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Introduction

We consider an importance sampling (IS) type estimator based on Markov chain Monte
Carlo (MCMC) which targets an approximate marginal distribution. The IS approach
provides a natural alternative to delayed acceptance (DA) pseudo-marginal MCMC, and
enjoys many benefits against DA, including a straightforward parallelisation and additional
flexibility in MCMC implementation. We compare the computational efficiency of IS and
DA approaches in a geometric Brownian motion setting where the IS approach provides
substantial efficiency improvements over DA.

Bayesian latent variable models

Variable Name Conditional density

Θ (hyper)parameters Θ ∼ pr( · )
X latent variables X | Θ ∼ µΘ( · )
Y observations Y | (X,Θ) ∼ gΘ( · |X)

Θ

pr

X

Y

gΘ( · |X)

µΘ

We are interested in the full posterior with observed Y = y:

π(θ,x) = p(x,θ | y) ∝ p(x,θ,y) = pr(θ)µθ(x)gθ(y | x).

Typical scenario in a latent variable model:
• The hyperparameters Θ are low-dimensional
• The latent variablesX are high-dimensional

Approaches and challenges for inference
Standard ‘out-of-the-box’ inference (e.g. using BUGS, Stan, . . . )
•Approach: Simulate MCMC chain Zk = (Θk,Xk), targeting π
• Problem: High overall dimension & high correlations =⇒ often inefficient, even useless

Factorization of the posterior
•Approach: Consider the following factorization of the posterior:

π(θ,x) = πm(θ)r(x | θ),

where the marginal posterior density and the corresponding conditional are given as

πm(θ) =

∫
π(θ,x)dx ∝ pr(θ)L(θ)

r(x | θ) =
pθ(x,y)

L(θ)
=
µθ(x)gθ(y | x)∫
pθ(x,y)dx

• Problem: L(θ) and r(x | θ) are often intractable.
• Possible solutions: approximate with L̂(θ) and r̂(x | θ) obtained either

– deterministically, e.g. Gaussian approximation [3, 7], EKF, INLA [6], variational Bayes
=⇒ Bias is hopefully negligible, but hard to assess in practice

– stochastically, e.g. sequential Monte Carlo (SMC) [1]
=⇒ Provides unbiased estimates of L(θ) and r(x | θ) but often computationally demanding

– SMC with m particles generates (U, V (i),X(i)) satisfying

E[U ] = L(θ), E
[
U

m∑
i=1

V (i)f (X(i))
]

=

∫
pθ(x,y)f (x)dx

Two-stage exact MCMC algorithms for faster inference

Delayed acceptance (DA): Combine particle MCMC [1] with delayed acceptance [2]

•Draw a proposal Θ̃k ∼ q(Θk−1, · )
• Stage 1: With probability

min

{
1,

pr(Θ̃k)L̂(Θ̃k)q(Θ̃k,Θk−1)

pr(Θk−1)L̂(Θk−1)q(Θk−1, Θ̃k)

}
continue to the next step, otherwise
reject.
• Stage 2: Generate unbiased estimate

of L(Θ̃k) and (Ũk, Ṽ
(i)
k , X̃

(i)
k ) using a

particle filter. Set W̃k := Ũk/L̂(Θ̃k) and
with probability min

{
1, W̃k
Wk−1

}
accept,

otherwise reject.

Then, form the DA estimator:

EDA
n :=

∑n
k=1

∑m
i=1 V

(i)
k f (Θk,X

(i)
k )

n

Importance sampling type correction (IS): Correction [9] of an approximate marginal
(particle) MCMC targeting πa(θ) ∝ pr(θ)L̂(θ)

•Draw a new proposal Θ̃k ∼ q(Θk−1, · )
• Stage 1: With probability

min

{
1,

pr(Θ̃k)L̂(Θ̃k)q(Θ̃k,Θk−1)

pr(Θk−1)L̂(Θk−1)q(Θk−1, Θ̃k)

}
accept Θk := Θ̃k, otherwise reject.

• Stage 2: Generate (Uk, V
(i)
k ,X

(i)
k ) as

above. Set Wk := Uk/L̂(Θk).

Then, form the IS estimator

EIS
n :=

∑n
k=1Wk

∑m
i=1 V

(i)
k f (Θk,X

(i)
k )∑n

j=1Wj
.

Why IS might be better than DA?
• Stage 2 corrections entirely independent

=⇒ parallelisable =⇒ scalable
•Allows for calculating the correction only for accepted states (‘jump chain’)

=⇒ less expensive than DA
•Correction only for subsampled chain

=⇒ statistically efficient thinning
• The approximate marginal MCMC (Θk) need not rely on estimators

=⇒ safer & easier to implement efficiently (e.g. adaptive MCMC. . . )
• The MCMC (Θk) need not be reversible

=⇒ non-reversible samplers applicable
•Non-negativity of the estimator Wk not required

=⇒ Allows for ‘debiasing’ tricks (or ‘randomized multi-level Monte Carlo’) [5, 8]

Consistency & CLT

Let πa be an approximation of πm� πa, wu(θ) = cw
πm(θ)
πa(θ)

, cw > 0, ξk(f ) =
∑m
i=1 V

(i)
k f (Θk,X

(i)
k )

With mild assumptions [9]:
•Consistency:

EIS
n =

∑n
k=1Wkξk∑n
j=1Wj

n→∞−−−−→
a.s.

π(f ) =

∫
f (θ,x)π(θ,x)dθdx

•CLT:

√
n
[
En − π(f )

] n→∞−−−−→
d

N

(
0,

MCMC︷ ︸︸ ︷
Var(wuf̄

∗, P )

c2
w

+

IS corr︷ ︸︸ ︷
πa(v)

c2
w

)
,

where v(θ) = Var
(
Wkξk(f̄ )

∣∣ Θk = θ
)
, f̄ (θ,x) = f (θ,x)− π(f ), and f̄∗(θ,x) =

∫
f̄ (θ,x′)r(x′ | θ)dx′

• Theoretical results [4] in terms of asymptotic variance:

– If Wk ≤ C for all k ≥ 1 a.s., then

Var(IS) ≤ c−1
w

[
C Var(DA) + π(ξ2[C − w])

] – If wu(θk) ≤ C for all k ≥ 1 a.s., then

Var(IS) ≤ c−1
w

[
C Var(DA) + π(ξ2[C + w])

]
where π is the stationary probability of the DA chain.

Example: Geometric Brownian motion
• State process is a geometric Brownian motion:

dXt = νXtdt + σxXtdBt, X0 ≡ 1,

where (Bt)t≥1 is a standard Brownian motion.

•Conditionally independent observations y = (y(1), . . . , y(T )) at integer times:

gΘ(yt | Xt = xt) = N(log(xt), σ
2
y

)
.

•Here we consider SMC based on a discretisation with Milstein scheme using uniform meshes of
size 2LC = 22 and 2LF = 212 for µΘ(xt | xt−1).
– The approximation is based on the coarse levelLC , and we assume that the fine levelLF provides

sufficiently accurate results for practical purposes.
– This differs from examples in [9] where we used deterministic approximations.
• In our experiment, we simulated one realization using θ = (ν, σx, σy) = (0.05, 0.2, 1), and T = 50.
•We compare the mean square error (MSE) and the inverse efficiency (IRE), defined as the MSE

multiplied by the average computation time from 50 independent MCMC runs with 75,000 MCMC
iterations with first 25,000 discarded as burn-in. Both MSE and IRE are averaged over the
parameters (ν, σx, σy, x1, x2, . . . , xT ).
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Average MSE and IRE for varying number of particles in bootstrap particle filter. DA is shown in
black, jump chain IS in red.
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