to find how claims made in favor of a particular method —  such as 
“more expressive, yet cleaner and more uniform ... than other methods” (Booch 
et al. 1997, p 15) or “to support a seamless ISD process, or the reversibility of 
models” (Walden and Nerson 1995) —  can be proven. 

By analyzing methods modeled in Chapter 4 two kinds of approaches for 
determining the viability of a method are used: a demonstration of the method 
in some imaginary or real-world case, and a comparison with other methods. 
Both of these approaches are also widely used in studies comparing and 
evaluating methods, e.g. those reported in the CRIS conferences (Olle et al. 1982, 
1983). Neither of these approaches, however, can provide strong evidence for 
method applicability (Fitzgerald 1991). Demonstration (e.g. Yourdon 1989a, 
Booch 1991) describes how one or more ISs are captured into models. The 
subject of validation is mostly a modeling technique (i.e. concepts and 
notations) rather than the process or design objectives which explain the use of 
such models. Little information is given about the background of the cases, such 
as contingencies, participants, method users, or alternative solutions. 
Weaknesses of the method are not considered or mentioned at all. As a result, 
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“validation” means here only that the method can be used in modeling, rather 
than that it is useful or can lead to better results than other methods.  

The latter, the comparison approach, focuses on similarities and 
differences between the proposed method and other similar methods (e.g. 
Firesmith et al. 1996, Booch and Rumbaugh 1995). The proposed method is 
typically used as a yardstick: little wonder that it is often described to be more 
comprehensive than others. The main emphasis in evaluation is on explaining 
why the new concepts are required. Here the justification of the method is 
normally explained at the type level only, because method use is not addressed 
at all. Comparisons thus focus mainly on modeling techniques and underlying 
conceptual structures. One reason for focusing on modeling techniques only is 
that method books do not usually describe other parts of method knowledge 
systematically. As a result, the main argument for a particular method is based 
on the endorsement by an authority. 

Yet, as is described in method books24, one can state that the best “proof” 
for a method is its use: an assessment of a number of ISD efforts following a 
method shows its viability. Use of a method’s popularity as a mechanism to 
prove its applicability is questionable. First, based on this strategy certain 
modeling techniques, like ER diagrams (Chen 1976) or data flow diagrams 
(Yourdon 1989a), should be considered to be applicable. There is, however, a 
great number of dialects available for these techniques. Also, criticisms against 
some of the principles they apply have been raised. The different versions of the 
ER model (e.g. Chen 1976, Batani et al. 1992, Teorey 1990) show that no single 
variant of the ER model is popular. Similarly, criticisms against the top-down 
decomposition applied in data flow diagrams has been presented (e.g. 
Goldkuhl 1990, Booch and Rumbaugh 1995). For example, Goldkuhl (1990) 
claims that top-down refinement of system leads to costly maintenance of 
designs and to a loss of information between the different levels. Second, the 
low acceptance of methods in general (cf. Section 2.4.1) and their adaptation in 
particular (cf. Section 2.4.2) indicates that most methods as proposed by their 
developers have failed. Therefore, instead of a general validation of methods, 
we are more interested in the validation of methods in a given situation. This is 
discussed in the next section. 

5.2.2 Evaluation of methods in the problem context 

In our literature review we found only a few studies that aimed to validate the 
applicability of methods more systematically. These are the validation of action 
modeling by Fitzgerald (1991), and of trigger modeling by Schipper and Joosten 
(1996). These can be distinguished from earlier method evaluations or 
validation approaches by their use of explicit measurements as a basis for the 
evaluation. In the following these approaches are briefly described by 

                                                
24  It may be the case that some validation efforts have been carried out but not described. 

Similarly, it is most likely that evaluations are performed during method development, 
but it must be noted that method developers have not described how this has been 
carried out: i.e. how data is collected, how it is analyzed, and how it has led to 
improvements in the method. 
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explaining the context in which they are used, what aspect of the method is 
evaluated, how data is collected, and what measures are used. Finally, we 
describe how the evaluation results are interpreted and applied for method 
refinements. The results of this analysis are summarized in Table 5-3. 

TABLE 5-3 Summary of validation approaches 

Approach Fitzgerald (1991) Schipper and Joosten (1996) 
Applied for 
validating... 

technique for action modeling technique for trigger 
modeling 

Context of 
evaluation is... 

modeling technique as a part 
of a method and ISD process 

one modeling technique 

Rationale of 
method 
covers...  

design criteria and objectives 
of the technique 

method developer’s 
intentions and supporting 
arguments 

Data collection 
is based on... 

examples of object system 
representations from different 
modeling domains 

intention-related instruments, 
such as literature study, 
method metrics, analysis of 
deliverables, interviews of 
method users 

Target of 
validation is... 

richness of the technique in 
terms of its modeling power 

method developer’s 
intentions with the modeling 
technique 

Validation is 
based on... 

method users’ opinion of 
modeling power 

recognized arguments which 
support intentions, users’ 
priority for intentions 

Method 
refined... 

- if intentions do not change 
and earlier observations are 
valid after refinement 

 
Fitzgerald (1991) evaluates the richness of a technique in terms of what is 
abstracted, i.e. its modeling power. He starts the evaluation by describing the 
objectives and design criteria of the technique. This forms the basis for the 
evaluation. He also describes the rationale of the technique (i.e. why the 
technique has been constructed as it is). In the evaluation the modeling 
technique is related to the larger context of the whole method, but no clear 
distinction is made between arguments in favor of the method in general, and 
those arguing for the specific modeling technique. The evaluation is carried out 
through modeling and trying to find out how well relevant aspects of the object 
system could be represented. The main instruments for data collection are the 
use of examples from different situations (but nothing is explained of the type 
of situations they were (e.g. domain, contingencies)), and why they were 
selected as modeling subjects. The results are derived based on the researchers’ 
(acting as method users) opinions of the richness and modeling power of the 
technique. Thus, the evaluation approach, as noted by the author, is highly 
subjective and dependent on the selected modeling situations. Furthermore, the 
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approach does not present possibilities to refine methods during or after the 
evaluation. 

Schipper and Joosten’s (1996) contribution to method evaluation is their 
proposal and use of multiple evaluation instruments. They base their approach 
on reviewing how validation and evaluation of modeling techniques are 
studied in other modeling-related areas, and what types of validity are 
recognized in the literature. They propose a model of validation which focuses 
on observing how the intentions of the method developer, in terms of associated 
characteristics of a method, are met. The approach focuses on evaluating a 
modeling technique separately from other parts of the method, and starts by 
describing the method developer’s intentions (e.g. to allow modeling of logistic 
processes) and characteristics (e.g. easy to learn) for the modeling technique. 
Next, the rationale for the technique is stated by arguing how the intentions are 
met and relating them as characteristics of the modeling technique. This method 
construction rationale is derived similarly in Fitzgerald (1991), but Schipper and 
Joosten also include characteristics other than those related to modeling power. 
Therefore, the instruments for observing the characteristics are also different. 
Schipper and Joosten (1996) propose and emphasize the use of instruments 
(both qualitative and quantitative) in validation depending on the type of 
intentions. Various instruments can be used simultaneously to check convergent 
and discriminant validity. The instruments proposed include a literature study, 
method metrics, analysis of deliverables, content analysis of interviews and 
measurement scales for ease of use and usefulness. Of these, method metrics 
(Rossi and Brinkkemper 1996) and ease of use and usefulness (Davis 1989) are 
instruments which are not used by Fitzgerald (1991). A major reason for this 
difference is that Fitzgerald has carried out the validation effort by himself, 
whereas Schipper and Joosten target their studies to developing an automated 
method selection procedure in CAME, i.e. to be used also by people other than 
the method developer. 

The study by Schipper and Joosten, however, does not describe how the 
instruments are applied for data collection and analysis, nor do they provide 
examples in favor of the evaluated trigger modeling technique. The result of the 
validation effort should be the list of intentions and arguments derived from the 
observations based on the instruments. To illustrate the approach some 
examples are given. A goal to model business processes quickly can be 
supported if method metrics show that the method is not complex, or users 
consider it effective and quick to use. Because of the use of multiple instruments 
the observations made can provide better evidence for how successfully the 
method fulfills its developer’s intentions.  

Finally, unlike Fitzgerald, Schipper and Joosten allow method refinements 
during the validation process to improve the applicability of the modeling 
technique. The modifications should, however, ensure earlier observations and 
intentions remain the same. Although these conditions are understandable, 
since they focus on validating a fixed method, they do not recognize experience 
based learning, uniqueness of situations and method evolution. Accordingly, in 
the following we shall analyze method evaluation approaches which accept, or 
even promote, method evolution. 
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5.2.3 Evaluation of methods as a part of a continuous ME process 

As discussed in Section 3.2, the evaluation of the applicability of methods in ME 
research is dominated by a priori evaluation occurring in the method 
construction phase. To our knowledge, only the learning based approaches to 
method development  (Checkland 1981, Kaasbol and Smordal 1996, Wood-
Harper 1985, Mathiassen et al. 1996) indicate the importance of experiences and 
learning from method use as key mechanisms both to evaluate and to refine 
methods. Checkland (1981) advocated the learning based approach to method 
development and evaluation by introducing a cycle of action research in which 
experiences on method use provide the main source for method modifications; 
first by using the method and second by learning method use. This cycle is 
illustrated in Figure 5-1.  

Learn from use

Use method

Create method

hence

hence

hence

 

FIGURE 5-1 The evolution of a method through a learning cycle (Checkland 1981, p 254). 

According to this cycle, ME can be viewed as a continuous and never-ending 
process, in which experiences are elicited from working with the method. 
Checkland has used the action research cycle as a key mechanism to develop 
Soft Systems Methodology (SSM) by repeating the cycle in many development 
cases and situations. In fact, the cycle for developing SSM began in 1969. The 
main reason for the cyclic learning based approach seems to be the difficulty of 
developing methods into a new field. In the case of SSM this means 
development based on methods applied successfully in developing “hard” 
systems into methods applicable for soft, human activity systems. This point 
also confirms the motivation of the incremental approach to ME made earlier 
(Section 5.1.3). 

Because the cycle of method evolution is carried out as action research it is 
sensitive to the context in which the method is used and thus situation-bound. 
Although SSM includes the idea of incremental ME the objective of the learning 
cycle has been to develop general or universal principles for developing human 
activity systems. In other words, the iterative cycles have not been used to 
develop SSM towards situation-specific needs in the same sense as in the ME 
literature, but rather towards learning about various situations in which the 
SSM is applied. Moreover, Checkland emphasizes that SSM is not a method in 
the same sense as defined in this thesis but something between a philosophy or 
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a framework, and a method25. However, as Checkland notices, some parts of 
SSM are very close to our definition of modeling technique (e.g. CATWOE). 
Therefore, from the ME point of view, the learning cycle has been used to define 
method knowledge in terms of concepts, processes, assumptions and values. 
Because of our interest, we shall focus only on the incremental development of 
SSM’s concepts and modeling techniques.  

In Checkland’s approach the applicability of a method is evaluated based 
on its strength as a working device in a process of developing human activity 
systems. As such it applies a general question for the evaluation: “Was the 
problem solved” (Checkland 1981, p 192). However, he does not provide 
detailed principles of how experiences are collected (other than case records), 
analyzed, and applied when starting the next cycle: i.e. creating or modifying 
the method. Of course it can be claimed that such more concrete and systematic 
principles exist but they are not reported. In general, the concepts and notations 
used to develop conceptual models are not defined and thus not evaluated 
according to any systematic principles. The only reported exceptions are the 
root definition according to CATWOE and the sequencing between the stages of 
the method. Especially the former is relevant for our study, since CATWOE is 
closest to our definition of a modeling technique. The applicability of the 
concepts behind the root definition (Customer, Actor, Transformation, 
Weltanschauung, Ownership and Environmental constraints) were studied by 
seeking a dozen well formulated root definitions from earlier projects to test 
that the concepts behind the mnemonic CATWOE could be found. As a result of 
this analysis, they conclude (Smyth and Checkland 1976) that the CATWOE 
concepts are relevant because they would speed up the process of finding root 
definitions and enrich debates. The sequence of the method’s tasks is another 
example of experience based evaluation, although it focuses more on the 
process than on modeling techniques. In SSM the transitions between modeling 
tasks, and thus also between modeling techniques, are left open because 
examination of earlier studies has revealed that different starting points and 
sequences are possible. From a modeling technique point of view this means 
that “conceptual models” of the system under development can be made before 
root definitions or vice versa. An obvious reason why other parts of the SSM 
modeling techniques are not evaluated is the universal nature of the method: 
different human activity systems require different types of conceptual models 
—  which can also be seen from the case studies documented —  and therefore 
their validation in a universal manner is difficult (cf. Section 5.2.4).  

The importance of Checkland’s view of method development (1981, 1991) 
is that it highlights the continuous learning cycle and shows that this cycle 
occurs at several levels: the IS level, the method level and the ME level. 
Although Checkland (1981) did not promote the learning cycle as a mechanism 
to develop methods (in the same sense as defined in this thesis) other 
researchers have applied it directly to ME (Wood-Harper 1985, Avison and 

                                                
25  For the same reason SSM has not been included among the methods modeled in Section 

4. 
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Wood-Harper 1990, Mathiassen et al. 1996, Kaasbol and Smordal 1996). These 
studies are described in the following. 

The developers of Multiview (Wood-Harper et al. 1985) have applied an 
action research cycle when using and testing the method. Similar to SSM, 
Multiview was developed as a fixed method and thus it supports narrow 
situational adaptability (Harmsen 1997) through in-built flexibility. One major 
distinction of Multiview from other methods and from situational adaptability 
is that it follows a contingency approach to select among the several techniques 
it includes. However, concrete suggestions are not given either for ME criteria, 
or for choosing the components of Multiview (Harmsen 1997).  

Mathiassen et al. (1996) have applied the action research cycle for 
developing a method, called OOA&D (Mathiassen et al. 1995). Here the 
applicability of the method is evaluated based on how it has supported teaching 
as a learning device. By eliciting experiences from the students in a class-room 
setting they have shortened the method refinement cycle. As with other studies, 
no concrete ME principles for collecting, analyzing and refining methods are 
given. The authors have, however, distinguished some types of method 
knowledge which should be specified in ME, namely concepts, guidelines, 
principles and patterns, but no further details are given about these. The first 
three are covered by our taxonomy: conceptual structure, process and design 
objectives. The last one, patterns, deals more with instance level information as 
it shows partial solutions to IS modeling tasks in specific domains.  

These approaches have, however, several limitations in addition to their 
universal view of methods. First and foremost, they do not include any explicit 
mechanism to collect, analyze and refine methods. This would be required for 
more systematic ME. Thus, after method use, no mechanisms are used to study 
whether the method has been applicable. As such they are general frameworks 
of method evaluation, rather than applicable principles for evaluating and 
refining modeling languages. 

Second, in all of them an iterative cycle is carried out by the method 
developers rather than by others. For example, in Mathiassen et al. (1996) the 
role of students in refining the method is not explained, nor is the frequency of 
modifications. As a result, the modifications are highly dependent on the 
method developer’s opinions. No indications are given as to how a larger group 
of stakeholders can participate in the cycle. In other words, the process and 
roles involved in ME are not described.  

Third, based on what is reported, the learning cycle is applied at a general 
level rather than related to the method knowledge (an exception is the 
evaluation of the CATWOE concepts in SSM). Because method knowledge is 
defined loosely in these approaches, the approaches do not apply any ME 
languages or tools. If such a more systematic approach to method development 
had been applied (as proposed by Parsons et al. 1997), it is obvious that method 
knowledge could also have been specified and evaluated in more detail. One 
reason why such approaches have not been followed may lie in the aim of 
situation independent applicability: it is difficult to specify method knowledge 
in detail and at the same time for general purposes. A good indication of this 
can been seen in the development of the UML method and its versions (e.g. 
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Booch and Rumbaugh 1995, Booch et al. 1996, 1997) which have become less 
specified in terms of details documented in metamodels as the need to satisfy 
more general situations has increased. 

To summarize, there is a surprising and disappointing lack of well-
documented method evaluation cases, evaluation mechanisms, and criteria. As 
a result, it is hard to find out from the ME point of view why methods like 
OOD&A (Mathiassen et al. 1996), or Multiview (Avison et al. 1990) are 
constructed as they are. For example, which evidence from the use experiences 
show that a concept of a cardinality should be used in object models 
(Mathiassen et al. 1996) or in entity models (Avison et al. 1990)? 

5.2.4 Problems of a posteriori evaluation 

The analysis of the evaluation approaches, and especially their limitations, is 
not intended to be a criticism of the method development approaches. Rather it 
indicates the difficulty of method evaluation and why one of the key research 
questions, “Are methods useful?”, has remained unanswered. In this section our 
aim is to discuss the difficulties in making a posteriori, use based, evaluations of 
methods. This view is important, since it allows us to describe how incremental 
ME principles could solve these problems, and which problems it can not solve. 

First, one major reason why method developers have not evaluated or 
validated their approaches lies in the difficulty of such a task. By applying 
‘scientific’ research methods to method evaluation and validation we can not 
satisfy requirements of scientific theory testing, which involves reducing 
domain complexity, controlling data collection, and meeting replication 
requirements (see Galliers 1985, Fitzgerald 1991, Grant et al. 1992). The 
application of a scientific method typically involves construction of an 
experiment so that only one or a few factors are identified and studied at a time. 
This involves breaking the research subject into smaller parts for examination 
with a smaller number of factors. Hence, the experiment is first conducted in a 
standard way and then a number of times with one factor changed (ceteris 
paribus). A larger set of factors can not be considered at a time because of their 
possible interactions. Thus, an understanding of the applicability of a method, 
i.e. the big picture, would be constructed on the basis of these small factors. This 
type of research setting is, however, hard to achieve in daily ISD practices. 

The replication requirement is also difficult to meet in ME research 
because ISD and thus method use is considered situational, or even unique. In 
this sense, the requirement for replication could be met only in situations where 
the ME criteria are the same. Moreover, if differences in a method’s 
applicability occurred between similar (in terms of ME criteria) ISD efforts, 
there would probably be factors which had not been identified. These factors 
could even be considered as candidate criteria for ME. 

In terms of ME, the evolution should deal with inspecting the applicability 
of method knowledge according to the ME criteria used in the construction 
phase. In other words, a posteriori evaluation could focus on studying how a 
priori factors were satisfied. Was the method applicable in the expected 
circumstances and contingencies? Did the method help solving the development 
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problems? Did the method satisfy its users’ requirements? Because of the 
expected complexity of ME criteria it is difficult to study one or some of these in 
different cases and expect that other criteria do not interfere with the results.  

Second, coming up with hypotheses that show the applicability of 
methods is problematic, because the hypotheses can not be formally tested. 
According to the scientific approach, when several independent studies have 
consistently supported the hypothesis it will become a theory or even a law. 
This type of proof of method applicability is not available, and as Fitzgerald 
(1991, p 662) sarcastically notes, this has troubled IS research very little. In the 
context of ME, confirming a hypothesis means that there is some evidence that a 
method has been applicable. For example, in the case of validating the root 
definition method, Checkland (1981, p 227) notices that the existence of 
CATWOE concepts does not guarantee a good definition, but it provides 
evidence that in a well-formed definition such concepts are used. Coming up 
with hypotheses is, however, important because we can reject them by finding 
aspects of applicability which were not fully supported (Kitchenham et al. 
1995). In other words, incremental method refinements occur only when a 
method has not been fully applicable.  

A third difficulty in studying method applicability is to ensure that the 
method has actually been used (Jarke et al. 1994). In terms of our ME scenarios 
this means that each source of experience should be based on verifiable 
experiences. In our subset of method knowledge, this problem is bounded: the 
study of method use in terms of modeling techniques is easier to analyze than 
the use of other types of method knowledge, such as process (as in Jarke et al. 
1994), or that design objectives and assumptions of the method are actually 
followed. This is also an obvious reason why most validation approaches focus 
on conceptual structures and modeling techniques. This does not mean that the 
study of method use in terms of modeling techniques is without problems. For 
example, method users can apply other modeling techniques than those 
proposed by the method engineers, and the study of intermediate models, 
design sketches, or different working versions of models is labor-intensive and 
costly to analyze for the purposes of ME (Hofstede and Verhoef 1996). 

Fourth, the acquisition of experiences is difficult because experiences are 
personal and subjective (Nonaka 1994), they deal with situations that occurred 
at one point in time (Schön 1983), and they are often tacit: not all experiences 
can be made explicit and thus used for method refinements. Not all method 
knowledge is explicit: practitioners’ method knowledge is partly embedded in 
their practices and can not be fully described. Furthermore, collecting 
experiences can be time-consuming and costly. As a result, method evaluations 
and refinements seem to be highly subjective. For example, Fitzgerald (1991, p 
668) believes “that the best that can be achieved is that people may be convinced 
about a technique’s applicability and usefulness only by argument and 
example, not by any concept of scientific proof”. It must be noted, however, that 
subjective perceptions and opinions are vital for the acceptance of methods. 

Finally, it is difficult to find what has been the role of a modeling 
technique (Checkland 1981). A modeling language can be evaluated based on 
what it has abstracted from the current situation (Fitzgerald 1991) but whether it 
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has provided alternative solutions or choices among them is more difficult to 
evaluate. As the analysis of the method evaluation literature showed, evaluation 
has mostly been based on the researcher’s concern that the problem has been 
“solved” or the problem situation has been improved (Checkland 1981). On the 
level of a whole method, an evaluation can be carried out more easily (e.g. 
Kitchenham et al. 1995) because method knowledge can treated in its entirety. 
Thus, detailed alternative compositions of method knowledge can be neglected. 
For example, problem solving capabilities can be measured based on the 
number of errors in the developed program, or whether the IS developed 
satisfies the user’s requirements. Hence, a method is treated as a whole. In 
addition, there remains a question whether the problem has been really solved 
with the method, or have they been solved through other means (e.g. the whole 
problem disappeared because of external changes). Naturally method users can 
judge the influence of methods, but evaluation research does not discuss 
enough how the method users’ experiences are collected and analyzed for 
improving methods. 

5.2.5 Summary and discussion of method evaluation approaches 

In this section we have analyzed approaches for carrying out a posteriori 
evaluation of modeling languages. Our aim was to seek mechanisms for 
collecting and analyzing methodical experiences, because we believe that the 
applicability of a method can only be known when the method is used. In short, 
the analysis shows a lack of instruments for evaluation, and problems in 
carrying out such evaluations. There seems to be no generally recognized way 
to determine if a modeling technique has been applicable. The reasons are 
summarized below. 

First, the most important limitation of the approaches is that they do not 
aim to apply evaluation results to improve the methods. Methods are 
considered as a whole and evaluation is not targeted to inspect them in more 
detail. Instead of making small changes to the methods, evaluators often seek to 
obtain a general proof or disproof. Second, none of the approaches describe the 
method evaluation process in detail and only Joosten and Schipper (1996) 
describe some explicit instruments for evaluation. Even in their case, the use of 
the instruments during the actual evaluation is not explained in detail (Schipper 
and Joosten 1996). Some of the instruments, like method metrics, do not deal 
with method use at all. Similarly, most of the instruments applied are used in 
snap-shot cases. Third, all approaches target the validation to situation-
independent methods. Although they recognize various situations of method 
use, they do not recognize that a method could be situation-dependent. In terms 
of ME, the evaluation is not targeted only to study whether a method has been 
applicable in the current case. Some possible reasons for this focus are the 
search for generality, an aspiration to follow scientific methods, and the method 
developers’ desire to prove their own methods. 

To characterize the incremental approach in relation to the others 
described above, we have to focus on detailed method knowledge. Similarly, 
our primary aim is not to seek for a universal validation of methods following a 
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“scientific” proof. Instead we focus on situational validation in which better 
applicability is sought by making gradual changes to a currently used method. 

5.3 Principles for incremental method engineering 

In this section we shall describe principles for a posteriori and continuous 
method engineering. These principles are described through the steps of 
incremental method engineering, and the mechanisms applied in each step. The 
steps deal with collecting experiences, analyzing experiences, and refining a 
method for a current situation. These steps are lacking from other ME 
approaches and together with a priori ME they form an “iterative loop” of 
incremental ME. Hence, we claim that both a priori and a posteriori steps are 
required. The a priori steps were already described in Section 3.2 and the a 
posteriori steps are described in the next section (5.3.1). 

Throughout these steps we apply three mechanisms that seek to improve 
methods. These mechanisms are based on analyzing the differences between an 
intended and actual use of modeling techniques (Section 5.3.3), on studying the 
role of techniques in modeling object systems (Section 5.3.4), and on 
understanding how they support problem solving (Section 5.3.5). As the review 
of method evaluation approaches showed, these mechanisms are not the only 
possible ones. They are relevant for improving tool-supported methods and 
managing methodical changes through metamodels. Together with these 
method refinement mechanisms, we apply metamodels and method rationale to 
collect and analyze experiences as well as refine methods (Section 5.3.2). In 
comparison with other evaluation approaches these make the method 
improvements more systematic and render refinements visible. 

5.3.1 Process of incremental method engineering 

To extend the a priori view of ME approaches we propose some complementary 
principles. These extensions are illustrated in Figure 5-2. The data flow diagram 
shows the steps of ME, with the three steps of incremental ME illustrated by 
grayed processes. These steps deal with gathering experiences, analyzing 
method use, and refining a method. Together with the a priori steps, they form 
an iterative cycle in which method improvements can take place gradually 
using method stakeholders’ experience (cf. Checkland 1981). In the following 
we shall outline each step and their linkages to the steps of a priori ME. 
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In carrying out experience-based method evaluation the accuracy and 
availability of feedback must be enhanced. This improves experience-based 
learning (Huber 1991). The accuracy of collected experiences is enhanced by 
relating experiences to metamodels and to the method construction decisions. 
Their use is discussed in more detail in Section 5.3.2. The availability of method 
use experiences is enhanced by collecting models and metamodels, by collecting 
outcomes of an ISD project, and by interviewing stakeholders. The collection of 
models as deliverables is similar to the ideas proposed by Fitzgerald (1991) and 
Schipper and Joosten (1996). Models provide data on how modeling techniques 
were actually used. Because we focus only on meta-data models, the models 
only describe the end-result of method use rather than the modeling process. In 
the context of metamodel-driven modeling tools, the collection of models and 
metamodels can be automated since they are both stored in a repository of a 
metaCASE tool.  
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FIGURE 5-2  A data flow diagram specifying the incremental method engineering 
process. 
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In addition to the model-based deliverables, the outcomes of the project 
are inspected. These deal with the results of the ISD process changing or 
improving the problem situation of the object systems. Interviewing method 
stakeholders obtains situational experiences of method use. Both unstructured 
and structured interviews can be used for data collection. An unstructured 
interview closely resembles a normal conversation and allows a method user to 
apply his or her own concepts and aspirations to specify method refinements. 
Typically a refinement demand becomes apparent from the modelers’ 
observations of the limitations of a method in use situations (e.g. Tollow 1996, 
Jaaksi 1997). Structured interviews are based on predefined questions which are 
known to reveal refinement possibilities. The mechanism of incremental ME 
described in the remaining sections of this chapter forms the basis for questions 
for the structured interviews.  

The second step deals with analyzing experiences in order to improve a 
method. This step is carried out by the mechanisms of experience analysis 
described in the following sections (cf. Sections 5.3.3-5.3.5). In short, the 
mechanisms deal with: 

1) Type-instance matching: inspecting differences between an intended 
(i.e. metamodel) and actual use of a method (i.e. models). 

2) Modeling capabilities: analyzing the capability of the method to 
abstract required aspects of the object systems into models and to keep 
them consistent. 

3) Problem solving: analyzing the capability of the method to generate 
alternative solutions and support decision making.  

 
The mechanisms are designed so that they reveal those aspects of a method 
which can be a target for refinements. In other words, if the analysis phase 
suggests a method modification it reveals that the a priori constructed method 
was not sufficiently applicable.  

Evaluations of method use can lead to modifications of method knowledge 
and tool support. Modifications related to the conceptual structure or notation 
take place by adding, subtyping, joining and removing components of the 
metamodel and by specifying a related notation. Each of the metamodel-based 
refinements can be operationalized through the same metamodeling constraints 
as in the method construction (cf. Section 4.4). The re-constructed method is 
stored into a CAME tool, from which new components can also be selected. 
Tool re-adaptation is a necessity if a metamodel has changed (cf. method 
refinement scenarios, Section  5.1.2). Not all refinements, however, necessarily 
require changes in the method. There are changes that deal with the way the 
method is supported by the tool. For example, the consistency of model data 
can be improved by adding checking reports without modifying the 
metamodel. The modification of a CASE tool must be emphasized, because the 
advantage of method improvements comes when the refined method is used in 
a modeling tool. This enables the sharing of refinements and makes possible a 
new evaluation cycle. 

An improved method is not the only outcome of the incremental approach, 
because the evaluation allows the creation of new knowledge for future ME 
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efforts. Based on current ME approaches this knowledge should be related to 
the ME criteria in two ways: to confirm or to reject the criteria used in the 
method construction, or to add totally new criteria. In fact, the only way to use 
frameworks of ME criteria is to “fill” them with criteria that have worked in 
past situations. This necessitates that the realization of ME criteria is assessed in 
terms of new criteria, changed criteria, and whether the a priori set of criteria is 
still relevant. This means that method engineers should analyze the ISD 
environment continuously, not just for the initial method construction. 
Paradoxically, ME approaches which aim to apply available frameworks of ME 
criteria have neither validated them nor considered how information about 
situational applicability is found.   

5.3.2 Use of metamodels and method rationale in incremental method 
engineering 

As with most attempts at organizational improvement, improvements to the 
current state are difficult to make if the practices currently followed are not 
known. Changes can be made but no information is available on the effects of 
the change nor whether they can be considered as improvements. Similarly, 
incremental ME can not be carried out effectively if information about a method 
and reasons for its promotion are not known. The former, method knowledge, 
is described in metamodels, and the latter, method rationale, is described in ME 
criteria and decisions made during method construction. Both of these are used 
to collect, structure and analyze experiences. Use of them increases the accuracy 
of the cause-effect relationships between an engineered and a required method. 
Their use in ME is described in the following. 

5.3.2.1 Metamodels in incremental method engineering  

As in method construction, a metamodel makes method knowledge explicit. 
Incremental ME applies metamodels beyond the method construction step. In 
the first step of incremental ME, metamodels provide a mechanism to collect 
and structure experience: method stakeholders’ comments, observations, and 
change requests can be related to the types and constraints of the method. This 
helps make experiences explicit, and helps focus on those experiences which are 
related to the method.  

For the analysis step, metamodels allow the detection of those parts of the 
method which are subject to further analysis. The analysis possibilities are 
available through the same metamodeling constructs that were applied in 
describing the method. As in method construction, alternative method 
refinements can be made and compared by using the metamodeling constructs. 
During an iteration of the incremental approach, metamodels provide a history 
of method refinements, since all changes to the method can be found by 
comparing metamodels made at different points of time. Figure 5-3 illustrates 
the method evolution through “constellations” of metamodels.  
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Metamodel 1 Metamodel 2 Metamodel 3 

Time 

Observations, change requests, changes in situations, etc. 

 
 
 
 
 

 

 

FIGURE 5-3 Method evolution in metamodels.  

5.3.2.2 Method rationale in incremental method engineering 

Metamodels alone are inadequate to manage method refinements, because they 
can not explain the evolution of a method. Therefore we need method rationale. 
Method rationale occurs at two different levels depending on the users (Jarke et 
al. 1994, Oinas-Kukkonen 1996). For method engineers, method rationale is an 
explanation why certain types or constraints of the method are included in the 
constructed method. We call this a method construction rationale. Ideally, each 
type and constraint in a metamodel should be justified. A sample of method 
construction rationale from our action research study (cf. Chapter 6) is given in 
Figure 5-4, in which an explanation for a ‘group’ property type is given.  

The topmost window describes part of the metamodel in which a ‘group’ 
property type is defined. The middle window shows specifications relating to 
the property type. These include the name of the property type, that an instance 
of the ‘group’ refers to values of existing groups, and an explanation of the type 
for method users. The lowest window describes the reason why the ‘group’ 
property is needed. In the example, the rationale for using the grouping is the 
need to collect similar kinds of information or material objects. For example, an 
analysis can include information about business processes which only use 
information related to orders, such as sales orders, quick orders, repairing 
orders, orders sent by someone other than the original customer, etc. 

Instead of applying a predefined schema for method rationale we have left 
it unstructured. Use of predefined schemata could limit the possibilities of 
information gathering, since there are not many studies on method rationale 
(Jarke et al. 1994, Oinas-Kukkonen 1996). 
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FIGURE 5-4 An example of method rationale for a ‘group’ property type. 

This detailed example also reveals the gap between currently proposed ME 
criteria and their linkages to detailed metamodels: none of them support 
relating situational requirements to individual types or constraints of a method. 
Some of the ME approaches (e.g. Heym 1993, Harmsen 1997), however, support 
relating information about method use situations and contingencies to 
metamodels based on predefined schemata. For example, Heym and Österle 
(1992) collect experiences in terms of the focus of the method (e.g. project 
management, risk management, IS development), application type (e.g. expert, 
office or real-time system), and phase of the ISD life-cycle (e.g. analysis, 
maintenance). A similar approach is followed in MEL (Harmsen 1997). These 
approaches, however, do not explain how these more detailed descriptions are 
obtained, nor are they related to detailed metamodels. 

The use of method rationale in incremental method evaluation necessitates 
that more detailed construction explanations are related to metamodels, instead 
of referring solely to ME criteria. It helps in understanding the effects of method 
modifications: what capabilities are lost from the original method if a method 
element is removed or changed. It also makes possible argumentation about 
possible new method types. 
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Method users can understand method rationale differently. For them 
method rationale explains why certain types or constraints of the method are or 
are not used in models. We calls this method use rationale. The collection of 
method use rationale is important because it reduces the subjective flavor of 
experiences, makes a decision on method use more explicit, and allows users to 
relate their method experiences directly to method knowledge. This is 
important, since all experiences are individual, and therefore can be either 
supporting or contradictory. 

The rationale of method use, however, is not normally documented and to 
our knowledge none of the modeling tools allows the capture of decisions about 
method use; only decisions about design choices (i.e. design rationale (Ramesh 
and Edwards 1993)). Therefore, it is the task of method engineers to collect the 
rationale of method use. A similar data collection approach is followed by 
Wijers (1991) while eliciting individual developers’ modeling knowledge. It 
must be emphasized that Wijer’s studies are not related to a priori and restrictive 
method knowledge. A priori means that methods are not improved. Instead, 
existing practices are documented with metamodels. The restrictive method 
knowledge means that modeling was not following an “engineered” method in 
the same sense as in tool-supported modeling. This means that in Wijer’s study, 
the modeler’s own method knowledge was allowed, and in fact intentionally 
sought. In our case, the tool ensures that models are always related to modeling 
techniques defined and known a priori. Because of a greater variety in method 
use, Wijers applied interviews, analysis of developed models, and think-aloud 
protocols, and recorded method use with video cameras. This active 
participation during method use allowed the discovery of detailed modeling 
knowledge and revealed knowledge about the modeling process. Because active 
participation is costly and time-consuming it can usually be applied for only 
one or a few developers’ modeling experiences at a time. Thus, in a large scale 
method development effort where experiences are gathered from several users 
the approach is not necessarily cost effective. There, active participation can be 
used for inspecting method use among selected users from different roles 
(developers, user, managers etc.).  

In incremental ME, therefore, the method use rationale is collected through 
structured interviews based on the evaluation mechanisms. This means that 
method use rationale is not collected completely; only those aspects which deal 
with the evaluation mechanisms are covered. In other words, method use 
rationale is collected only when it seems to differ from method engineers’ 
intentions (i.e. from method construction rationale).  

5.3.3 Type-instance matching 

The first technique in incremental method engineering, type-instance matching, 
is an analysis of method use through the models developed. Analysis of models 
typically takes place at the instance level. For example, metrics are used to 
analyze system models (e.g. Low and Jeffrey 1990, IFPUG 1994, Rask et al. 1993) 
and method metrics are used to analyze metamodels (e.g. Rossi and 
Brinkkemper 1996, McLeod 1997). In ME and especially in an incremental 



 
197 

approach, it is important to analyze both levels together: to compare IS models 
with metamodels to inspect whether the constructed modeling technique has 
been used. According to the metamodeling approach, the types of the 
constructed method are described in a metamodel (i.e. IRD definition level, ISO 
1990) and instances of these types are described in models (i.e. IRD level). 
Hence the name for this method evaluation and refinement mechanism. 

Analysis of intended and actual use of modeling techniques is similar to 
seeking differences between prescribed process models and recorded process 
models, proposed by Jarke et al. (1994). Some key differences must be noted 
between these approaches. For process modes, the traceability model collecting 
what has happened is broader than the guidance model defining the process to 
be followed. While evaluating the differences between these process models, it 
is also important to ensure that the predefined process is actually followed by 
developers. In tool-supported modeling, it is not possible to develop IS models 
which are not based on the metamodel. As a consequence, while analyzing type 
usage through models we can more reliably expect that the developers have 
actually used the constructed method (i.e. each instance has a type definition, cf. 
Section 3.3.1): the tool ensures that active constraints are satisfied and informs 
users about violations of passively checked constraints.  

The close relation between models and metamodels offers also possibilities 
to automate data collection, since all the necessary information about types and 
instances is available in the repository. Hence, a metaCASE tool should support 
queries for both levels simultaneously. This functionality is not available in 
external CAME tools which are separated from method use (i.e. operate only at 
the IRD definition level). This automation is especially important while 
analyzing complex methods, projects which have developed multiple models, 
and projects which have multiple developers. The last of these is important 
because it helps highlight differences between people and reveal their modeling 
preferences. 

Type-instance matching can be performed in two phases: first by focusing 
on the usage of basic types, and second by analyzing related constraints. Both of 
these are discussed in the following subsections. 

5.3.3.1 Usage of types 

To investigate the usage of types, we must collect data about whether each type 
of a method (e.g. object types, relationship types, or property types) is or is not 
used. The data collection can be fully automated by inspecting instances 
according to the types. This approach does not automatically lead to a method 
modification, because the number of instances that a type has does not by itself 
explain the relevance of a type. Moreover, because the analysis can suggest 
alternative modifications the results of type use must be clarified by 
interviewing method users after the preliminary analysis has been made.  

Because models are always based on metamodels, three alternative 
modifications to methods are possible while inspecting the usage of types. 
These are 1) remove types which are not used, 2) divide, or specialize types 
which refer to different kind of instances, and 3) combine, or define linkages 
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between types which refer to similar or related instances. These alternative 
refinement options are illustrated in Figure 5-5 with corresponding numbers.  

The upper ellipse refers to a set of types of a method (i.e. instances in a 
metamodel), such as α, β, γ, δ. The lower ellipse describes instances of a model, 
such as β1,ε1,δ1. The mapping between these levels follows the IRDS framework 
discussed in Section 3.3.1. Reading from the top, models are always created 
based on type level information. Reading from the bottom, models are always 
read and interpreted based on the types and their representations. 

1) Remove unused types. Inspection of unused types is relatively 
straightforward. Types which are not used at all or have few instances may be 
irrelevant in the modeled domain and can be removed or combined with other 
types. This means that a method has a redundancy of modeling constructs, or 
that not all constructs were relevant in this modeling situation, or that the 
method users are insufficiently trained to make adequate distinctions. A 
method can also have unused types if all proposed types or constraints can not 
be found from the object system, or they are not considered cost-effective to 
model (e.g. because they are labor-intensive to identify). 

Checking for unused types is important in simplifying methods. Similarly, 
organizations which have adapted external methods often simplify them 
radically (e.g. Jaaksi 1997). Especially in cases where local versions are made for 
the first time there is a risk of ambitiously modeling “everything” for 
incorporation into a metamodel. 

2) Division or subtyping of types is required if the same type refers to 
different kinds of instances. This means that modeling constructs are 
overloaded and new types, constraints, and related representations are needed. 
For example, specification of classes which are persistent (e.g. MOSES, 
Henderson-Sellers and Edwards 1994) and at the same time deal with 
application interfaces (e.g. UML, Booch and Rumbaugh 1995) is not possible 

Instances of the model β1 ε1 δ1

Types of the model α β γ δ

1) 2) 3)

 

FIGURE 5-5 Alternative method refinements while analyzing usage of types. 
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according to any of the object-oriented methods analyzed in Chapter 4. To 
capture both of these characteristics, additional instance-based information 
must be specified. Although the analysis is based on semantics, and therefore 
can not be evaluated solely by analyzing models separately from the real-world, 
some pointers to this kind of need can be found from models: 

− Method users may extend modeling techniques by using different naming 
policies for instances. This kind of modification is a common form of tacit, 
on-the-fly modifications (Wijers 1991). An example of such an extension is 
to name similar instances with a specific suffix indicating the similarity. 
Naming extensions used can be also found from a data dictionary, or from 
a documentation property type.  

− Instances of the same type which are based on different wording (e.g. 
nouns versus verbs, or singular versus plural), or use of other distinctions 
(e.g. capital and lower case letters) may indicate that a single type is 
inadequate to differentiate instances.  

− Instances based on different wording can be further analyzed based on the 
property types used. An overload of modeling constructs can occur if 
instances of the same non-property type have instances with different 
property types. For example, in the case of relationships, a flow which is 
named with a verb and described with parameters can indicate that the 
flow represents a function, a procedure, or an operation. In contrast, a flow 
which is named with a noun may indicate only data passing. These 
different kinds of flows could also be distinguished at the type level (e.g. 
relationship types for an operation and a data flow). In the case of object 
types, we can analyze differences between the relationship types the object 
type instances participate in. If objects of different wording participate in 
different relationship types they may denote different object types.  
 
The resulting refinements can be carried out either by introducing a new 

non-property type, or by using a characterizing property type. A new non-
property type is required if instances of a non-property type have different 
properties or constraints, e.g. a different type multiplicity. If the only type level 
difference is the need to classify instances then a characterizing property type is 
sufficient. Depending on the tool support, different representations may require 
new types. If the representation of a type can be changed based on instance 
information (e.g. depending on the value of a property) the creation of new 
types for notational reasons is not required. 

3) Combinations of types, or definitions of linkages between types are 
required when there is redundancy among modeling constructs, i.e. a method 
has several instances of different types which refer to the same real-world or 
semantic entity. The use of several types that refer to the same thing is not 
always undesirable because it allows one to inspect an object system from 
different perspectives, and thereby to integrate techniques. Similarly, the 
metamodels developed in Chapter 4 show that the use of different types to 
specify the same instance information is relatively common. For example, in 
some situations an external entity in a context diagram (like in Yourdon 1989a) 
can correspond to an entity in an ER diagram (Wijers 1991, p 171). In other 
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situations only data stores of a data flow diagram can be specified as entities. 
Redundancy of types in a single modeling technique, however, is not 
considered desirable, because it makes modeling time-consuming by 
introducing additional complexity (Weber and Zheng 1996). 

Some linkages are already defined in a constructed method, but we are 
interested in finding linkages which are not defined and could be included into 
a method. These can be found by analyzing: 

− Instances which include the same values as their properties can indicate 
interrelations. Especially if values are shared among identifying property 
types, type level linkages could be defined. This refinement supports the 
maintainability of models and enables consistency checking (cf. Section 
5.3.4.2). 

− Instances which are nouns, verbs, or adverbs formed from the same root 
word, and which belong to different types can indicate some kind of 
relation at the type level. Also, synonyms can indicate that different users 
apply different modeling constructs to describe the same instances. The 
wording and possible synonyms can be inspected from the data dictionary 
related to models and by interviewing different developers about their 
naming policy. 

− Instances of object types can furthermore be analyzed based on the 
relationships they participate in. If instances of different object types 
which are named similarly (i.e. same wording, synonyms) participate in 
similar relationship type instances they probably denote the same instance. 
A similar approach is often the only way to find out the class which a 
specific state in a state model describes: if a transition to a state includes 
actions which the same class includes as its operations, the state describes 
a part of the life-cycle of that class’s objects26. 

 
The resulting refinements can be carried out either by combining types or 

by defining constraints which allow instances to be linked. A combination of 
types is not applicable if the non-property types have different property types, 
participate in different relationships types, or have different constraints. It is 
also possible to have different types which share exactly the same property 
types, constraints, and participate in the same relationship types. For example, 
in Coad and Yourdon (1991a) the only differences between classes and class-&-
objects are their semantics (i.e. class is an abstract class as it does not instances) 
and representations (i.e. single lined rectangle for a class, double-lined rectangle 
for classes with instances).  

A more detailed analysis of these refinements would require that method 
use is inspected in relation to other types and to more detailed constraints of the 
method. Accordingly, most of the modifications deal with refinement of method 
knowledge at the level of constraints. 

                                                
26  The state could also belong to superclasses. The analysis can be further improved by 

analyzing neighboring instances. For example, if the transition occurs from a state of 
another class the operation should be defined as public (e.g. Booch et al. 1996). 
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5.3.3.2 Usage of constraints 

Evaluating the usage of constraints is concerned with inspecting how the rules 
of the modeling techniques were applied. It extends the analysis from types to 
constraints. As with the type usage, the inspection of constraints can lead to the 
removal or addition of constraints: Some of the constraints defined may have 
been too strict, or conversely some might not have been used at all.  

Data collection on the use of constraints is performed on the basis of the 
constraints described in the metamodel. In the following we describe what 
constraints need to be checked based on the essential constructs of 
metamodeling (see Chapter 4.4). Basically, most of the constraints used in a 
single technique are straightforward to analyze, whereas constraints related to 
integrating techniques are more complex. Below we discuss each constraint and 
the method refinements that can be suggested on the basis of its usage. 

1) Identifying property. Properties which have inconsequential or dummy 
values are not applicable for identifiers. Accordingly, the identity constraint can 
be removed, and perhaps another identifying property type or types defined in 
its place. It must be noted that the identity does not deal with identity in a 
repository, but rather identity among design information. This is only 
meaningful for humans, since computer-aided modeling tools normally use 
internal identifiers (see also Section 4.4.1.1). New candidate identifiers can be 
found from other property type values. For example, instances in a dictionary 
property type can reveal candidate identifiers. 

2) Unique property. Values of property types which are slightly changed 
or are based on different wording (because the tool does not allow the same 
instance values) may denote that the uniqueness constraint is limiting modeling 
in the defined scope of the constraint. The scope of the constraint can be refined 
to include a smaller set of values, for example from all instances of a given 
property type to instances in a single model, or the whole uniqueness constraint 
can be removed. In contrast, if different instances of the same type can not be 
distinguished, compared, or checked adequately a uniqueness constraint needs 
to be added.  

3) Mandatory property. As with identifiers, a large number of dummy 
values added to satisfy the mandatory constraint should lead to its removal. 
Alternatively, property types which always have values may indicate that the 
property type should be defined to be mandatory. 

4) Data type of properties. Although tools normally ensure that data types 
are followed, the use of complicated data types, default values, and predefined 
values can be analyzed. Property types which allow free form text can include 
definitions which should follow a certain structure or syntax (like CATWOE 
discussed in Section 5.2.3). These can be added as new property types, or 
alternatively a syntax could be defined for a property type.  

A default value and predefined values can be modified to speed up 
modeling. A default value can be changed if another value is more commonly 
used. For property types with a mandatory constraint the most used value is 
declared as the default. Also predefined values which guide selection, such as 
stereotypes or multiplicity values (e.g. Booch et al. 1996), and which are not 
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used may be removed: they slow down modeling and make use of the method 
more complicated. 

5) Cardinality defines whether instances of a relationship type are binary 
or a specific n-ary. Because all possible alternatives of participating roles and 
objects do not necessarily appear, nor are all cardinality values used, the 
refinement possibilities of the cardinality constraint can not be studied fully by 
analyzing models.  

Some aspects, however, can be analyzed from model data. If only binary 
relationships are allowed the need for an n-ary relationship can be recognized 
when multiple relationships with the same property values are created for the 
same object. For example, an inheritance relationship defined as binary will 
need to be defined as n-ary if a class participates in several relationships in the 
superclass role and with the same discriminator value. This requires a change to 
the maximum cardinality constraint. The minimum constraint can be changed 
to one if all instances of a given relationship type use the specified role type, i.e. 
changing an optional role to be mandatory.  

If n-ary relationships are not used the cardinality constraint can be 
removed. Another option would be to create a specific relationship type for n-
ary cases, as in OMT (Rumbaugh et al. 1991). More detailed refinements, like n-
ary relationships only being used for specific instances of an object type or 
specific cardinality values, must be carried out together with method 
stakeholders. 

6) Multiplicity constraints deal with the number of role type instances an 
object type instance may have in a model. The constraint can be bound either to 
instances of a single role type, or to instances of different role types. As with the 
evaluation of cardinality constraint, not all multiplicity alternatives are 
necessarily applied during modeling and therefore their suitability can not be 
analyzed solely from model data. The following principles, however, help 
identify refinement possibilities:  

− Existence of role type instances for all object type instances may indicate 
that the role type should be defined to be mandatory, i.e. minimum 
multiplicity should be one.  

− Existence of only one instance of a role type for each object type instance 
indicates a one-to-one constraint value (1,1). Alternatively, a passive 
checking for a maximum value could be used to define that an object 
should only have one role type instance: in some cases, which the users 
should be informed about, multiple roles would still be possible. An 
example of such a case is a recommendation to use single inheritance (i.e. 
each class only participates once in a subclass role). This option is also 
relevant for instances of several role types. 

− Role types which are defined as mandatory and have “unnecessary” 
instances may be made optional (i.e. minimum multiplicity of zero). 
Examples of unnecessary instances are roles and related relationships 
which are not specified with property values. Changes to the checking 
mode are not relevant here because both modes are possible only for the 
maximum multiplicity. Similarly, it must be noted that role types which 
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are not used at all have already been inspected through the type usage 
analysis. 
 
7) Cyclic relationships. Analysis of cyclic relationships based on model 

data can only lead to removing cyclic relationships. If cyclic relationships are 
not allowed, but required, this implies that not all aspects of the object system 
can be represented. Additional objects to overcome the prohibited cyclic 
relationships could be analyzed, but this would require semantic analysis. 

8) Multiplicity of types. If system models are scattered into multiple small 
models, a minimum constraint can be applied to remind users, but not to ensure 
(because of the passive checking mode, cf. 4.4.1.9), that instances should be 
combined into smaller number of models. Alternatively, the creation of large 
and overly complex models can be prevented (with active checking), or 
discouraged (with passive checking) by setting the maximum multiplicity 
constraint for selected object types. The multiplicity of types is related to 
complexity management which can also be supported with other metamodel-
based constraints, e.g. complex objects, explosions, and polymorphism. 

9) Inclusion. In contrast to analyzing all instances of a type, an analysis of 
inclusion means that instances are analyzed inside a single modeling technique. 
For example, a ‘library class’ (Henderson-Sellers and Edwards 1994) can be 
useful in a specific modeling technique but not in all techniques, or vice versa. 
In addition to the use of non-property types, the occurrence of their property 
type instances needs to be analyzed since it is typical, at least in the methods 
analyzed (Chapter 4), that not all information on the same non-property type is 
required in different modeling techniques. For example, in the metamodel of 
UML (Section 4.4.3) an ‘object’ can be used both in a class diagram and in an 
object diagram with a property type ‘values’. This property type is used to 
describe instances of attributes of a class, but it is not necessarily relevant in 
class diagrams but only in object diagrams. This reveals polymorphism and is 
analyzed through the polymorphism constraint below. 

10) Complex objects deal with an abstraction mechanism which allows the 
modeler to build aggregate-component structures. Based on the usage of 
complex objects, the most straightforward method is to determine which are not 
applied and remove them as inapplicable. A more detailed analysis necessitates 
that different characteristics of the complex object type are examined.  

− A component type can be declared dependent if all instances of a 
component type occur in complex objects. 

− A component can be declared mandatory if all aggregate objects have 
instances of the component type.  

− A component type can be declared exclusive if none of its instances belong 
to other complex objects.  

− A component type is shared if the same instances of the component type 
belong to several complex objects.  

− A constraint for aggregated relationships can be defined when all 
relationships of the components outside the complex object are also 
defined for the aggregate. Whilst the constraint is undefined there exist 
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redundant modeling tasks in order to maintain consistency (cf. Section 
5.3.4.2). 
 
It must be noted that not all dimensions of complex objects (cf. Table 4-4) 

are analyzed because they are not relevant, or can not be analyzed from model 
data. For example, connected components and relationships of an aggregate can 
be analyzed with a multiplicity constraint. The limited use of complex objects 
can also be a consequence of the “dictatorship” of a tool. For example, aggregate 
object types may remain unused because they have mandatory components 
which are not applicable in the modeled domain. Hence, the constraints of the 
complex object could be checked passively, although our analysis of complex 
objects suggested that they can always be checked actively. Passive checking 
would allow violation of the constraints of complex objects but would still 
inform the method user about the inconsistencies. 

11) The explosion constraint deals with organizing and structuring 
multiple models. The original metamodel can either ensure (with active 
checking) or encourage (with passive checking) the use of explosions. While 
analyzing the current usage of the explosion constraint, the following situations 
indicate a need for modifications:  

− Explosion structures which are not used may be irrelevant and removed. 
Alternatively, the active checking which specified explosion structures as 
mandatory may be the reason why they are not used: passive checking 
could be applied instead. 

− Explosions should be defined as mandatory if all instances of a specific 
type (i.e. a source) or a technique (i.e. a target) participate in explosion 
structures. A mandatory explosion structure is defined with a minimum 
cardinality value of one, or alternatively if only one explosion exists with a 
minimum-maximum pair of (1,1).  

− Passive checking can be applied if an explosion structure is not used for all 
instances of a source type or a target technique. The use of active checking 
can not be analyzed from the resulting models because it deals with the 
modeling processes, i.e. whether all explosion structures were created in a 
top-down or in a bottom-up manner. This would be possible in modeling 
environments which allow queries on instance creation times.  

− A constraint of a shared explosion target could be removed if only one 
instance of a source type refers to a model.  

− A constraint of an exclusive target model can be considered too restrictive 
if it leads to the creation of multiple models which have fewer instances, or 
which have multiple shared instances. The former can be partly analyzed 
by inspecting the multiplicity of types in models, and the latter by 
inspecting the occurrence of the same instance values. 

− A model scope constraint is inaccurate if the same instance has the same 
explosion links in multiple models. For example, a class has the same life-
cycle, i.e. an explosion to the same state model, although it is represented 
in different models. Hence, the method scope should be used. 
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12) Polymorphism means two or more types sharing the same property 
values. The evaluation deals with analyzing polymorphism structures which are 
not used and by seeking instances which can indicate polymorphism. Based on 
the former option, polymorphism structures which are not used may not be 
suitable for the modeled domain. It must be noted that not all structures of 
polymorphism are necessarily described by sharing property values. Instead 
other constraints of a modeling technique can be used for this purpose. For 
example, an object can have both an ‘instantiation’ relationship type to a class 
and an object can be identified by a property type ‘class name’ (e.g. in Booch 
and Rumbaugh 1995). 

Based on the latter option, new polymorphism structures can be defined to 
support reuse. These linkages are typical between different techniques where no 
clear representation for linking is available. First, the analysis is carried out by 
seeking values among different property types which are based on the same 
wording, suffix, etc. This results in a set of types which describe the same model 
data. This approach is similar to analyzing overloading of modeling constructs 
with type usage (Section 5.3.3.1). For example, as in the metamodeling example 
in Section 3.3.3, values for actions in a state diagram and values for operations 
in a class diagram are the same.  

Second, a number of types participating in a polymorphism structure must 
be inspected. For example, a value “add customer” can be used as an instance of 
an ‘operation name’, an ‘action name’ and a ‘message name’. This means that 
the three types share the same value. Third, the size of a polymorphism unit 
must be analyzed, i.e. how many instances of different property types are 
shared together. For example, actions and operations typically share only 
instances of the naming property types since actions do not include operation-
related characteristics, like parameters or access levels. Also, parameters of a 
message in an event diagram (Rumbaugh et al. 1991, Booch et al. 1996) are the 
same as operations. Hence, the values shared include both the name and 
parameters. This is illustrated in Figure 5-6. An action, an operation and a 
message denote the same instance values. In a state model, actions are defined 
with a name, but operations of a class also include parameters and access levels, 
e.g. public. A sequence property type is only meaningful for messages in a 
message diagram. 
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Fourth, dependency among polymorphism structures requires that the 
modeling process be analyzed. This would allow us to find the types for which 
the shared instance values were first defined. For example, candidate operations 
should be added first into a message diagram and therefore operations of the 
class should refer primarily to already defined messages. Although analysis of 
dependencies deals with the modeling process, some of them can be recognized 
from model data. If a property type always has a value used in another 
property type, the former type may be dependent. Alternatively the checking 
mode for the dependency can be changed: active checking of dependency is 
required if models need to fulfill the rule at all times, and passive checking is 
used for an optional dependency.  

Finally, the scope of a polymorphism can be changed if shared instances 
belong to a smaller scope than originally intended. Alternatively, if 
polymorphism is not used, because the instances the user wanted to refer to 
were outside the permitted scope, a larger scope could be specified. 

5.3.4 Modeling the object system 

The second approach to incremental ME is analyzing modeling capabilities. 
Tool-supported modeling capabilities are divided into abstraction and 
consistency checking (Olle et al. 1991, see also Section 2.3.2). The former means 
the capability to describe relevant aspects of object systems, and the latter 
means the capability to maintain consistent models. 

The evaluation of modeling capabilities requires information about the 
object systems modeled and thus extends evaluation from the IRD level into the 
application level of IRDS (cf. Section 3.3.1). As a result, the evaluation must be 
conducted in close cooperation with method stakeholders. This means 
interviewing stakeholders in addition to analyzing model data. Interviewing is 

Types

add customer (customer data) public 2

Message:
name, parameters, sequence

Operation:
name, parameters, access

Action:
name

Instances

 

FIGURE 5-6 An example of polymorphism structure. 
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used to collect opinions on the method use and requests to change the method. 
The evaluation questions described below focus on structured interviewing. 

5.3.4.1 Abstraction support 

A conceptual structure behind modeling techniques suggests an abstraction to 
describe an object system (cf. shell model, Figure 2-2). An abstraction means 
perceiving some aspects of the object system while ignoring other aspects. Two 
issues must be noticed while evaluating tool-supported abstraction capabilities. 
First, a tool provides a set of concepts which are limited from a syntactic and a 
semantic point of view. Therefore, non-diagramming concepts27 (Wijers 1991) 
or other additional concepts can not be applied. Although a tool can include 
free-form modeling techniques, they are not adapted a priori to the situations 
and therefore their evaluation is excluded here (for this type of analysis see 
Wijers 1991). Second, not all aspects of the object system are necessarily 
represented in a similar notation to that used in paper documents because a 
CASE tool uses dialogs, linkages between models (e.g. an explosion structure), 
and a data dictionary to capture specifications.  

The evaluation of abstraction support can be analyzed by examining how 
object systems could be represented, by analyzing difficulties in making 
representations, and by inspecting differences among method users. These are 
described below: 

1) Are all relevant aspects of the object system perceived with the 
method? The limitation of abstraction support can be recognized when some 
aspects of the object system can not be perceived and represented with the 
modeling techniques. This requirement sets out the goal that the method must 
capture essential “objects” of the design problem and convey relevant 
information about them. As the review of method evaluation studies showed, 
this is the most common approach (e.g. Schipper and Joosten 1996, Wijers 1991, 
Fitzgerald 1991). Based on the evaluation, refinements can be made by: 

− Adding new types which illustrate aspects to be modeled. These can 
include a new non-property type (e.g. an object type which has property 
types and other constraints) (e.g. Jaaksi 1997), several types, or a whole 
modeling technique (e.g. Tollow 1996). 

− Adding a new property type (or types) that characterizes currently used 
non-property types (e.g. for subtyping entities, as in Wijers (1991)). 

− Adding new relationship (or role) types for describing specialized 
connections between objects. 

− Removing constraints which restrict abstraction. Examples of possibly 
restrictive constraints are multiplicity constraints (limiting the number of 
relationships which an object type instance can participate in) and 
cardinality (limiting the number of roles a relationship can have). 

                                                
27  Non-diagramming concepts refer in Wijer’s (1991, p. 170) study to additions to the 

modeling technique which are made when all aspects of object systems could not be 
explicitly specified with the modeling technique. Examples of such concepts in his study 
include a ‘problem’ and an ‘external party’. 
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2) What types have been difficult to use? Difficulties in making 

abstractions can indicate that the method does not “fit” the object system, or has 
not been introduced and taught well. If the difficulties are related to an 
inappropriate method, its conceptual structure can be redefined.  

3) What types have been used differently among individual developers? 
Differences in method use can be due to individual differences and modeling 
preferences. For example, some developers can use state models to describe an 
object’s life-cycle as the method engineer intended, whereas others can use them 
for interface design (e.g. Jaaksi 1997). Similarly, method developers can have 
different requirements from end-users (Tolvanen and Lyytinen 1993). Although 
individual differences of method use exist (e.g. Wijers 1991, Hofstede and 
Verhoef 1996) and can be supported through ME, ISD is a group activity. The 
modeling results should be based on a common understanding of modeling 
concepts. This is important for communication, minimizing misunderstanding 
etc. Hence, method refinement should strive to find linkages between related 
views of method users (Nuseibah et al. 1996).  

5.3.4.2 Checking support 

Problems of insufficient computing power are most noticeable in ensuring the 
consistency of models. Use of checking related constraints in the metamodel 
will result in well-defined and complete model instances. Consistency checking 
supports the maintainability of models, decreases the redundancy of modeling 
tasks, and supports traceability by informing of side-effects of changes. These 
emphasize both vertical and dynamic integration of conceptual method 
connections. The checking support is emphasized in ISD efforts where multiple 
models are developed with different techniques (integration among techniques 
or methods) and by different people (coordination among method users).  

With respect to metamodel data, checking can be carried out either 
actively or passively. Active checking ensures that models continuously satisfy 
the constraints of the metamodel, whereas passive checking requires a 
modeler’s attention. In modeling tools passive checking is typically 
implemented with checking reports which inform method users about 
violations.  

Although consistency is checked with various algorithms it is always 
dependent on the underlying metamodel data. Checking support can be 
evaluated with the following questions: 

1) Are the developed models consistent? This question can be partly 
analyzed by checking if the models satisfy both the active and passive checking 
rules defined in the metamodel. Active checking is already ensured by the tool 
and passive checking can be analyzed by running the consistency reports made 
during the tool adaptation. If models are not consistent, either consistency rules 
are not applicable or they are not used. In the former case the checking related 
constraints can be removed, and in the latter case active checking can be 
required. 
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2) Is manual work required to keep models consistent? This question 
deals with finding new constraints to maintain consistent models. Redundancy 
of modeling occurs when the same instance information must be changed 
several times in order to maintain consistent models. This error-prone and time-
consuming task can be reduced by adding constraints to the metamodel and by 
providing new checking reports based on the constraints added. Also, 
difficulties in tracing how changes in one model affect specifications elsewhere 
can indicate a need for new constraints. Redundant work exists in the following 
situations: 

− The addition of an instance requires the addition of the same information 
elsewhere in the models. For example, creation of a new action in a state 
diagram necessitates that the action is specified among operations of a 
class (cf. metamodeling example in Section 3.3.3). This situation would 
require that the action names are dependent on the operation names. 

− A change to an instance requires that other instances must be updated. For 
example, a change of an entity name must be reflected in a data dictionary 
and in data flow diagrams (Yourdon 1989a). 

− The deletion of design data requires searching and removing the same 
instance information. For example, the deletion of a class might require the 
manual deletion of related state models or removal of individual states. 
The former could be automated by defining a minimum cardinality of one 
for the explosion target (i.e. the state model), and the latter by using 
dependent polymorphism among states and classes (i.e. each state must 
refer to and be dependent on a class through its name, as in UML (Booch 
et al. 1996)). 
 
Some refinements can be carried out by changing the checking mode, or 

the scope of the constraints. Active checking can be used for constraints which 
are defined but not applied or when the use of passive checking is considered 
tedious. The scope of the consistency related metamodel constructs can be 
changed if consistency is not ensured among instances outside the defined 
scope: the scope is refined from a smaller set of instances (e.g. dependent type) 
to include a larger number of instances (e.g. model or method).  

5.3.5 Supporting problem solving 

Methods are not only used to describe a current situation but also to carry out a 
change process with respect to object systems. This necessitates that a method 
supports the seeking of candidate solutions and deciding amongst them 
(Tolvanen and Lyytinen 1994). Both of these can be supported by a CASE tool 
with form conversion and production of documents (Olle at al. 1991, cf. Section 
2.3.2). Form conversion provides mechanisms to seek alternative solutions by 
manipulating design data according to method knowledge (i.e. according to the 
conceptual structure or the notation). Deciding among solutions can not be 
directly automated but can be supported through the provision of documents 
for review and comparing candidate designs with the current configuration. 
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The evaluation of problem-solving capabilities is not much addressed as 
most approaches (cf. Section 5.2) focus mainly on modeling support. One reason 
for this focus is the evaluation of methods separate from their use situation. The 
analysis of problem solving capabilities reveals which parts of the method 
knowledge are required to seek alternative solutions and which are needed only 
for abstraction and checking. For example, while generating code from object-
oriented methods, not all concepts of the method are needed: although message 
diagrams are important in understanding object interaction, they are not 
required since the design data related to program code is already represented in 
class diagrams.  

As with the evaluation of modeling support, the evaluation of a method’s 
role in problem solving requires the participation of stakeholders. It involves an 
inspection of the application level to refine the IRD definition level (i.e. 
metamodels); in other words, a comparison of development outcomes and the 
method’s role in producing them. 

5.3.5.1 Support for form conversion 

Form conversion in a CASE tool means an analysis and a comparison of design 
data, simulation, generation of program code, and building of prototypes. Like 
consistency checking, form conversions are carried out by algorithms (e.g. 
checking reports or transformations) but they are only possible if the 
metamodel specifies and maintains the necessary design data. This means that 
aspects other than those found directly from or derivable from models can not 
be converted. In other words, conversions are largely dictated by the abstraction 
capabilities. Naturally, method knowledge is also included in the conversion 
algorithm (e.g. the syntax of the generated language), or can be added by 
developers during the conversion (e.g. a choice among approaches to convert an 
inheritance into a relational model, see Rumbaugh et al. (1991)). 

The evaluation of method support deals with analyzing how well it 
provides concepts and notations for form conversions. A conversion of 
conceptual design data takes place, for example, when a schema for a database 
is generated. Conversion of representational data occurs when the conceptual 
design data remains the same but the notation changes. For example, BSP (IBM 
1984) determines boundaries between ISs by organizing the data classes and 
business processes into a matrix so that a minimal number of connections occur 
among ISs. During this conversion only representations of data classes and 
business processes are clustered according to the use of data. Form conversion 
capabilities can be evaluated with the following questions: 

1) Can the required analysis be made using the models? Although 
analysis of models is dictated by the rationale that suggests modeling concepts, 
model analysis can reveal the need for new concepts. For example, during 
workflow modeling, a demand to analyze bottlenecks may arise. This, however, 
is impossible if the models do not capture information about capacity and 
throughput times. This suggests additions of property types to the workflow 
modeling technique. Similarly, inspection of encapsulation requires that 
attributes and operations of a class can both be specified directly with the 
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specification of a class (e.g. Rumbaugh et al. 1991), or in a class related models 
(e.g. Coleman et al. 1994). 

2) Can alternative design solutions be generated from models? A 
method should include rules which allow the conversion of models into various 
design alternatives by using the metamodel data. For example, to generate 
alternative solutions based on the level of (de-)centralization of the 
organization, the method should describe organizational structures. Similarly, 
interaction scenarios between classes can be examined by describing a 
significance for events (e.g. Awad et al. 1996). 

3) Does the design satisfy requirements of later phases or external tools? 
An outcome of modeling is a design solution which can be implemented or 
further analyzed with other methods or external tools (e.g. with a simulator, a 
programming environment, a code generator, or a reporting tool). Therefore, 
vertical integration with other tools and methods (cf. Table 2-2) must be 
provided. In other words, the requirements of later phases must be satisfied to 
provide an integrated method. For example, although UML (Booch et al. 1996) 
supports the generation of CORBA IDL interfaces (Iona 1997) better than other 
methods analyzed in Chapter 4, its support is not complete. As an example, 
UML does not consider context clauses for IDL operations. Hence, the UML 
metamodel can be extended with property types for context expression. 
Metamodel extensions towards programming languages are further discussed 
in Hillegersberg (1997). 

The analysis of form conversion capabilities typically leads to extending 
the conceptual structure with new types and constraints. If a conversion suffers 
from unavailable design data, for example because modeling tasks can not be 
completed unless instance values are added to the models made earlier, 
constraints can be added. These include a mandatory constraint for property 
types, multiplicity of types, and multiplicity of roles. In addition to changes to a 
metamodel, changes are also required in form conversion algorithms. 

5.3.5.2 Support for review 

Information system specifications which can be understood and reviewed by 
stakeholders are of great importance for validation. Tool support for review 
consists of the provision of information for stakeholders, such as summary 
reports for managers, less formal descriptions of the selected domain for end-
users, and formal specifications for programmers. The documents produced can 
vary based on the conceptual data and their representations. Since a review is 
always dictated by what is abstracted, the evaluation of review support deals 
mostly with representational issues. Tool support for the review step can be 
analyzed with the following questions: 

1) Can validation of IS models be supported? The metamodel must help 
to validate the system descriptions in relation to stakeholders’ desires and 
needs. This requirement is partly overlapping with the consistency criterion. 
There is, however, a marked difference: validity deals mostly with the semantic 
adequacy, whereas consistency focuses mainly on the syntactic properties of the 
models. Therefore, validity can not be assessed by exploring the metamodel 
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alone, but method users can provide information about which concepts and 
representations they find useful in validation. 

2) Does the method correspond to users’ natural concepts? Development 
methods are developed to satisfy developers’ cognitive needs related to design 
tasks. Therefore, it would be an advantage if methods were similar to users’ 
existing concepts and patterns of thought. For example, Olle et al. (1991) 
suggests different graphic representations for different types of users: experts 
from different areas of the object system may require different concepts from 
those employed in the underlying techniques. Similarly, less formal notations 
and icons can be applied. 

The analysis of review support typically leads to extending the method in 
terms of providing different notational constructs, and simplifying the method 
for different use situations. 

5.3.6 Remarks on the a posteriori mechanisms 

In this section we have put forward mechanisms for evaluating methods in a 
given situation. These mechanisms refine a method by adding, changing, and 
removing parts of the method knowledge. In other words, they evaluate which 
parts of the modeling techniques need to be simplified or extended. If the 
mechanism reveals requirements to change the method, it means that the 
constructed method may not be applicable in a use situation. The mechanisms 
are summarized in Table 5-4. The steps of incremental ME, i.e. collection of 
experiences, analysis, and outcome of refinements, form the vertical axis, and 
the a posteriori mechanisms the horizontal axis. 

TABLE 5-4 Mechanism for method evaluation and refinement. 

Steps of 
incremental ME 

Type-instance 
matching 

Problem solving 
capabilities 

Modeling 
capabilities 

Method 
rationale 

Data collection Metamodels, 
completed 
models 

Project 
outcomes, 
interviews, 
models, tool 
support 

Models, 
interviews, tool 
support, method 
change requests  

Method use 
decisions 

Analysis Differences 
between types  
and instances 

Support for 
form conversion 
and decision 
making 

Support for 
abstraction and 
consistency 
checking 

Individual 
differences, 
method 
engineer’s 
intentions 

Major outcome 
of method 
refinement 

Removed types 
and constraints 

Added types 
and constraints, 
improved 
method-tool 
companionship 

Add types and 
constraints, 
improved 
method-tool 
companionship 

Updated 
method 
rationale 

 
 

As the proposed mechanisms show, we emphasize modeling and problem-
solving capabilities. They are mostly used in cases of local method development 
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(cf. Section 2.4.2) and in the method evaluation literature (cf. Section 5.2), and 
they can be related to detailed method knowledge. Neither contingencies nor 
stakeholders’ values imply modifications of detailed metamodels, although 
some changes in contingencies or value-based ME criteria could be 
accommodated in a metamodel. 

It must be noted that the preceding mechanisms are not the only ones 
possible for evaluating methods. They are relevant for our research question of 
supporting method improvement through metamodels. The collection and 
analysis of experiences, as well as method refinements, are carried out through 
the metamodeling constructs. These organize the experience gathering and 
make method modifications more explicit and formal. The matching of types 
and their instances mostly leads to purging of method knowledge, because 
extensions which enlarge the metamodel are not possible. In other words, 
analysis of the use of a method in a tool can only show things which the tool has 
not prohibited. In contrast, the evaluation of modeling support and problem 
solving capabilities mostly lead to extensions of method knowledge. Extensions 
are largely a result of method users’ requests which arise from the application 
level. This also means that a posteriori ME requires the participation of the 
method engineer in ISD to obtain application level knowledge. This supports 
the claims that a method engineer must be one of the stakeholders of ISD, such 
as a project manager (Odell 1996).  

Because the mechanisms are overlapping, they can suggest conflicting 
modifications. For example, an analysis of explosion structures can show that 
each instance must be exploded, but the analysis of type multiplicity reveals 
that resulting models have only a few instances. As a result, the choice of an 
appropriate refinement must be made together with method users. Moreover, 
neither the mechanism nor the refinements should be prioritized. Therefore, the 
preferences of stakeholders can emphasize different mechanisms and resulting 
refinements. For example, Hofstede and Verhoef (1996) propose to be less 
ambitious with regard to the level of consistency and promote simple 
representations (i.e. a small number of graphical symbols). 

5.4 Summary 

This chapter has focused on complementing existing method engineering 
principles by introducing an incremental approach. This approach is motivated 
by the limitations of a priori ME approaches. In short, a priori ME is not 
interested in method use, and it assumes that the constructed method is 
understood and applied as the method engineer intended. In contrast, we 
believe that method knowledge and method construction criteria can not be 
known completely beforehand. Moreover, we claim that an ISD environment is 
not stable, because method use situations change and method users learn about 
their methods. These method use characteristics were also emphasized in our 
re-evaluation of method use (Section 2.5). As a result, at some point of time a 
method becomes less applicable for the tasks for which it was promoted. 
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Certainly it is possible that a method can be found to be fully applicable during 
the ISD project. Even in these cases it is of key importance to learn about 
method use. The learning aspect is also a key difference between a priori and a 
posteriori approaches to ME. Instead of expecting that a method engineer is 
responsible for all improvements to a method, the incremental approach 
emphasizes the role of method users and their experiences. In other words, 
method development should be based on stakeholders’ experience and 
situational needs, in contrast to selecting methods solely by using ‘universal’ 
ME criteria. The focus on experiences is also relevant because learning through 
experiences has been identified as a main way of learning about methods 
(Hughes and Reviron 1996).  

The incremental approach is clarified through method engineering 
scenarios. The scenarios illustrate steps of ME in which modifications can occur. 
The scenarios are used to explain incremental ME principles: we are interested 
in experiences which arise from method use, which can be made explicit, and 
which can contribute to method refinements. Explicit means that method 
improvements are not tacit, nor individual knowledge, but can be discussed 
and shared in an organization. This is important because learned methods often 
become tacit and “invisible” (Wastell 1996) and an in dividual developer’s 
productivity (Davis et al. 1991) can be reduced by methods (Fitzgerald 1996). 
The aims of method refinements mean that we evaluate methods primarily for 
improving them in a current use situation. 

To relate our incremental approach to other studies, we reviewed the 
approaches proposed for situational method evaluation and validation. This 
analysis pointed out that most of the evaluation approaches do not follow any 
systematic evaluation procedure for data collection or analysis. They are carried 
out mostly by method developers, and they do not aim to systematize the 
method improvement process. Moreover, unlike ME they aspire to a general 
situation-independent proof (or disproof). This proof has been found difficult to 
obtain (Fitzgerald 1991) as it necessitates that evaluations could be replicated, 
the variety and complexity of ISD environments reduced, and data collection 
limited to factors relevant to method use. Our approach is different. We aim to 
evaluate methods in situations in which they are applied and use an 
organization’s own experiences as a source for method improvement. In this 
sense method modifications are subjective, but generalizations can be found by 
iterating in cycles of incremental ME. 

The incremental approach is described through the mechanisms for 
collecting and analyzing experiences for the purpose of method improvements. 
The mechanisms deal with differences between intended and actual use of a 
method, the modeling power of modeling techniques, and a method’s support 
for problem solving. In each case the experience is collected and analyzed 
differently and can lead to modifications of a method or a tool. For each 
mechanism, principles for collecting and analyzing experiences are described 
and alternatives for possible method refinement are explained. First, the 
approach collects experiences and analyzes the applicability of modeling 
techniques through the use of types and constraints (in a metamodel) for 
representing an IS (in models). Second, it focuses on mechanisms that 
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emphasize the capability of a modeling technique to abstract relevant aspects of 
the IS and maintain the consistency of these models. Third, the suggested 
mechanisms evaluate the support of modeling techniques in problem solving. 
This evaluation deals with the capability to provide alternative solutions 
through form conversions and to support review and validation of models. 



 

6 AN EXAMINATION OF INCREMENTAL METHOD 
ENGINEERING: TWO CASE STUDIES 

In this chapter we shall demonstrate the viability of the proposed method 
engineering principles by analyzing two cases of incremental ME. Our focus on 
real-world method development efforts means that we will face two major 
differences in metamodels: hereafter the metamodels developed are situation-
bound, and method applicability varies as its use situations change.  

So far we have modeled ISD methods as they are described in the method 
literature: they are “universal”, standard and largely fixed. In Chapter 4 each 
method was specified using a single metamodel and no situational method 
modifications were made. Recently, method developers have adopted 
metamodeling for describing meta-data models, e.g. Booch et al. (1997) present 
metamodels for their Unified Modeling Language, and Henderson-Sellers and 
Bulthuis (1996b) for their Open Modeling Language. These metamodels, 
however, neither suggest modifications of methods nor provide different 
method versions for different situational needs. Although some situational 
needs are identified (e.g. Booch and Rumbaugh 1995), versions that can meet 
these situations are not specified. In incremental ME, metamodels are made 
based on situational needs. At the same time we can demonstrate that the 
metamodeling constructs are relevant for modeling situation-bound methods, 
not only applicable for modeling text-book methods, as we used them in 
Chapter 4.  

Based on the re-evaluation of method use (cf. Section 2.5) we shall focus on 
supporting the evolution of methods. Two cases of local method development 
are analyzed longitudinally and the methods constructed are evaluated a 
posteriori using the principles of incremental method engineering. These 
principles seek to externalize experiences of the methods’ use and channel them 
back into method improvements. This allows us to address our second research 
question on how to refine methods through modeling experiences. Possible 
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method refinements resulting from a posteriori analysis demonstrate that the a 
priori method was not as applicable as intended. If some refinements occur, 
these justify our conjectures that local methods are evolutionary and need to be 
maintained. Alternatively, if no method refinements are needed, then a posteriori 
analysis can be considered unnecessary, or the evaluation mechanisms were 
inapplicable to improve methods.  

The chapter is structured as follows. First, we describe the action research 
method followed. Second, two cases of local method development are discussed 
using the steps of incremental ME. Finally, the cases are analyzed by soliciting 
lessons about local method development, about method engineering principles, 
and about the incremental approach. 

6.1 Research method for method engineering cases 

Empirical studies of local method development are rare (Wynekoop and Russo 
1993, Tolvanen et al. 1996). This makes the selection of a research method for 
our case more difficult: we can not directly build upon other work and confirm 
(or challenge) its findings. Though several studies have investigated method 
use in practice (see the studies discussed in Section 2.4 and surveys by 
Wynekoop and Conger 1991, Tolvanen et al. 1996, Sauer and Lau 1997, 
Wynekoop and Russo 1997) they operate at a general level of method 
knowledge. Surveys and field studies do not address detailed method 
knowledge; rather they show that adaptations occurred (see Section 2.4). Case 
studies have been carried out on method introduction and use, resistance to 
change (Wynekoop et al. 1992), social defense (Wastell 1996), and stakeholders’ 
interests (Sauer and Lau 1997), but none of them addresses the situational fit of 
the method use. As a consequence, most of the ME approaches reviewed in 
Chapter 3 are unproven for local method development efforts. Those 
approaches which include demonstrative cases do not go into details (e.g. 
Punter and Lemmen 1996) and address only a priori ME, i.e. mostly the 
construction phase. 

Because ME is a relatively new research field, complementary research 
efforts and a variety of research methods are needed. To achieve the necessary 
pluralism we need more empirical studies (Tolvanen et al. 1996). Too often ME 
approaches, metamodeling languages and metaCASE tools are developed 
without an empirical grounding. Among empirical research approaches we 
believe that action research is appropriate to examine ME. Several researchers 
give support to this research approach (cf. Galliers and Land 1987, Galliers 1992, 
Wood-Harper 1985, Checkland 1981, Grant et al. 1992) in the context of 
studying ISD methods. Reasons for applying the action research method in our 
studies are manifold: it resembles incremental ME, it is iterative, it allows us to 
go into details, it is situation driven, and it offers possibilities for longitudinal 
observation.  
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Before we describe how the action research was carried out in this thesis 
(Section 6.1.2), and its similarities with incremental ME (Section 6.1.3) we briefly 
describe the action research method. 

6.1.1 Action research method 

Action research can be understood as a variant of a case study and a field 
experiment (Galliers 1992). Analogously to a case study, action research uses 
evaluations of particular subjects, such as an organization, a group of people, or 
a system at a point of time. It attempts to capture the “reality” in greater detail 
and typically no control of the phenomena is exercised. Unlike a case study, in 
action research a researcher participates and acts in the area of study and 
simultaneously evaluates the results of this participation. This dual role means 
that the objectives of the research are twofold: on the one hand, the action 
researcher aims to improve the situation in the organization. Thus, action 
research resembles any organizational development or consulting effort. On the 
other hand, the action researcher aims to contribute to scientific knowledge by 
creating generalizable concepts and theories of the problem setting and its 
behavior. The generalization is necessary for future settings, and for researchers 
to build better theories.  

The close interaction between theory and practice in action research means 
that during the research process, the roles of a research subject and a researcher 
can be reversed (Galliers 1992). As a result, the process of the action research 
separates the phases where action is taken, and where its results are evaluated 
(Checkland 1991, Jönsson 1991, Baskerville and Wood -Harper 1996). The dual 
role necessitates that action researchers be aware that their presence will affect 
the situation. Unlike case studies, the action research method permits 
intervention of the researchers into the events. In fact, the possibility to plan 
interventions and record them for evaluation purposes forms the essential 
mechanism of action research. The intervention can vary from direct 
intervention as an equal coworker, to indirect intervention through a catalyst 
role. An example of direct intervention would be participation in the method 
selection, and an example of indirect intervention would be playing an expert 
role in tool adaptation. However, in both modes the changes to be made must 
be planned and the effects of the actions recorded. This part of action research 
resembles a highly unstructured field-experiment. The process of the action 
research method is described in the next section in which its application in this 
study is explained.  

The possibility to test and refine principles, tools, techniques, and 
methods, as well as to address real-world problems, makes the action research 
method very appropriate for organizational development (van Eynde and 
Bledsoe 1990) and for IS research (Baskerville and Wood-Harper 1996). The 
advantages of the action research method compared with other approaches 
come from the possibility to obtain a deeper, first-hand understanding of the 
situation. The action research method allows collection of information which 
would be difficult to obtain by outsiders, and permits use of longitudinal 
research designs (Checkland 1981, 1991, Baskerville and Wood-Harper 1996). 
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Action research also has limitations. The approach offers few possibilities 
for statistical generalization, and no possibility to exercise control over 
experimental conditions. Because action research is largely interpretive, its 
results can also be interpreted differently by individual researchers. The dual 
role of the researcher also raises some ethical problems: the goals of practice and 
research can be conflicting. For example, organizations often expect quick 
results whereas the researcher may expect slower and more gradual progress. 
Conflicts can also be faced by the individual researcher having to act in both 
roles simultaneously. The funding structure behind action research raises a 
dilemma when the researcher is financed by the organization examined. 
Although the funding indicates some commitment of the organization to the 
study and access to data as a “worker” of the organization, the researcher must 
seek to satisfy the organization’s objectives as well. For example, it is not 
usually possible to study failures by consciously planning them. As in all 
research, action research must be planned to obtain scientific knowledge, and to 
overcome or minimize the limitations of the research approach followed. In the 
following section we describe the action research method followed in this thesis. 

6.1.2 Using action research in studying method engineering 

Several models for action research can be found (cf. Baskerville and Wood-
Harper 1996, Checkland 1991). They all consist of steps like planning actions, 
taking actions, and evaluating their results. In addition to these, entry and exit 
points to an organization must be planned (Buchanan et al. 1988). In studying 
incremental method engineering, the use of action research can be described 
according to the process model illustrated in Figure 6-1.  

1) Entering means getting access to real-world ME cases and establishing the 
action research. The criteria for selecting cases can be derived from our problem 
formulation. The site must be in the middle of a ME problem, deciding how to 
engineer a method for a particular IS development need?. In our study, the 

1) Enter 2) Action
planning

4) Evaluating
the effects of

actions
5) Exit

3) Action taking

 

FIGURE 6-1 Action research process model followed. 



 
220 

cases included two organizations which needed methods to carry out specific 
system development efforts. The first case was related to a business process re-
engineering effort involving an inter-organizational IS development in a trade 
organization. The second case deals with developing sales and outbound 
logistics in a cardboard mill. Both of the ISD environments were suitable for our 
study because they lacked methods and detailed method selection frameworks. 
Both cases had several external stakeholders, were dynamic and consequently 
had a high uncertainty. Both cases also provided the possibility for longitudinal 
observation: access to the organizations was possible also after method 
construction. 

Access to cases was obtained within a larger research project in which both 
companies participated. The funding was not based on the work carried out for 
the organizations but instead through the organizations’ participation in the 
research project. Participation was arranged as development projects. In these 
projects, ME efforts were organized as subprojects. In both cases, the ME 
projects had specific goals and a separate project plan which described its 
resources and schedule. In the latter case, the ME project also had a separate 
budget. 

2) Action planning involves decisions about the objectives and questions 
of the study, and shows how the study bears on these objectives. The research 
objective of our studies was to demonstrate the viability of incremental ME. We 
examined whether situational methods could be specified using the proposed 
metamodeling constructs, and whether the a posteriori ME principles could be 
used to refine methods. The former was studied by analyzing whether all 
aspects of modeling techniques could be described with a semantic meta-data 
model. The latter was inspected by analyzing the outcomes of the ME efforts 
and the use of methods. If the a posteriori evaluation mechanisms neither 
revealed possible method refinements nor supported learning of method use, 
they could be considered inadequate. Further studies could then be carried out 
to analyze which circumstances favor incremental ME and which favor a more 
“radical” ME approach (cf. Section 5.1.3).  

During action planning one also determines data collection mechanisms. 
To understand the constructed methods and possible method changes in detail, 
the data collected included metamodels, adapted tools, method manuals and 
other method descriptions, such as domain models and algorithms for model-
based analysis. Method construction rationale was collected from documents 
describing the requirements for methods, from memos and minutes of the ME 
projects’ meetings, and by participating in the ME process. To understand the 
actual use of methods, the models developed, the analyses created, and the 
project documentation were collected. In particular, access to design data stored 
in tool repositories was important because it allowed to inspect how the method 
was actually used with the tool. The project reports describing the deliverables 
of the ISD projects formed anther source of information about method use. 

Data collection also covered requirements to change methods and method 
versions. These were captured in documents relating to ME, and were outcomes 
of using the mechanisms of a posteriori ME. Finally, method engineers were 
interviewed twice during the study: first while the method improvements were 
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being sought with the mechanisms of a posteriori ME, and second at the end of 
the project. The latter interviews were applied to verify earlier observations and 
to establish satisfaction (or dissatisfaction) with the method and tool developed. 
Interviews were not recorded but notes were taken and the resulting 
descriptions were checked by the method engineers interviewed. 

3) Action taking carries out incremental ME as described in Sections 3 and 
5, i.e. applying both a priori and a posteriori principles. Both ME phases were 
carried out by collaborating with stakeholders. They identified ISD problems 
and provided experience to assess method applicability. The method users were 
partly the same people who engineered the methods. In the wholesale case, the 
researcher also participated in the ISD efforts, but in the mill case, participation 
was limited to tool adaptation and guiding the evaluation mechanisms. Hence, 
in the latter case the researcher played an expert role. In this sense the latter case 
was closer to a case study. 

4) Evaluating the effects of actions analyzes whether the actions have 
been taken as suggested and how they have affected problem solving. The 
results of ME actions were described in a baseline documentation which was 
checked for correctness by method engineers. Using this document, ME actions 
were analyzed based on metamodels, supporting tools and method manuals. 
The evaluation included an analysis of whether the metamodeling constructs 
were applied, and whether their use was considered successful. In the a 
posteriori phase, we analyzed whether changes followed incremental ME 
principles, and whether the changes improved methods. 

5) Exit stops the action research cycle. Cycles of action research were 
simultaneous with the cycles of incremental ME. Each time a method was 
evaluated the results were recorded and analyzed. This allowed us to carry out 
a longitudinal study rather than inspect only a snap-shot of the methods (as in 
Section 2.5 while analyzing the descriptions of ME cases). Because of the time 
and resource constraints, the actions were limited to one cycle. 

Although the cycles were simultaneous they occurred at different levels 
(Checkland 1991). The ME cycle deals with learning about methods. The action 
research cycle deals with learning about ME in general and about incremental 
principles. Both of these cycles should be documented as part of the research 
(Jönsson 1991). To clarify the different levels of actions we shall briefly compare 
the action research method and incremental ME. 

6.1.3 Comparing action research and incremental method engineering 

The description of the action research method shows that incremental ME 
resembles it in many ways. These similarities are summarized below: 

Both are iterative and focus on long-term changes. In principle they form 
never-ending processes in which learning is used in the consequent cycle.  

Both ISD and ME methods are studied in real organizations and in actual 
use. This focus allows the study and improvement of methods and related 
technologies. Because incremental ME principles are being promoted only 
action research and field experiments can be applied to study their viability. 
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Both are situation-dependent, which can also be considered a weakness if 
statistical generalization is an objective of the research. On the ME level, the 
need for situational dependency was already discussed in Section 2.5. On the 
action research level, situational dependency is reduced through research cycles 
and by carrying out studies in different organizations (in this thesis two 
organizations). 

Despite these similarities a key difference must be recognized: while the 
incremental principles operate at the ME level, the action research operates one 
level higher. These levels are summarized in Table 6-1 based on the domain in 
which they are applied. In this chapter we operate at the research level since our 
interest is to study the incremental ME principles. The research subject is 
method engineering and the mechanisms of incremental approach. 

Because of this focus on the research level, in the following sections ME 
efforts are described from the research point of view. Studying ME principles, 
however, necessitates that we also describe how methods were constructed (the 
ME level) and how they were applied (the ISD level). This means that the cases 
are reported at three levels as follows: Sections 6.2 and 6.3 describe ME cases 
which followed incremental ME principles (i.e. the action taking part of action 
research). Although the reporting focuses on how methods were specified and 
evaluated with the metamodeling constructs, the ISD level must also be 
recognized. This allows us to explain how the constructed methods were 
applied and the rationale for their use. The outcomes of action research (i.e. the 
evaluation part of action research) are described in Section 6.4, in which lessons 
learned from ME and from the incremental principles are discussed. 

TABLE 6-1 Levels of research, method engineering, and information system development. 

Level of action Domain studied Main actor Method 

Research level Incremental ME Researcher Action research 

ME level ISD method Method engineer Incremental ME 

ISD level Application IS developer ISD method 

6.2 Case A: Wholesale company 

This section describes the action taking part of the action research: how 
incremental ME principles were followed in a wholesale company. The section 
is organized according to the process of ME (cf. Figure 5-2). First, we describe 
the background of the company in Section 6.2.1 and characterize the ISD 
environment in Section 6.2.2. These characterizations are applied in method 
selection and construction. The results of the a priori phases are described in 
Section 6.2.3 by discussing the metamodel and tool support implemented. 
Section 6.2.4 briefly describes the method use. The remaining sections focus on 
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an a posteriori view: Section 6.2.5 describes the use of evaluation mechanisms, 
and Section 6.2.6 clarifies refinements and lessons learned from the methods. 
The research results (i.e. the evaluation part of action research) are described in 
Section 6.4. 

6.2.1 Background of the study 

Case A was carried out in a major Finnish wholesale company. Its central line of 
business is to buy goods and to deliver them to customers through a central 
warehouse and regional distribution centers. During the study the company 
was in the middle of a major business reorganization, in which it was decided 
to remove the regional distribution centers: i.e. a move from a three-level to a 
two-level organizational structure. The ISD efforts focused on the company’s 
order entry and purchasing processes which had multiple functions, covering 
both intra- and inter-organizational functions. The main ISD objective was to re-
design the ordering and purchasing processes, and develop ISs to support the 
two-level organization. 

The case was chosen because it was thought to be complex enough, and 
moreover it implemented the idea of business process-driven modeling that 
covers both hierarchy-based and market-based business processes. In fact, the 
modeling was carried out in four organizations. In addition to the wholesaler, 
these were a manufacturer/supplier, a regional distribution center, and a 
hardware store. Because most of the regional distribution centers and some of 
the hardware stores were also partially owned by the wholesaler the network 
can be further characterized as a quasi-market. 

The objective of the study was to develop methods which would help 
identify opportunities to improve order entry and purchase processes. In both 
of these processes IT plays a significant role. The order entry relates mostly to 
selling: through quota processing and order receiving to a delivery. The 
purchasing includes processes that deal with the company’s own buying tasks 
in inbound business operations. In the inter-organizational setting these 
processes are connected: the stakeholders of the order entry are the company’s 
customers, and in purchasing they are suppliers and manufacturers. In other 
words, these functions form a net of interrelated processes among companies. 
Because the business modeling study involved four organizations, the 
wholesaler’s order entry activities had to be seen in connection with the 
hardware stores’ purchasing activities, and so on. Although these functions 
were common to all four companies, the business development effort was 
carried out by the wholesaler. Accordingly, the method construction was based 
on the wholesaler’s requirements and problems.  

The ME effort was organized as a separate task inside the ISD project. The 
method was constructed by a person from the wholesaler’s IT department and 
by the participating researcher. In addition, help from external consultants was 
obtained during problem characterizations. The company had recently hired 
consultants to carry out a study of the company’s logistics. The results of the 
study were used to characterize the ISD environment and identify problems 
expected to be addressed with the method. 
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6.2.2 Characteristics of the ISD environment 

The initial requirements for method support were quite general. The method 
should address inter-organizational processes and it should allow the definition 
of an architecture for the networked organization. Moreover, because of the 
importance of the underlying logistics of delivered goods, the method should 
recognize material flows together with information flows (as proposed by Bititci 
and Carrie (1990)). These requirements were revised in more detail based on the 
characteristics of the object system environment. 

The initial requirements revealed, however, the necessity of a method 
engineering approach. First, no contingency framework for method selection 
was found that could address the basic characteristics of the problem context, 
such as inter-organizational systems. This was found out by a study reported in 
Tolvanen and Lyytinen (1994). In fact, the knowledge of developing and 
modeling inter-organizational ISs is relatively modest; not enough to develop a 
contingency framework (Stegwee and Van Waes 1993, Vepsäläinen 1988, 
Clemons and Row 1991, Tolvanen and Lyytinen 1994). Second, we did not find 
any business modeling method that would satisfy the requirements to model 
inter-organizational processes, and to specify the network’s information 
architectures (cf. Teng et al. 1992).  

6.2.2.1 ISD experiences and method knowledge 

In the wholesale company, experiences of methods included data modeling and 
process modeling. These were part of a method called TKN (Information 
Processing Advice). The TKN method was mostly used for the requirements 
engineering and analysis phases. For example, the data modeling part of TKN 
had been used for conceptual modeling and analysis, but not for schema design. 
One reason for this was that implementation was outsourced.  

The external consultants applied Yourdon’s (1989a) structured analysis 
and a supporting CASE tool (System Architect) in their study. The tool use was 
considered necessary because of the size of business models, but the method 
was not considered suitable. Because the method was targeted to develop 
individual ISs it did not address (de-)centralization, responsibilities among 
different organizations, or architecture definition. The CASE tool offered 
method adaptation possibilities by allowing the addition of new attributes 
(property types in our metamodeling terminology) to existing method types. 
This support, however, was too limited. No analysis could be made based on 
the property types added and they only supported the abstraction part of the 
method-tool companionship. 

6.2.2.2 Characteristics of the problem context 

Because of the lack of contingency frameworks, the criteria for method 
construction were sought from the wholesaler’s problems. Thus, a 
characterization of the organization and ISD problems formed the main entry 
point for method engineering. These characteristics and problems had been 
identified during the company’s own strategy process, and through a recent 
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study that dealt with the company’s logistics. The problems are listed below. 
The numbering of the list allows us to identify their influence on the 
constructed method. The following problems had been recognized: 

1) Inadequate understanding of other stakeholders’ purchasing 
processes. Understanding of the external environment was found to be 
inadequate for the provision of a good external service. Moreover, the shared 
and fragmented knowledge about business processes (e.g. goals, resources) 
within the industry made it difficult for the wholesaler to streamline its 
boundary operations towards a more cooperative environment. For example, in 
the industry and even in the company’s local outlets different rules were 
applied in purchasing and delivery, including non-uniform product and code 
standards.   

2) Duplicate tasks and routines. One of the most obvious problems was 
the duplication of effort. Each company had its own ordering and purchasing 
functions and associated supporting systems in which the data was entered. 
Moreover, the data in the IS is primarily used to serve each organization’s own 
needs. From the network point of view this has led to sub-optimal solutions and 
to unnecessary complexity in workflow. The wholesale company had already 
taken some steps towards external systems integration (e.g. data entered once 
served multiple functions and even multiple organizations), but data 
integration was still seen a problem. Duplicate tasks in the network increased 
costs, created errors, and lead to longer turn-arounds. 

3. Customer satisfaction (i.e. service level) was problematic. Satisfaction 
had been measured to be quite high from the wholesaler’s point of view, but it 
was considered low on the customer’s side. The reason for opposing opinions 
was not due to different service objectives, but rather due to the way how 
purchasing and delivery information was shared. Because customers’ opinions 
were not based on statistics, it was expected that better sharing of order and 
delivery information could improve the service level. 

4. Lack of coordination. Incompatible systems duplicated data entry 
efforts and decreased information availability (i.e. data sharing, access rights). 
The latter was seen to form a major problem in developing shared business 
processes and supporting ISs. These ISs can share and transmit order and 
purchasing related information, such as inventory status, orders, quotations, up-
to-date price lists, product descriptions, invoices and electronic money transfers. 
The sharing of information, however, needs to be planned. A concrete example 
of this was faced in inventory systems where suppliers or buyers had to check 
another company’s product information.   

5. Unsatisfactory turnaround times. Because of the fragmented logistic 
functions the turnaround times were not satisfactory. This increased inventory 
costs. Normally, companies knew their own inventory levels but could not 
check whether any other store or regional wholesaler “downstream” had a 
sufficient stock of a given product. Furthermore, this poor availability of 
delivery information tied with a complex ordering process increased 
throughput times. Thus, process integration between companies along the value 
chain was necessary to speed up cycle times and reduce inventory levels. 
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6. Lack of demand information. Because the wholesaler’s purchasing 
system was heavily dependent on marketing information, and on estimated 
sales, up-to-date market information played a significant role. However, the 
company did not utilize the marketing information well enough. Moreover, the 
availability of market information was assumed to be of interest to other 
participants in the industry (i.e. suppliers, importers, and manufactures). 

6.2.3 Business modeling method constructed 

Here we shall introduce the modeling techniques using a metamodel and 
discuss their tool support. We describe how methods were selected and 
modified to fit the characteristics of the problem context. 

6.2.3.1 Metamodels 

Two well-known methods formed a starting point for the method construction, 
namely value chain and value systems (Porter 1985, Macdonald 1991), and 
Business Systems Planning (IBM 1984). 

The method construction was guided by the ISD characteristics and 
problems. During the construction step we applied metamodeling to specify the 
methods and their interrelations. Figure 6-2 contains a metamodel of the 
selected parts of the methods and their interactions. The model is based on the 
GOPRR metamodeling technique discussed in Section 3.3.3.7 and in the 
appendix. 

The first part of the business modeling effort was to describe interrelated 
business processes and their relations. This part we call value process modeling, 
after Macdonald (1991). The value process models describe value adding 
processes and their dependencies while providing products and services to the 
“final” consumer. Although the traditional value chain (Porter 1985) 
concentrates on the value adding capability via different types of processes (i.e. 
inbound, operation, outbound, etc.) we extended it to include delivery-related 
properties, such as ‘location’, ‘capacity’, ‘volume’ and ‘turnaround time’. These 
properties we defined as optional whereas ‘type of process’ and ‘process name’ 
were considered mandatory. The mandatory constraint, however, could not be 
modeled into the metamodel and was therefore not actively checked. The 
checking of mandatory constraints was enabled by the analysis reports 
implemented (i.e. passive checking). 

Although in a value chain most information and material moves 
downstream, we also wanted to model the opposite because it allows us to 
analyze problems related to rework. In other words, duplication of work (cf. 
problem 2) often occurs as a result of failures or defects in providing services 
(Harrington 1991), causing a return “upstream” in the chain. This is specified in 
the metamodel by allowing customers and business processes to send 
(participate in “flow from” role types) information and material.  

Each process was further described by an actor to illustrate process 
responsibility. In cases where the necessary information was not available a 
process could be decomposed. According to the metamodeling constructs this 
structure was defined as a dependent, non-mandatory and exclusive complex 
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object. The metamodeling language, however, did not support these more 
detailed characteristics of complex objects (see also Section 4.5). It allowed, 
however, aggregating different levels of value process models and business 
processes. In the GOPRR metamodel this is described with a decomposition link 
(a dotted line with an arrow-head). 
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FIGURE 6-2 A metamodel of the a priori constructed method. 

The process models concentrated on material flows and on process information. 
In this way, it was possible to identify information requirements for processes 
that control material handling (cf. Bititci and Carrie 1990). Both flow types were 
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characterized by their name, description, mean volume, and responsibility. 
Material flows were further defined by possible terms of delivery. Information 
flows were specified according to their type (i.e. order, payment, report or 
control), maximum capacity, and status (obligatory, optional). Accordingly, the 
aim of the value process modeling was to establish a common description of a 
network of ordering and purchasing processes (problem 1), identify duplicate 
tasks (problem 2), and help to focus on areas which could considerably improve 
customer satisfaction and cycle times (problems 3 and 5).  

The level of IS integration among the companies was modeled using a 
business system integration method, which was a modified version of BSP (IBM 
1984). The use of the original techniques included in BSP (see Table 4-1) was 
limited to modeling data use in business processes using CRUD (create, read, 
use and delete) matrices in architecture planning. The modeling techniques 
were integrated through polymorphism: the names of business processes 
should be the same in value process models and integration models. Similarly, 
data described in architecture models was expected to be specified in value 
process models. In other words, the system architecture should not have data 
classes which were not specified as instances of flow types in the value process 
models.  

The method also supported modeling of market based IS integration 
solutions instead of focusing on integrating processes inside a hierarchical 
regime. This was achieved by dividing data handling processes among different 
organizations (a property type ‘organization’ in the metamodel, see Figure 6-2). 
Each business process was characterized with the organizational unit it 
belonged to, and thus organizational dependencies were represented. In BSP 
this is achieved by inspecting organizational units against business processes. 
Thus, unlike BSP the integration method described IS architectures where each 
company had both local and inter-organizationally shared business processes 
and data. Moreover, it defined the inter-organizational responsibilities, data 
sharing and data availability (e.g. create, use). The objectives of the integration 
method were to address and solve problems related to inter-organizational IS 
architectures, to improve coordination through shared data (problem 4), 
eliminate duplicate data and processes (problem 2), and to improve availability 
of market information (problem 6). 

6.2.3.2 Tool adaptation 

Both modeling techniques were supported by a computer-aided tool. The value 
process modeling was supported by a metaCASE tool, and the business system 
integration was supported by a spreadsheet tool.  

The metamodel of the value process model was implemented in a 
metaCASE tool called MetaEdit (MetaCase 1994). The notation of the value 
process model is represented in Figure 6-3, in which a high level view of the 
wholesale process is described. With respect to the other parts of the method-
tool companionship, checking and documentation reports were implemented. 
The checking reports operated on those aspects of method knowledge which 
needed to be checked passively, or were not possible to capture in the 
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metamodel. The checking reports included unconnected object types (i.e. 
minimum multiplicity one) and undefined properties (i.e. mandatory property 
types). The multiplicity of types was not inspected because only two object 
types and relationship types were used. The documentation reports included 
dictionary reports and flow reports. The dictionary report describes property 
definitions for all instances of the ‘business process’ and the ‘customer’ object 
types. The flow reports describe use of information or material from the 
business processes side (i.e. flows in, flows out) and from the flow side (i.e. 
which business processes use a specific information flow). The reports on 
information flows were used to build the architecture models into a 
spreadsheet. The value process model captured most of the design data 
required for architecture definition, except the type of usage and the 
organization. The organization information could also be detected from the 
model hierarchy, although it was not included as separate property type in the 
metamodel. The flow reports also served as a basis for documentation and to 
deliver models for validation and further inspection. 

Because of the use of a non-metamodel driven tool for business system 
integration, metamodel based method knowledge could not be applied. The 
reason for this was the lack of matrix representation support in the metaCASE 
tools reviewed (cf. Bidgood and Jelley 1991). The matrix representation was 
considered a necessity because it allowed the analysis of large architecture 
models among four organization types in a condensed form and the 
representation of couplings between processes and data. Matrices also provided 
an abstraction required to develop alternative architectures based on 
information availability. 

6.2.4 Method use 

The ISD project took over half a year, and seven persons from all four 
organizations were involved. Most effort was needed to develop the 
wholesaler’s downstream activities. The participation of a supplier organization 
was limited because they were only interviewed to obtain their requirements. 
The value chain of the wholesale process is described in Figure 6-3.  

The figure is based on the value process model. The model describes major 
parties and business processes. Organizations participating in the ISD are 
illustrated through grayed business processes. The value process model 
describes only material-based relationships (represented as thick lines with an 
arrow head). During the ISD project, delivery, ordering, and purchasing related 
controlling information flows were described. In addition, each participating 
organization was modeled in more detail by decomposing business processes. 
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The order entry and purchasing system was decomposed into around 60 
business processes, 140 different information flows, and 30 material flows. The 
main outcome of the project was three solutions for managing purchasing and 
ordering related processes. These alternative approaches were differentiated 
based on the responsibility given to different actors. All these alternatives 
required a new IS for sharing ordering/purchasing related information. A 
“pull” solution configures the chain based on the market needs as recognized 
by the stores: all ordering functions and related purchasing functions of the 
wholesaler are based on sales. A “push” solution means the opposite. It offers 
control mechanisms for the wholesaler to monitor sales from the field. This 
provides better prediction for the wholesaler’s purchasing functions, and offers 
possibilities to balance inventories. A hybrid solution means a combination of 
these based on the type of goods: for example, sales of low volume products are 
difficult to predict requiring a market-based strategy (i.e. the pull alternative), 
whereas seasonal products could be planned by the wholesaler (i.e. the push 
alternative). 

The alternative solutions and their influence on problem solving are 
described in the next section since they were applied in evaluating modeling 
power and problem solving capabilities. 

6.2.5 The a posteriori method engineering 

In this section we explain how the method was refined during the case based on 
the experiences from method use. We first apply type-instance matching. This 
part of the study was conducted by the researcher/method engineer alone. 
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FIGURE 6-3 Value chain of the wholesaling industry (modified and partial).  
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Second, we assess the applicability of the method in terms of how well it 
supported business modeling. Third, we try to identify the role of the method in 
ISD. These latter two evaluations were conducted by interviewing the 
stakeholders based on the method evaluation and refinement mechanisms 
described in Section 5. The stakeholders involved were from the wholesale 
company and mostly from its IS department. Hence, because the problem 
characterization and method construction was accomplished by the wholesaler, 
the method refinement was accordingly conducted from the wholesaler’s point 
of view. 

6.2.5.1 Type-instance matching 

Type-instance matching deals with inspecting how the constructed method has 
been applied. The comparison is made between the method’s intended use (as 
seen from the metamodels) and actual use (as seen from the models). In the 
following we describe only the results of this evaluation, i.e. those differences 
between models and metamodels which suggested method refinements  (cf. 
Section 5.3.3 for details). Therefore, those questions or evaluation alternatives 
which did not reveal any differences are excluded. Similarly, it must be noted 
that not all constraint-related evaluations will be inspected, because the 
metamodeling language could not capture them. 

6.2.5.1.1 Usage of types 

1) Unused types. All non-property types were used but several property types 
had few, if any, instances. None of the unused property types were redundant 
with other property types, but they were not used because design information 
could not be found, or was not considered cost-effective to find. The 
‘turnaround time’, ‘capacity’ and ‘volume’ were defined for only 5% of 
instances of the ‘business process’. The business processes which included these 
property definitions operated at a detailed level, or at the organizational 
boundaries. The ‘actor’ was defined in 20% of the business processes because 
this was considered redundant while decomposing processes. In other words, 
actors of lower level business processes were the same, or specific groups of 
those in the higher level business process. 

As a result, the property types could be removed from the value process 
model. Although some other property types had few instances they were not 
removed. The ‘volume’ and the ‘responsibility’ was defined in only 5% of the 
material flows, but for almost each information flow. Because no special reason 
for treating the flow types differently was found (other than the primary focus 
on information flows during the project) no modifications were made to these 
property types.  

2) Dividing or subtyping of types was considered necessary in two cases. 
First, processes had differences in their naming. Some high-level processes were 
named according to organizational units (e.g. inventory) whereas other were 
tasks of employees. For the latter cases, the ‘turnaround’, ‘capacity, and 
‘volume’ property types were applied. This suggested that processes must be 
divided into higher level business processes and into employee tasks. Second, 
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because of the inter-organizational setting, several information flows with the 
same name referring to different flows were modeled. For example, an order 
had a different meaning and content in different companies. This could be 
detected from models which had organization-related descriptions related to 
flows. For example, “confirmations of an order are delivered directly to 
shopkeepers”. Although this was acceptable while modeling information flows 
of individual companies, it was not desirable for making an information 
architecture for the whole network. Therefore, the flows/data should be 
specified in terms of the organization and its content. 

3) Definition of new linkages between property types was suggested in 
only one situation. Actors and responsibilities of flows shared the same values. 
Also, the direction for sharing property values was found, because all actors 
were also specified in flows. This aspects is analyzed in more detail later. 

6.2.5.1.2 Usage of constraints 

Analysis of constraints is limited to those defined in the metamodel and 
supported by the tools. Some of the constraints which could not be captured 
into the metamodel, however, could be supported by the tool. These constraints 
include the unique property, the mandatory property, and the multiplicity 
constraints. For example, a tool could warn about property types which are not 
defined, although such a mandatory constraint was not defined in the 
metamodel. 

Active checking of the mandatory property constraint was considered 
important because all classifications of property types were not specified. As a 
result, separate architecture models could not be created automatically for the 
current ordering system (i.e. by selecting all order-related information flows 
from the value process model). The ‘type of information flow’ property type 
included also values other than those which were predefined. The most used 
was delivery related information. It was considered relevant for logistics 
modeling and had to be added to the predefined values to speed up the 
modeling work. This addition was also considered important for analyzing 
management of delivery information. 

Several business processes had flows with the same name, suggesting the 
need for n-ary relationships (a role’s minimum cardinality greater than one). 
Although this indicated duplicate modeling effort in situations where design 
data is updated, the use of n-ary relationships was considered unnecessary. 
Moreover, binary relationships could be used for the same purpose. Our 
metamodeling constructs did not even have a constraint which would 
necessitate the creation of n-ary relationship if two binary relationships with the 
same instance information existed. 

Multiplicity constraints over two role types could not be supported but the 
model indicated that this should be the case for all object types in both 
techniques. In other words, existence of an instance of either of the role types 
suggested that the role types should be defined as mandatory (i.e. minimum 
multiplicity one). Moreover, a typical recommendation in architecture design, 
that only one process should create data (i.e. be responsible for it), was present 
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in the models. Modeling the present state suggested, however, that it should be 
possible to model more than one data creating process. 

The specification of complex objects had to be changed: dependency and 
non-mandatory rules were applied while decomposing business processes, but 
an exclusive component constraint was not. One reason for this was the need to 
combine detailed process models and the development of different versions for 
representing alternative solutions. Instead of hierarchical leveling with 
exclusive components (similar to decomposition in data flow diagrams) the 
value process models were unified at lower levels showing detailed workflows 
between companies. This required shared business processes in complex 
objects. Second, the analysis of scope for the constraint suggests a change from 
the method to the model. Otherwise different versions using the same process 
could not be made: a tool would necessitate aggregated relationships for all 
instances of the process regardless of the model where it is defined (i.e. 
decomposed or combined process models). This would result in a model which 
included all relationships (and a whole model hierarchy) instead of specifying 
those necessary only for the current version. 

Analysis of values among different types revealed one new candidate for a 
polymorphism structure between the ‘actor’ and the ‘responsibility’. Here the 
same value could be used although they are semantically different. The actor 
means the acting part in the business process whereas the responsibility is used 
to define the instance responsible for delivering the data.  

6.2.5.2 Modeling capabilities 

The tool supported modeling with abstraction and checking capabilities. Before 
evaluating these we describe how the method was used in modeling the object 
system. These characteristics are the same ones which drove the method 
construction. First the way of modeling is described and then abstraction and 
checking capabilities are evaluated. 

1) Inadequate knowledge of stakeholders’ processes. Because of the 
inter-organizational nature of the object system, the wholesaler’s knowledge of 
partners’ processes was modest. In general, only processes that related to costs 
or interactions at the organization’s boundary were documented. In 
synthesizing this fragmented knowledge the value process model proved to be 
useful. Its main impact was that it helped to describe all business processes 
related to order entry and purchasing, which were shared processes in all 
companies. As is typical in logistics, the specification of material flows between 
multiple participants and their mappings to controlling information flows were 
considered useful. In particular, process dependencies and responsibilities were 
revealed which helped participants see information handling policies.  

The main difficulties in abstraction related to characterizing processes with 
logistic information. These were already recognized as unused types (i.e. 
unspecified turnaround times, capacity and volumes related to processes). In 
most cases the business process information was not found, and if such was 
specified, it was related to processes at organizational boundaries, or to an 
individual’s tasks. Moreover, the value process model operated at too general a 
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level. This demanded modeling of a detailed workflow. Process modeling was 
found redundant in maintaining process related information between different 
levels of the process hierarchy. For example, a turnaround time of a business 
process should not be smaller than the sum of those specified to its 
subprocesses. The manual maintenance of the property values was one reason 
why such data was not specified. This required derived data types or checking 
reports which could calculate business process related characteristics from the 
properties of its subprocesses. 

2) Duplicate tasks and routines. In networked processes, effort 
duplications occurred at the department and especially at the company level. In 
the study, system integration models were used to describe network-wide 
processes that use or create similar local data. Examples of such processes were 
order entry and delivery notification. The value process showed the structure of 
tasks, but not how the processes are carried out: In particular, the analysis of the 
current situation required descriptions of more detailed tasks structures and 
decisions. For example, the value process model did not describe alternative 
possibilities to make orders depending on the current availability of goods. This 
suggested a concept of a decision in relation to the task structures. 

Because modeling tools were separate, maintaining consistency between 
models created duplicate work. Each change needed to be updated to other 
types of models and the information flow report from value process models to 
integration models was only used once when the whole network was 
transformed into a spreadsheet. 

3) Customer satisfaction on delivery did not involve any other modeling 
concept or constraint than the involvement of customers (i.e. stores). The 
modeling support therefore dealt with specifying delivery related information 
flows together with the customers of the wholesaler. 

4) Lack of coordination. The possibilities for inter-organizational business 
integration were estimated by deriving IS architecture models for each company 
and then later integrating them into a network wide model. During modeling, 
difficulties arose because of homonym and synonym problems in the data, and 
because the same data class could contain different information. In order to 
specify IS architectures in more detail —  e.g. differences in data classes among 
companies (e.g. in orders or inventory data) —  data modeling was regarded as 
important: the currently used techniques were considered inadequate to 
examine these differences.  

5) Unsatisfactory throughput times. One objective for modeling was to 
gather data on logistic measures (i.e. capacity, turnaround times, and delivery 
conditions) to help find efficient solutions. In practice, however, we faced 
several obstacles in accomplishing this task: the smaller companies did not have 
the required information on their logistic measures, or it was not in the required 
format. Although all companies knew in detail their material handling 
processes which operated at the organization’s boundary, information about 
internal processes and about non-cost items was seldom available. Because 
logistic measures give a detailed picture of the efficiency of the organization this 
information was at times kept secret. Moreover, the modeling revealed the need 
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for different modeling constructs at different modeling granularities (i.e. 
detailed tasks are specified differently from general business processes).  

6) Lack of marketing data. The availability of marketing data was 
modeled like any other information flow. The value process models were used 
to identify the wholesaler’s and stakeholders’ information requirements, and 
the integration model was used to inspect data coordination aspects. As with 
modeling shared data, the models had to be supported by tools for data 
modeling (e.g. ERD). 

6.2.5.3 Problem solving capabilities 

In incremental ME, evaluation is carried out by comparing modeling outcomes 
and method principles used to achieve these outcomes. We inspected this using 
form conversion and review mechanisms. Form conversion means the capability 
of a tool to analyze models and generate candidate designs. Review 
mechanisms mean production of documents for stakeholder needs and 
validation.  

In the following this evaluation is described. First we describe the project 
outcome and then the role of the method is discussed. 

1) Knowledge about stakeholder processes was improved by using the 
value process models. These helped participants correct or verify their 
assumptions of process dependencies and find information that originated 
outside their organization. Thus, the value process models mostly supported the 
validation and uniform documentation of processes among companies. In the 
form conversion part, the process and information flows were also converted to 
tentative design data in the business integration model. As a result, all use-
based connections between processes and data could be automatically 
converted into the CRUD matrix. Other types of usage could not be converted, 
because no indication could be given in flows as to whether a business process 
for example had created or only updated the data. 

2) Duplicate tasks and routines. The business integration method allowed 
the identification of redundant information handling processes and generation 
of alternative candidate designs. This is similar to BSP (IBM 1984) with the 
distinction that data availability in our case is based on different organizations. 
Hence, solutions were sought by inspecting outcomes of different data 
integration and sharing possibilities between companies. These alternatives 
included, for example, that the wholesaler’s inventory information is available 
in real-time for the stores during purchasing, or that manufacturers can have 
access to the wholesaler’s inventory and sales information. As a result, duplicate 
tasks, both in the order entry and purchasing activities, were removed through 
improved information sharing between companies. These changes also 
simplified processes by reducing their complexity, especially in tasks related to 
handling special kinds of orders, order confirmations, and out of stock reports. 
The spreadsheet tool did not automate solution generation, although this could 
have been defined based on the metamodel. 

3) Customer satisfaction. As a result of the modeling effort, customer 
satisfaction was improved by offering more accurate information through an 
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on-line ordering system about products, the customer’s order base and delivery 
status. These changes were obtained by first modeling purchasing processes 
and then customers’ information requirements. The proposed solutions 
decreased customers’ uncertainty, improved the wholesaler’s responsiveness, 
and moved redundant tasks (such as recording follow-up of orders, and re-
ordering, and related decision making) from the wholesaler to stores. These 
changes were also presumed to bind customers more to the wholesaler. 
Although none of the metamodel constructs were directly used to analyze or 
improve customer satisfaction, the recognition of delivery information in the 
instance models allowed the recognition of availability of delivery information. 

4) Lack of coordination. One of the project outcomes was the overall IS 
architecture. The method allowed the construction of several candidate designs, 
including both “hierarchy based” and “ market based” data integration. By 
hierarchy based integration we mean local and company related information 
modeling, and by market based integration we mean the integration of data 
across multiple companies. As an example of a candidate design based on a 
market driven approach, we proposed order entry and purchasing systems 
which focus on supporting stores and distribution centers by employing the 
wholesaler’s or even the manufacturer’s inventory and delivery information (i.e. 
the pull solution). A totally opposite approach would have offered improved 
control mechanisms for the wholesaler (i.e. the push solution). For example, by 
gathering sales and inventory information from the field, the wholesalers could 
unify processes downstream in the chain, e.g. to control product mixes, or 
provide information for marketing and inventory control for stores. By these 
changes the wholesaler could achieve economies of scale and further improve 
its own purchasing processes. In line with the wholesaler’s business strategy, 
the selected data coordination mechanisms tightened the relatively free 
mechanisms towards a more uniform and cooperative one. Because of the 
flexibility of demand, the suggested solutions still allowed a pull solution for 
selected products and customers. At the same time it also offered a more 
controlled service to other customers or goods which are easy to handle and 
predict (such as goods which have a stable demand, a cycle in patterns, or can 
be delivered quickly). Because of the lack of full CASE functionality, this part 
was not supported by automatic conversion mechanism provided by matrix 
based tools (e.g. Kelly 1994). However, conversion reports provided design 
information to manually build integration models. 

5) Unsatisfactory throughput times. One objective for ISD was to gather 
data on logistic measures that help find efficient solutions. The value process 
models did not offer enough information about task structures or logistic 
measures. Because of unavailable data, such analyses could not be made with 
the tool, although the analysis functionality (flow-in/flow-out reports) was 
implemented. Hence, the method failed to offer immediate solutions that could 
improve cycle times or decrease inventories.  

6) Lack of marketing data. Solutions for information gathering included 
an application for summarizing order and sales data to support the wholesaler’s 
purchasing processes. This data also attracted interest outside the company, 
especially among the manufacturers. One feasible solution for this problem was 
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an on-line communication system, which would allow the wholesaler to make 
queries downstream, e.g. about campaign products sold, or information about 
marketing progress and delivery schedules. In solving this problem, both 
methods were applied. The value process models were used to identify the 
wholesaler’s and stakeholders’ information requirements and the integration 
model was used to inspect coordination aspects.  

6.2.6 Method experiences and refinements 

The outcomes of the method evaluation were two-fold. First, it offered 
possibilities to refine the used method, and second it supplemented existing 
knowledge about methods and method contingencies. In our case, method 
development focused mainly on addressing the networked material flow. 
Accordingly, we shall concentrate in the following on the contingencies related 
to the organization’s logistic ISs. Experiences from value process modeling 
confirmed earlier observations (cf. Österle et al. 1990, Macdonald 1991) of its 
applicability in process integration. Especially in cases of multiple companies 
(e.g. with customers and suppliers), the method helped clarify both information 
and material based process dependencies. Moreover, the method was found to 
be applicable for network-oriented modeling where the knowledge of the 
business is dispersed. At the same time, the method presumes a strong 
commitment from participants, especially in cases where the same modeling 
accuracy and detail is required. 

Problems in data gathering revealed, however, that the method is not 
suitable in cases where the processes are not documented, or where they are 
constantly changing. Furthermore, the value-oriented approach seemed to be 
appropriate only in modeling higher level views. Therefore, in situations where 
a more detailed representation was required, and we lacked general process 
measures, other methods were needed. The task of business system integration 
was likewise hindered by the lack of information. This was especially the case 
in dealing with inter-organizational relationships, where each company had a 
similar kind of data (such as an order), while its actual content differed greatly. 
Thus, although most methods for IS architecture definition do not strive to 
develop detailed data models (Österle et al. 1990), our modeling case clearly 
demanded the use of such methods. Like most methods for architecture 
definition (e.g. Business Systems Planning), the business integration method is 
suitable for organizations which are centralized (Sullivan 1985), and where 
some architecture and system specifications already exist. 

A second outcome of the incremental ME was method refinements based 
on method use. The suggested method refinements are defined by changing the 
method specifications. It must be noticed that none of the required changes to 
the method could be predicted earlier. As the method assessment clarified, the 
necessary changes to the method related to modeling task structures and data. 
In the case of value process modeling, specifying detailed task structures 
required more detailed constructs (as in problem 2 for specifying more detail 
tasks, or in problem 5 for finding unsatisfactory throughput times): Value 
process models are not rich enough in dealing with a fine granularity of 
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modeling where we want to describe a team’s or an individual’s task structures. 
Some of the necessary data (such as cycle times in problem 5) could be derived 
only through modeling system dynamics (cf. Jordan and Evans 1992). For these 
reasons, we examined techniques suitable for modeling business and task 
dynamics (e.g. Dur 1992). Detailed models of tasks could be utilized in 
representing dynamic features of logistic processes.  

The modeling technique to be used for describing task dynamics and its 
connections to the value process model is shown in Figure 6-4. In the new 
metamodel each business process can be further specified either by a new value 
process model, or by a task structure. In a task structure, a ‘task’ depicts actors 
and their jobs, a ‘transition’ specifies an order between tasks, and a ‘decision’ 
possible alternatives and choice logic. The ‘task’ is further characterized with 
properties which originally were related to the ‘business process’. Hence, task 
modeling can support information gathering about the capacity, volume and 
turnaround times which were found difficult to specify at higher levels. The use 
of task structures could be further specified to enable analysis features. These 
could include data about actors’ workload, delay and priority of tasks, 
transitions, and other behavior to handle alternative conditions in transitions. 
These analyses were not made because the aim of the study was not to tune 
individuals’ tasks structures, but rather to design the overall architecture of the 
ISs. 

In carrying out system integration the requirements for a more detailed 
data analysis could be satisfied by connecting an entity-relationship diagram 
(ERD) to the business system integration method (see Figure 6-4). This 
refinement related mostly to making higher level abstractions and improving 
the analysis of common/shared data, i.e. problem 4. Here data classes identified 
in the business system integration models were defined in terms of ERDs. This 
was expected to allow the specification of different views of the same data and 
inspect differences in local data, e.g. in ordering, where information 
requirements are often different. Another example can be found in purchasing, 
where the wholesaler’s information requirements are totally different from 
those of regional wholesalers and stores, and where the terms of delivery and 
prices are permanent. The conceptual structure of an ER diagram followed the 
TKN method already used in the wholesaler’s IT department, and was similar 
to the metamodel developed in Section 4.3.2. 

In addition to these new modeling techniques the existing ones were 
modified. The type-instance matching added new predefined values for 
property types, such as delivery information to the classification of information 
flows. Similarly, a polymorphism structure was defined between the ‘actor’ and 
the ‘responsibility’. This modification speeded up modeling and improved 
consistency: it allowed to reflect changes in one actor value to all other flows or 
business processes which referred to the same value. 
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The method evaluation also suggests changes which could not be captured into 
the metamodel or supported by the modeling tool. Because of the limited 
metamodeling power of OPRR (see Section 4.5), the metamodel could not 
adequately specify identifiers, uniqueness and mandatory properties. Other 
constraints which were needed and not supported related to multiplicity of 
roles, complex objects, and polymorphism. This means that the tool could not 
check actively that the method knowledge was followed. These constraints can, 
however, be supported passively through reports. 

In addition to the metamodeling constraints applied for evaluation, the 
case reveals a need for a derived data type. By a derived data type we mean a 
property type whose instance value can be calculated from other instances 
values. For example, turnaround times needed to be calculated from lower level 
task structures. Similarly, derivation of these values can be performed with 
reports. For example, if actor names are not given they could be derived from 
the aggregate business process. 

Consistency checking problems suggest the use of a single modeling tool 
which supports different representation forms. This modification, however, is 
related more to the required features of the modeling tool than to the method, 
and therefore is not considered further here. 

6.3 Case B: Logistic processes and a cardboard mill 

This section describes the ME efforts carried out for developing logistic ISs. 
Unlike the wholesale case, the aim of ME was not to develop a project specific 
method, but rather a domain specific method. The method was engineered by a 
consulting company for redesigning business processes related to logistics. 
While reporting the case, we focus on method evaluation in using the method 
for modeling outbound logistics of a cardboard mill. 

This two-party setting is reflected in the structure of the section. First, in 
Section 6.3.1 we describe the background of the method development effort. 
The a priori ME phases are described in Section 6.3.2, along with the metamodels 
and tools implemented. Section 6.3.3 characterizes the ISD environment in the 
cardboard mill and Section 6.3.4 briefly describes method use. The remaining 
sections focus on the a posteriori view: Section 6.3.5 describes the use of 
evaluation mechanisms and Section 6.3.6 the refinements. The outcomes of the 
action research for both case A and case B are described in Section 6.4. 

6.3.1 Background of the study 

The case involved two organizations: a large research and consulting company 
systematizing business process re-design (BPR) practices, and a cardboard mill 
undergoing BPR. This two-party setting means also two entry points for our 
action research study: first to the consultant company developing the method, 
and second to the mill as an application area for the method. In this section we 
describe the background of the former: the consulting company and its BPR 
method. The cardboard mill is described in Section 6.3.3. 
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6.3.1.1 Data model of logistics  

The action research study was directed towards ME from the start, because the 
methods and tools applied by the consulting company were considered 
inadequate. The decision to develop their own method was supported by a 
relatively large evaluation of logistics-related modeling tools (Lindström and 
Raitio 1992) and by piloting and using various methods (including IDEF (FIPS 
1993a), communication matrices, state models, and data flow diagrams). The 
method evaluations were not systematic; rather, they were based on a trial-and-
error procedure. ME was expected to support more fine-featured method 
construction and tool adaptation. In fact, entry to the company was obtained 
because of the decision made to apply metaCASE technology for building tool 
support for their own method.  

At the time the study was started, part of the method selection process had 
already been carried out. The result was a metamodel of logistic processes and 
ISs which can be considered as a reference model for developing logistics (i.e. at 
the IRD definition level). This model was called a data model of logistics, in 
contrast with reference models of logistics, which include example solutions 
(i.e. at the IRD level). The data model was developed based on experiences in 
developing logistics in different type of companies. 

The data model of logistics was specified by following a variant of an ER 
model and by using examples. Because of the ER model, the logistics data 
model included only a few modeling-technique-related constraints (i.e. a 
multiplicity of a single role and an identity) and no representation definitions. 
In fact, the model focused primarily on defining key concepts and their 
relationships rather than modeling techniques. Examples of the concepts were a 
chain, a process, a task, a job, an organization, a resource, and a transfer (split, 
join, or copy). The data model was complemented by defining the semantics of 
each concept and by defining major attributes of the concepts. The objective of 
ME was to construct a method based upon the data model of logistics and other 
model analysis related requirements. These are discussed in the following 
section. 

During the study, the ME effort was organized into a separate project. The 
method was engineered mostly by three consultants. In addition, some feedback 
about the method was obtained during pilot use from the manager responsible 
for sales and delivery logistics. My role in the a priori method construction was 
limited to the tool adaptation, i.e. modeling the method according to the 
metametamodel applied in the selected metaCASE tool, implementing the 
required checking rules and reporting algorithms, and making connections to 
external tools. With respect to the a posteriori ME principles, my role was related 
to introducing and teaching the evaluation principles, and carrying out the 
evaluation together with the method users. During the study the a posteriori 
evaluation was carried out after the ISD project.  



 
242 

6.3.1.2 Requirements for the constructed method 

As already mentioned, the basis for the ME effort was the data model of 
logistics. Because the model focused mainly on the conceptual structure it 
neither defined how logistic processes should be represented, checked, 
analyzed and documented, nor considered method-tool companionship. It 
emphasized concepts required for understanding object systems rather than 
carrying out a change process. Therefore, the main emphasis in the ME effort 
was in the analysis and model checking part: what should be checked and 
analyzed about logistic processes for the purpose of re-design, and how this 
analysis should be supported by a tool. In this sense, ME was driven by the 
formulation of the logistic related problems to be analyzed.  

In the following we describe the type of analyses which were intended to 
be carried out while developing logistic ISs. Each of the analyses raises 
requirements for the method construction (cf. Section 6.3.2). The suggested 
analyses were partly a result of analysis needs faced in earlier ISD efforts, and 
partly adopted from other methods (e.g. Harrington 1991, Dur 1992, Lee and 
Billington 1992, Johansson et al. 1993). The following types of analyses were 
considered: 

1) Minimize delays. In logistic systems it is essential to improve the cycle 
time because delays increase costs. A cycle time is the total length of time 
required to complete the entire process (cf. Harrington 1991, Dur 1992). It 
includes working time, and also waiting and reworking. Delays in the process 
are defined through tasks with the most idle time in relation to working time. 
Therefore, the analysis deals with comparing effective processing time to whole 
cycle time. The timing was considered to be calculated from tasks and from 
transitions between tasks (cf. Harrington 1991). Moreover, the analysis was 
planned to be carried out on a subset of the network and also, if required, to the 
whole network.  

2) Minimize costs. Processes which have high costs should be selected for 
further analysis. In logistics, the cumulative cost should be analyzed together 
with the consumption of time (cf. Figure 6-5). This means for example that 
higher costs are acceptable if they improve the cycle time, or that small cost 
tasks which do not improve cycle times may not be acceptable. 

3) Minimize non-value adding tasks deals with evaluating the process to 
determine its contribution to meeting customers’ requirements (Harrington 
1991). In short, real-value-adding tasks are the ones that a customer is willing to 
pay for. Hence, the objective is here to optimize a process by minimizing or 
eliminating non-value-added tasks. With respect to logistics, the analysis is 
related to cycle times and cumulated cost. 

4) Simplification of processes deals with removing tasks from the process 
which add complexity and make understanding of the process difficult 
(Davenport and Short 1990, Harrington 1991). The result would be fewer tasks 
and task dependencies which make the whole process easier to understand. The 
simplification is based on analyzing processes which have complex information 
flows, involve checking, inspection of others work, approvals, creating copies, 
and receiving unnecessary data. 
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FIGURE 6-5 Cost-cycle time chart (cf. Harrington 1991). 

5) Organize around processes deals with re-designing an organizational 
structure based on a workflow and an overall process structure (Johansson et al. 
1993). In other words, instead of following current responsibilities and resource 
allocations, the organizational structure should be formed around the process. 
Here, the required analysis covers information or material connections between 
workers or organizational units. This also means that the BPR effort should not 
focus on modeling current organizational responsibilities, but rather on 
building these based on the workflow. 

6) Minimize re-work and duplication of work. Candidate tasks for 
removal can be identified from iterations in the process (e.g. returning 
information), from tasks which are identical and performed at different parts of 
the process, from tasks which create the same or similar information (often by 
different organizational units), and from tasks which are exceptions or correct 
outcomes of other tasks. The analysis of re-work and duplication of work is 
performed by following the workflow of a certain item (e.g. an order). 

The focus on logistics-related analysis had the following consequences: the 
method had to develop alternative solutions based on the model data, provide 
concrete measures, and allow the tracking of changes in performance with the 
same analysis measures. The modeling part of the method had fewer, more 
general requirements: the method should resemble other used methods, be 
simple and apply graphical modeling techniques. 

6.3.2 Constructed method 

To understand the context of method evaluation and refinement subjects we 
shall introduce here the modeling techniques and tool support. On the method 
side, we describe the metamodel and how the method requirements were 
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supported by the method specification. On the tool side, we describe what 
checking and analysis reports were implemented. 

6.3.2.1 Metamodels 

Method construction began by choosing modeling techniques which are 
compatible with the data model of logistics. By compatible we mean that they 
provide the same concepts and relationships as the logistics data model, or 
allow them to be derived from the conceptual structure of modeling techniques. 
The selected techniques included an activity model (Goldkuhl 1992) for 
describing the workflow, and an organization chart (Harrington 1991) for 
describing organizational structure. These modeling techniques were modified 
by adding new types and constraints required by the analyses and by the 
integration of the techniques. This task was supported by metamodeling and by 
reusing the metamodel of activity modeling already included in the metaCASE 
tool. Figure 6-6 represents a metamodel of the techniques and their interactions. 
The figure uses the GOPRR metamodeling technique (cf. appendix). The 
constructed method and its relation to the analysis requirements are described 
in the following. 

The activity model describes material or information connections between 
several tasks. For this purpose, the metamodel includes concepts of ‘task’, 
‘material object’, and ‘information’. Each of these object types are characterized 
with property types required for carrying out model based analyses. 

The ‘task’ has an identifier as a property type because similarly named 
tasks could exist. The identifier, however, could be unique inside the method 
scope. An ‘operation’ property type was applied to specify the contents of the 
task and possible instructions for carrying it out. As in data flow diagrams, each 
task could be decomposed into subtasks (i.e. another model). In Goldkuhl (1992) 
an activity (called a task here) is characterized by its location, doer and trigger. 
In the constructed version, location information was not used since it was not 
needed for carrying out the required analyses. A trigger was related to flows 
related to a ‘task’, i.e. a ‘condition’ property type. A doer was represented by 
relating tasks to organizational units. This aspect was modeled as a 
polymorphism, in which the organization names are referred to by tasks and 
organizational units. The implementation of the metamodel did not allow 
dependency so that tasks could not refer to organizational units other than those 
already specified. A similar structure would also be needed to share resource 
names among instances of a ‘resource’ and the ‘task’. This deficiency also 
influenced the modeling process: task structures could be specified before 
organizational units and resources. 

The ‘task’ has property types named a ‘processing time’ and a ‘total time’ 
to analyze cycle times (requirement 1, cf. Section 6.3.1.2). The timing values 
were further specified with a unit of measurement (e.g. day, hour, minute) 
enabling calculation of cycle times. Cost analysis (requirement 2) was supported 
by attaching a ‘cost’ property type for the ‘task’ as well as for an ‘information 
flow task’ and for a ‘material flow task’ relationship types. 
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FIGURE 6-6 Metamodel of the a priori method. 

The ‘task’ object type was further characterized by its type (i.e. approval, check, 
decision, information update, input, storing, transfer, or mixed). This 
characterization allowed the simplification of processes (model analysis 
requirement 4) by highlighting inspection and checking tasks to be removed or 
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combined (e.g. Hammer and Champy 1993, Harrington 1991). Similarly, 
analysis of value adding (requirement 3) was carried out by characterizing tasks 
with a ‘value adding’ property. Value adding included four categories, 
(business-value-added, real-value-added, no-value-added, mixed) and it was 
calculated from the estimated value before and after a task (Harrington 1991). 
This characterization was also used in analyzing cycle times and delays 
(requirement 1 and 2). 

An ‘information’ and a ‘material object’ were characterized by a ‘group’ 
property type that combined a collection of materials or information. In this 
way, it was possible to analyze workflows of specific information or material 
groups and identify complex (requirement 4) or duplicate tasks (requirement 6) 
(e.g. all tasks related to invoices). Moreover, the ‘information’ was characterized 
with property types ‘money’ and ‘copy’. The former specified money and the 
latter that the specific information was a copy rather than the original 
information object. These were not required by the analysis reports, but were 
included into the method to provide compatibility with the logistics data model. 

The metamodel included two basic relationship types, material flow and 
information flow, which were each split into one type for task outputs and 
another type for task inputs, leading to four relationship types in all.  

The ‘material flow’ and ‘information flow’ relationship types specified 
outputs of a task. As in Goldkuhl (1992) a material object can include 
information, but not vice versa. To model a composite of information or 
material objects, the ‘information’ and the ‘material object’ could participate in 
both roles of a flow. This allowed us to describe, for example, that a delivery 
includes a cargo list and shipped goods. Alternatively, an additional modeling 
technique could be applied to describe composite objects.  

The ‘information flow task’ and ‘material flow task’ relationship types 
specified inputs of a task. These flows were characterized with a ‘cost’ and a 
‘time consumed’ property types to support analysis of costs and delays. A 
‘priority’ property type was added to the ‘to task’ role type to model urgency 
handling among several information or material flows. This property was 
added to the role because the modeling tool did not allow properties of 
relationships to be represented graphically.  

An organization chart specified organizational units and a hierarchy 
among them. An ‘organization’ object type was characterized with a ‘name’, a 
‘responsibility’, and a ‘type’. A ‘responsibility’ was required to identify owners 
of the tasks and an ‘organization type’ classified the organizational units into a 
company, a division, a department, or a working team. Resources were 
modeled with a ‘name’, a ‘type’ (e.g. machine, human, IS), and a ‘capacity’. 
Resources were related by a ‘use resource’ relationship type to organizations 
and tasks. Therefore, the ‘resource’ can have graphical instances in both 
modeling techniques. In the metamodel this is described by including the type 
in both graph types (inclusion in GOPRR). Similarly, a ‘note’ object type is used 
to add free form comments in both modeling techniques. It must be noted that 
the ‘task’ can also refer to the ‘resource’ by sharing the values of the ‘resource 
name’. This possibility was added because of the desire to simplify activity 
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models (instead of representing all resources and their relation to tasks with a 
graphical notation). 

As a result, the constructed metamodel included information about 
organizational units and their resources. This was considered to support 
structuring of the organization according to the process (requirement 5), i.e. 
connections between tasks could be applied to find organizational units which 
have cooperation. 

It must be emphasized that not all method knowledge could be specified 
with the metametamodel. Examples of unmodelable method knowledge 
included mandatory property types (e.g. an identifier of the task), multiplicity 
over several role types (e.g. unconnected tasks), and different scopes (e.g. 
resource name unique inside the organizational unit). Moreover, method 
construction raised the same requirement for a derived data type as in the 
wholesale case: for example, identifiers of lower level tasks should be derived 
from identifiers of higher level tasks. The lack of metamodeling power was 
partly solved with checking reports as discussed in the next section. 

6.3.2.2 Tool adaptation 

Both modeling techniques were supported by a metaCASE tool, MetaEdit 
(MetaCase 1994). As a result, models could be developed to carry out 
abstraction according to the metamodel. The notation of the activity model is 
represented in Figure 6-8. It illustrates part of a production planning process.  

As part of the method-tool companionship, reports for checking, review, 
and analysis were implemented. These automated reports complemented the 
manual checking and analysis. The checking reports operated on those aspects 
of method knowledge which had constraints to be checked passively, or were 
not possible to capture in the metamodel. The reports covered unconnected 
object types (i.e. minimum multiplicity one), and undefined properties (i.e. 
mandatory property types). The documentation and review reports included a 
dictionary report that listed tasks, items (both information and material), and 
resources. These reports resembled manual documents followed in activity 
modeling (cf. Goldkuhl 1989). Moreover, tasks were also reported by their type, 
possible value adding, and the people carrying them out. 

Most emphasis during the tool adaptation was placed on defining reports 
which carried out the required analyses based on the model data. For the 
purposes of analysis, the modeling tool included a report which transformed 
selected model data into the relational database format of an external analysis 
tool. This tool provided the following model analysis functionality:  

− Elapsed time analysis, i.e. how much time (effective and waiting time) is 
used in selected tasks. This analysis addresses delays (requirement 1). 
Different alternative scenarios could be analyzed using a what-if analysis 
by changing the property values. 

− Cost versus time analysis, i.e. an analysis of a chain of tasks based on 
costs and time consumed in each task. This analysis addresses cost 
minimization (requirement 2) and is illustrated in Figure 6-5. As with the 
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elapsed time analysis, property values could be changed to generate 
alternative scenarios for a workflow.  

− Item workflow analysis: this report describes time and costs related to a 
specific item or item group. It allows the identification of errors, re-work, 
or duplication of effort related to items (i.e. instances of the ‘information’ 
or the ‘material object’). As with the other analysis reports, cost and time 
values or tasks could be changed to generate alternative scenarios. 

− Architecture matrix: this model illustrates the creation or use of items or 
item groups between organizational units. It allows the analysis of 
duplicate tasks (analysis requirement 6) which create or update the same 
data. 

− Communication matrix: (see Figure 6-7) this illustrates the connections 
between workers or organizational units. The communication matrix can 
be derived from the flows of the activity model sending information or 
material. The communication matrix is generated automatically from the 
activity model, and it was considered to help in structuring the 
organization according to the workflow (requirement 5). 

 

FIGURE 6-7 Communication matrix. 

Each analysis report could be restricted by defining the scope for the models to 
be included in the analysis. This restriction can be made based on the version of 
models, selected tasks (i.e. a chain), organizational units, groups of information 
or material objects, or organizational units/workers. 

In addition to these analyses, the tool generated reports which classified 
tasks according to their value-adding, type, and responsibility. The inspection 
of value-added properties allowed the analysis of non-value adding processes 
in relation to costs and cycle times (requirement 3). Hence, it complemented the 
earlier analysis. Classification of tasks according to their type was considered to 
support the simplification of processes (requirement 4). It focused on checking, 
approval, and information updating tasks, which are often candidates for 
removal. Finally, classification according to the responsible person allowed 
inspection of the coherence among individual workers’ tasks. Each report also 
included additional process information such as processing time and the 
description of operations or guidelines. 
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6.3.3 Characteristics of the cardboard mill 

The method was used in developing outbound logistics of a cardboard mill. The 
mill produces specialized cardboard, mainly for the European packing 
industry. The study focused on analyzing the current delivery process of the 
mill. The delivery process was influenced by a cooperation with an export 
association, and with companies responsible for transportation and harbor 
operations. In contrast to the wholesale case, the development efforts were 
limited to one company, i.e. to the mill and its parent company. Because the 
problem context was logistics centered, the constructed method addressed the 
characteristics of these problems in the cardboard mill. 

6.3.3.1 Characteristics of the problem context 

Most of the marketing and sales were made by Finnboard, an export association 
of Finnish board mills. The export association provided on-line data interchange 
with their customers and international sales offices. This system provided a 
virtual and instantaneous means of placing status inquiries and new orders, in 
contrast with the 12-day norm of the industry (Konsynski 1993). As a result, 
many mills acting together and leveraging this technology were able to appear 
to the outside world as one large “virtual” company. The integrated system of 
Finnpap/Finnboard is described in Konsynski (1993). Because the export 
association was seen to decrease the competition among mills, its use in the 
form described has been recently (and after the study was conducted) banned 
by the European Union. In addition to the sales made by Finnboard, the mill 
had its own customers among the subsidiaries of the parent company. These 
sales were made without the assistance of Finnboard, and we call them the 
mill’s “internal sales”, in contrast with the sales made by the export association.  

The main problems addressed in the ISD process related to variation in the 
delivery process and poor predictability. The delivery process varied 
considerably depending on the sales and delivery channel (i.e. internal versus 
Finnboard). Among internal sales the variety was greater and even more 
dependent on the customer. These in turn made the process more complex, 
which required additional resources and increased cost. This problem had 
already been detected in the mill. Its marketing manager reported that the 
delivery process had recently been streamlined: all variation and exceptions had 
been eliminated. However, it was still considered complex and therefore one of 
the objectives of ISD was to further simplify the delivery process (requirements 
4 and 6 used for method construction). This was also of great interest to the 
consultants, who wanted to apply their method and the developed tools. By 
modeling the delivery process in detail, which had not been done before, it was 
expected that the resulting in-depth understanding would further improve the 
process. 

Because of the northern location of the mill and the southern location of its 
main customers, transportation and logistics placed a central role. The low costs 
of the cardboard compared to its inventory costs required that the cardboard 
was always manufactured based on the available transportation capacity. All 
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deliveries were planned on the principle “just -in-time for transportation”. 
Moreover, during the study the demand for cardboard was good and the mill 
was operating at full capacity. Hence, manufacturing in advance was not 
possible. This emphasized accurate production planning in the mill. Therefore, 
ISD focused on improving timely delivery and minimizing logistics costs. Both 
of these analysis targets were taken into account in the method 
used(requirements 1 and 2). 

It must be noted that not all aspects of the method were considered to be 
needed. They were, however, included in the method used because these 
additional analyses had not been used in earlier ISD efforts. In this sense, the 
experiences of the consultants are counted for the constructed method rather 
than as a priori identified characteristics and problems of the mill to be 
addressed.  

6.3.3.2 ISD experiences and method knowledge 

The cardboard mill had limited experiences with ISD methods. In contrast, the 
consultants responsible for carrying out the effort had relatively high expertise 
in methods and method selection. This was also indicated from the existence of 
the data model of logistics and earlier cases from other companies. One of the 
consultants had studied artificial intelligence systems for contingency-based 
method selection. 

6.3.4 Method use 

The ISD project took place in the cardboard mill but also included personnel of 
the parent company. The project took almost one year, and around twelve 
people were involved. Most effort was spent on specifying production planning 
and delivery. During the project these processes were represented by 90 tasks, 
140 different information flows, and 30 material flows. An example of a model 
related to production planning is illustrated in Figure 6-8. The model is based 
on the activity modeling technique. 

Modeling began by defining task structures and validating the activity 
models. This took most of the time related to method use. Once the task 
structures had been validated they were refined by adding properties about 
individual tasks and flows. At the same time the task structures were 
supplemented with organizational structures and by connecting resources to the 
tasks. This step was supported by the organizational structure chart. 

The models were divided into those dealing with internal sales and those 
dealing with Finnboard sales. The analysis of the processes was conducted 
according to the analyses discussed in Section 6.3.2.2. Without going into 
details, all tool-supported analyses, except those related to cost, were carried 
out. Cost-related modeling and analyses were not performed because of a lack 
of time. The project outcomes included three major recommendations to 
improve production planning and delivery. 

First, the delivery process had to be simplified by removing variation in 
the process. This result came as a surprise. For example, the marketing manager 
stated: “I thought we had already streamlined our delivery process, but now we 
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have to streamline it some more”. The report of the development project 
summarized that although the variation was not considered remarkable, it 
doubled the resources needed. The extra complexity was most notable in 
internal sales. The modes of operation were more homogeneous in Finnboard 
sales. This could be easily detected by comparing the workflows (e.g. tasks 
involved and resources needed). 

Second, better principles for exception management were needed: exceptions 
took more than half of the total time in delivery management (analyzed through 
elapsed time, and item workflow). One reason for the relatively high rate was 
unclear and varying responsibilities. For example, when a change occurred, 
notification to other parties in the delivery process was haphazard and each 
party (customer, mill, harbor, transportation company, ship) made and 
requested several unnecessary confirmations.  

Third, internal sales included tasks which duplicated effort. Tasks such as 
checking order validity and saving order information were not relevant. 

 

FIGURE 6-8 Model of production planning tasks (modified). 
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Because of the variation, one proposed option was to make the internal sales 
more similar to that of Finnboard sales. This would necessitate consideration of 
the current service level in which the mill would take into account the special 
requirements of each subsidiary company. The resulting better predictability 
would help production planning. 

More detailed analysis of the processes was not possible for two reasons. 
The variation in the process required that the model-based analyses addressed 
average situations and excluded frequencies. Furthermore, analysis of cost and 
value analysis was not conducted. 

6.3.5 The a posteriori method engineering 

In this section we explain how the method was evaluated and refined. We first 
apply type-instance matching: this part was conducted by the method 
engineers. Second, we assess the applicability of the method in terms of how 
well it supported business modeling. Third, we identify the role of the method 
in problem solving. These latter two evaluations were carried out by the 
method engineers. 

6.3.5.1 Type-instance matching 

Type-instance matching inspects how the constructed method has been applied. 
The comparison is made between the method’s intended use (as seen from the 
metamodels) and actual use (as seen from the models). In the following we 
describe the results of this evaluation, i.e. the differences between models and 
metamodels which suggested method refinements (cf. Section 5.3.3 for details). 

6.3.5.1.1 Usage of types 

1) Unused types. Because the analysis reports required detailed data the 
method was followed strictly. For example, analysis of delays required time 
related properties to be specified (i.e. have values). Some property types, 
however, were used infrequently. These included the property types ‘money’ 
and ‘copy’. Second, property types characterizing flows were not applied. 
Therefore, analysis of delays did not include time consumption related to flows. 
Third, costs related to tasks or flows were not modeled. As a result, these 
property types could be removed from the method. 

2) Division or subtyping was not required because modeling constructs 
were not overloaded. The main reasons for this was that the use of the ‘group’ 
and ‘type’ property types allowed for user-defined classifications. The analysis 
of the free form ‘operation’ property type, however, indicated new data types. 
Some tasks included data about error rates and frequencies which could be 
included as new property types and used in analyses. 

3) Definition of new linkages between types was suggested in only one 
situation. ‘Responsibility’ and ‘resource name’ had the same values. This 
suggested polymorphism, to make existing values available between these 
property types. This would speed up modeling and decrease typing errors. 
Several task names also included information or material object names. For 
example, a task called “refine annual budget” delivers as output an “annual 
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budget” which is an instance of the ‘information’ object type. This is illustrated 
in Figure 6-9. However, refinements could not be made here because in some 
modeling situations the value of an information or a material object was either 
an input or an output, and the name of a task did not necessarily refer to any 
information or material object. These naming-based connections, however, 
could be checked using reports. For example, a report could inform of tasks 
which did not refer to any of the related information or material objects.  

6.3.5.1.2 Usage of constraints 

Analysis of constraints was limited to those defined in the metamodel and 
supported by tools. It must be noted that although the metamodeling language 
did not support all constraint definitions, the tool checked some of the omitted 
constraints passively using reports. These reports identified violations of the 
unique property, mandatory property, and multiplicity constraints. The first 
two of these in particular were needed to carry out model-based analyses. An 
identity constraint related to one property type was not enough since there was 
a need to distinguish versions. This defect was solved by extending all model 
data with a version number during a conversion of the models. Similarly, 
checking of unused property types informed about values which were not yet 
specified but were required by the reports. The model data, however, was often 
supplemented in the analysis tool because passive checking did not guarantee 
model completeness. If all property types had been defined as mandatory while 
making preliminary task structures, entering all task specific data would not 
have been possible. Alternatively, a weaker constraint technique could be 
created for modeling preliminary task structures.  

A uniqueness constraint was defined only for identifiers. The tool actively 
ensured the uniqueness of identifiers. The data types defined were found to be 
adequate, although the predefined values needed some refinement. As storage 
and transfer were not used while classifying tasks (i.e. the ‘task type’ property 
type) they were removed. Value adding was not applied as planned because the 
classification was too detailed. Instead, a Boolean value (valued-added, no-
value-added) was found to be sufficient. 

The cardinality constraints in the activity model were not changed. Flows 
which split or join information or material objects could be created by attaching 
additional instances to an instance of the ‘information’ or the ‘material’ object 
types.  

Constraints on role multiplicity could not be specified adequately in the 
metamodel. Instead. reports inspected connected and unconnected object types. 
Model data suggested that in a model scope the ‘task’ should have a minimum 
multiplicity constraint (one) for all related role types (i.e. ‘material flow from’, 
‘process to’, and ‘information flow from’). An ‘information’ and a ‘material’ 
should have the same minimum multiplicity, but on the scope of the whole 
method. Hence, in a single model, an instance of ‘material’ or ‘information’ 
should participate in at least one role, but inside the method in all possible 
roles, i.e. be both an output and input to a task. This necessitated the use of a 
multiplicity constraint over several roles. 
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The metamodeling language did not support checking of cyclic 
relationships. Therefore, possible cyclic relationships between organizational 
units (e.g. department consist of itself) could not be checked actively. The tool 
reports allowed checking only direct cyclic relationships and thus here the 
method implementation was inadequate. In activity models direct cyclic 
relationships could be denied because they take part in several object types. For 
example, the metamodel did not allow direct connections between tasks and 
thus required information flow or material flow based connections. The 
method, however, allowed direct cyclic relationships to be created between 
information and material objects. The initial objective for allowing cyclic 
relationships was to keep the method simple and use flow relationships to 
model whole-part structures. Figure 6-9 illustrates the whole-part structure in 
an activity model in which a budget consists of other information items. 

Price
2.8

Inventory
level

2.9 Sales volume
2.10

Transportation
routes

2.11

Cardboard mill
Refine annual budget2.4

Annual budget
2.22

 

FIGURE 6-9 Modeling whole-part structures in the activity model. 

Type multiplicity could not be defined in the metamodel and the tool could 
only inform about the number of type instances in a model, or in the whole 
method. Based on the model data, all object types except ‘material object’ and 
‘resource’ should have a minimum multiplicity constraint of one in the scope of 
a model. Because not all activity models included instances of ‘material object’ 
and ‘resource’ the scope for type multiplicity should be the method. As a 
consequence, information flows and suborganization relationship types should 
have instances in all models. The maximum multiplicity constraint was not 
changed because the models were not considered to be too large (e.g. the largest 
model had 34 object type instances). 

The specification of task hierarchies had several errors because neither the 
metamodel nor the tool could enforce the complex object constraints. The 
metamodel only allowed the specification of non-mandatory components, and 
the reporting capabilities of the tool did not support the checking of complex 
objects. The required checking included exclusivity of components as well as 
aggregated relationships. At best, the tool could produce reports which 
collected constraint-related data for manual checking. This naturally led to 
error-prone and tedious model checking, decreasing the reliability of analyses. 
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Polymorphism was applied in two cases in which a task referred to an 
organizational unit and to the resources it used. Instead of referring to the value 
of a property type the reference could include the whole object type. In other 
words, instead of referring to an organization name a task could refer to the 
whole organizational unit. The advantage was the possibility to inspect 
specifications (i.e. properties) of organizational units and resources during 
activity modeling. Hence, the polymorphism unit would be the whole object 
instead of a single property. Finally, instances of ‘responsibility’ and ‘resource 
name’ had the same values. This suggested a polymorphism structure: sharing 
the same instance value between these property types. 

6.3.5.2 Modeling capabilities 

The method was constructed to support logistic analyses. In the following the 
modeling capabilities are analyzed using the evaluation mechanisms. The 
suggested refinements are summarized in Section 6.3.6 as changes in the 
metamodel. 

6.3.5.2.1 Abstraction support 

The use of the method raised new requirements for describing the logistic 
processes of the mill. First, there was a suggestion that the life-cycle of 
important information and material objects would be modeled in separate 
models. By the life-cycle we mean all the states of an information or material 
object and transitions between these states. Examples of the states of a material 
object representing an order are received, checked, accepted, delivered, 
invoiced, etc. The activity model primarily described sequences and connections 
between tasks, but the life-cycle of each item was scattered over several models. 
Only analysis reports illustrated the life-cycle concept through tasks which 
related to a certain item, or item group. Second, the consultants suggested a new 
property type which could be defined in modeling (i.e. typed during 
modeling). In the mill case, tasks in particular were considered to need extra 
information about error rates or broken items. The addition of a new property 
type instead of free-form description data in the current ‘operations’ property 
type was emphasized because the analysis tool required structured descriptions. 
Third, it was suggested that information and material objects could include 
information about volume data and a property for free-form description. 

Major difficulties in modeling were related to the variation in the business 
processes. Two kinds of variation were detected. First, the delivery process 
differed greatly depending on the type of customer, tasks involved, and task 
specific properties. This could not be solved by modifying the modeling 
technique but rather by introducing generalizations (e.g. typical, problematic, 
etc.). Hence, the developers needed to introduce different versions (e.g. internal 
sales versus Finnboard sales) and find representative cases of the processes in 
each version. A second kind of variation related to frequency. The method 
expected that task characteristics remained stable and volatility could not be 
modeled. For example, an exception in the process could increase workload 
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temporarily and cause long-term delays. The proposed solution for this 
deficiency in the method was a ‘frequency’ property type attach to the ‘task’. 

Because modeling work was carried out by two people, and others mostly 
reviewed the models, no major modeling differences between participants were 
detected. Moreover, the consultant acted both as a method engineer and an IS 
developer, and could explain and teach the method to other stakeholders. 

6.3.5.2.2 Checking support 

During model maintenance most efforts focused on the task hierarchy and on 
the property type ‘task’. This needed to be consistent within the hierarchy. 
Because the metamodel did not adequately specify these constraints (i.e. a 
complex object) the resulting models had several inconsistencies. For example, 
it was required that the modelers updated the aggregated relationships in a task 
hierarchy and that tasks were exclusive (cf. constraints for complex objects in 
Section 4.4.2.2). The variation in the process emphasized maintainability 
problems because a change in one task required changes in other models. 

The task hierarchy highlighted property-based dependencies between 
tasks. For example, the processing time of a task should not be less than the 
processing time of its subtasks, or a task should not be defined as value-adding 
if none of its subtasks were value-adding. This demanded creation of a new 
data type which allowed derivation rules to be defined and related to a selected 
set of property types. Similarly, the numbering of tasks based on a task 
hierarchy required a lot of manual work: it was the modeler’s responsibility to 
update identifiers when the task hierarchy changed. To speed up the modeling 
process it was suggested that the tool would use internal identifiers (and output 
these to the analysis tool). Similarly, to speed up modeling work, timing-related 
property types needed to include measuring units. The initial metamodel 
included a pair of property types, i.e. one for the value and one for the related 
unit. Both these requirements were surprising because they were not found 
during the initial method analysis (Chapter 4). 

6.3.5.3 Problem solving capabilities 

The method was constructed to automate analysis tasks. Hence, the form 
conversion and review capabilities were emphasized during the evaluation of 
the method. Surprisingly, most benefits were outcomes of modeling rather than 
of analyses. Although most tool-supported analyses were carried out, their 
contribution was disappointing. The automated analyses found few 
improvements and their results were considered dubious because of different 
interpretations. Instead, most benefits of analyses occurred from the 
identification of those aspects of processes which required further analysis (e.g. 
the most time consuming tasks, or slack resources). It must be noted that not all 
analyses were relevant in the mill case, but all were included since the 
consultants wanted to test the whole method. 
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6.3.5.3.1 Form conversion support 

Form conversion denotes a tool’s capability to analyze models and generate 
candidate designs. In the CASE environment the conversion functionality was 
provided through analysis reports. Accordingly, we evaluate the tool’s 
contributions to analysis of the model data and identification of design 
solutions. 

1) Delays were analyzed by inspecting the elapsed time in tasks. The 
delay analysis revealed that exception management is time-consuming, and that 
internal sales are over 20% more time-consuming than Finnboard sales. 
Although the analysis allowed the comparison of effective time and waiting 
time, candidate designs to optimize processing time were not sought. In other 
words, no what-if analysis was carried out. Reasons for the limited use of 
analyses included difficulties in choosing candidate times and volatility in the 
object system: in many tasks time related measures were considered inaccurate 
because of wide deviations in the processing time, and because flow times were 
not specified. As a result, the analyses were considered unreliable. The solution 
suggested was to add frequency information to the ‘task’. Although this 
information was not supposed to be modeled during activity modeling, but 
rather during analysis, it was added to the modeling technique, to help gather 
frequency data while modeling time properties. 

2) Cost analysis was not carried out because gathering costs via task 
structures was difficult, and the project lacked the necessary resources. Hence, 
all cost-based modeling constructs, including the cost-cycle time chart, were not 
applied. Because of these difficulties the consultants examined accounting-
based approaches which could be used with current modeling methods. In 
ABC-based accounting (Morrow 1992) the resources would have the cost data 
and cost drivers. Moreover, tasks would then be linked to resources (as in our 
models) and to task specific cost structures. Hence, instead of relying on task 
costs, the cost analysis would be based on resources costs. ABC-based 
accounting would require linkages to external tools, such as a spreadsheet 
application.  

3) Value adding was not related directly to the analyses because its use 
was not possible because of the limited cost analyses. Instead, reports of value 
adding capability were applied to identify removable tasks, i.e. non-value-
adding tasks. During modeling, however, the value-added features had been 
understood so strictly that less than 10% of tasks were specified to add value. 
Moreover, internal sales had more non-value adding tasks than Finnboard sales, 
indicating that the mill should perform the minimum possible outbound 
logistics by itself and leave the rest to the export association. The value-adding 
was considered to be improved by relating it to the cost-cycle time chart: cost 
and delay analysis would then support analysis of value-adding activities. 

4) Simplification of processes was performed by streamlining the 
delivery process. To this end the effort focused on exception management and 
the redesign of sales processes. Most of the simplification possibilities were 
detected during the modeling step, but the automated analysis allowed 
comparison of item-based workflows between different sales channels (i.e. 
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internal sales vs. Finnboard sales, and internal sales to different types of 
customers based on delivery terms). Because cost data was not available this 
analysis relied on elapsed time only and had the same difficulties with 
inaccurate results.  

5) Organize around processes. At the level of individual workers the 
communication matrix did not find strong bindings between workers in 
different organizational units. Hence, the organizational structure seemed to 
follow the task structure already. At the level of organizational units the 
communication matrix was more useful: it allowed the inspection of differences 
between internal sales and Finnboard sales. In the former case, the mill had a lot 
of connections with other parties, e.g. haulage, harbor, and customer, whereas 
in the latter case, the export association managed most of the negotiations with 
other parties. However, because the project focused on the mill, no suggestions 
were made about how to organize the responsibilities in the network. 

6) Minimize re-work and duplication of work. Candidate tasks to be 
removed were sought using the architecture matrix and the item workflow. The 
architecture matrix showed tasks which created or updated the same data and 
thus pointed out tasks to be removed or combined. Item workflows described 
iterations in the process and thus clarified the repetition of work. During the 
analysis the architecture matrix revealed possibilities for re-designing processes 
based on access rights (i.e. create, use). Item workflows did not reveal why 
work needed to be repeated.  

To summarize, the architecture matrix was the only analysis which 
directly enabled the generation of designs. The candidate designs could be 
made by changing the data access rights for tasks. Other analysis reports 
measured the current situation, but did not include any built-in possibilities to 
suggest candidate designs. These reports were supported with what-if analyses, 
i.e. by changing the values in the analysis tool and running the analysis again.  

6.3.5.3.2 Review support 

Most method use was concerned with validating models with the domain 
experts. Hence, the review support was of great importance. In a CASE tool, 
review support implies the production of documents for different stakeholders 
to validate the models. 

Validation was performed in two phases: first related to the general task 
structure and organization structure, and second in relation to the details of the 
models (i.e. to properties used in analyses).  

In the first phase, the review was carried out using graphical models. The 
main difficulties while reviewing the models concerned dividing flows and 
specifying volumes. Initially, the method included only a ‘condition’ property 
type for describing dividing flows. The domain experts suggested that dividing 
flows should be specified in more detail, e.g. by describing logical operators or 
a ratio. An example of such a situation is shown in Figure 6-8 in which 
information about production time (ID 4.2.6) is used in two tasks. The use of 
logical operators (and/or), as proposed by Goldkuhl (1989), would allow the 
modeling of situations where the information object is used in both tasks or in 
one of the tasks. Moreover, users suggested a percent-based specification 
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showing, for example, that in 40% of the cases the information was used by only 
one of the tasks. Moreover, the condition values were not shown in graphical 
models and thus they suggested a notational change. The users also suggested 
that volume information should be shown graphically. This addition required a 
new property type for the ‘information’ and ‘material object’ types, with a new 
notational element (i.e. a text field close to the rectangular symbol of the 
‘information’ and ‘material’ object types). 

Although these additions were simple, their influence on the model 
analyses (e.g. item workflow) was unclear. It was suggested that each analysis 
case be handled separately either by modeling all conditions separately, or by 
omitting the conditions during the transfer of data to the analysis tool. In the 
latter case, the conditions should be entered while making a what-if analysis. 

In the second phase, the review focused on validating the property values. 
For this task we developed a report tool for documenting the tasks of each 
individual, who could then review the information. These documentation 
reports were also included into the final report. In addition to personal reviews, 
the method users proposed state modeling to collect and integrate workers’ 
views into state models. This was believed to help inspect the dynamic behavior 
of order management independently of workers’ tasks. It could therefore offer a 
behavior-oriented view to help validate task structures (i.e. the process oriented 
view). 

6.3.6 Method experiences and refinements 

Method evaluation provided a good amount of experiences of the method and 
suggested several method modifications. Method development focused mainly 
on analysis needs and emphasized modeling constructs which were needed by 
the analyses. 

The method refinements suggested were a direct outcome of the method 
evaluation. The evaluation clarified that the most important changes related to 
modeling life-cycles of information or material objects, managing variation in 
time, and describing volumes. These are reflected in the metamodel illustrated 
in Figure 6-10. It should be noted that not all metamodel constraints, such as 
scopes, are captured in the metamodel because neither the metamodeling 
language nor the tool supported them adequately. 
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FIGURE 6-10 Metamodel of the refined method. 
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A simplified state model was considered adequate to model the life-cycle of 
information and material objects. The simplification meant that events and 
conditions typical in state models (cf. metamodels in Section 4.3) were excluded. 
Instead, the state model was integrated to the activity model through explosion 
and polymorphism. Explosion meant that each ‘information’ and ‘material 
object’ instance was linked to a state model. Although the cardinality of the 
explosion could not be specified in the metamodel the explosion should be 
mandatory for ‘information’ and ‘material object’ instances and “floating” state 
models should not be possible (i.e. the cardinality of the explosion should be 
one-to-one for the source and one-to-many for the target state model). Checking 
of cardinality constraints is passive because we wanted to leave unspecified 
whether activity models or state models should be created first. This 
metamodeling choice also influenced the dependency of polymorphism 
structures. 

Polymorphism was defined between two techniques: values of the ‘name’ 
property type characterizing the ‘information’ and ‘material object’ types were 
shared with ‘state name’ values. Similarly, ‘task name’ values were shared with 
‘transition name’ values. While using the method this method specification 
would allow the modeler to refer to existing property values instead of entering 
the same values twice or more. As a result, modeling becomes faster and less 
error-prone, and model changes are reflected automatically in the tool. Another 
possibility would be to refer to the whole information or material object instead 
of a single property. This possibility was not used because the tool did not 
support it. The polymorphism allows inspection and checking of models. For 
example, each transition should be represented for a task in an activity model, 
and all states should be required as information or material objects in some 
activity model. It must be noted that the polymorphism could not be defined to 
be dependent because the explosion cardinality did not expect that either of the 
techniques should be used first. Hence, the polymorphism was checked 
passively at the user’s request. 

Activity modeling was simplified by removing some unused property 
types: ‘money’, ‘copy’ and ‘costs’. To enable calculation of delays and costs, the 
‘information’ and ‘material objects’ were supposed to be characterized with 
volume information. The ‘task’ object type was refined by relating property 
types for specifying frequency and user-defined aspects. Although the ISD 
effort indicated that error rates could be specified with their own property type, 
it was considered to be specific to the cardboard mill only. Hence, user-defined 
values were expected to be more flexible in future. Moreover, to specify more 
detailed descriptions about activity models a new property type ‘description’ 
was attached to information and material object types and flows. 

The modeling experiences showed that costs are difficult to collect in a 
similar manner to other workflow characteristics. Therefore, the cost analysis 
was changed totally: instead of adding cost information to individual tasks and 
items (i.e. material or information) they were related to resources. The cost 
structures were calculated through Activity Based Counting (Morrow 1992). 
Because the modeling tools used were not well-suited to accounting, the tool 
would export cost data into a spreadsheet. For this purpose, the ‘type of 
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resource’ was supposed to refer to the kind of cost, and the ‘capacity’ to a cost 
driver. Information about the resource use of each task could already be 
modeled with the method. 

To support model review we considered it necessary to show more design 
information graphically. Because the tool could not show properties related to 
relationship types, the ‘condition’ was moved to the ‘to task’ role type.  

In addition, the evaluation suggested changes to the tool. First, the tool 
should allow graphical selection of a task chain and transfer it into the analysis 
tool. Second, the predefined reports for documenting and checking were 
suggested to be improved, enabling the use of passive constraints (e.g. 
cardinality of explosion). Alternatively it was suggested to automate passive 
checking while transferring the models into the analysis tool. This option was 
abandoned because it would slow the transfer of models into the analysis tool. 
Third, the numbering of identifiers should be automated.  

The method evaluation also allowed improvements in activity modeling, 
method related contingencies, and automated analyses. Activity modeling was 
considered to be easy to use, its models were understandable, and 
communication with end-users improved. As already mentioned, the main 
difficulties were related to maintaining task hierarchies and identifying codes 
when models changed.  

Second, because a priori method selection did not follow any contingency 
selection framework, the relevance of method selection criteria could not be 
measured. Instead, during method construction the compatibility with earlier 
experiences with the logistics data model were emphasized. After all 
refinements it was interesting to notice that the refinements included no major 
changes which conflicted with the underlying data model. Instead, the original 
data model was extended with some behavior-related concepts.  

Third, the automated analyses were disappointing when compared with 
the original objectives. The analysis reports did not originally allow the 
generation of candidate solutions, and the analysis results often looked 
doubtful. Maybe the case was too complex for the required analysis, and the 
given measuring properties too inaccurate because of the variation in the 
process studied. It was therefore suggested that the analyses would be tried out 
in smaller, more bounded business systems. Accordingly, principles should be 
sought for choosing between alternative workflow scenarios (e.g. product 
based, customer based, worst case, etc.). 

6.4 Lessons learned 

In this chapter we described two method engineering cases. The cases were 
carried out as action research studies. The action research method offers 
possibilities for learning in three areas (Checkland 1991): the area of an 
application, the methodology applied, and the particular ideas promoted. In our 
studies the application deals with developing local methods for specific ISD 
environments. In Checkland’s (1991) terminology, the methodology denotes the 
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general principles applied in inspecting an application area. Hence, for us this 
means method engineering along with related methods and tools such as 
metamodeling and metaCASE tools. The ideas promoted are the metamodeling 
language constructs and the a posteriori view of ME.  

The following subsections discuss the evaluation part of action research. 
First, we describe in Section 6.4.1 general findings about local method 
development. Since our action research studies were not focused on all aspects 
of local method development (like costs or management principles) we shall 
only inspect the development of tool-supported methods. Second, we shall 
inspect differences between the proposed ideal ME principles and the cases 
(Section 6.4.2). Finally, we describe in Section 6.4.3 findings related to the use of 
incremental ME principles. Because we also participated in the ISD process, 
some findings could be presented about how to develop inter-organizational ISs 
in wholesale and improve the delivery systems of a cardboard mill. Our studies, 
however, were designed to operate at the ME level, not at the ISD level (cf. 
Section 3.3.1). Some general solutions for ISD, however, were already discussed 
as part of the cases. 

6.4.1 Local method development 

The studies show that organizations develop their own methods. In the 
wholesale case, the ME effort was targeted to support a specific BPR project. 
The mill case included some features characteristic of developing a more 
universally applicable method: the consultants wanted to develop a method 
which would be independent of object systems, and appropriate for analyzing a 
variety of workflows related to logistic ISs. Because the method developed was 
intended to be used in all projects the consulting company engaged in, the 
second case followed an organization based ME. 

Local methods were developed because of the limitations found in the 
existing methods used, inadequate tool support, and the lack of knowledge 
about other methods. In the wholesale case, the need to distinguish between 
organizations involved in the delivery chain and to characterize inter-
organizational processes led to the establishment of the ME project. In the mill 
case, the need to automate analyses of workflows necessitated the development 
of specific tool functionality and as a by-product allowed the development of a 
propriety modeling method. Hence, modeling capabilities were addressed 
primarily in the wholesale case, and automated analysis capabilities (i.e. tool 
support) were emphasized in the mill case. It should be noted that in both cases 
the existence of a specific ISD project clearly influenced how the method 
development and evaluation effort was carried out. For example, if the 
wholesale company had not been in the middle of a major business process re-
engineering effort, a local method would not have been developed. 

The methods developed in the two cases had similarities: they addressed 
the modeling of business processes, described material objects or flows, defined 
organizational units, and characterized these modeling elements with some 
similar properties (e.g. volume, capacity). The main differences between the 
methods was the granularity of analysis. The wholesale company tried to 
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understand its order entry and purchasing processes better in relation to its 
business environment, to support the move to a two level hierarchy. The mill 
case focused on individual workers and aimed to analyze the structures of 
tasks. More detailed differences between the methods can be identified by 
comparing the metamodels. 

Both organizations found the developed method useful: interviews 
showed that the method developed was considered to work better than those 
used earlier. For example, in the mill case the consultants estimated that with 
the methods and tools used earlier, they could perform only half of the 
modeling and analysis tasks supported by the engineered method and tool. In 
general, models based on the developed method were considered to be easier to 
read and understand, to support communication better, and to allowed the 
combination and analysis of views of multiple stakeholders, or even of multiple 
organizations. Moreover, in the mill the connection of the models to the quality 
system was important.  

Satisfaction with the developed method does not mean that no problems 
existed. In fact, the method refinements clearly showed that the methods had to 
be improved. The main difficulties included different interpretations of 
conceptual structures and analysis. Most of the effort in method development 
related to agreeing and confirming an understanding about the method and tool 
functionality. In the mill case, the consultants also considered the objectives for 
the engineered method to be too ambitious. Meeting these objectives in turn 
required significant resources and time.  

Satisfaction with the tool was surprisingly different among user types. 
Method engineers considered the metaCASE functionality limited (i.e. all 
metamodeling constraints could not be supported). As a result, a lot of time was 
consumed while trying to find roundabout ways to build method-tool 
companionship. People in the organizations using the tool, however, were 
highly satisfied with the tool, although they requested several new features 
which did not directly address the method-tool companionship. These included 
importing available process maps into the tool (e.g. from the documentation of a 
quality system), providing links to external documentation tools, and 
improving method-independent reports. 

6.4.2 Method engineering 

The method engineering process was quite similar in both cases and all ME 
tasks were carried out. One reason for the similarities was the tool adaptation 
which required detailed method specifications. The similarities in the ME 
process were also a consequence of planning the action research, since the ME 
process needed to include the a posteriori ME tasks postulated.  

During ME, a priori method selection (cf. Section 3.2.1) was made among 
relatively few methods, and included methods which were known or had been 
used earlier. However, in the second case selection was supported by a 
relatively large review of methods (cf. Tolvanen and Lyytinen 1994) and tools 
(cf. Lindström and Raitio 1992). During ME neither of the cases applied 
contingency frameworks, because such frameworks were not available. Those 
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reviewed were considered to be too broad since they did not help to distinguish 
between modeling techniques based on identified characteristics. Similar 
observations were also made in Section 3.2.3 while analyzing other ME cases. 

The main differences in the ME processes were the metamodeling 
languages used, the emphasis on different ME tasks, and the types of 
stakeholders involved. First, in the wholesale case the only metamodeling 
language applied was that used by the metaCASE tool, whereas in the mill case 
the early phases of method development had been carried out with another 
metamodeling language (i.e. the ER-based logistics data model). However, here 
a metamodel of the activity model method already included in the metaCASE 
tool was taken as a starting point during tool adaptation (i.e. reuse of an 
existing metamodel). 

Second, the use of resources and duration of tasks differed greatly. In the 
mill case, the method engineering took more time and resources. One obvious 
reason was the objective of the ME project to develop a general purpose 
method. In other words, the method was expected to be applicable for solving 
logistic problems in other areas too. Moreover, the mill case stressed tool 
adaptation because it required implementation of the analysis functionality. 
About 1/3 of the resources were spent on tool adaptation, whereas in the 
wholesale case the tool adaptation was the least resource-consuming task.  

Third, the participation of method users differed in the cases: the IT 
personnel of the wholesaler participated actively in the method construction 
and evaluation, whereas the personnel of the mill did not directly participate in 
the ME project. One reason for the difference was the two-party setting between 
the consulting company and the mill.  

6.4.3 Principles of incremental method engineering 

As the objectives of action research indicated, our interest was to demonstrate 
the viability of incremental ME principles. First we analyze whether the 
situational methods were possible to describe with meta-data models and the 
proposed metamodeling constructs. Second, we analyze whether the a posteriori 
view was appropriate as a mechanism of method evaluation and refinement. 

6.4.3.1 Modeling situational methods 

In both cases, methods were modeled with metamodeling languages embedded 
in a metaCASE tool. This was needed to provide modeling tools for the ISD 
projects. In the mill case the metamodeling also included ER-based modeling, 
but only for outlining the concepts and relationships used in the method. 
Moreover, the ER model was used for metamodeling before the selection of the 
metaCASE tool. 

Not all method knowledge, however, could be fully supported, because of 
the limitations in the metamodeling language. These limitations concerned 
modeling property types with unique, mandatory, and data type constraints. 
Other limitations related to defining that an object must participate in at least 
one connection, must have a specific number of instances, and can not 
participate in connections which are cyclic. Most limitations were related to 
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integrating modeling techniques: constraints related to complex objects (i.e. 
exclusive component objects and aggregated relationships) and polymorphism 
structures (i.e. sharing of several property types at a time, and dependency on 
other instances) could not be defined. 

The proposed metamodeling constructs allowed methods to be specified 
more completely than was adapted into the tools. In this sense, they can be 
considered sufficient for engineering the methods in the cases. Only one 
limitation in capturing method knowledge was found. In both cases a derived 
property value had to be specified. An example of the derived data type is 
calculating the processing time of a task from its subprocesses. Because this type 
of dynamic calculation is difficult to capture into a static data model, this 
requirement suggested the use of metamodeling languages other than those 
based on semantic data models (see also Section 4.5.3). 

It must be emphasized that not all proposed metamodeling constructs 
were fully applied since not all possible rules of methods were needed in the 
cases. For example, an explosion structure was used (refined method in Figure 
6-4) but cardinality of explosions were not used. Similarly not all scopes and 
checking modes related to the metamodeling constructs were applied. One 
reason for the limited use of scopes may be because of the relatively simple 
structure of the methods in the cases, i.e. the fact that they included only a few 
modeling techniques. Thus, the viability of every metamodeling construct was 
not demonstrated via the metamodels. During ME, however, awareness of 
method knowledge which is not specified into metamodels is valuable because 
it allows one to understand alternative method configurations and 
metamodeling choices.  

The limited use of metamodeling constructs also suggests that specific 
metamodeling constructs are needed while modeling specific methods. For 
example, the requirement for modeling derived data types was not detected 
during the modeling of text-book methods (Chapter 4) which were mostly IS 
analysis and design methods. In contrast, our case studies required business 
modeling methods which often incorporated numerical values. 

Although our aim was not to evaluate the metaCASE tool used, their 
limitations and capabilities influenced the metamodels. First, because the 
metaCASE tool did not support matrix-based representations tool adaptations 
were not made for all parts of the method. Second, checking reports allowed us 
to overcome limitations of the metamodeling languages through passive 
checking. Passively checked metamodeling constructs related to mandatory 
properties, unconnected object types, multiplicity of roles, and multiplicity of 
types.  

6.4.3.2 Refining situational methods 

The case studies followed the principles of incremental ME: in addition to 
constructing methods we also evaluated their applicability. This evaluation led 
to several refinements to the methods initially constructed. This finding 
supports our re-evaluation of method use (cf. Section 2.5.4): it seems to be 
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difficult, if not impossible, to construct a situation-dependent method by 
following solely a priori tasks of ME.  

The requirements for method refinements were obtained by following the 
a posteriori steps of ME: collecting experience, analyzing method use, and 
improving methods. The reporting of the ME cases followed the three 
evaluation mechanisms of incremental ME: 1) type-instance matching, 2) 
modeling capabilities, and 3) problem solving capabilities.  

Type-instance matching suggested a large number of method refinements. 
These dealt with removing less frequently used property types, dividing object 
types and classifying relationship types, and creating linkages between types of 
the method which can refer to the same model data (instance values). The 
analysis of constraints leads to modifying methods in more detail. The changes 
introduced influenced all constraints except those dealing with uniqueness, 
cardinality, and inclusion. In other words, these constraints were defined 
adequately in the a priori constructed methods. It must, however, be noted that 
not all constraints could be fully evaluated since they were not allowed in 
metamodels. Although this part of the evaluation was carried out by method 
engineers, all the refinements were validated with the method users. 

The modeling capability evaluation seeks to abstract relevant aspects of 
object systems and keep the resulting models consistent. The cases contained 
several situations in which methods were considered inadequate to model the 
object systems or parts of them. Individual differences were not analyzed, 
because only a few users actually modeled with the method: other method 
stakeholders were involved in reviewing the models and conducting analyses. 
This part of the evaluation proposed new types and related constraints, and 
even new modeling techniques. These extensions were partly the same as those 
found during type-instance matching. 

The checking analysis revealed possibilities to improve the consistency of 
models via an integrated and more strictly defined metamodel. Better support 
for consistency was achieved by defining complex objects and polymorphism 
structures. These refinements decreased the need for manual maintenance and 
improved the consistency of models. The evaluation also revealed the need for 
derived property type values, and the use of a single tool. These changes, 
however, could not be carried out because such method specifications could not 
be captured in the metamodels. 

The evaluation principles focused on analyzing the role of methods in 
solving the business problems. This part of the evaluation was divided into 
finding candidate solutions through form conversion, and supporting model 
validation by producing documents. During form conversion, new features 
relevant for the generation and analysis of design solutions were suggested, 
together with new analysis algorithms. In the second case, larger extensions to 
the analysis needs were also made, i.e. the addition of Activity Based Counting. 
Support for exporting design data and analysis results into external tools were 
considered adequate. 

The integration and validation of models from different parts of the object 
systems required a new modeling technique. Other refinements suggested dealt 
with notations and reports: notations were modified by graphically showing 
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information about model data instead of using model related textual reports. 
The contents and layout of reports were also changed. 

The required method refinements were made into the corresponding 
method specifications (i.e. metamodels), or were achieved using the tool (i.e. 
checking reports). Not all the required changes, however, could be made 
because either the metamodeling language or the tool did not support them. In 
this sense, not all suggested method improvements could be taken into use. It 
should be noted that none of the required changes could be predicted. 
Moreover, because the refinements were found to improve the method, the a 
posteriori approach to ME is clearly viable. 

Finally, while evaluating the results of action research it must be noted 
that the use of incremental ME was limited to one cycle (less than a year). For 
example, contingencies in the ISD object system did not change during that 
time. Therefore, new method refinements would be needed if the evaluation 
were to be carried out again. At the same time, the contribution of individual 
evaluation mechanisms would mostly likely be different.  



7 CONCLUSIONS AND DIRECTIONS FOR FUTURE 
RESEARCH 

This thesis suggests principles that support local method development. The 
research is motivated by earlier findings in method research: the majority of ISD 
organizations which use methods develop their own variants instead of solely 
applying external methods as specified. Organizations, however, lack proven 
guidelines to develop or adapt their methods. Though method modeling 
languages and customizable modeling tools, such as metaCASE tools, have 
become available, there is a paucity of (meta)methods for method development. 
Our aim was to systematize a set of local method development principles that 
would improve the method engineering process and increase metamodeling 
support. Accordingly, this thesis concentrates on principles for engineering 
modeling techniques for ISD tools. 

The ME principles developed can help organizations develop local 
methods and manage changes in modeling techniques. The principles are 
founded on extended metamodeling capabilities and on an a posteriori view of 
ME. In this view, experiences of method use are utilized to improve methods. 
The metamodeling capabilities will be summarized in Section 7.1, and the a 
posteriori mechanisms in Section 7.2. Finally, in Section 7.3 we propose 
directions for future research in this area, and complementary research topics, 
such as the study of implications for building tools and languages for ME. 

7.1 Modeling languages for method engineering 

The first contribution of the thesis deals with extended support for 
metamodeling. Before proposing metamodeling constructs we surveyed 
method knowledge and described method-tool companionship. Survey into 
method knowledge was needed to understand various types of method 
knowledge and explain the focus of method engineering taken in the thesis: 
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modeling conceptual structures behind modeling techniques. The concept of 
method-tool companionship was applied to describe how tools can support 
method use through abstraction, checking, form conversion and review. 
Although we view metamodeling in the context of modeling tools our interest is 
on metamodeling. The reason why we have studied metamodels in tools is that 
metamodels which do not influence ISD have a limited impact. Conversely, 
modeling of ISs is more beneficial if the models can be applied for 
implementing ISs. Among the categorical choices in metamodeling languages 
we have focused on semantic data models. They are most widely applied in 
large metamodeling efforts and as metametamodels of metaCASE tools and 
repositories.  

Extended support for metamodeling was developed by proposing new 
constructs for metamodeling languages. We found a limited set of constructs 
which can help method engineers to specify relevant aspects of modeling 
techniques. It is clear that unlimited support for all types of methods is 
impossible. Unlike with many other metamodeling languages we did not try to 
build a language which is as powerful as possible. Rather we sought to balance 
power and ease of use so that it can be used with minimal effort but the 
language is at the same time powerful enough to model methods. In fact, ME 
has the same objective: to develop methods which help users to perceive and 
specify relevant aspects of object systems rather than model “everything”.  

The examination of metamodeling constructs was carried out by 
conducting a content analysis of a chosen sample of the method literature. This 
type of an inductive approach has not been generally used in such an extent to 
develop metamodeling languages. In all, we analyzed 17 methods consisting of 
72 modeling techniques of which 3 methods and 19 modeling techniques are 
reported in detail in this thesis. The methods covered different ISD phases 
including business modeling, requirements engineering, system analysis and 
system design methods. The literature described the concepts, rules, notations 
and possible requirements in building tool support for methods. The data was 
classified into distinct types allowing us to simplify and systematize conceptual 
structures of methods. In our case, the classification of method knowledge was 
based on the metamodeling languages supported by metaCASE tools. The 
metamodeling approach allowed us to capture and understand method 
knowledge and the metaCASE tools allowed building, checking, and querying 
on metamodels, as well as to make tool adaptations. Hence, as a by-product of 
the analysis, we developed a modeling tool for each method. 

The content analysis allowed us to categorize method knowledge and 
identify constructs which are needed to model methods more completely. The 
metamodeling constructs were divided into those necessary for modeling single 
techniques and those needed to integrate multiple techniques. Furthermore, we 
identified varying scopes in method name spaces and crafted checking modes 
for each construct. 

The proposed metamodeling constructs lead us to assess available 
metamodeling languages. This assessment revealed that current methodical 
support for method modeling is modest. While in recent years some progress 
has been made in outlining conceptual and theoretical principles for 
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metamodeling and metamodel based tools (for a survey see Kelly 1997, 
Tolvanen et al. 1996) we found that available metamodeling languages do not 
provide adequate ME support. Having evolved from general purpose data 
models or data modeling languages, existing ME languages are capable of 
expressing specific semantic constraints imposed by the business data modeling 
domain. Many of the languages promoted for ME are applied on ISD as well 
and the required metamodeling constructs are quite different than those needed 
in IS modeling. As a result of the assessment, we identified structures of method 
knowledge which could not be represented adequately with the studied 
metamodeling languages. For example, metamodeling languages offered 
limited constructs for modeling interconnected techniques and the identified 
scopes of method knowledge were inadequate. In this sense, the content 
analysis of method literature contributed to the current understanding of 
detailed method knowledge. It revealed several aspects of method knowledge 
which have not been identified by the developers of metamodeling languages. 
The evaluation also lead us to examine the limitations of semantic data models 
as a foundation for metamodeling. With respect to modeling tools, the semantic 
data models are powerful in describing static aspects, but poor in describing 
dynamic rules applied in modeling techniques. 

The results of the evaluation can be applied by researchers and 
practitioners alike: developers of metamodeling languages can use them for 
analyzing and extending their languages; tool vendors can apply them for 
extending their metametamodel based tools; and method engineers can use 
them to identify method knowledge which is neglected. Extended 
metamodeling constructs allow organizations to better specify, understand, 
analyze and refine methods. 

7.2 Experience based method refinements 

The second contribution of the thesis lies in an improved understanding of the 
method engineering process. These improvements were obtained by extending 
method engineering to cover method evaluation and refinement. The proposed 
incremental approach does not cover only the selection and construction of 
methods for a given situation (a priori), but also the evaluation of the 
applicability of methods and method improvements (a posteriori). Earlier 
research into the ME process has so far focused on constructing methods in an 
“one -shot” manner, as described in Sections 3.2 and 5.2. We however regard ME 
as an incremental process. We believe that the method is rarely defined at once, 
and written down as a complete metamodel. The process of arriving at a 
method is fragmented, evolutionary and largely intuitive. Though we can 
identify some refined pieces of ISD methods, the reality of ME tends to be 
meandering towards a solution, as situations change and stakeholders learn 
more. This means that any ME approach focusing only on the initial method 
construction is incomplete and ME principles need to be extended to cover 
improvements of the methods based on their use. 
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The incremental approach complements ME principles by proposing steps 
for a posteriori ME. These steps deal with collecting, analyzing, refining, and 
sharing methodical knowledge. The steps are based on explicit metamodels as 
well as on decisions and rationale behind method development. Metamodels 
are needed to understand methods in use and method refinements, and method 
rationale is needed to describe why methods were specified as they were. 
Throughout these steps we applied three mechanisms of method evaluation and 
refinement. Like the metamodeling constructs, these mechanisms examine 
modeling techniques in the context of modeling tools. The first mechanism —  
the type-instance matching —  compares differences between a modeling 
technique’s intended use (as seen from the metamodel) and actual use (as seen 
from models). The second mechanism —  analysis of modeling power —  
examines the capability of the method to represent the desired aspects of the 
object system in models and to maintain the consistency of the models. The 
third mechanism —   the analysis of the role of a method in problem solving —  
focuses on a method’s capability to generate alternative solutions and support 
subsequent decision making. The latter two mechanisms address experiences 
and learning of method stakeholders, such as designers, end-users, domain 
experts, ISD tool experts, and method engineers. 

These mechanisms are suggested so that they can focus on method aspects 
which need refinement. As a consequence, if the analysis phase suggests a 
method modification, it reveals that the a priori constructed method was not 
fully applicable. The refinements extend, modify or remove parts of the method 
knowledge. The refinements can be gradual and small (in comparison with 
other method development strategies). This explains the title of the proposed 
approach. The term gradual suggests that method refinements are made to the 
currently used method, rather than by selecting a new method. Small changes 
are a consequence of gradual changes; applicability is achieved by modifying 
parts of the method. 

The incremental approach was examined through an action research 
intervention in two cases. The cases covered all the major steps of ME. Our 
discussion focused primarily on the a posteriori view and method evaluation 
mechanisms. The evaluation led to several refinements of the constructed 
methods. The refinements added, modified, and removed parts of method 
knowledge. Through a tool implementation the new method was taken into use. 
This finding provides evidence that a priori method construction alone does not 
always provide adequate support. In the cases, the suggested identification 
principles and method improvement mechanisms were found to be useful. The 
metamodeling approach used also revealed some extensions to the 
metamodeling constructs. Moreover, the use of metamodels was found to be 
useful while specifying local methods and analyzing their evolution. In this 
sense, the metamodels supported not only the local method development, but 
also the action research studies of detailed method knowledge and its evolution. 

During the action research interventions the method refinements were 
performed only once. An incremental approach to method engineering, 
however, would necessitate several “reflection” cycles. Method engineers must 
obtain data from several situations to yield a metamodel repository with 
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information about the applicability of methods (and their parts). With effective 
use of this incremental approach, methods can be constructed and improved 
based on their demonstrated ability to support specific situational factors.  

The ME principles developed can be applied in an organization which is 
developing its own methods and needs methodical guidelines. Moreover, the 
principles of incremental ME are suitable not only for local method 
development, but also for development of standardized methods (as shown in 
case B). 

7.3 Directions for future research 

In reflecting on the research questions addressed, we observed several 
interesting research topics. These would allow us to further evaluate and 
expand the findings of this thesis. 

For any modeling language, functionality and usability form central 
issues: ME languages are no exception. Future research on ME languages 
should concentrate on these aspects, either by extending existing ME languages 
or by creating new ones. With respect to the functionality aspect, the sufficiency 
of the metamodeling constructs could be analyzed by modeling more methods. 
The selected sample should include other types of methods than those modeled 
here. The sufficiency of the proposed metamodeling constructs can also be 
examined by modeling organizations’ in-house methods, rather than methods 
described in the literature. These examinations can confirm (or raise doubts 
about) the relevancy of the proposed metamodeling constructs, and most likely 
find new constructs.  

The proposed metamodeling constructs can be used to evaluate other 
metamodeling approaches. They can be used as a set of requirements to develop 
new metamodeling languages, or extend existing ones. Research on 
metamodeling should be extended to cover other types of method knowledge, 
in addition to the conceptual structures behind modeling techniques. Candidate 
types of method knowledge to be modeled include processes, participation, and 
decision making. 

When analyzing the functionality of a metamodeling language, its 
usability should not be forgotten. This suggests investigating the use of ME 
languages using different research methods. In fact, to proceed in ME research 
we need empirical studies about the use of metamodeling more than proposals 
of new metamodeling languages. Surveys and field studies must be made to 
analyze what metamodeling languages are used in practice; laboratory studies 
are needed to investigate user preferences for different visual representational 
paradigms (e.g. Kelly and Rossi 1997); and case studies are needed to assess the 
usability of metamodeling languages in a ME project. 

Empirical research is also relevant to the study of the ME process. Because 
ME is a relatively new research field, complementary research efforts and the 
use of various research methods are needed to improve the quality of research 
conclusions (see Tolvanen et al. 1996). As pointed out in this thesis, more case 
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studies and action research are needed to analyze local method development in 
detail. These research methods should be applied to examine what factors 
contributed to success or failure in local method development, how frequently 
and to what extent methods are changed, and how methods evolve. These 
questions presuppose longitudinal research efforts, as well as close interaction 
between method use and method development situations. In addition to 
longitudinal studies, larger scale ME efforts, in terms of the number of 
stakeholders and method size, should be inspected. Studies should also address 
methods other than business modeling, apply different metamodeling 
languages, and implement method-tool companionship with different 
metaCASE tools.  

Within empirical research, other research methods, such as field studies 
and surveys, must be used. Although several surveys of method use and to 
some extent also of method development have been performed, there is still a 
need for new ones. One reason is that existing studies have obtained different 
results, and several key questions of ME remain unanswered. Surveys should 
analyze how common in-house methods are, and whether stakeholders are 
satisfied with local methods. Field studies allow the examination of the ME 
process in more detail. They should examine the circumstances under which 
local methods are developed, whether the ME process consists of “radical” or 
incremental changes, and how ME projects are organized and managed. 

Finally, the incremental ME principles should be taken into account while 
developing metamodeling languages and metaCASE tools. In addition to 
extending metamodeling languages with the proposed constructs, they should 
also be applied in metaCASE technology. MetaCASE tools should offer 
functionality to modify and version metamodels, to update models when a 
method already in use is changed, to support the collection and structuring of 
experiences about the use of the method, and to automate the mechanisms of 
method evaluation. In particular, metrics for type-instance matching should be 
implemented into metaCASE tools. Design rationale models should also be 
taken into use for recording and explaining metamodeling decisions. Tool 
support for these functionalities would allow the proposed principles of 
incremental ME to be used to full advantage. 
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APPENDIX  
GOPRR metamodeling language 
 
This appendix describes the GOPRR metamodeling language in two ways: by 
describing the notation for graphical metamodels, and by describing the textual 
set format used for reporting the metamodels here. A more detailed description 
of GOPRR can be found from the MetaEdit+ Method Workbench User’s Guide 
(MetaCASE 1996b) and from (Kelly 1997). 
 
Graphical metamodeling constructs 
Concept & representation Description 
Graph type 
 

Graph

 

A graph type is a collection of object, relationship 
and role types, and bindings describing how these 
can be connected.  
A graph type usually denotes a modeling 
technique, such as data flow diagrams or class 
diagrams. 

Object type 
 

Object

 

An object describes a thing that can exist on its 
own.  
Object type names are typically nouns. 
Examples include process, class, and attribute. 

Property type 
 

Property
(collection)

String
Property

 

Properties describe characteristics of instances of 
other types. 
Property type names are generally nouns or 
adverbs. 
Examples include class name, cardinality, and 
attributes. 
Each property type has a basic data type (e.g. 
number, string, Boolean, text, another type (graph, 
object, role or relationship), or a collection of one 
of these).  
A collection data type is represented with a double 
ellipse. 

Relationship type 
 

Relationship

 

A relationship can exists between objects. It 
connects objects through roles. 
Semantically, relationships are usually verbs, but 
relationship type names are sometimes also nouns 
or adverbs. 
Examples include inheritance, call, and usage. 

Role type 
 
Role

 

A role specifies how an object participates in a 
relationship. 
Semantically, roles are adverbs. Role type names 
are often prepositional phrases or verbs. 
Examples include subclass, from, and receives. 

(continues)
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Inclusion 

Object

Relationship

Graph

Role

 

An inclusion relationship can exist between a 
graph type and its components (i.e. object, 
relationship, and role types). 
Inclusion is used to combine all the main 
components of a technique. 
Inclusion is many-to-many, so that the same type 
can belong to many graph types. 

Participation

Object Role

 

An object type can participate in zero to many role 
types. In a graph type, a role type must be related 
to at least one object type. 

Composition 
 

1,M

Role  Relationship

 

Relationship types are related with at least two 
compositions to roles. Together with a 
participation, this forms a binding (cf. Kelly 1997). 
Each role type in a binding is characterized with a 
cardinality constraint describing how many 
instances of this role type must (minimum) or may 
(maximum) occur in an instantiation of this 
binding. 

Property of 
 

String
PropertyObject

id Unique

local name

 

A property can characterize instances of other 
types (i.e. non-properties). This relation is 
described in a metamodel with the property of 
relationship. 
Each property of relationship is specified further 
with three constraints:  
1)  id to describe if the property type is used as a 

naming property (a non-property type can 
have only one id), 

2)  uniqueness to specify if there is no duplication 
of property values allowed among 
instantiations of this ‘property of’ relationship, 
and 

3)  local name to define a name for this use of the 
property type. Hence, two non-property types 
can refer to the same property type but with 
different labels; the labels are visible for 
example in dialogs for editing the properties of 
this non-property. 

Property link 
 

Property Object

Property Object

 

The data type of a property type can be itself a 
non-property type. This is defined with a property 
link relationship from the property type to a non-
property type. 

(continues)
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Explosion 
 

GraphObject

 

An object can be linked to one or more graphs via 
an explosion.  
Explosion is typically used between different 
graph types. 
Examples include that a process in a data flow 
diagram can be related to a state diagram and to 
process specifications. 

Decomposition 
 

Object
Graph

 

An object can be decomposed into a new graph. 
This feature is known as functional decomposition 
in data flow diagrams, or leveling of graphs to 
form a hierarchy. 
The decomposition target is typically of the same 
graph type as the source’s containing graph. 
Note that only one decomposition is allowed for 
each object instance, and it applies in all graphs 
containing that object. In contrast, there may be a 
set of graph types specified as possible 
decomposition targets for an object type, and this 
set may be different in each graph type where this 
object type is used. 

 
 
Set format of metamodels  
The metamodels reported in Section 4 are made by querying the repository of 
MetaEdit+. The set format has been applied because MetaEdit+ does not use 
graphical metamodels for tool adaptation.  
 
In the set format all types are described as sets, e.g. the object types of the whole 
SA/SD method are represented thus: 

 
Object types = {Process, Store, External, Module, State, Entity} 
 

The ‘property of’ relationship is described as a mapping of the set of property 
types which are associated with each non-property type (roles, objects, 
relationships). For example: 

 
<organization, {organization name, Owner}> 
 

Participation and composition are described as a binding: each binding stores a 
relationship, two or more roles, and for each role, one or more objects. Because a 
graph type can include several bindings they form a set. 

 
Process/Entity Matrix={<Data usage,{<Used,{Entity}>, 

   <Uses,{Business Process}>}>} 
 

Inclusion is described for each technique only implicitly through the bindings, 
i.e. the non-property types included in the graph type can be found from the 
union of all binding members for that type. 
 



 
300 

Property links referring to non-property types which are not directly in an 
inclusion relationship in any graph type of this method are described by a pair 
containing a non-property and a set of properties. 

 
<Attributes, {<Attribute, {Attribute name, Data type, Attribute  

   type, Initial value, Constraints,  
   Visibility}>}> 
 

Explosions are described as set of pairs of an object type an d a set of graph 
types the object type may explode to. 

 
Explosions ={<Process, {Structure Chart, State Diagram}>} 
 

Decompositions are described as a set of pairs of an object type and a set of 
graph types the object type may decompose to. 

 
Decomposition ={<Process, {Data Flow Diagram}>} 
 

GOPRR metamodels 
The metamodels made and adapted into MetaEdit+ and MetaEdit are available 
from MetaCase Consulting, http://www.metacase.com. 
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YHTEENVETO (FINNISH SUMMARY) 
 
Tämän väitöskirjatyön tavoitteena on parantaa tietojärjestelmien 
suunnittelumenetelmien soveltuvuutta. Verrattuna moneen muuhun 
insinöörialaan tietojärjestelmien suunnittelumenetelmien yksi erityispiirre on 
niiden tilannekohtaisuus. Erilaisiin kehitysympäristöihin ja erilaisten 
tietojärjestelmien suunnitteluun soveltuvat erityyppiset menetelmät: esimerkiksi 
matkapuhelimien suunnittelussa menetelmätarpeet ovat erilaisia kuin 
suunniteltaessa www-sovelluksia tai logistisia prosesseja tukevia 
tietojärjestelmiä. Tilannekohtaisten menetelmien tarpeellisuutta korostavat 
uusien tietojärjestelmätyyppien ja käytettävissä olevien teknisten ratkaisuiden 
lisääntyminen. Empiiristen tutkimusten mukaan onkin varsin tavallista että 
tietojärj estelmien kehitystä harjoittavat organisaatiot ja yksittäiset 
kehitysprojektit muokkaavat menetelmiä omia käyttötilanteita varten.  

Tässä väitöskirjatyössä esitetään periaatteita organisaatioiden suorittaman 
menetelmäkehityksen tukemiseksi. Menetelmiä tarkastellaan osana tietokone -
avusteisia suunnitteluohjelmistoja. Nämä ohjelmistot tarjoavat tuen valitun 
menetelmän mukaiselle tietojärjestelmän kuvaamiselle, kuvausten ylläpidolle ja 
analysoinnille sekä tietojärjestelmän määritysten tuottamiselle. Työn 
ensimmäisessä osassa tarkastellaan olemassa olevia menetelmäkehityksen 
periaatteita ja menetelmäkehityshankkeita. Tarkastelu osoittaa heikkouksia 
menetelmäkehityksen periaatteissa jotka liittyvät menetelmien yksityis -
kohtaiseen määrittelyyn ja niiden tilannekohtaisen soveltuvuuden arviointiin.  

Työn toisessa osassa keskitytään menetelmien mallintamiseen, eli 
metamallintamiseen, tutkimalla menetelmien yksytyiskohtaisen kuvaamisen 
kannalta tarpeellisia mallinnuskielten käsitteitä. Metamallinnuskielten käsitteitä 
etsitään analysoimalla joukkoa suunnittelumenetelmiä, kuvaamalla ne 
metamallinnuskielten avulla ja sovittamalla menetelmät muokattaviin 
suunnitteluohjelmistoihin. Löydettyjä käsitteitä sovelletaan määritettäessä 
menetelmiä ja arvioitaessa olemassa olevia metamallinnuskieliä.  

Työn kolmannessa osassa tarkastellaan menetelmien tilannekohtaista 
soveltuvuutta ja esitetään periaatteita organisaatioiden menetelmätietämyksen 
luomiseksi ja ylläpitämiseksi. Esitetyt periaatteet perustuvat tietojärjestelmiä 
kuvaavien mallien ja menetelmiä kuvaavien metamallien väliseen vertailuun. 
Näiden periaatteiden käyttökelpoisuus havainnollistetaan kuvaamalla niiden 
käyttöä kahdessa tietojärjestelmien kehityshankkeessa: tukkukaupan ja 
metsäteollisuuden logististen tietojärjestelmien suunnittelussa. Molemmissa 
tapaustutkimuksissa käytettyjen suunnittelumenetelmien soveltuvuutta 
pystytään parantamaan työssä esitettyjen periaatteiden avulla. Työn tuloksia 
voivat hyödyntää kaikki suunnittelumenetelmiä käyttävät organisaatiot 
menetelmien soveltuvuuden parantamiseksi ja menetelmäosaamisen 
kehittämiseksi. § 


