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Generic programming is a widely appreciated and strongly affecting paradigm
in software development. A number of programming languages now support
generic programming, such as C++, Ada, and Haskell. Generics are the most
recent enhancement to the type system of the Java programming language. This
advanced feature of Java 1.5 is most notably similar to templates in C++, as some
might like to claim. Templating, genericity, parameterized types, or parametric
polymorphism refer to the same technique; basically, instantiating versions of
classes using some type as a parameter, such as integer, float, or a class. This
thesis work gives a comparison of generics in C++ against the newly introduced

genericity extension to the Java programming language.
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1. INTRODUCTION

Support for object-oriented programming has become an integral part of
mainstream languages, and more recently generic programming has gained
widespread acceptance. A natural question is how these two paradigms, and
their underlying language mechanisms, should interact. (Jarvi et al., 2003.) For
example, C++ supports generic programming by providing parametric
polymorphism via templates in addition to utilizing some other object-oriented
features, such as function overloading. Java is an example of a language that

utilizes subtyping to constrain type parameters.

The degree to which a language could support generic programming is varying
from language to another. Some languages provide sufficient support merely
for implementing type-safe polymorphic containers; some others went beyond
what is actually needed for developing such containers. For example, whereas
C++ class templates are enough for implementing polymorphic containers,
function templates represent generic algorithms in a way by which the scope of

C++ genericity became actually wider.

Before JDK 1.5, Java had no support for parameterized types in spite of the fact
that the Collections Framework was introduced in JDK 1.1, and then redesigned
more thoroughly in JDK 1.2. The fact is, for the purpose of making the
Collections Framework a general-purpose tool, collections were designed to
hold handles to objects of type Object, which is the root of all classes (Eckel,
1998). As a result, the type information will be lost as soon as an object is
shoved into a collection, since the only thing a collection knows it holds is a
handle to an Object (ibid.). Therefore, it is essential to perform a cast to the
correct type before an object can be used (ibid.). That is, there had been

collections, or containers, as well as the technique to patronize a deceptive



genericity. JDK 1.5 introduces generics as a new extension to Java. Certainly,
Java generics provided additional compile-time type safety to the Collections
Framework, but the fact is that the technique of taking Object handles provided
Java genericity with one of its defining characteristics, relative to C++, which is
the single compilation of the generic type declaration; and therefore, Java
generics are restricted to use only classes and interfaces as type arguments. So

much unlike C++ templates, as it will be explained in the subsequent sections.

Due to the fact that generic programming is attaining momentum day after day,
this thesis work is trying to clarify and achieve perception of the language
issues in terms of generic programming. In doing so, the above mentioned two
widely used and appreciated programming languages are to be compared in an
attempt to present the language features which are necessary to support generic
programming. The comparative study of this thesis work is limited only to the

new extension to Java with type parameters, against C++ templating.

The next section provides background information about generic programming
and its terminology. In section 3, the paper would deal more with the
comparison intention of the study, trying to find out how far object-oriented
language features would interact with generics to provide a degree of support
for generic programming. Aside from the one-to-one comparison, section 4
describes two other language features, a specifically C++ one, and the other is

Java related. Then finally the conclusion.



2.  GENERIC PROGRAMING

Generic programming can simply be described as a programming technique or
pattern that lets algorithms to be coded for one time, and then be used when
needed, time and again, using data types arbitrarily as parameters. This is the
so-called code reuse or software reuse that generic type definitions can aid.
Typically, generic programming involves type parameters for data types and
functions (Garcia et al., 2003). For example, a possible declaration to create a
queue using generics would be as Queue<Type>; then it could be instantiated as
Queue<int> or Queue<Employee>. So, the queue container could be handled
with whatever type is defined. However, there is no one concrete definition
associated with generic programming, definitions vary. While it is true that
type parameters are required for generic programming, there is much more to

generic programming than just type parameters (ibid.).

Musser (2003) defines generic programming as "programming with concepts,"
where a concept is defined as a family of abstractions that are all related by a
common set of requirements. A large part of the activity of generic
programming, particularly in the design of generic software components,
consists of concept development--identifying sets of requirements that are
general enough to be met by a large family of abstractions but still restrictive
enough that programs can be written that work efficiently with all members of

the family. (ibid.)

In generic programming parlance, the requirements on an argument (or actual
parameter) are a concept (Mueller & Jensen, 2004). Generic algorithms are
fundamentally concerned with the capability of an actual parameter to satisty
specific requirements. These requirements can be as simple as being able to be
compared to other values of the same type or as complicated as having to

define many operations and other types that work with the value during the



execution of the algorithm (ibid.). Types that meet the requirements of a
concept are said to model the concept (Garcia et al.,, 2003). A concept may
incorporate the requirements of another concept, in which case the first concept
is said to refine the second (ibid.). At a high level, the concept/model/refine
relationship is analogous to the class/instance/inherit relationship in object-

oriented programming (Mueller & Jensen, 2004).

Due to the way a concept could be modeled, by whichever concrete type that
satisfies its requirements, concept related algorithms should be implemented in
a way that allows them to function using multiple types. Thus, generic
algorithms must be polymorphic (Garcia et al., 2003). Not all languages have
explicit features to support concepts; this is the case with C++. However, by
reasons of the flexibility of C++ templates, programmers are likely to code in
nearly the way that it would be if the feature were supported. The following
two examples from Garcia et al. (ibid.) show how a generic algorithm could be
realized as a function template and how template parameters could be named
to identify a concept such as Comparable, which is defined to represent types
that may be used with the generic algorithm pick:

template <class Comparable>

const Comparable&

pick(const Comparable& x, const Comparable& y) {
if (better(x, y)) return x; else return y;

}
Example 1. (Garcia et al., 2003, p. 117).

So, for the concept Comparable to say, for example, "if the arguments given to
pick are of type int, use this implementation of the better function; if they are of
type Apple, use that other implementation of the better function”, the following

code can be implemented:



bool better(int i, int j) { return j <i; }

struct Apple {

Apple(int r) : rating(r) {}

int rating;

5

bool better(const Apple& a, const Apple& b)
{ return b.rating < a.rating; }

int main(int, char*[]) {
inti=0,j=2;
Apple al(3), a2(5);

int k = pick(i, j);
Apple a3 = pick(al, a2);

return EXIT SUCCESS;
}

Example 2. (Garcia et al., 2003, p. 117).

Thus, Apple is said to be modeling the Comparable concept implicitly via the

existence of the better function for the Apple type.

Standard practice, in the case of C++, is to express concepts in documentation.
For example:

concept Comparable :
bool better(const Comparableé&, const Comparable&)

For languages that have explicit features to support concepts, concepts are used

to constrain type parameters (ibid.).

The following inclusive definition, by Jazayeri et al. (1998), demonstrates the
efficiency restrictions necessary for implementing generic programming;:

"Generic programming is a sub-discipline of computer science that deals with finding
abstract representations of efficient algorithms, data structures, and other software
concepts, and with their systematic organization. The goal of generic programming is to
express algorithms and data structures in a broadly adaptable, interoperable form that
allows their direct use in software construction. Key ideas include:



- Expressing algorithms with minimal assumptions about data abstractions, and
vice versa, thus making them as interoperable as possible.

- Lifting of a concrete algorithm to as general a level as possible without losing
efficiency; i.e., the most abstract form such that when specialized back to the
concrete case the result is just as efficient as the original algorithm.

- When the result of lifting is not general enough to cover all uses of an algorithm,
additionally providing a more general form, but ensuring that the most efficient
specialized form is automatically chosen when applicable.

- Providing more than one generic algorithm for the same purpose and at the same
level of abstraction, when none dominates the others in efficiency for all inputs.
This introduces the necessity to provide sufficiently precise characterizations of the
domain for which each algorithm is the most efficient.”

Jazayeri et al (1998) p. 2

While Garcia et al. (2003) state that they are stimulated by the STL force to

choose citing such a definition that takes a broader view of generic

programming, Mueller & Jensen (2004) deem the definition as being derived, to

a very great degree, from the C++ approach to generic programming, which is

basically concerned with generating instances of algorithms at compile-time.

On the other hand, the current fact is that the JDK 1.5 permits a type or method

to function on objects of different types with compile-time type safety. This

recent extension to the Java programming language provides additional

compile-time type safety to the Collections Framework and gets rid of the

tedious unpleasant work of casting. This could be clarified with examples from

Bracha (2004) as follows:

List mylIntList = new LinkedList(); // 1
mylIntList.add(new Integer(0)); // 2
Integer x = (Integer) mylntList.iterator().next(); // 3

Example 3. (Bracha, 2004, p. 2)



The cast on line 3 is essential. The compiler can only guarantee that an Object
will be returned by the iterator. To ensure the assignment to a variable of type

Integer is type safe, the cast is required. (ibid.)

What if programmers could actually express their intent, and mark a list as
being restricted to contain a particular data type? This is the core idea behind
generics. (ibid.) Another version of the above example using generics follows:

List<Integer> mylntList = new LinkedList<Integer>(); // 1’
mylIntList.add(new Integer(0)); //2’
Integer x = myIntList.iterator().next(); // 3

Example 4. (Bracha, 2004, p. 2)

The type declaration for the variable mylntList specifies that this is not just an
arbitrary List, but a List of Integer, written List<Integer>. We say that List is a
generic interface that takes a type parameter - in this case, Integer. We also
specify a type parameter when creating the list object. Also the cast is gone on

line 3’. (ibid.)

In addition to the primary aspects of generic programming, i.e. generic
algorithm, concepts, refinement, modeling, and constraints, Garcia et al. (2003)
came up with the following eight supplemental language features, which are
used to support generic programming. Table 1 shows the level of support for

these features in C++ and Java.

Multi-type concepts: indicates whether multiple types can be simultaneously
constrained. In Java generics, concepts are approximated by interfaces. The
modeling relation between a type and a concept is approximated by the
subtype relation between a type and an interface. The refinement relation
between two concepts is approximated by interface extension. (ibid.) A

constraint signifies a requirement that a type should satisfy so that a generic



type can be constructed. Constraints based on interfaces and subtyping,

however, cannot correctly express constraints on multiple types (ibid.).

C++ Java Generics

Multi-type concepts -
Multiple constraints
Associated type access
Retroactive modeling
Type aliases

Separate compilation
Implicit instantiation

( N NON B
©00e0O0O®eo

Concise syntax

Table 1: The level of support for important properties for

generic programming in C++ & Java generics.

® Fully supported.

® Partially supported.

O  Not supported.

- While C++ does not support the feature, one can still
program as if the feature were supported due to the
flexibility of C++ templates. (Garcia et al., 2003,
p.117.)

Multiple constraints: indicates whether more than one constraint can be placed
on a type parameter. In Java, type parameters can be constrained using
subtyping, including multiple constraints on one parameter. (ibid.) For a given
type parameter, any number of interfaces can be specified as constraints. In the
following example, the T type parameter has two interface constraints:

public class java_multiple_constraints {
public static <T extends I_fac_1, I_fac_2>
void generic_algorithm(T a) { /* ... */ }

/

Example 5.

Associated type access: rates the ease in which types can be mapped to other
types within the context of a generic function (ibid.). The associated types of a
concept specify mappings from the modeling type to other collaborating types
(such as the mapping from a container to the type of its elements). In practice it
is convenient to separate the data types of a module into two groups: the main

types and the associated types. An example of this is an iterator (the main type)



and its element type (an associated type). Associated type constraints are a
mechanism to encapsulate constraints on several functionally dependent types
into one entity. C++ can represent associated types as member typedefs or traits
classes' but cannot express constraints on them. Java does not provide a way to
access and place constraints on type members of generic type parameters.
However, associated types can be emulated using other language mechanisms.
A common idiom used to work around the lack of support for associated types
is to add a new type parameter for each associated type. The main problem
with this technique is that it fails to encapsulate associated types and
constraints on them into a single concept abstraction. Every reference to a
concept, whether it is being refined or used as a constraint by a generic
function, needs to list all of its associated types, and possibly all constraints on
those types. In a concept with several associated types, this becomes

burdensome. (Jarvi et al., 2003.)

Retroactive modeling: indicates the ability to add new modeling relationships
after a type has been defined. Type arguments to a generic algorithm must
model the concepts that constrain the algorithm's type parameters. To establish
modeling relationships, Java generics use subtyping at the point of class
definition; C++ provides no language feature for establishing modeling
relationships, type arguments are required only to provide the functionality
that is used within a function template's body. The modeling mechanism used
for Java relies on named conformance. An explicit declaration links a concrete
type to the concepts it models. Once a type is defined, the set of concepts that it
models is fixed. Without modification to the definition, modeling relationships

cannot be altered. (Garcia et al., 2003.)

! Introduced in Myers (1995).
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Type aliases: indicates whether a mechanism for creating shorter names for
types is provided. Java does not support type aliases, such as the typedef
statement in C++. Type aliasing is a simple but crucial feature for managing
long type expressions commonly encountered in generic programming. In
addition to avoiding repetition of long type names, type aliases are useful for

abstracting the actual types without losing static type accuracy. (ibid.)

Separate compilation: indicates whether generic functions are type-checked
and compiled independently from their use. In Java, Generic components and
their uses can be compiled separately. A generic algorithm’s implementation is
type-checked once, rather than for each instantiation as in C++. Uses of a
generic algorithm are checked to ensure that the concept requirements are
satisfied, independently from the implementation of the generic algorithm. This
allows for faster compilation, as well as for catching type errors as early as

possible, and is a major advantage relative to C++. (ibid.)

Implicit instantiation: indicates that type parameters can be deduced without
requiring explicit syntax for instantiation (ibid.). That is, the actual type
parameters will be deduced based on the types of the actual arguments. Thus,
calling a template function or generic method is not differing from calling a

non-template function or non-generic method.

Concise syntax: indicates whether the syntax required to compose layers of
generic components is independent of the scale of composition (ibid.). C++ and
Java have concise syntaxes. However, since everything in Java is a class,
lengthy syntax may sometimes be inevitable. An example of a newly
introduced feature for Java generics, which contributes to a more concise
syntax, is "Wildcards". Furthermore, JDK 1.5 makes as if it allows built-in types

as type arguments because of the Autoboxing/Unboxing feature.
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3. JAVAVS. C++

For the reason that Java generics represent a new extension to the language, a
simple Java generic is to be defined first in the next example, followed by its
corresponding C++ version; then comparing the language features necessary to
implement generic programming is to be done subsequently.

public class List<T> {
public void add(T i) { /* ... */ }
public int size() { /* ... */ }
public T firstElement() { /* ... ¥/ }
...
}

Example 6.

template<class T> class List {
public:

void add(T i) { /* ... %/}

int size() { /* ... ¥/}

T firstElement() { /* ... */ }
...

};
Example 7.

In both Java and C++, List can be instantiated like this:

List<Employee> employeeList;
Example 8.

But only in C++, not in Java, List can be instantiated like this:

List<int> intList;
Example 9.

Although Java has the primitive data type int, only its “wrapper” class Integer,
which is contained in the Java standard library, can be passed as a type

argument, since primitive data types are not references. Only classes and
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interfaces can be used as type arguments, since they are, in fact, inherited from
the type Object. Therefore, all primitive data types have their corresponding
“wrapper” classes. As mentioned above, the early technique of taking only
Object handles into a collection led to the Java's capability to perform generic
type declaration's single compilation. However, this would inevitably result in
verbose code. The following example from Garcia et al. (2003) shows the syntax
for setting the weights of a graph edge using the “wrapper” classes, it is:

weight_map.set(new adj_list_edge(new Integer(3), new Integer(5)),
new Double(3.4))

Example 10. (Garcia et al., 2003, p. 128).

If built-in types were allowed as type arguments, the code would be simpler
(ibid.):
weight_map.set(new adj_list_edge(3, 5), 3.4)

Example 11. (Garcia et al., 2003, p. 128).

According to Bracha and Bloch (2002), the Autoboxing/Unboxing feature,
which automates the conversion process from primitive data types to their

"wrapper” classes and vice versa, would solve some of these problems.

While Java interface, which are the means to approximate concepts, do not
allow method bodies inside them, and while methods in Java can only be
defined within a class, C++ template classes allow member functions to be
defined inside and outside them. When such a member is defined outside its
class, it must explicitly be declared a template (Stroustrup, 1997). For example:

template<class T> T List<T> : firstElement() { /*...*/ }
Example 12.

Java interface, as is often the case, establishes the form for a class; the keyword
implements is used as usual to make the class that conforms to the interface.

The interface name, that should be prefixed by the keyword implements in the
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class definition, must be postfixed—only if the class is not generic—by a type

argument bracketed by <>, in the case of genericity as in example 13.

After all, and from a generic programming perspective, the language features
used to support generic algorithms are function templates in C++, and generic
methods in Java. The Java keyword implements is used to model concepts,
whose notion is supported by the keyword interface. In C++, any other primary
aspect of generic programming than generic algorithms can be expressed in

documentation as a standard practice.
3.1 Defining Generics

One can say that even before the introduction of the new Java generics, Java's
interface keyword, which basically contributes to an alternative form of
subtyping, can be looked at as an early preparing step towards the notion of
generic programming concepts. The interface keyword can simply be used
instead of the class keyword in order to create what we can call a pure abstract
class, whose function is to establish a policy or protocol between classes.
Example 13, which is the Java version of examples 1 & 2, shows how the
concept Comparable could be realized as an interface and how Apple could
model the Comparable concept. As for the interface Comparable, according to
Bracha (2004), other than what is in angle brackets is not new to the Java
programming language; it is the declaration of the formal type parameter of the
interface Comparable. Then, throughout the generic declaration, the type

parameter can be used in any place in which ordinary types could be used.

So, what makes C++ templates such a flexible feature for generic programming,
while the language itself does not demonstrate any level of support for generic
programming concepts and modeling? It is the magic of overloaded function

names, as is the case in example 2 with the better function, whose name is used
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for operations on two different types (int & Apple) to model implicitly the
Comparable concept. On the other hand, due to the way generic programming
is handled in Java, and due to the fact that everything is a class in Java, method
overloading cannot actually go beyond its prime necessity as an object-oriented

programming mechanism.

interface Comparable<T> {
boolean better(T x);
}
class pick {
static <T extends Comparable<T>>
Tgo(Ta TH){ /I modified"
if (a.better(b)) return a; else return b;
/
}
class Apple implements Comparable<Apple> {
Apple(int r) { rating =1, }
public boolean better(Apple x)
{ return x.rating < rating;}
int rating;
/
public class Main {
public static void main(String[] args) {
Apple al = new Apple(3),
a2 = new Apple(5);
Apple a3 = pick.go(al, a2);
/
}

Example 13. (Garcia et al., 2003, p. 118).

1 With reference to other examples in Garcia et al. (2003), as well as the method call in this
example, the method name "go" is the correct replacement of the method name "pick” in the
original example.
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The declaration of a generic in Java is never actually expanded like in this
example:

Interface IntegerComparable {
boolean better(Integer x);

1
Example 14.

There aren’t multiple copies of the code: not in source, not in binary, not on
disk and not in memory (ibid.). This is unlike a C++ template, as explained later
on. A generic type declaration is compiled once and for all, and turned into a

single class file, just like an ordinary class or interface declaration (ibid.).

Type parameters are analogous to the ordinary parameters used in methods or
constructors. Much like a method has formal value parameters that describe the
kinds of values it operates on, a generic declaration has formal type parameters.
When a method is invoked, actual arquments are substituted for the formal
parameters, and the method body is evaluated. When a generic declaration is
invoked, the actual type arguments are substituted for the formal type

parameters. (ibid.)
3.2 Subtyping

Against the immediate apprehension by one's object-oriented sense that a
List<Manager> is a List<Employee>, this is a serious logical error based on the
assumption that Manager is a subtype of Employee. This holds in both C++ and
Java. It is logically unaccepted to use a list of Managers as a list of Employees
because the list of Managers guarantees that the members of the list are
Managers, while the list of Employees does not. The following C++ example
from Stroustrup (1997) explains how the compiler supports such a restrictive

rule:
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class Shape { /*...%/ };
class Circle : public Shape { /*...*/ };
class Triangle : public Shape { /*...%/ };

void f(set<Shape™>& s)

{
...
s.insert(new Triangle());
...

J

void g(set<Circle*>& s)

{

f(s); Il error, type mismatch: s is a set<Circle*>, not a set<Shape*>

}
Example 15. (Stroustrup, 1997, p. 348, 349).

This won't compile because there is no built-in conversion from set<Circle*>& to

set<Shape*>&. Nor should there be. (ibid.) The same applies to Java.

3.2.1 Subtype-based Constraints

The writing of generic code is partially supported by subtype polymorphism.
With subtype polymorphism, one can define a family of related types: a
supertype defines the behavior common to all its subtypes, which extend or
specialize that behavior. Programs are then generic with respect to the defined
family, since code written in terms of an object of type T is also usable for an
object whose type S is a subtype of T. Alternatively, A where clause lists the
names and signatures of required methods for the parameters. For example, the
where clause in the specification of set indicates that any legal parameter must
have an equal method. Where clauses allow the compiler to type check
instantiations and implementations independently; thus this approach supports

separate compilation. (Day et al., 1997.) Neither C++ nor Java has where clauses.

One particular design option, that of using subtyping to constrain the type

parameters of generic functions, has been chosen for the generics extensions to
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Java. An alternative to subtype-based constraints is to use concepts, as they are

called in the C++ generic programming community. (Jarvi et al., 2003.)

C++ does not have means for constraining template parameters or for separate
type checking. To check that an actual instantiation of a parameterized routine
or type is correct, the compiler rewrites the body of the routine or type,
replacing the type parameter with the actual type, and then checks the result
(Day et al., 1997). Utilizing subtyping for constraining type parameters in Java
demands explicit definitions of type interfaces in order for the compiler to

check all method calls and to recognize the type hierarchy.

According to Stroustrup (1994) as cited in Garcia et al. (2003), several
mechanisms were proposed for constraining template parameters, including
subtype-based constraints. All proposed mechanisms were found to either
undermine the expressive power of generics or to inadequately express the
variety of constraints used in practice. (ibid.) However, according to Siek and
Lumsdaine (2000), techniques for checking constraints in C++ can be
implemented as a library. These techniques, however, are distinct from actual
language support and involve insertion of what are essentially compile-time

assertions into the bodies of generic algorithms. (Garcia et al. 2003.)
3.3 Generic Algorithms

Generic algorithms are most straightforwardly expressed as functions. In
languages without functions, they can be emulated by static methods. There are
two choices for how to parameterize the method: either parameterized methods
in non-parameterized classes or non-parameterized methods in parameterized
classes. The first alternative has the advantage of implicit instantiation, while
the second alternative requires the more verbose explicit specification of type

arguments. (Garcia et al. 2003.)
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In example 13, the generic algorithm is realized as a static parameterized
method, called go, in a non-parameterized class, called pick. Example 1
demonstrates the C++ version of the generic algorithm, which is realized as a
function template called pick. As mentioned above, C++ has no built-in support
that could allow templates to be separately type checked, and therefore type
checking can only be carried out following a referral from an object
instantiation at each call site. In Java, both arguments to generic algorithms and
the bodies of those algorithms are checked separately against the concept
requirements, leading to good separation between types used in generic

algorithms and the implementations of those algorithms (ibid.).

Generic programming is basically supported in C++ by bringing templates and
function overloading into harmonious union, as explained in subsection 3.1.
This actually facilitates a broader version of generic programming than just
implementing containers. Although generics were added to Java to provide
support for implementing type safe containers, it could provide enough
support for generic programming in some cases, such as the generic graph

library, according to Garcia et al. (ibid.).
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4. LANGUAGE SPECIFICS

This section describes two features, each of which adds a distinctive quality to
its language. First, C++ template specialization, and then the Java generics'

wildcards.
4.1 User-defined Specialization in C++ Templates

As a matter of fact, specialization had to be available in C++ to exercise control
over what is known as template-generated code in order to prevent critical
enlargements in the entire code. By default, a template gives a single definition
to be used for every template argument (or combination of template
arguments) that a user can think of, and then the compiler replicates the code
for template functions using the actual type at each call site, which is good for
run-time performance (Stroustrup, 1997). Yet, providing alternative definitions
of a template for specific data types is feasible. The compiler can then determine
the appropriate template definition according to the template argument at the
call site. Such alternative definitions of a template are called user-defined

specializations, or simply, user specializations (ibid.).

The following couple of subsections explain, with reference to examples from
Stroustrup (ibid.), how containers such as Vectors of pointers can share a single
implementation. Afterwards, template function specialization is to be
explained. Since the specialization should be of an existing template, a general

vector type is to be defined first:
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template<class T> class Vector { /1 general vector type
T* v;
int sz;
public:
Vector ();
Vector (int);

T& elem (int i) { return v[i]; }
T& operator[] (int i);

void swap (Vector&);
/...

Example 16. (Stroustrup, 1997, p. 341).

4.1.1 Complete Specialization®

According to the fact that examples are the best way to convey ideas, we first
define a complete specialization of Vector for pointers to woid. That is, a
specialization that has no template parameter to specify or deduce as we use it:

template<> class Vector<void*> {
void™** p;

/...

Void*& operator(] (int);

5

Example 17. (Stroustrup, 1997, p. 341).

The template<> prefix says that this is a specialization that can be specified
without a template parameter. The template arguments for which the
specialization is to be used are specified in <> brackets after the name. That is,
the <void*> says that this definition is to be used as the implementation of every
Vector for which T is void*. (Stroustrup, 1997.) So, the following statement is an

instance with a definition of its own:

1 This is according to Stroustrup (1997); some authors call it "explicit specialization”, some
others call it "full specialization".



21

Vector<void*> vpv;
Example 18. (Stroustrup, 1997, p. 342).

The above specialization is to be used in the next example as the common
implementation for all Vectors of pointers, although it is not a prerequisite to

have defined a complete specialization before defining a partial specialization.
4.1.2 Partial Specialization

A specialization is likely to be defined for a wide variety of template
arguments. For example, a specialization for Vector<T*> can be defined for any
T; this is known as partial specialization, while <T*> is the specialization pattern.
That is, for Vector<char*>, T is char not char*. So, to define a specialization that
can be used for every Vector of pointers, we need partial specialization:

template<class T> class Vector<T*> : private Vector<void™> {
public:
typedef Vector<void*> Base;

Vector() : Base() { }
explicit Vector (int i) : Base(i) { }

T*& elem (int i) { return static_cast<T*&> ( Base :: elem(i) ); }
T*& operator[] (int i) { return static_cast<T*&> ( Base :: operator[] (i) ); }

...

Example 19. (Stroustrup, 1997, p. 342).

Given this partial specialization of Vector, we have a shared implementation for
all Vectors of pointers. The Vector<T*> class is simply an interface to void*

implemented exclusively through derivation and inline expansion. (Stroustrup,

1997.)
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4.1.3 Template Function Specialization

One can declare several function templates with the same name and even
declare a combination of function templates and ordinary functions with the
same name. When an overloaded function is called, overload resolution is
necessary to find the right function or template function to invoke. (Stroustrup,
1997.) So, straightforwardly, we can not partially specialize template functions
because they can simply overload; they can only be fully specialized.

I A function template

template<class T> bool less(T a, T b) { return a<b; } /(1)

/1l Different forms of declarations for specializing (1) for const char*
template<> bool less<const char*> (const char* a, const char*b)  //(2)

{

return stremp (a, b ) <0;

}
template<> bool less<> (const char* a, const char*b) { /* ... */ } 1/ (3)

template<> bool less(const char* a, const char*b) { /* ... */ } /1(4)
Example 20. (Stroustrup, 1997, p. 344).

The template<> prefix as well as the <const char*> after the name in (2) declare
the same as for class template complete specialization. However, the declarations in
(3) and (4) are equivalent to (2) since the template argument can be deduced

from the function argument list.

So, what would be the resolution in the case of defining either a template
function or ordinary function to overload with (1) in the existence of (2)? The
ordinary non-template function which matches the parameter types, has the
highest priority. Template functions will then be compared to select the best
match regardless of any associated specializations. Finally, specialization
declarations will be looked at, if there is any, according to the selected template

function.
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4.2 Wildcards with Java Generics

As demonstrated above, while Object is the base class of all classes in Java,
Collection<Object> cannot be a supertype of all kinds of collections. According
to Bracha (2004), the supertype of all kinds of collections is Collection<?> and is
pronounced "collection of unknown", that is, a collection whose element type
matches anything (ibid.). Here is a routine to print all elements in a collection;
as for the new for loop, whose syntax is for (variable : collection), it iterates
over collections to get elements in a sequential manner:

void printCollection(Collection<?>c) {
for (Object e : c) {
System.out.printin(e);
}

Example 21. (Bracha, 2004, p. 5).

Certainly, the types of all elements to be read from c are inherited from Object;
and therefore, they can be read as of type Object. However, we cannot add
arbitrary objects to a collection of unknown. ? is not a supertype, it symbolizes

an unknown type.
421 Bounded Wildcards

As said in subsection 3.2, List<Manager> is not a List<Employee>. We should
consider first the following example:

public void printAll(List<Employee> employees) { /* ... */ }
Example 22.

We cannot call printAll() on lists of other than Employee; for example,
List<Manager>, although we know that Manager is a subtype of Employee.
According to Bracha (2004), Wildcards can ease the matter of allowing such
methods to accept collections of any subtype of Employee, for example.

Accordingly, the List<Employee> in the above example could be replaced with
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a bounded wildcard such as List<? Extends Employee> so that printAll() can
accept lists of any subtype of Employee. That is, it is possible now to call

printAll() on a List<Manager>.

What is really interesting here is that we know that ? symbolizes an unknown
type, which is in fact a subtype of Employee. We say that Employee is the upper
bound of the wildcard. The unknown type could be Employee itself, or some
subtype. Since we do not know what type it is, we do not know if it is a
supertype of Manager; it might or might not be such a supertype, so it is not

safe to add a Manager to a List<? Extends Employee>. (Bracha, 2004.)
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5. CONCLUSION

It is difficult to know if one should describe Java as a dialect of C++. Although
the two have superficial surface similarities, the underlying differences are
substantial enough to warrant calling Java an entirely new language. (Budd,
1997.) This is very much the case when it comes to generic programming; Java
is not a dialect of C++. It is hard to tailor a notion for such a derivation
relationship reasonably or to make it make sense in terms of genericity; neither
with the previous Java related approaches to cast objects at run-time, nor with

the newly introduced compile-time type safety.

According to Stroustrup (1994), templates were considered essential for the
design of proper container classes. Greater emphasis was placed on clean and
consistent design than restriction and policy (Garcia et al., 2003). For example,
although function templates are not necessary to develop type-safe
polymorphic containers, C++ has always supported classes and standalone
functions equally; supporting function templates in addition to class templates
preserves that design philosophy (ibid.). That is why C++ generics seem to be,
by design, going beyond the limits of just implementing containers, despite the
fact that providing a sufficiently general facility for defining such container

classes was the prime motivation.

Likewise, the new Java extension is intended, for the most part, to support
polymorphic containers. Although the early introduction of the Collections
Framework led to a compilation advantage when it came to genericity, the type
system remained with limitations that would result in wordy and inefficient
code. However, the Autoboxing/Unboxing feature would solve some of the

problems related to wordiness.
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While Java uses subtyping to constrain generics, which is sufficient for
polymorphic containers, C++ rejected this approach because it lacks
expressiveness and flexibility (Garcia et al., 2003). Moreover, constraints based
on interfaces and subtyping, in Java, cannot correctly express constraints on
multiple types. That is, to support a flexible version of generic programming, a
language needs to be less restricted than a mere object-oriented programming
language. Both C++ and Java are object-oriented programming languages, but
the flexibility and expressiveness that C++ provides for adopting generic
programming are in fact taking the language beyond being described as an

object-oriented programming language.

While Java is a mere object-oriented programming language that has been
extended with generics where everything is a class, C++ can be described as a
language that provides a great support for imperative, object-oriented, and

generic programming.

Supporting powerful and flexible versions of generic programming needs
language designs that are not restricted or confined within the requirements of

mainstream languages.
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