
One loop neutrino self energies in coherent quasiparticle
approximation

Joonas Ilmavirta

Advisor: Kimmo Kainulainen

Report for FYSZ470 Research training

University of Jyväskylä
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Abstract

In this research training report we calculate leading order correc-
tions to neutrino self energies in coherent quasiparticle approximation
(cQPA). These corrections are needed for a treatment of neutrino os-
cillation in matter in finite temperature; such a treatment in cQPA
will take coherence into account more carefully than the standard ap-
proach.

We first briefly review cQPA, and to this end will briefly discuss the
role of coherence in quantum mechanics and the different formulations
and phenomena of thermal field theory. Using the Feynman rules for
evaluating self energy corrections in cQPA, we identify the relevant
diagrams and calculate the corrections.

Finally we discuss the corrections and compare them to the stan-
dard approach to neutrino oscillations in matter, which does not simi-
larly take into account nonlocal coherence and the fermionic nature of
neutrinos. Application of the obtained results to neutrino oscillations
are unfortunately beyond the scope of this work, and will hopefully
be discussed in a further study.

Tiivistelmä

Tässä erikoistyössä laskemme johtavan kertaluvun korjaukset neut-
riinojen itseisenergiaan koherentissa kvasihiukkasapproksimaatiossa
(coherent quasiparticle approximation, cQPA). Näitä korjauksia tarvi-
taan neutriino-oskillaatioiden tutkimiseen väliaineessa ja äärellisessä
lämpötilassa; tällainen tarkastelu cQPA:ssa mahdollistaa koherenssin
huomioimisen huolellisemmin kuin tavanomaisessa lähestymistavassa.

Ensin luomme lyhyen katsauksen cQPA:han, ja sitä varten tarkas-
telemme lyhyesti koherenssin merkitystä kvanttimekaniikassa sekä eri-
laisia termisen kenttäteorian muotoiluja ja ilmiöitä. Käyttäen cQPA:n
Feynmanin sääntöjä itseisenergiakorjausten laskemiseen etsimme tar-
peelliset diagrammit ja laskemme korjaukset.

Lopuksi tarkastelemme korjauksia ja vertaamme niitä tavalliseen
tapaan käsitellä neutriino-oskillaatioita väliaineessa, joka ei samalla
tavoin ota huomioon epälokaalia koherenssia ja neutriinojen fermionis-
ta luonnetta. Saatujen tulosten soveltaminen neutriino-oskillatioiden
tutkimiseen jää ikävä kyllä tämän työn ulkopuolelle, ja sitä tutkitaan
toivottavasti lähemmin myöhemmissä tutkimuksissa.
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1 Introduction

Quantum mechanical coherence between distinct states is what allows non-
classical behavior in quantum mechanical systems; the probabilities emerging
from a state written as a coherent superposition in some basis is in the very
heart of the phenomenology of quantum mechanics (QM). Quantum field
theory (QFT), as a relativistic formulation of many-body QM, is therefore
also expected to take coherence phenomena into account. In the presence
of nonlinearities due to interactions, however, the equations of motion in
QFT defy analytic solutions, necessitating the use of various approximation
schemes.

Neutrino oscillations present an excellent example of coherence1. In a
weak charged current interaction process a neutrino is produced in pure fla-
vor state. The mass of such a state is ill-defined and therefore the time
evolution is rather complicated; it is best expressed as a superposition of
neutrino mass eigenstates. The slightly different time evolution of different
mass states is what leads to the observed oscillation in flavor basis. Hav-
ing different kinematical properties, these different mass states tend to drift
apart as the neutrino propagates. As the overlap between the wave packets
of different mass states is gradually lost, the oscillations cease and the prob-
ability distribution in flavor basis no longer evolves in time. The classically
unexpected yet significant phenomenon of neutrino oscillation thus vitally
depends on coherence.

In this paper we study coherent quasiparticle approximation (cQPA), an
approximation scheme in QFT in non-zero temperature. In particular, we
calculate the first order corrections to neutrino self energies in this scheme
and find out that taking nonlocal coherence properly into account may lead
to phenomenology substantially different from what would be expected when
coherence is neglected.

The structure of this report is as follows: In Section 2 we briefly describe
cQPA and list the momentum space Feynman rules needed here. Section 3 is
devoted to the calculation of leading order corrections to neutrino self energy
in the framework of cQPA, and the result is briefly discussed in Section 4.
Finally, a summary and outlook are given in Section 5. A concise summary
of the results is presented in Appendix A.

1A more thorough discussion of coherence in neutrino oscillations can be found e.g. in
Ref. [1].
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2 Coherent quasiparticle approximation

The description of many physical situations require simultaneously taking
into account finite temperature, special relativity, nonlocal quantum mechan-
ical coherence and even thermodynamics out of equilibrium. Such situations
include, for example, particle creation in the early universe and neutrino
propagation in spatially or temporally varying background.

Coherent quasiparticle approximation (cQPA) is an approximation scheme
capable of treating such physical systems. It was introduced by Herranen,
Kainulainen, and Rahkila in Ref. [2] and reformulated in a more easily cal-
culable form in Ref. [3].

The diagrammatic methods developed in Ref. [3] are used here to calculate
leading order corrections to neutrino self energies due to weak interactions
with the medium. The result differs from the traditional result, where non-
local coherence has not been taken into account; this will be discussed in
greater detail in Section 4 after the calculations are done.

2.1 Thermal field theory

When doing QFT in vacuum in zero temperature, one is typically interested
in scattering processes where long-lived particles interact by interchanging
virtual particles. In non-zero temperature there is, however, a thermal dis-
tribution of various particles, and a propagating particle does not only in-
teract with itself via spontaneous virtual excitations, but also with its sur-
roundings. Moreover, particles in a thermal system are often short-lived,
whence the asymptotic in- and out-states familiar from scattering theory are
no longer meaningful. Similar phenomena take place also in zero tempera-
ture, when particles propagate and interact in a medium. Such phenomena
can be investigated using thermal field theory (TFT).

There are two main formalisms for TFT: imaginary and real time. The
imaginary time formalism is the one adopted in most introductory treatments
of TFT (such as Refs. [4] and [5]). In this formulation one writes the time
coordinate as t = x0 = −iτ = −ix4 for some real τ = x4 (which is periodic
with period β). Similarly one replaces p0 with −ip4 in the momentum space,
and the Minkowskian structure of spacetime becomes an Euclidean one: t2−
~x2 = −(τ 2 + ~x2) and similarly for p. In this formulation the integration over
energy appearing in the path integral representation of the propagators is
replaced by a sum over discrete energies in a Euclidean space; this gives rise
to the Matsubara (or imaginary time) propagator.

In the time integral appearing in the partition function it may be more
convenient to choose a more complicated path in the complex plane than
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a (possibly slightly tilted) horizontal or vertical line. The Keldysh path C,
composed of three line segments joining −T + iε, +T , −T − iε, and −T − iβ,
where−T is some large negative initial time (T is let tend to infinity), ε > 0 is
small parameter which is let tend to zero, and β is the inverse temperature.
Due to the boundary condition ϕ(t, ~x) = ϕ(t − iβ, ~x) for bosonic fields ϕ
this time path is periodic. A generic propagator ∆C(t, ~x; t′, ~x′) splits to four
parts: it is ∆++ (∆−−) when both t and t′ lie on upper (lower) horizontal
line segment and ∆< = ∆+− when t is on the upper and t′ on the lower line
segment (and vice versa for ∆> = ∆−+). This is one formulation of the real
time formalism.

Simple calculations tend to be easier to do in the imaginary time for-
malism, but more involved ones are often easier to handle in the real time
formalism. The real time formalism also preserves the Minkowskian structure
of the spacetime more explicitly.

All phenomena present in vacuum and zero temperature are also present
when temperature is increased or a medium introduced. In the real time
formalism vacuum and thermal phenomena can be separated (for example,
the propagator can be written as a sum of a vacuum propagator and a thermal
propagator) thus making it more straightforward to study changes to vacuum
behavior due to finite temperature or medium effects. In this report we will
follow this method.

For details on TFT beyond this relatively naive introduction, see for ex-
ample the books by Kapusta [4] and Le Bellac [5].

2.2 A brief introduction to cQPA2

This is only a short introduction to cQPA. The practical Feynman rules
needed here are given in Section 2.3 below. For more details on cQPA, see
Refs. [2, 6, 7, 8, 9, 10, 3] and references therein. Here we follow the notational
conventions of Ref. [3].

2.2.1 Propagators and self energies

In the study of non-equilibrium TFT, the fermionic Wightman functions
iS<(u, v) =

〈
ψ̄(v)ψ(u)

〉
and iS>(u, v) =

〈
ψ(u)ψ̄(v)

〉
are of central interest3.

These functions in a way describe the self-correlation of the fermionic field ψ
between points u and v in a Minkowskian spacetime. The expectation values
〈·〉 are calculated with respect to an unknown density operator.

2This introduction follows mainly Ref. [3].
3It is a common convention to define iS< with an additional minus sign. See e.g.

Ref [11].
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We can also express the Wightman functions in terms of the relative
and average coordinates r = u − v and x = (u + v)/2; this is particularly
convenient after a Fourier transformation in r (a Wigner transformation):

S<,>(k, x) =

∫
d4k eik·rS<,>(x+

r

2
, x− r

2
). (1)

In analogue to iS<,> we define the time ordered Green’s function (Feynman
propagator) iSt and in turn the hermitian Green’s function Sh = St− (S>−
S<)/2. The self energies corresponding to iS (with any of the indices <, >,
t, and h) are denoted by iΣ (with the same indices).

Similarly we may define the retarded and advanced propagators as Sr,a =
St ± S<,> (so that Sh = (Sr + Sa)/2) and the anti-Feynman propagator S t̄

(with inverse time ordering). The antihermitian Green’s function

A =
i

2
(S> + S<) (2)

is known as the the spectral function4.
In multiflavor formalism we include flavor indices so that in iSij(u, v) the

flavor index i corresponds to the coordinate u and similarly j to v. The flavor
indices are suppressed where they can easily be inferred from the context.

For a more elaborate description of the various Green’s functions, see
Ref. [11].

2.2.2 Equations of motion and mass shell structure

We define the diamond operator (cf. Poisson brackets) as

♦ =
1

2
(∂(1)
x · ∂(2)

k − ∂
(1)
k · ∂(2)

x ). (3)

It acts on a pair of functions (the bracketed indices refer to these functions)
which depend on x and k. For two functions f(k, x) and g(k, x), for example,

♦{f}{g} =
1

2
(∂xf · ∂kg − ∂kf · ∂xg). (4)

Using Eq. (3) we may similarly define ♦n{f}{g} for any n ∈ N, and so also
e−i♦.

We denote by m = m(x) the possibly space- and time-dependent and
complex mass matrix, and write its hermitian and antihermitian parts as

4In the following we will only consider spectral functions for fermionic fields, whence it
is written shortly A = Aψ.
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mh = (m+m†)/2 and ma = (m−m†)/(2i). Using these, we define the mass
operators

m̂0,5f(k, x) = e−i♦{mh,a(x)}{f(k, x)}, (5)

where we take ∂kmh,a = 0.
With these notations, the Wightman functions obey the equations

(/k +
i

2
/∂x − m̂0 − im̂5γ

5)S<,> − e−i♦{Σh}{S<,>}
− e−i♦{Σ<,>}{Sh} = ±Ccoll,

(6)

where the collision term is

Ccoll =
1

2
e−i♦({Σ>}{S<} − {Σ<}{S>}). (7)

Eq. (6) is the most fundamental equation of motion, but in practice impos-
sible to solve in full generality.

It turns out [3] that in the mass eigenbasis and with suitable approxima-
tions the phase space structure of the homogeneous and isotropic Wightman
functions is more complicated than naively expected. The phase space con-
straint equation for iS<ij (k, x) in Eq. (6) is(

k2 − m2
i +m2

j

2

)
k2

0 +
1

4

(
m2
i −m2

j

2

)2

= 0. (8)

Defining ωi = ωi(~k) =

√
m2
i + ~k2, this gives rise to dispersion relations

k0 = ±1

2
(ωi + ωj) (9)

and

k0 = ±1

2
(ωi − ωj). (10)

In the case mi = mj the dispersion relation of Eq. (9) gives the standard
relation k2 = m2

i .
Corresponding to the four dispersion relations in Eqs. (9) and (10) there

are four distribution functions describing the different shell occupations.
These functions for Eq. (9) are fm<ijh±, which describe coherence between the
mass eigenstates with on-shell energies ±ωi and ±ωj and helicity h. For
Eq. (10) the corresponding functions are f c<ijh±, and they describe the co-
herence between the mass eigenstates with on-shell energies ±ωi and ∓ωj
and helicity h. No coherence between helicities h and −h appears in this
approximation.
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Using the Feynman-Stückelberg interpretation we identify negative en-
ergy particles as antiparticles, and relate the elements of the distribution
functions f on the flavor diagonal to the particle phase space densities by

nih~k =
mi

ωi
fm<iih+, n̄ih~k = 1 +

mi

ωi
fm<iih−. (11)

The distribution functions for iS> are fm>ijh± = δij − fm<ijh± and f c>ijh± =
−f c<ijh±. One may also find the hermiticity relations fm<jih± = (fm<ijh±)∗ and
f c<jih± = (f c<ijh∓)∗.

The Feynman rules, especially Eq. (12), given below in Section 2.3 show
how the shell structure appears in the Wightman functions in more detail.

2.3 Feynman rules

The Feynman rules of cQPA for calculating corrections to the fermion self
energies iΣ<,> given in [3] are as follows (the Feynman rules relevant for the
calculations done here are presented in Figs. 1 and 2):

1. Draw all perturbative two-particle irreducible diagrams and associate
the usual symmetry factor and sign with them.

2. Associate with each vertex the normal vertex factor (not including a
four-momentum conservation delta function). The vertex rules relevant
here are listed in Fig. 2.

3. Associate a delta function (2π)4δ4(pin − pout) with all vertices except
the one next to the outgoing external fermion line.5

4. For all pole type propagators such as the gauge boson propagator in
Fig. 1 substitute the propagator in the diagram and integrate over its
momentum as usual:

∫
d4k

(2π)4
.

5. For other propagators such as the generic fermion propagator in Fig. 1
substitute the propagator iSf (q, q

′) and integrate over both momenta:∫
d4q

(2π)4
d4q′

(2π)4
.

The vertex rules in Fig. 2 and the gauge boson propagator in Fig. 1 are
exactly as they appear in the Standard Model. We will make no specific
assumptions about the generic fermion propagator iSf (q, q

′) in Fig. 2; this
propagator will appear only in the tadpole corrections of Fig. 5.

5In the calculations done below it makes no difference to leading order in M−2W whether
we drop the delta function from the end of the incoming or outgoing external fermion line.
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νa,i(q) νb,j(q
′)

iS<,>
ji,eff(q, q

′)

f(q) f(q′)
iSf(q, q

′)

Z(k)
i−gμν+kμkν/M

2
Z

k2−M2
Z

μ ν

Figure 1: Feynman rules for the effective non-equilibrium neutrino propa-
gator, the generic fermion propagator, and the Z-boson vacuum Feynman
propagator in unitary gauge. The W propagator is obtained from the Z
propagator by replacing MZ with MW . See text for details.

For neutrinos the coefficients gfV,A both equal 1
2
. The coefficients cW and

Uαi in the vertex rules given in Fig. 2 are the cosine of the Weinberg angle and
the elements of the leptonic mixing matric (the Pontecorvo–Maki–Nakagawa–
Sakata-matrix). No assumptions need to be made of the form of the PMNS-
matrix or the number of lepton generations.

The effective neutrino propagator (Wightman function) iS<,>ji,eff in Fig. 1
is [3]

iS<,>ji,eff = Ajj(q)F<,>
ji (q, q′)Aii(q′), (12)

where the spectral function A is

Aij(k) = π sgn(k0)(/k +mi)δ(k
2 −m2

i )δij (13)

and the the effective two-point vertex F is defined as

F<,>
ij (q, q′) = 4(2π)3δ3(~q − ~q′)

∑
h,±

Ph(q̂)θ
q
±(θq

′

±f
m<
ijh±(~q) + θq

′

∓f
c<
ijh±(~q)). (14)

Here

Ph(q̂) =
1

2
(1 + hγ0q̂ · ~γγ5) (15)
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−ig
2
√

2
U ∗

αiγ
μ(1 − γ5)−ig

2
√

2
Uαiγ

μ(1 − γ5)−ig
2cW

γμ(gf
V − gf

Aγ5)

f f
μ

Z

νi �−
α

μ

W−

�−
α νi

μ

W+

Figure 2: Feynman rules for weak interaction vertices.

with q̂ = ~q/ |~q| is the usual helicity projector and θq± = θ(±q0).
When calculating corrections to the hermitian (dispersive) self energy

Σh, we include an additional factor −i to every graph and use the two-point
function F<

ji (q, q
′), from which the vacuum contribution has been removed.

The distribution functions fm,c may depend on time, but this dependence
is suppressed here for the sake of simplicity.

3 Neutrino self energies

The dispersive self energy Σh of a particle describes the effect of interactions
between the particle and its environment to its mass and potential energy.
Thus, to describe particle propagation in matter in higher detail, the self
energy of the particle must be evaluated with sufficient accuracy. As seen
in Eq. (6), the self energy enters the equation of motion for the propagator,
which by Eq. (11) describes, among others, neutrino density.

To study neutrino propagation in matter, we must start with evaluating
neutrino self energy. In the mass basis the neutrino Hamiltonian is diagonal
in flavor indices6 in the absence of interactions. Such a Hamiltonian gives
rise to neutrino oscillations in vacuum. The self energy Σh gives rise to a
correction to the Hamiltonian, describing the effects of finite temperature
and medium.

6 Flavor states of charged leptons and corresponding neutrinos will be denoted by Greek
indices (α, β, . . . ) and neutrino mass states by Latin indices (i, j, . . . ). For brevity, both
of these indices will be referred to as flavor indices, although the term ‘mass state index’
would be more accurate for the Latin indices.
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νi(p)

µ ν

Z(k)

νi(q) νj(q
′) νj(p)

Figure 3: The Z-loop diagram contributing to neutrino self energies.

When neutrinos traverse dense matter (e.g. the Sun or the Earth), inter-
actions with the surroundings must be taken into account. Since neutrinos
only experience weak interactions, it suffices to consider one-loop corrections
to the self energy to obtain reasonably accurate results. In what follows we
do this in the context of cQPA as described in Section 2.

3.1 One loop diagrams

There are three one loop diagrams contributing to neutrino self energies: a
Z-loop diagram (see Fig. 3), a W -loop diagram (see Fig. 4), and a tadpole
diagram (see Fig. 5). All of these have an incoming neutrino of momentum
p and flavor i, and outgoing flavor j. The flavors and momenta of internal
lines are marked on the Feynman diagrams.

We will only calculate the corrections to the thermal part of the self en-
ergy. This is sufficient when calculationg medium- and temperature-induced
corrections to neutrino propagation in zero-temperature vacuum. Moreover,
we assume the temperature to be so low that the thermal distribution of
gauge bosons W± and Z essentially vanish, whence we only use the vacuum
propagator of Fig. 1 for these particles.

The corresponding corrections to hermitian neutrino self energies Σh =
Σh
ji(p) are denoted by ∆ZΣh, ∆WΣh, and ∆tadΣh. The flavor indices i and j

and momentum p always refer to the external lines of the self energy diagrams.
According to the Feynman rules given in Section 2.3, the Z-loop correction
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νi(p)

µ ν

W+(k)

`−
α (q) `−

β (q′) νj(p)

Figure 4: The W -loop diagram contributing to neutrino self energies.

of Fig. 3 can be written as

∆ZΣh = −i
∫

d4q

(2π)4

d4q′

(2π)4

d4k

(2π)4

−ig
4cW

γν(1− γ5)

×Ajj(q′)F<
ji (q

′, q)Aii(q)
−ig
4cW

γµ(1− γ5)

× i−gµν + kµkν/M
2
Z

k2 −M2
Z

(2π)4δ4(k + q − p).

(16)

The W -loop correction of Fig. 3 is similar, but we have to sum over the
charged lepton flavor indices α and β. We obtain

∆WΣh = −i
∑
α,β

∫
d4q

(2π)4

d4q′

(2π)4

d4k

(2π)4

−ig
2
√

2
U∗βjγ

ν(1− γ5)

×Aββ(q′)F<
βα(q′, q)Aαα(q)

−ig
2
√

2
Uαiγ

µ(1− γ5)

× i−gµν + kµkν/M
2
W

k2 −M2
W

(2π)4δ4(k + q − p).

(17)

The tadpole correction of Fig. 5 is different. We have to sum over all
possible fermions f in the loop7. We denote the fermion propagator in the

7 Here the fermion label f contains all quantum numbers of the fermion, including pos-
sible flavor indices. We do not sum over antifermions separately to quarantee a symmetry
factor 1.

12



νi(p)
µ

ν

Z(k)

f(q) f(q′)

νj(p)

Figure 5: The tadpole diagram contributing to neutrino self energies.

loop by iSf (q, q
′). We thus write the tadpole correction as

∆tadΣh = −i
∑
f

∫
d4q

(2π)4

d4q′

(2π)4

d4k

(2π)4

−ig
4cW

δijγ
µ(1− γ5)

× i−gµν + kµkν/M
2
Z

k2 −M2
Z

(−1) Tr(iSf (q, q
′)
−ig
2cW

γν(gfV − gfAγ5))

× (2π)4δ4(q − q′ − k).

(18)

We note that since we do not associate a delta function with the lower vertex,
the Z-boson may carry a non-zero four-momentum k if the propagator Sf
does not conserve four-momentum.

After carrying out the k-integrals using the delta functions the corrections
are

∆ZΣh =
−g2

16c2
W

∫
d4q

(2π)4

d4q′

(2π)4
γν(1− γ5)

×Ajj(q′)F<
ji (q

′, q)Aii(q)γµ(1− γ5)

× −gµν + (p− q)µ(p− q)ν/M2
Z

(p− q)2 −M2
Z

,

(19)
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∆WΣh =
−g2

8

∑
α,β

UαiU
∗
βj

∫
d4q

(2π)4

d4q′

(2π)4
γν(1− γ5)

×Aββ(q′)F<
βα(q′, q)Aαα(q)γµ(1− γ5)

× −gµν + (p− q)µ(p− q)ν/M2
W

(p− q)2 −M2
W

,

(20)

and, after carrying out the q′-integration in the tadpole correction,

∆tadΣh =
g2

8c2
W

δijγ
µ(1− γ5)

∑
f

∫
d4q

(2π)4

d4k

(2π)4

× −gµν + kµkν/M
2
Z

k2 −M2
Z

× Tr(iSf (q, q − k)γν(gfV − gfAγ5)).

(21)

From the last expression we see that ∆tadΣh is diagonal in flavor indices and
does not depend on i, j and p in any other way.

We do not assume any particular form for for the fermion propagator Sf
and cannot hence carry out the summation over all fermions in Eq. (21).

3.2 Inserting fermion propagators

We are now ready to use the definitions of the spectral function A and the
two-point vertex F in Eqs. (13) and (14). We observe that∫

dq0 sgn(q0)θq±δ(q
2 −m2

i )G(k0) =
G(±ωi)

2ωi
(22)

for any function G(k0), where ωi = ωi(~q) =
√
~q2 +m2

i , and so for any func-

tions G1(q0, q
′
0, ~q, ~q

′) and G2(q0, q
′
0, ~q, ~q

′) we have∫
d3q′ dq′0 dq0 sgn(q0)δ(q2 −m2

i ) sgn(q′0)δ(q′2 −m2
j)δ

3(~q − ~q′)

× θq′±(θq±G1(q0, q
′
0, ~q, ~q

′) + θq∓G2(q0, q
′
0, ~q, ~q

′))

=
1

2ωi2ωj
(G1(±ωi,±ωj, ~q, ~q) +G2(∓ωi,±ωj, ~q, ~q)).

(23)

Using these results we can carry out all but the ~q-integration in Eq. (19).
To simplify the expressions, we define the on-shell four-vector qµi± = (±ωi, ~q),
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for which clearly q2
i± = m2

i . We obtain

∆ZΣh =
−g2

32c2
W

∑
h,±

∫
d3q

(2π)3

1

2ωi2ωj

× γν(1− γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)

×
[
fm<jih±(~q)(/qi± +mi) + f c<jih±(~q)(/qi∓ +mi)

]
× γµ(1− γ5)

−gµν + (p− qi±)µ(p− qi±)ν/M
2
Z

(p− qi±)2 −M2
Z

.

(24)

Similarly, Eq. (20) can be simplified to

∆WΣh =
−g2

16

∑
α,β,h,±

UαiU
∗
βj

∫
d3q

(2π)3

1

2ωα2ωβ

× γν(1− γ5)(/qβ± +mβ)(1 + hγ0q̂ · ~γγ5)

×
[
fm<hβα±(~q)(/qα± +mα) + f c<hβα±(~q)(/qα∓ +mα)

]
× γµ(1− γ5)

−gµν + (p− qα±)µ(p− qα±)ν/M
2
W

(p− qα±)2 −M2
W

.

(25)

3.3 Dirac algebra

We then turn to simplify the Dirac structure of the corrections. Gamma
matrices in Eqs. (24) and (25) appear only in the pattern

γν(1− γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1 + γ5)γµ, (26)

where the signs ± and ±′ are independent.
The gamma matrices γ1, γ2, and γ3 appear here only in the combination

γq = ~q · ~γ, whence we end up with an 8-dimensional subalgebra spanned by
1, γ0, γq, γ

5, and their products. We denote the norm of the vector ~q by Q.
In this subalgebra it is easy to simplify Eq. (26):

(1− γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1 + γ5)

= (1− γ5)(±ωjγ0 − γq +mj)(1 +
h

Q
γ0γqγ

5)

× (±′ωiγ0 − γq +mi)(1 + γ5)

= 2(−hQ(mi +mj)±miωj ±′ mjωi)(γ
0 +

h

Q
γq)(1 + γ5).

(27)
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The essential Dirac structure has thus simplified to γν(γ0 + h
Q
γq)(1 + γ5)γµ.

Also note how the dependece on the sign ±′ factors to the scalar coeffecient.
This will make the Dirac structure of ∆ZΣh and ∆WΣh easier to handle.

The Lorentz indices of the gamma matrices γν and γµ are contracted in
two ways: by gµν and kµkν , where k = p− qi±. In analogue to γq and Q, we
define γp = ~p · ~γ and P = |~p|. Using

γµγλ(1 + γ5)γµ = −2γλ(1− γ5) (28)

and
/kγλ(1 + γ5)/k = (2aλ/k − k2γλ)(1− γ5) (29)

we obtain

γν(γ0 +
h

Q
γq)(1 + γ5)γµ(−gµν + kµkν/M

2
Z)

=

(
(2− k2

M2
Z

)(γ0 +
h

Q
γq) +

2

M2
Z

(k0 − h

Q
~k · ~q)/k

)
(1− γ5)

= (B1
p,~q,i,Z,±γ

0 +B2
p,~q,i,Z,±γq +B3

p,~q,i,Z,±γp)

× (1− γ5),

(30)

where the coefficients B1,2,3 are

B1
p,~q,i,Z,± = (31)

2 +M−2
Z [(p0 ∓ ωi)2 + P 2 +Q2 − 2~p · ~q − 2

h

Q
(p0 ∓ ωi)(~p · ~q −Q2)],

hQ ·B2
p,~q,i,Z,± = (32)

2 +M−2
Z [−(p0 ∓ ωi)2 − P 2 −Q2 + 2~p · ~q + hQ(±2p0 − 2ωi)∓ (~p · ~q −Q2)],

and

B3
p,~q,i,Z,± = −2M−2

Z

(
(p0 ∓ ωi)−

h

Q
(~p · ~q −Q2)

)
. (33)

We can now use the above results to simplify Eqs. (24) and (25). The
above calculations were done for the Z-loop correction, but when we change
i, j, Z → α, β,W , we get the corresponding W -loop term.

Inserting these results to Eqs. (24) and (25) yields

∆ZΣh =
−g2

16c2
W

∑
h,±

∫
d3q

(2π)3

(
(p− qi±)2 −M2

Z

)−1
g<jih±(~q)

× (B1
p,~q,i,Z,±γ

0 +B2
p,~q,i,Z,±γq +B3

p,~q,i,Z,±γp)(1− γ5)

(34)
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and

∆WΣh =
−g2

8

∑
α,β,h,±

UαiU
∗
βj

×
∫

d3q

(2π)3

(
(p− qα±)2 −M2

W

)−1
g<βαh±(~q)

× (B1
p,~q,α,W,±γ

0 +B2
p,~q,α,W,±γq +B3

p,~q,α,W,±γp)(1− γ5),

(35)

where

g<jih±(~q) =
1

2ωi2ωj
[(−hQ(mi +mj)±miωj ±mjωi)f

m<
jih±(~q)

+ (−hQ(mi +mj)±miωj ∓mjωi)f
c<
jih±(~q)].

(36)

With no assumptions about the fermion propagator Sf , the dirac struc-
ture of Eq. (21) cannot be simplified beyond the trivial observation that it
must be of the form /a(1−γ5) for some four-vector a. The tadpole corrections
will be dealt with in Sections 3.6 and 3.8.

3.4 Symmetries in the three-momentum integral

Let us assume that the distribution functions fm<jih±(~q) and f c<jih±(~q) are spher-
ically symmetric and depend only on Q. Then the gauge boson propagator
in Eqs. (34) and (35) induces an asymmetry in the directions of ~p, but there
is a useful symmetry in the ~q-integrals in directions perpendicular to ~p.

Let us write ~q = ~q‖+ ~q⊥, so that ~q‖ and ~q⊥ are parallel and perpendicular
to ~p, respectively.8 The only dependence on ~q⊥ in the integrand of Eqs. (34)
and (35) is in the gamma matrix γq. The ~q⊥-integral of the term ~q⊥ · ~γ is
antisymmetric and thus vanishes, whence we may replace γq by ~q⊥ · ~γ =
~p · ~qP−2γp.

We can easily manifest this by defining

B̃3
p,~q,i,Z,± = B3

p,~q,i,Z,± +
~p · ~q
P 2

B2
p,~q,i,Z,± (37)

and replacing
B1
p,~q,i,Z,±γ

0 +B2
p,~q,i,Z,±γq +B3

p,~q,i,Z,±γp (38)

in Eq. (34) by
B1
p,~q,i,Z,±γ

0 + B̃3
p,~q,i,Z,±γp, (39)

and similarly in Eq. (35) by replacing i and Z by α and W .

8 We can explicitly define ~q‖ = ~p · ~qP−2~p and ~q⊥ = ~q − ~q‖.
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Above we implicitly assumed that ~p 6= 0. If ~p = 0, we may drop both γq
and γp from Eqs. (34) and (35).

These results were expected on physical grounds: if the distributions f
are isotropic, the only direction that can appear in ∆WΣh and ∆ZΣh is that
of the external three-momentum ~p.

3.5 Leading order approximation in gauge boson mass

If the gauge boson masses MZ and MW are much larger than temperature
or any momentum scale in the system, we can expand the corrections ∆ZΣh

and ∆WΣh in powers of M−2
W,Z . For k2 < M2, we can expand the denominator

of the gauge boson propagator as

1

k2 −M2
= − 1

M2

∞∑
n=0

(
k2

M2

)n
. (40)

To leading order in M−2
Z we can replace the denominator k2 − M2

Z by
−M2

Z and drop all terms containing M−2
Z in the coefficients B1,2,3 defined in

Eqs. (31), (32), and (33) to get

B1
p,~q,i,Z,±γ

0 + B̃3
p,~q,i,Z,±γp = 2(γ0 +

h~p · ~q
P 2Q

γp). (41)

Assuming isotropicity in the distribution functions fm<jih±(~q) and f c<jih±(~q) as in
Section 3.4, the integral of the γp-term vanishes due to antisymmetry caused
by ~p · ~q, whence we arrive at

∆LO
Z Σh

ji =
g2

8c2
WM

2
Z

∑
h,±

∫
d3q

(2π)3
g<jih±(Q)γ0(1− γ5) (42)

and

∆LO
W Σh

ji =
g2

4M2
W

∑
α,β,h,±

UαiU
∗
βj

∫
d3q

(2π)3
g<βαh±(Q)γ0(1− γ5), (43)

where the flavor indices have been reintroduced in the propagator.
Using the familiar result MW = cWMZ , we observe a relation between

∆ZΣh and ∆WΣh to leading order in M−2
W :

∆LO
W Σh

ji = 2
∑
α,β

UαiU
∗
βj∆

LO
Z Σh

βα. (44)

This equation is to be understood in the way that the functions are of the
same form, not that they are exaclty the same functions.
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3.6 The tadpole correction

We can use the leading order approximation considered in Section 3.5 to
simplify the tadpole correction in Eq. (21) to

∆LO
tadΣh =

g2

8M2
W

δijγ
µ(1− γ5)

×
∑
f

Tr(Ifγµ(gfV − gfAγ5)),
(45)

where the momentum integrals have been collected to the coefficient

If =

∫
d4q

(2π)4

d4q′

(2π)4
iSf (q, q

′). (46)

Assuming isotropicity and in the propagator we conclude that

If =
1

4
(QS

f +QV
f γ

0 +QP
f γ

5 +QA
f γ

0γ5) (47)

for some coefficients QS,V,P,A
f . But then we have

Tr(Ifγµ(gfV − gfAγ5)) = (QV
f g

f
V +QA

f g
f
A)δ0

µ, (48)

and the tadpole correction reduces to

∆LO
tadΣh =

g2

8M2
W

(∑
f

QV
f g

f
V +QA

f g
f
A

)
δijγ

0(1− γ5). (49)

3.7 Summary of results to leading order in M−2
W

Collecting Eqs. (42), (43), (44), and (49), we can express the one-loop cor-
rection to neutrino self energy to leading order in M−2

W as

∆LO
tot Σh

ji = ∆LO
Z Σh

ji + ∆LO
W Σh

ji + ∆LO
tadΣh

ji

=
g2

8M2
W

(
ILOji + 2

∑
α,β

UαiU
∗
βjI

LO
βα + δij

∑
f

(QV
f g

f
V +QA

f g
f
A)

)
γ0(1− γ5),

(50)

where ILOji abbreviates the integral

ILOji =
∑
h,±

∫
d3q

(2π)3
g<jih±(Q). (51)
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This integral is isotropic, so we may also write it as

ILOji =
∑
h,±

∫ ∞
0

Q2dQ

2π2
g<jih±(Q). (52)

The generalization to the case when ghjih±(~q) is not isotropic is given in Ap-
pendix A.

We note that the Dirac structure of the correction in Eq. (50) is simply
γ0(1−γ5). On grounds of the discussion in Section 3.4 and Eqs. (34) and (35)
we also expect a γp(1− γ5)-term to appear. It will do so only in subleading
orders in M−2

W . If we do not assume isotropicity in the functions f , terms of
the form ~a ·~γ(1− γ5) for some vector ~a may appear already in leading order.

3.8 Subleading terms in M−2
W

We will now go to the second order in the expansion described in Section 3.5.
Keeping only terms proportional to M−4

Z and assuming the isotropicity of
the functions f discussed in Section 3.4, Eq. (34) gives

∆NLO
Z Σh =

g2

16c2
WM

4
Z

∑
h,±

∫
d3q

(2π)3
g<jih±(Q)

×
{

2((p0 ∓ ωi)2 − P 2 −Q2 + 2~p · ~q)(γ0 +
h~p · ~q
P 2Q

γp)

+ [(p0 ∓ ωi)2 + P 2 +Q2 − 2~p · ~q

− 2
h

Q
(p0 ∓ ωi)(~p · ~q −Q2)]γ0

+

[
h~p · ~q
P 2Q

(
− (p0 ∓ ωi)2 − P 2 −Q2 + 2~p · ~q

+ hQ(±2p0 − 2ωi)∓ (~p · ~q −Q2)
)

− 2

(
(p0 ∓ ωi)−

h

Q
(~p · ~q −Q2)

)]
γp

}
× (1− γ5).

(53)
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Dropping the parts antisymmetric in ~q we are left with

∆NLO
Z Σh =

g2

16c2
WM

4
Z

∑
h,±

∫
d3q

(2π)3
g<jih±(Q)

×
{

[3(p0 ∓ ωi)2 − P 2 −Q2 + 2hQ(p0 ∓ ωi)]γ0

+

[
(6∓ 1)

h(~p · ~q)2

P 2Q
− 2(p0 ∓ ωi + hQ)

]
γp

}
× (1− γ5).

(54)

We see that a nonzero γp(1−γ5)-term arises in ∆NLO
Z Σh in next-to-leading

order in M−2
Z . The same happens for the W -loop correction, for which

∆NLO
W Σh =

g2

8M4
W

∑
α,β,h,±

UαiU
∗
βj

∑
h,±

∫
d3q

(2π)3
g<βαh±(Q)

×
{

[3(p0 ∓ ωα)2 − P 2 −Q2 + 2hQ(p0 ∓ ωα)]γ0

+

[
(6∓ 1)

h(~p · ~q)2

P 2Q
− 2(p0 ∓ ωα + hQ)

]
γp

}
× (1− γ5).

(55)

If we wish to express these corrections in terms of γ0 and /p rather than
γ0 and γp, we may simply write γp = p0γ0 − /p.

In analogue to Eq. (44) we find (with the same caveat)

∆NLO
W Σh

ji = 2c−2
W

∑
α,β

UαiU
∗
βj∆

NLO
Z Σh

βα. (56)

The next-to-leading order term of the tadpole correction in Eq. (21) is

∆NLO
tad Σh =

g2

8c2
WM

4
Z

δijγ
µ(1− γ5)

×
∑
f

Tr(INLOf,µν γ
ν(gfV − gfAγ5)),

(57)

where the momentum integrals have been collected to the coefficient

INLOf,µν =

∫
d4q

(2π)4

d4k

(2π)4
(k2gµν − kµkν)iSf (q, q − k). (58)
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By the same symmetry argument as used in Section 3.6, we have

INLOf,µν = C11
f gµν + C12

f gµνγ
0 + C21

f δ
0
µδ

0
ν + C22

f δ
0
µδ

0
νγ

0 (59)

for some coefficients C11,12,21,22
f , whence

Tr(INLOf,µν γ
ν(gfV − gfAγ5)) = 4(C12

f + C22
f )gfV δ

0
µ (60)

and

∆NLO
tad Σh =

g2

2c2
WM

4
Z

(∑
f

(C12
f + C22

f )gfV

)
δijγ

0(1− γ5). (61)

We immediately note that the leading and next-to-leading order correc-
tions in Eqs. (49) and (61) differ only by the factors Cf . This is not unex-
pected: the tadpole correction in Eq. (21) does not depend on the external
four-momentum p, whence isotropy in the fermion propagator Sf (q, q

′) for-
bids any terms of the form ~γ(1 − γ5), which were found above to appear in
∆NLO
Z Σh and ∆NLO

W Σh.
We can easily use this procedure of simplifying tadpole corrections to

Eq. (21) directly. We only have to express the integral

Ih,µν

∫
d4q

(2π)4

d4k

(2π)4

−gµν + kµkν/M
2
Z

k2 −M2
Z

iSf (q, q − k) (62)

as a sum of some gamma matrices. Assuming isotropicity in Sf (q, q
′), the

only possible terms are 1, γ0, γ5, and γ0γ5. The result can then be simplified
using

Tr((CS
f +CV

f γ
0+CP

f γ
5+CA

f γ
0γ5)γν(g

f
V −gfAγ5)) = 4(CV

f g
f
V +CA

f g
f
A)δ0

ν , (63)

so that the only difficulty that remains is evaluating the coefficients of the
gamma matrices. However, isotropicity also guarantees that Sf (q, q

′) is pro-

prtional to the delta function δ3(~q − ~q′). This implies ~k = 0, whence

−gµν + kµkν/M
2
Z

k2 −M2
Z

= M−2
Z diag (1,−a,−a,−a) , (64)

where a = (1− (k0/MZ)2)−1. If, moreover, k0 = 0, which happens if we use
the cQPA effective propagator as iSf , we find

−gµν + kµkν/M
2
Z

k2 −M2
Z

= gµν/M
2
Z . (65)

This implies ∆NLO
tad Σh = 0.
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3.9 Summary of the subleading corrections

The leading order correction to Σh was given in Eq. (50). This correction
only contains a term of the form γ0(1 − γ5). Subleading terms of the same
form are found in ∆NLO

Z Σh and ∆NLO
W Σh in Eqs. (54) and (55).

Without fixing the propagator Sf (q, q
′) little can be said about the mag-

nitude of the tadpole corrections. They are, however, diagonal in flavor and
contain only terms of the form γ0(1− γ5) if Sf (q, q

′) is isotropic.
We may assume the distribution functions fm<ijh±(~q) and f c<ijh±(~q) to decay

exponentially at high momenta. Thus, if the temperature is well below MW ,
so is Q in the integrand. If also the external momentum scale defined by P
and p0 is small compared to MW , we may estimate the relative magnitude of
leading and next-to-leading order terms in ∆ZΣh and ∆WΣh.

We have actually already made these assumptions more or less implicitly.
The expansion in gauge boson mass presented in Section 3.5 will only give
a reasonable approximation—or even converge—if all relevant momentum
(and hence temperature) scales are much smaller than MW . Moreover, we
can no longer neglect the thermal part of the gauge boson propagator when
T &MW .

If temperature, P , and p0 are near some scale Λ, a naive comparison
between Eqs. (42) and (54) suggests an order of magnitude estimation∣∣∆NLO

Z Σh
∣∣ ∼ (Λ/MW )2

∣∣∆LO
Z Σh

∣∣ , (66)

and similarly for ∆WΣh. The next-to-leading order terms are thus expected
to be small in comparison with the leading order terms. But they also behave
differently, so they are not omitted.

We may now use Eqs. (54), (56), and (61) to write the next-to-leading
order self energy correction in the isotropic case as

∆NLO
tot Σh

ji =
g2

8c2
WM

4
Z

(
INLOji + 2c−2

W

∑
α,β

UαiU
∗
βjI

NLO
βα

)
(1− γ5), (67)

where

INLOji =
1

2

∑
h,±

∫
d3q

(2π)3
g<jih±(Q)

×
{

[3(p0 ∓ ωi)2 − P 2 −Q2 + 2hQ(p0 ∓ ωi)]γ0

+

[
(6∓ 1)

h(~p · ~q)2

P 2Q
− 2(p0 ∓ ωi + hQ)

]
γp

}
.

(68)
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If we denote by ϑ the angle between ~p and ~q, we may also write

INLOji =
1

2

∑
h,±

∫ 1

−1

d(cosϑ)

∫ ∞
0

Q2dQ

2π2
g<jih±(Q)

×
{

[3(p0 ∓ ωi)2 − P 2 −Q2 + 2hQ(p0 ∓ ωi)]γ0

+

[
(6∓ 1)

h(~p · ~q)2

P 2Q
− 2(p0 ∓ ωi + hQ)

]
γp

}
=

1

2

∑
h,±

∫ ∞
0

Q2dQ

(2π)2
g<jih±(Q)

×
{

[3(p0 ∓ ωi)2 − P 2 −Q2 + 2hQ(p0 ∓ ωi)]γ0

+

[
−2p0 ± 2ωi ∓

1

3
hQ

]
γp

}
.

(69)

With Eqs. (50) and (67) we can present the full self energy correction
containing each term to their leading order:

∆Σh = ∆LO
tot Σh + ∆NLO

tot Σh. (70)

4 Overview of the self energy corrections

A main application of corrections to neutrino self energies is the calculation
of effective potential of neutrinos in matter. This leads to a dependence of
neutrino mixing on the medium neutrinos are propagating through, and may
significantly differ from neutrino oscillations in vacuum.

In the usual approach, the non-diagonality of Σh
ji arises as follows: the

charged leptons in the medium are mainly electrons, whence only electron
neutrinos having a charged current interaction. This can be manifested in
Eq. (50) by dropping the tadpole part and assuming the functions ILOji and
ILOβα of Eq. (52) to be diagonal in the flavor indices. Then the nondiagonality

of Σh
ji is only due to non-diagonal elements Uαi of the leptonic mixing matrix.

The next-to-leading order term in gauge boson mass given in Eq. (67) is
omitted.

If, however, the non-diagonal elements of ILOji are significant, the terms
ILOji and 2

∑
α,β UαiU

∗
βjI

LO
βα in Eq. (52) may be of the same order of magnitude

when i 6= j, rendering the standard approach rather coarse.
If the elements of ILOji are significantly large, it will not only alter the

description of neutrino oscillations quantitatively, but also qualitatively: ILOji
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describes self coupling of the neutrinos, while ILOβα describes coupling to back-
ground fields not containing neutrinos. Before any conclusions can be drawn
about the significance of such a phenomenon, a numerical analysis of neutrino
propagation is required.

The tadpole corrections are diagonal in flavor and equal for all flavors (i.e.
∆tadΣh

ji ∼ δij), and hence of little intrest in exploring the flavor dependence
of neutrino self energies. Self-coupling of the neutrinos can also be found in
the tadpole correction (as also neutrino loops are summed over), but these
do not give rise to a complicated flavor structure like the Z-loop correction.

If one considers a neutrino beam propagating in matter, the assumption
that the distributions f c,m be symmetric is unphysical. The leading order
result for asymmetric distributions is easily obtained from the calculations
done in Section 3.

All self enrgy corrections obtained above are presented concisely in Ap-
pendix A.

5 Conclusions

We have evaluated neutrino self energies to the leading non-trivial order in
weak interaction. This has been done mainly for use in studying neutrino
oscillations, and what remains to be done is to actually use the obtained
results to see if including nonlocal coherence phenomena the way it is done
in cQPA has a significant impact on neutrino propagation.

To make sure that the results provide a good starting point for further
studies and that CQPA itself can be considered reliable, it must be checked
that the results are physically meaningful. Comparing Eqs. (11) and (36)
suggests that the diagonal elements g<ααh±(Q) are proportional to the density
of charged leptons in the background, which is expected since these terms
in (50) describe neutrino coupling to the leptonic background. Furthermore,
after suitable approximations the results reduce to the standard matter effect
description in neutrino oscillations.

The corrections obtained for neutrino self energies seem promising. Their
application and a more thorough discussion, however, have to be left outside
this work.

Besides obtaining the self energy corrections, we have seen that calcu-
lating such corrections in cQPA is relatively straightforward and leads to
reasonable results. This opens a new possibility to properly include coher-
ence in problems regarding mixed fermions in varying background, and may
lead to a better understanding of, for example [9], the electroweak phase
transition and neutrino oscillations in the early Universe.
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A Collected results

To facilitate an easier overview of the self energy corrections obtained in
Section 3, the results of the calculations are collected here.

The correction to neutrino self energies containing each term to their
leading order is (see Eq. (70))

∆Σh = ∆LO
tot Σh + ∆NLO

tot Σh, (71)

where (see Eq. (50))

∆LO
tot Σh

ji =
√

2Gfγ
0PL

×
(
ILOji + 2

∑
α,β

UαiU
∗
βjI

LO
βα + δij

∑
f

(QV
f g

f
V +QA

f g
f
A)

)
.

(72)

Here we have used the Fermi coupling constant GF =
√

2g2/(8M2
W ). The

integral ILOji is defined as (see Eq. (52))

ILOji =
∑
h,±

∫ ∞
0

Q2dQ

2π2
g<jih±(Q) (73)

with (see Eq. (36))

g<jih±(Q) =
1

2ωi2ωj
[(−hQ(mi +mj)±miωj ±mjωi)f

m<
jih±(Q)

+ (−hQ(mi +mj)±miωj ∓mjωi)f
c<
jih±(Q)].

(74)

If we assume no symmetry in the distribution functions fm,c, we have to
change ILOji γ

0 in Eq. (50) to (compare with Eq. (41))

∑
h,±

∫
d3q

(2π)3
g<jih±(~q)(γ0 +

h~p · ~q
P 2Q

γp), (75)

and similarly for ILOβα γ
0. The tadpole correction remains proportional to

γ0(1− γ5).
The next-to-leading order term is (see Eq. (67))

∆NLO
tot Σh

ji =
g2

8c2
WM

4
Z

(
INLOji + 2c−2

W

∑
α,β

UαiU
∗
βjI

NLO
βα

)
(1− γ5), (76)
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where (see Eq. (68))

INLOji =
1

2

∑
h,±

∫
d3q

(2π)3
g<jih±(Q)

×
{

[3(p0 ∓ ωi)2 − P 2 −Q2 + 2hQ(p0 ∓ ωi)]γ0

+

[
(6∓ 1)

h(~p · ~q)2

P 2Q
− 2(p0 ∓ ωi + hQ)

]
γp

}
.

(77)

The factors QV,A
f appearing above have been defined so that (see Eq. (46))∫

d4q

(2π)4

d4q′

(2π)4
iSf (q, q

′) =
1

4
(QS

f +QV
f γ

0 +QP
f γ

5 +QA
f γ

0γ5). (78)
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