
H. Obbink and K. Pohl (Eds.): SPLC 2005, LNCS 3714, pp. 198 – 209, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Defining Domain-Specific Modeling Languages
to Automate Product Derivation:

Collected Experiences

Juha-Pekka Tolvanen and Steven Kelly

MetaCase,
Ylistönmäentie 31,

FI-40500 Jyväskylä, Finland
{jpt, stevek}@metacase.com
http://www.metacase.com

Abstract. Domain-Specific Modeling offers a language-based approach to raise
the level of abstraction in order to speed up development work and set variation
space already at specification and design phase. In this paper we identify
approaches that are applied for defining languages that enable automated
variant derivation. This categorization is based on analyzing over 20 industrial
cases of DSM language definition.

1 Introduction

Domain-Specific Modeling (DSM) can raise the level of abstraction beyond coding
by specifying programs directly using domain concepts. The final products can then
be generated from these high-level specifications. This automation is possible because
the modeling language and generator only need to fit the requirements of one domain,
often in only one company [8], [11].

This paper examines approaches applied for DSM language creation. Although
there exists a body of work done on language development, most of this deals only
with textual languages, and concentrates on their compilers rather than the languages.
In general, such research has only looked at the initial creation of the languages (e.g.
[1] [2]). Fewer studies (e.g. [9], [10]) have investigated the actual process of language
creation, or of refinement and evolution of languages that are already in use.
Moreover, the typical focus of a DSM language, providing models as input for
generators, gives a special perspective to modeling language creation.

This paper identifies and categorizes approaches used for defining DSM languages.
It is based on an analysis of cases that created DSM languages to support model-
based software development and especially to automate product variant creation.
Although all the DSM languages studied were implemented as metamodels and were
not tied to customizing an available language, the approaches identified may also
serve language creation that is based on extending available metamodels or using
profiles for more lightweight language definition work.

In the next section we describe the cases and how they were analyzed in more
detail. Section 3 describes the approaches identified by characterizing their main

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 199

focus and by giving a representative example1 of a DSM in that category. Sections 4
and 5 evaluate the categorization and summarize the experiences gathered.

2 About the Studied DSM Cases

This study is based on data gathered from over 20 cases of DSM creation. The cases
were chosen to cover different domains and modeling: from insurance products to
microcontroller-based voice systems. Table 1 shows the cases, their problem domains
and solution domains. The fourth column refers to the DSM creation approaches,
which are discussed in more detail in Section 3. The cases are sorted by the fourth
column for the benefit of the reader.

All the cases applied model-based development by creating models that then
formed the input for code generation. Thus, DSM language creation was not only
applying modeling to get a better understanding, support communication or have
documentation, but for automating development with domain-specific generators.
Actually, in most of the cases the generators aim to provide full code from the
modelers’ perspective. This means that no changes to the generated code were
expected to be needed. In all the cases, the target platform (i.e. available components
and generated output language) was already chosen before the DSM language
creation started. With the exception of cases that generated XML, the final detailed
structure and composition of the generated output was left open and in most cases
new domain framework code was created. A domain framework provides a well-
defined set of services for the generated code to interface to.

Many of these domains, and hence also their respective DSM languages, can be
characterized as rather stable; some however were undergoing more frequent
changes. Some languages have been used now for several years whereas some
have only just been created. None of the languages were rebuilt during the DSM
definition process, but rather maintained by updating the available language
specification. All the language definitions were also purely metamodel-based: i.e.
complete freedom was available when identifying the foundation for the language.
In other words, none of the cases started language definition by extending UML
concepts via profiles etc. The largest DSM languages have several individual
modeling languages and over 580 language constructs, whereas the smallest are
based on a single modeling language and less than 50 constructs. As a comparison,
UML has 286 constructs according to the same meta-metamodel as the one applied
in the analyzed cases.

The data on DSM development (also know as method construction rationale [9])
was gathered from interviews and discussions, mostly with the consultants or in-
house developers who created the DSM languages, but also with domain engineers
and those responsible for the solution architecture and tool support. All the languages
were implemented with the same tool [5] and access to the language definitions
(metamodels) was available for content analysis [7] while analyzing the cases.

1 Due to confidentiality of industrial DSM cases, not all cases can be illustrated in detail.

200 J.-P. Tolvanen and S. Kelly

Table 1. DSM cases by domain and generation target

Case
ID

Problem domain Solution domain/
generation target

Creation
approach(es)

1 Telecom services Configuration scripts 1

2 Insurance products J2EE 1

3 Business processes Rule engine language 1

4 Industrial automation 3 GL 1, (2)

5 Platform installation XML 1, (2)

6 Medical device configuration XML 1, (2)

7 Machine control 3 GL 1, 2

8 IP telephony CPL 2, (1)

9 Geographic Information
System

3 GL, propriety rule
language, data structures

2

10 SIM card profiles Configuration scripts and
parameters

2

11 Phone switch services CPL, Voice XML, 3 GL 2, (3)

12 eCommerce marketplaces J2EE, XML 2, (3)

13 SIM card applications 3 GL 3

14 Applications in
microcontroller

8-bit assembler 3

15 Household appliance
features

3 GL 3

16 Smartphone UI applications Scripting language 3

17 ERP configuration 3 GL 3, 4

18 ERP configuration 3 GL 3, 4

19 Handheld device
applications

3 GL 3, 4

20 Phone UI applications C 4, (3)

21 Phone UI applications C++ 4, (3)

22 Phone UI applications C 4, (3)

23 Phone UI applications C++ 4, (3)

3 DSM Definition Approach Categorization

Analysis of the metamodels revealed that the languages differed greatly with regard to
their concepts, rules and underlying computational model (see samples in Fig. 1, 2
and 3). The collected data indicates that the driving factor for language construct
identification was based on at least four approaches:

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 201

1. Domain expert’s or developer’s concepts
2. Generation output
3. Look and feel of the system built
4. Variability space

This list of approaches is not complete (being based on a rather limited set of
cases), nor are the approaches completely orthogonal to each other. Actually, many of
the cases applied more than one construct identification approach. In the following
subsections we describe these approaches in more detail and discuss how the
languages’ constructs were identified and defined. We also attempt to describe the
process of language creation (identification, definition, validation, testing), and
discuss the need for a domain framework to ease the task of code generation.

3.1 Domain Expert’s or Developer’s Concepts

One class of DSM definitions seemed to be based on concepts applied by domain
experts and developers of the models (cases 1–8 as listed in Table 1). Fig. 1 shows a
sample DSM of this class (case 2). All the modeling concepts are related to insurance
products: an insurance expert draws models like this to define different insurance
products, and then the generators produce the required insurance data and code for a
J2EE website.

Fig. 1. DSM example: modeling insurance products

202 J.-P. Tolvanen and S. Kelly

This type of language raises the level of abstraction far beyond programming
concepts. Because of this, the generated output could easily be changed to some other
implementation language. Similarly, users of these languages did not need to have a
software development background, although in most cases they had. The
computational models behind these languages were fairly simple and consistent over
the cases analyzed: all were based on describing static structures or various kind of
flows, their conditions and order. Code was usually produced by listing each model
instance separately, along with its properties and relationships to other model
elements. The code generation was guided by the relationship types, e.g. code for
composite structures and flow-based ordering was generated differently.

Languages based on domain experts’ concepts were considered easy to define: for
an expert to exist, the domain must already have established semantics. Many of the
modeling concepts could be derived directly from the domain model, as could some
constraints. Constraints specifically related to modeling often needed to be refined, or
even created from scratch, together with the domain experts. This process was rather
easy as testing of the language could easily be carried out by the domain experts
themselves. If the modelers were not themselves software developers, language
visualization (e.g. the visual appearance of the notation), ease of use and user-
friendliness were emphasized.

3.2 Generation Output

One class of DSM definitions was driven by the required code structure: modeling
languages concepts were derived in a straightforward way from the code constructs
(cases 7–12). An example of this kind of DSM is the Call Processing Language (CPL)
[4], used to describe and control Internet telephony services (cases 8 and 11). The
required XML output forms a structure and concepts for the modeling language (see
Fig. 2).

DSM concepts to describe static parts like parameters and data structures, or the
core elements and attributes in CPL and XML above, were quick and easy to define.
The real difficulty was in finding appropriate concepts for modeling the behavioral
parts and logic based on domain rules. This was achieved when the underlying
platform provided services the models could be mapped to. This is often called
analyzing the variability space (see Section 3.4). Once defined, the services and
modules of the platform could even be applied directly as modeling concepts, or by
having general interface concepts that allowed the modeler to choose or name the
required platform service.

If a domain could not be defined or an existing architecture was not available,
languages tended to use modeling only for the general static structures. The rest was
done with textual specifications – often directly with programming concepts that do
not provide domain-specific support.

A similar class of modeling languages are those originating from coding concepts,
such as UML, schema design languages and various code visualization add-ons in
IDE environments. Having models and code at substantially the same level of

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 203

Fig. 2. DSM example: Call Processing

abstraction typically also raises the need for reverse engineering. This is similar to a
class of tools, Microsoft’s Whitehorse, Rational’s XDE, Borland’s TogetherJ, that
aim to offer transparency between the use of models and textual specifications.

Such a close mapping to programming concepts did not raise the level of
abstraction much, and offered only minor productivity improvements. Typical
benefits were better guidance for the design and early error prevention or detection.
Using the CPL/XML as an example, designs could be considered valid and well-
formed already at the design stage. In that way it was far more difficult to design
Internet telephone services that were erroneous or internally inconsistent: something
that was all too easy in hand-written CPL/XML.

3.3 Look and Feel of the System Built

Products whose design can be understood by seeing, touching or by hearing often led
to languages that applied end-user product concepts as modeling constructs (cases 11–
23). Fig. 3 gives an example of a language whose concepts are largely based on the
widgets that Series 60 and Symbian-based smartphones [6] offer for UI application
development (case 16). The behavioral logic of the application is also described
mostly based on the widgets’ behavior and the actions provided by the actual product.

204 J.-P. Tolvanen and S. Kelly

Fig. 3. DSM example: Smartphone UI applications

The generator produces each widget and code calling the services of the phone
platform. Some framework code was created for dispatching and for multi-view
management (different tabs in the pane). By using domain-specific information, much
modeling work could be saved: for instance, the normal behavior of the Cancel key is
to return to the previous widget. Relationships for Cancel transitions thus need not
normally be drawn, but can be automatically generated; only where Cancel behaves
differently need an explicit relationship be drawn.

Identification, definition and testing of the language constructs were considered
easier in this approach than any other language construct identification approach.
Therefore, language creation could often be carried out by external consultants with
only a little help from domain experts. Although the language definition was
relatively straightforward, the main challenges seemed to be in relating other types of
modeling elements and constraints to those constructs originating from the look and
feel. If the look and feel constructs were sufficiently rich to also cover functionality,
the level of abstraction of modeling was raised substantially beyond programming.

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 205

In many cases, the look and feel based cases had an existing framework, product
platform or API, which formed a reasonably solid foundation for the key modeling
language concepts. The APIs varied in their levels, from very low-level APIs near the
code, to very abstract operations and commands. The simpler generators usually
produced the code as a function per widget or similar state, with the end of the
function calling the next function based on user input. Tail recursion was used to
reduce stack depth where necessary. More complex generators produced state-based
code, either in-line or as state transition tables. None of the languages based on look
and feel required frequent reverse engineering, but some called for importing libraries
as model elements. Usually only interfaces were required for these libraries, but in at
least one case components with their implementation (i.e. whitebox) were needed.
Generators targeting other implementation languages were not defined, although that
was considered possible to achieve.

3.4 Setting the Variability Space

The final language definition approach was based on expressing variability (cases 17–
23). Such cases were typical in product families, where languages were applied for
variant design. Typically, the variability space was captured in the language concepts,
and the modelers’ role was to concentrate on the issues which differ between the
products. All the cases that were based on describing variability had a platform that
provided the common services the generated code interfaced with. This interfacing
was typically based on calling the services of the platform, but there were also cases
where generators produced the component code.

Languages describing variability were among the most difficult DSMs to create.
The main reason was the difficulty to predict the future variants. This called for
flexible language definitions that were possible to extend once new kinds of
variations arose. Languages for pure static variability (often for configuration) were
found relatively easy to create, however. The difficulty lay in behavioral variability
and coming up with a language that supported building almost any new feature based
on the common services of the platform. The success of the language creation was
dependent on the product expert’s knowledge, vision to predict the future, and insight
to lay down a common product architecture. Therefore, the role of external
consultants to support DSM creation was often smaller than with other approaches. In
the best cases, though, the external consultant’s experience of DSMs and generators
complemented the expert’s experience in the domain and its code. This normally
required a consultant who was himself an experienced software developer (although
not in that domain), and an expert who was not too bound to a low-level view of code.

In these cases language constructs were explored using domain analysis to identify
commonalities and variabilities among the products to be built using model-based
code generators. For example, Weiss and Lai [12] present a method to detect
commonality and variability of both static and dynamic nature. Each variation point
will be specified with variation parameters. By setting parameters for variation it
offers a clear starting point for language concepts, like proposing data types and their
variation space as well as constraints for combining variability. Feature modeling [3]
was not applied to explore variability as it was found to operate at a level too general
to identify DSM concepts. Feature models do not capture the dependencies and

206 J.-P. Tolvanen and S. Kelly

constraints that are required to define modeling constructs. Among the studied cases,
product architecture served better to find product concepts and their interrelations.

A product family platform and its supporting framework also have a notable
influence on the modeling language concepts and constraints. Commonalities were
usually hidden into the generator or framework in addition to complex issues which
can be solved in an automated generator. In many cases there were several different
computational models used to support all the required views of the systems. For
example, in embedded product families, it was common to follow the state machines
with domain specific extensions to best describe the system’s behavior and
interactions.

The level to which abstraction was raised was dependent on the nature of
variability. As would be expected, cases where the variability could be predicted
reasonably well showed higher levels of abstraction than those where future
variability could not be pinned down. A common solution for these latter cases was to
make the modeling language and generators easy to extend, allowing the level of
abstraction to be raised substantially now, and making it possible to maintain that
level in the future.

4 Evaluation of the Categorization and DSM Definition
 Approaches

After having categorized the cases according to which of the four approaches were
used, we noticed that each case had used only one or two approaches. Further, where
there were two approaches, only certain pairs of approaches seemed to occur. Of all
16 possible pairs made up of a primary approach and a secondary approach, only 5
were actually found in the data. This prompted us to re-order the categories into the
order now shown (previously generation output was last), so that each case used one
approach and its successor or predecessor.

Cases performed mainly by the customer mostly occur early in the list. Conversely,
those cases which had been performed by more experienced DSM practitioners
tended to come later in the list. The order of approaches thus probably reflects an
order of increasing DSM maturity.

Some cases were found to resemble others from the language point of view,
although the product domain and generated code were different (e.g. the cases of ERP
configuration and eCommerce marketplace).

Approach 1, domain expert’s concepts, seems to provide little insight. In some
cases it simply means that somebody else identified the concepts, and we thus lack the
information of which of the other approaches they used. In the three cases where the
customer was not mainly responsible for the concept identification, the DSM project
has not progressed beyond an initial proof of concept. These cases thus probably
reflect domains that are immature, and where the DSM consultants lacked previous
experience that would have enabled them to raise the maturity in that domain.

In approach 2, generation output, there were significant differences between those
cases whose generation output was itself an established domain-specific language,
and those where the output was a generic language or an ad hoc or format such as a
configuration file. Those cases worked best where the output was an established

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 207

domain-specific language, because the domain was more mature and the company in
question already had a mature implementation framework, either their own or from a
third party. In both CPL cases, the companies wanted their own additions to the
languages, further improving the domain specificity.

When the output is in a generic programming language, it would often be better
apply an approach other than generation output, to truly raise the level of abstraction.
When the output is to an immature format, it would often be better to analyze the
domain further to improve its understanding and the output format, rather than build a
direct mapping to the existing shaky foundation.

Approach 3, look and feel, can be regarded as the first of the four approaches that
consistently yields true DSM solutions. It is thus a valid approach to apply in new
DSM projects, whenever the end product makes it possible. It was also the most
commonly applied approach, found in 13 out of 23 cases.

Approach 4, variability space, was only found in combination with approach 3.
The cases where it was the primary approach, 20–23, were all in the domain of phone
UI applications, generating C or C++ (case 16 was a simpler domain, a subset of
these). These cases are certainly among the most complex, and this partly accounts for
the similar solutions. A second major factor is that experience with previous similar
cases had provided a proven kind of solution for this domain. Whilst each language
was created from scratch, the knowledge of previous cases from this domain certainly
influenced the way the cases were approached. The resulting DSM languages and in
particular generators differed substantially, reflecting the different needs of the
domains, customers and frameworks.

The use of the variability space approach in the radically different domain of ERP
configuration (17 & 18) shows that this approach is not restricted to state-based
embedded UIs. Perhaps the most likely explanation for this clustering of cases is that
this approach requires the most experience from the language creators, and yet also
offers the most power. In particular, the combination of the almost naïve end-user
view of the look and feel approach with the deep internal understanding of the domain
required by the variability space approach seems to yield the best solutions,
particularly in the most complex cases. When used together, the look and feel
approach tended to identify the basic concepts, and the variability space approach
helped define relationships and what properties or attributes each concept should
have.

5 Conclusion

In this paper we have examined approaches to identifying concepts for DSM
languages, based on experiences collected from over 20 real-world cases. The cases
show that there is no single way to build DSM languages: more than one language
creation approach was applied in the majority of cases. In the cases studied, we
identified four different approaches used by the domain expert, expert developer or
DSM consultant.

Of the four approaches in our categorization, the first relied on the domain expert’s
intuition or previous analysis to identify concepts. This approach is essential in that it

208 J.-P. Tolvanen and S. Kelly

emphasizes the role of the expert, but forms a weak point of the categorization in that
the experts themselves must normally have applied one of the other approaches. The
second approach identifies concepts from the required generation output, and can only
be recommended where that output is already a domain-specific language. The third
and fourth approaches, end product look and feel and variability space, seem to be the
best overall, although not applicable in every case. Using them together seemed
particularly effective in raising the level of abstraction and speeding up development.

Defining a language for development work is often claimed to be a difficult task:
this may certainly be true when building a language for everyone. The task seems to
become considerably easier when the language need only work for one problem
domain in one company. According to the cases analyzed the main difficulties are
found in behavioral aspects and in predicting future variability. Almost all cases with
both these difficulties required experienced DSM consultants, and all used more than
one approach to identify concepts.

In all cases, DSM had a clear productivity influence due to its higher level of
abstraction: it required less modeling work, which could often be carried out by
personnel with little or no programming experience. The increase in productivity is
not surprising, considering that research shows the best programmers consistently
outperform average programmers by up to an order of magnitude. DSM embeds the
domain knowledge and code skill of the expert developer into a tool, enabling all
developers to achieve higher levels of productivity.

This paper targets automated derivation of software products based on design
specifications. It examines and analysis experiences from practice of how DSM
language creators identify and define modeling constructs. More research work is
needed to better understand the DSM creation process, and to disseminate the skills to
a wider audience. Particularly welcome would be empirical studies that cover more
cases from various domains, and using different metamodeling facilities. As DSM use
grows, research methods other than field and case studies would also be welcome, for
example surveys and experiments.

References

1. Cleaveland, J. C., Building application generators, IEEE Software, July (1988)
2. Deursen van, A., Klint, P., Little languages: Little maintenance? Journal of Software

Maintenance, 10:75-92 (1988)
3. Kyo, C., K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature -

Oriented Domain Analysis (FODA) Feasibility Study, Technical report CMU/SEI-90-TR-
21, Software Engineering Institute, Carnegie Mellon University (1990)

4. Lennox, J., et al., CPL: A Language for User Control of Internet Telephony Services.
Internet Engineering Task Force, IPTEL WG, April (2004)

5. MetaCase, MetaEdit+ Method Workbench 4.0 User’s Guide, www.metacase.com (2004)
6. Nokia Series 60 SDK documentation, version 2.0, 2 (www.forum.nokia.com/) (2004)
7. Patton, M., Qualitative Evaluation and Research Methods, Newbury Park, Sage, 2nd

edition (1990)
8. Pohjonen, R., Kelly, S., Domain-Specific Modeling, Dr. Dobb’s Journal, August (2002)

 Defining Domain-Specific Modeling Languages to Automate Product Derivation 209

9. Rossi, M., Lyytinen, K., Ramesh, B., Tolvanen, J.-P., Managing Evolutionary Method
Engineering by Method Rationale, Journal of the Association for Information Systems
(AIS), (5) 9 article 12, (2004)

10. Sprinkle, J., Karsai, G., A domain-specific visual language for domain model evolution,
Journal of Visual Languages and Computing, Vol 15 (3-4), Elsevier (2004)

11. Tolvanen, J.-P., Kelly, S., Domain-Specific Modeling (in German: domänenspezifische
Modellierung) ObjektSpektrum, 4, July/August (2004)

12. Weiss, D., Lai, C.T.R., Software Product-line Engineering, Addison Wesley (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

