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Abstract

Coherence is a fundamental and peculiar property in all quan-
tum theories. It allows for classically unexpected phenomena such as
neutrino oscillation, where neutrinos of different kinds spontaneously
transform into each other. Taking coherence properly into account in
a complicated physical system is far from trivial.

Consider the following physical situation: Neutrinos travel in a
temporally varying medium and nonzero temperature. To describe
the behaviour of these neutrinos, special relativity, coherence, and
interactions must be taken into account. A general formalism for
the analysis of such situations is provided by coherent quasiparticle
approximation (cQPA).

In addition to usual particle fields to describe neutrinos, cQPA
also includes quasiparticle fields which describe the coherence between
these particle fields. These excitations are as such undetectable, but
their effect on the behaviour of particles leads to various coherence
phenomena such as neutrino oscillations.

The main goal of this thesis is to write an equation of motion for
Standard Model neutrinos in this situation. We briefly discuss the
structure and meaning of cQPA, develop calculational tools, use these
tools to calculate self energies, and finally use these self energies to
write down the equation of motion under suitable assumptions.

A more detailed analysis of the obtained equation of motion would
require heavy numerical calculations, which are beyond the scope of
this work. Our main focus is not on the analysis of the equation, but
on its derivation and understanding of the model that leads to it. We
do, however, consider some immediate implications of the equation
and find that it exhibits coherence as expected.

Finally, we discuss the possible applications of this equation and
of cQPA in general. These include numerous phenomena regarding
neutrino transport and the early Universe. Therefore cQPA can be
expected to provide us with a better understanding of such phenomena
and coherence in thermal quantum field theory in general.
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Tiivistelmä

Koherenssi on perustavanlaatuinen ja erikoinen ominaisuus kai-
kissa kvanttiteorioissa. Se mahdollistaa klassisesti odottamattomia il-
miöitä kuten neutriino-oskillaation, jossa erilaiset neutriinot muuttu-
vat spontaanisti toisikseen. Koherenssin huomioiminen monimutkai-
sissa fysikaalisissa järjestelmissä ei kuitenkaan ole yksinkertaista.

Tarkastellaan seuraavaa fysikaalista tilannetta: Neutriinot kulkevat
ajallisesti muuttuvassa väliaineessa nollasta poikkeavassa lämpötilas-
sa. Näiden neutriinojen käytöksen kuvailu edellyttää suppean suhteel-
lisuusteorian, koherenssin ja vuorovaikutusten huomiointia. Koherent-
ti kvasihiukkasapproksimaatio (coherent quasiparticle approximation,
cQPA) tarjoaa yleisen formalismin tällaisten tilanteiden tutkimiseen.

Tavallisten neutriinoja kuvaavien hiukkaskenttien lisäksi cQPA si-
sältää kvasihiukkaskenttiä, jotka kuvaavat näiden hiukkaskenttien vä-
listä koherenssia. Näitä eksitaatioita ei voi suoraan havaita, mutta
niiden vuorovaikutus hiukkasten kanssa johtaa monenlaisiin koherens-
si-ilmiöihin, joista neutriino-oskillaatio on hyvä esimerkki.

Tämän opinnäytetyön päätavoite on kirjoittaa liikeyhtälö Standar-
dimallin neutriinoille tässä tilanteessa. Esittelemme lyhyesti cQPA:n
rakennetta ja merkitystä, kehitämme laskennallisia työkaluja, käytäm-
me näitä työkaluja itseisenergioiden laskemiseen ja lopulta kirjoitam-
me liikeyhtälön sopivin oletuksin näiden itseisenergioiden avulla.

Saadun liikeyhtälön yksityiskohtaisempi tarkastelu edellyttäisi ras-
kaita numeerisia laskuja, jotka jäävät tämän työn ulkopuolelle. Pää-
paino ei ole yhtälön tutkimisessa, vaan sen johtamisessa ja sen poh-
jalla olevan mallin ymmärtämisessä. Esittelemme kuitenkin joitakin
yhtälön välittömiä seurauksia ja toteamme, että koherenssi ilmenee
odotetulla tavalla.

Lopuksi tarkastelemme tämän liikeyhtälön ja yleensä cQPA:n mah-
dollisia sovelluksia. Näihin sovelluksiin kuuluu useita neutriinokulje-
tukseen ja varhaiseen Maailmankaikkeuteen liittyviä ilmiöitä. Siksi
cQPA:n voikin olettaa tarjoavan paremman ymmärryksen näihin il-
miöihin ja yleisemminkin koherenssiin termisessä kvanttikenttäteorias-
sa.
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1 Introduction

Quantum mechanical coherence between distinct states is what allows non-
classical behaviour in quantum mechanical systems; the probabilities emerg-
ing from a state written as a coherent superposition in some basis is in the
very heart of the phenomenology of quantum mechanics (QM). Quantum field
theory (QFT), as a relativistic formulation of many-body QM, is therefore
also expected to take coherence phenomena into account. In the presence
of nonlinearities due to interactions, however, the equations of motion in
QFT defy analytic solutions, necessitating the use of various approximation
schemes.

Neutrino oscillations present an excellent example of coherence1. In a
weak charged current interaction process a neutrino is produced in pure
flavour state. The mass of such a state is ill-defined and therefore the time
evolution is rather complicated; it is best expressed as a superposition of
neutrino mass eigenstates. The slightly different time evolution of different
mass states is what leads to the observed oscillation in flavour basis. Hav-
ing different kinematical properties, these different mass states tend to drift
apart as the neutrino propagates. As the overlap between the wave packets
of different mass states is gradually lost, the oscillations cease and the prob-
ability distribution in flavour basis no longer evolves in time. The classically
unexpected yet significant phenomenon of neutrino oscillation thus vitally
depends on coherence.

In this thesis we study coherent quasiparticle approximation (cQPA), an
approximation scheme in QFT in nonzero temperature. In particular, we
calculate the hermitean and absorptive (emissive) neutrino self energies to
second order in the Fermi coupling constant in this scheme and find out that
taking nonlocal coherence properly into account may lead to phenomenol-
ogy substantially different from what would be expected when coherence is
neglected.

The structure of this thesis is as follows: In Section 2 we briefly describe
cQPA, and in Section 3 we present the momentum space Feynman rules and
device a number of calculational tools for cQPA. Section 4 is devoted to
the calculation of neutrino self energies in the framework of cQPA, and in
Section 5 we present and analyse the Quantum Boltzmann equation arising
from cQPA using the obtained self energies. Finally, a summary and outlook
are given in Section 6.

1A more thorough discussion of coherence in neutrino oscillations can be found e.g. in
Refs. [1] and [2].
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2 Coherent quasiparticle approximation

The description of many physical situations require simultaneously taking
into account finite temperature, special relativity, nonlocal quantum mechan-
ical coherence and even thermodynamics out of equilibrium. Such situations
include, for example, particle creation in the early universe and neutrino
propagation in spatially or temporally varying background.

Coherent quasiparticle approximation (cQPA) is an approximation scheme
capable of treating such physical systems. It was introduced by Herranen,
Kainulainen, and Rahkila in Ref. [3] and reformulated in a more easily calcu-
lable form in Ref. [4]. The diagrammatic methods developed in Ref. [4] are
used here to calculate leading order corrections to neutrino self energies due
to weak interactions with the medium.

2.1 Thermal field theory

When doing QFT in vacuum in zero temperature, one is typically interested
in scattering processes where long-lived particles interact by interchanging
virtual particles. In nonzero temperature there is, however, a thermal distri-
bution of various particles, and a propagating particle does not only interact
with itself via spontaneous virtual excitations, but also with its surroundings.
Moreover, particles in a thermal system are often short-lived, whence the
asymptotic in- and out-states familiar from scattering theory are no longer
meaningful. Similar phenomena take place also in zero temperature, when
particles propagate and interact in a medium. Such phenomena can be in-
vestigated using thermal field theory (TFT).

There are two main formalisms for TFT: imaginary and real time. The
imaginary time formalism is the one adopted in most introductory treatments
of TFT (such as Refs. [5] and [6]). In this formulation one writes the time
coordinate as t = x0 = −iτ = −ix4 for some real τ = x4 (which is peri-
odic with period β). Similarly one replaces p0 with −ip4 in the momentum
space, and the Minkowskian structure of spacetime becomes an Euclidean
one: t2 − ~x2 = −(τ 2 + ~x2) and similarly for momentum. In this formulation
the integration over energy appearing in the path integral representation of
the propagators is replaced by a sum over discrete energies in a Euclidean
space; this gives rise to the Matsubara (or imaginary time) propagator.

In the time integral appearing in the partition function it may be more
convenient to choose a more complicated path in the complex plane than
a (possibly slightly tilted) horizontal or vertical line. The Keldysh path C,
composed of three line segments joining −T + iε, +T , −T − iε, and −T − iβ,
where −T is some large negative initial time (T is let tend to infinity), ε > 0

2



is small parameter which is let tend to zero, and β is the inverse temperature.
Due to the boundary condition ϕ(t, ~x) = ϕ(t− iβ, ~x) for bosonic fields ϕ this
time path is periodic. A generic propagator ΔC(t, ~x; t

′, ~x′) splits to four parts:
it is Δ++ (Δ−−) when both t and t′ lie on the upper (lower) horizontal line
segment and Δ< = Δ+− when t is on the upper and t′ on the lower line
segment (and vice versa for Δ> = Δ−+). This is one formulation of the real
time formalism.

Simple calculations tend to be easier to do in the imaginary time for-
malism, but more involved ones are often easier to handle in the real time
formalism. The real time formalism also preserves the Minkowskian structure
of the spacetime more explicitly.

All phenomena present in vacuum and zero temperature are also present
when temperature is increased or a medium introduced. In the real time
formalism vacuum and thermal phenomena can be separated (for example,
the propagator can be written as a sum of a vacuum propagator and a thermal
propagator) thus making it more straightforward to study changes in vacuum
behaviour due to finite temperature or medium effects. In this thesis we
follow this method.

For details on TFT beyond this relatively naive introduction, see for ex-
ample the books by Kapusta [5] and Le Bellac [6].

2.2 A brief introduction to cQPA2

This is only a short introduction to cQPA. The practical Feynman rules
needed here are given in Section 3.1 below. For more details on cQPA, see
Refs. [3, 7, 8, 9, 10, 11, 4] and references therein. Here we follow the notational
conventions of Ref. [4].

2.2.1 Propagators and self energies

In the study of non-equilibrium TFT, the fermionic Wightman functions
iS<(u, v) =

〈
ψ̄(v)ψ(u)

〉
and iS>(u, v) =

〈
ψ(u)ψ̄(v)

〉
are of central interest3.

These functions in a way describe the self-correlation of the fermionic field ψ
between points u and v in a Minkowskian spacetime. The expectation values
〈·〉 are calculated with respect to an unknown density operator.

We can also express the Wightman functions in terms of the relative
and average coordinates r = u − v and x = (u + v)/2; this is particularly

2This introduction follows mainly Ref. [4].
3It is a common convention to define iS< with an additional minus sign. See e.g.

Ref [12].
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convenient after a Fourier transformation in r (a Wigner transformation):

S<,>(k, x) =

∫
d4r eik·rS<,>(x+

r

2
, x− r

2
). (1)

In analogue to iS<,> we define the time ordered Green’s function (Feynman
propagator) iSt and in turn the hermetian Green’s function Sh = St− (S>−
S<)/2. The self energies corresponding to iS (with any of the indices <, >,
t, and h) are denoted by iΣ (with the same indices).

Similarly we may define the retarded and advanced propagators as Sr,a =
St ± S<,> (so that Sh = (Sr + Sa)/2) and the anti-Feynman propagator S t̄

(with inverse time ordering). The antihermitean Green’s function

A =
i

2
(S> + S<) (2)

is known as the spectral function4.
In multiflavour formalism we include flavour indices so that in iSij(u, v)

the flavour index i corresponds to the coordinate u and similarly j to v. The
flavour indices are suppressed where they can easily be inferred from the
context.

For a more elaborate description of the various Green’s functions, see
Ref. [12].

2.2.2 Equations of motion and shell structure

We define the diamond operator (cf. Poisson brackets) as

♦ =
1

2
(∂(1)x · ∂(2)k − ∂

(1)
k · ∂(2)x ). (3)

It acts on a pair of functions (the bracketed indices refer to these functions)
which depend on x and k. For two functions f(k, x) and g(k, x), for example,

♦{f}{g} = 1

2
(∂xf · ∂kg − ∂kf · ∂xg). (4)

Using Eq. (3) we may similarly define ♦n{f}{g} for any n ∈ N, and so also
e−i♦.

We denote by m = m(x) the possibly space- and time-dependent and
complex mass matrix, and write its hermitean and antihermitean parts as

4In the following we will only consider spectral functions for fermionic fields, whence it
is written shortly as A = Aψ.
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mh = (m+m†)/2 and ma = (m−m†)/(2i). Using these, we define the mass
operators

m̂0,5f(k, x) = e−i♦{mh,a(x)}{f(k, x)}, (5)

where we take ∂kmh,a = 0.
With these notations, the Wightman functions obey the equations

(/k +
i

2
/∂x − m̂0 − im̂5γ

5)S<,> − e−i♦{Σh}{S<,>}
− e−i♦{Σ<,>}{Sh} = ±Ccoll,

(6)

where the collision term is

Ccoll =
1

2
e−i♦({Σ>}{S<} − {Σ<}{S>}). (7)

Eq. (6) is the most fundamental equation of motion, but in practice impos-
sible to solve in full generality.

It turns out [4] that in the mass eigenbasis and with suitable approxima-
tions the phase space structure of the homogeneous and isotropic Wightman
functions is more complicated than naively expected. The phase space con-
straint equation for iS<ij (k, x) in Eq. (6) is(

k2 − m2
i +m2

j

2

)
k20 +

1

4

(
m2
i −m2

j

2

)2

= 0. (8)

Defining ωi = ωi(~k) =

√
m2
i +

~k2, this gives rise to dispersion relations

k0 = ±
1

2
(ωi + ωj) (9)

and

k0 = ±
1

2
(ωi − ωj). (10)

In the case mi = mj the dispersion relation of Eq. (9) gives the standard
relation k2 = m2

i .
Corresponding to the four dispersion relations in Eqs. (9) and (10) there

are four distribution functions describing the different shell occupations.
These functions for Eq. (9) are fm<ijh±, which describe coherence between the
mass eigenstates with on-shell energies ±ωi and ±ωj and helicity h. For
Eq. (10) the corresponding functions are f c<ijh±, and they describe the co-
herence between the mass eigenstates with on-shell energies ±ωi and ∓ωj
and helicity h. No coherence between helicities h and −h appears in this
approximation.
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Using the Feynman-Stückelberg interpretation we identify negative en-
ergy particles as antiparticles, and relate the elements of the distribution
functions f on the flavour diagonal to the particle phase space densities by

nih~k =
mi

ωi
fm<iih+, n̄ih~k = 1 +

mi

ωi
fm<iih−. (11)

The distribution functions for iS> are fm>ijh± = ± ωi

mi
δij− fm<ijh± and f c>ijh± =

−f c<ijh±. One may also find the hermiticity relations fm<jih± = (fm<ijh±)
∗ and

f c<jih± = (f c<ijh∓)
∗.

The Feynman rules, especially Eq. (12), given below in Section 3.1 show
how the shell structure appears in the Wightman functions in more detail.

3 Some calculational tools for cQPA

In this section we list the Feynman rules for cQPA and establish some aux-
iliary results which will be used in the self energy calculations in Section 4.
The actual calculations will be more straightforward once these results are
at hand and suitable notation for parts of the diagrams has been found.

3.1 Feynman rules

The Feynman rules of cQPA for calculating corrections to the fermion self
energies iΣ<,> given in [4] are as follows (the Feynman rules relevant for the
calculations done here are presented in Figs. 1 and 2):

1. Draw all perturbative two-particle irreducible diagrams and associate
the usual symmetry factor and sign with them.

2. Associate with each vertex the normal vertex factor (not including a
four-momentum conservation delta function). The vertex rules relevant
here are listed in Fig. 2.

3. Associate a delta function (2π)4δ4(pin − pout) with all vertices except
the one next to the outgoing external fermion line.5

4. For fermion propagators substitute the propagator iS<,>ji,eff (q, q
′) and

integrate over both momenta:
∫

d4q
(2π)4

d4q′

(2π)4
. For the Z boson propagator,

5In the calculations of Section 4.2 it makes no difference to leading order in M−2W
whether we drop the delta function from the end of the incoming or outgoing external
fermion line.
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νi(q
′) νj(q)

iS<,>
ji,eff(q, q

′)

iΔνμ
Z (k)

Zν(k)

iΔ<,>νμ
Z (k, k′)

Zμ(k′) Zν(k)

Figure 1: Feynman rules for the effective non-equilibrium neutrino propa-
gator, the Z boson vacuum Feynman propagator, and the thermal Z boson
propagator. See text for details.

use iΔνµ
Z (k) and integrate over k or use iΔ<νµ

Z (k, k′) and integrate over
k and k′.6

How and why to choose propagators for gauge bosons, will be discussed
in Sections 3.6 and 4.1. The propagators iΔ>νµ

Z (k, k′), iΔ<νµ
W (k, k′), and

iΔ>νµ
W (k, k′) are formed similarly with iΔ<νµ

Z (k, k′), and they need not be
discussed separately.

For other fermions than neutrinos and the W boson we use similar prop-
agators as those in Fig. 1 with obvious changes. The dot on the gauge boson
propagator indicates the leading order expansion of the propagator as done
in Section 3.6.

The vertex rules in Fig. 2 are exactly as they appear in the Standard
Model. For neutrinos the coefficients gνV,A both equal 1

2
. For charged lep-

tons g`V = −1
2
+ 2s2W and g`A = −1

2
.[13] The coefficients cW and Uαi in the

vertex rules given in Fig. 2 are the cosine of the Weinberg angle and the
elements of the leptonic mixing matrix (the Pontecorvo–Maki–Nakagawa–
Sakata-matrix). No assumptions need to be made of the form of the PMNS-
matrix or the number of lepton generations. The coefficient sW in g`V is the
sine of the Weinberg angle.

6The propagator iΔ<νµ
Z (k, k′) is given in Section 3.6, and for iΔνµ

Z (k) we use the thermal

propagator in unitary gauge: iΔνµ
Z (k) = i

−gµν+kµkν/M2
Z

k2−M2
Z

.
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−ig
2
√
2
U ∗
αiγ

μ(1− γ5)−ig
2
√
2
Uαiγ

μ(1− γ5)−ig
2cW

γμ(gfV − gfAγ
5)

f f
μ

Z

νi �−α
μ

W−

�−α νi

μ

W+

Figure 2: Feynman rules for weak interaction vertices.

The effective neutrino propagator (Wightman function) iS<,>ji,eff in Fig. 1
is [4]

iS<,>ji,eff = Ajj(q)F<,>
ji (q, q′)Aii(q′), (12)

where the spectral function A is

Aij(k) = π sgn(k0)(/k +mi)δ(k
2 −m2

i )δij (13)

and the effective two-point vertex F is defined as

F<,>
ij (q, q′) = 4(2π)3δ3(~q − ~q′)

∑
h,±

Ph(q̂)θ
q
±(θ

q′

±f
m<
ijh±(~q) + θq

′

∓f
c<
ijh±(~q)). (14)

Here

Ph(q̂) =
1

2
(1 + hγ0q̂ · ~γγ5) (15)

with q̂ = ~q/ |~q| is the usual helicity projector and θq± = θ(±q0).
When calculating corrections to the hermitean (dispersive) self energy

Σh, we include an additional factor −i to every graph and use the two-point
function F<

ji (q, q
′), from which the vacuum contribution has been removed.

The distribution functions fm,c may depend on time, but this dependence
is suppressed here for the sake of simplicity.

3.2 On-shell energies and momenta

We will write the on-shell energy corresponding to mass mi and three-mo-
mentum ~q as ωi(~q) =

√
~q2 +m2

i . If the momentum ~q is implicitly clear
from the context, it will be suppressed. To simplify the expressions further,
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we define the on-shell four-momentum qµi± = (±ωi(~q), ~q), for which clearly
q2i± = m2

i .
For any three-momentum ~q we write its norm and the corresponding

gamma matrix as Q = |~q| and γq = ~q · ~γ. Similarly we define the four-
momentum q0h = (1, h~q/Q), which has the properties γ0/q0hγ

0 = /q0−h and

q20h = 0. In the helicity projectors we will also use the normalized three-
momentum q̂ = ~q/Q.

If there are multiple momenta ~q1, ~q2 etc., we will write the on-shell four-
momentum corresponding to ~q1 as qµ1i±. Similarly we will use the notations
Q1, q10h, and q̂1.

3.3 Fermion propagators

According to the Feynman rules presented in Section 3.1, a fermionic prop-
agator is always of the form

Ajj(q)F<,>
ji (q, q′)Aii(q′) (16)

and the four-momenta q and q′ are integrated over. Using the definitions for
the spectral function A and the two-point vertex function F , we find∫

d4q

(2π)4
d4q′

(2π)4
Ajj(q)F<,>

ji (q, q′)Aii(q′)G(q, q′)

=
∑
h,±

∫
d3q

(2π)3
1

2ωi(~q)2ωj(~q)

(fm<,>jih± (~q)(/qj± +mj)Ph(q̂)(/qi± +mi)G(qj±, qi±)

+ f c<,>jih± (~q)(/qj± +mj)Ph(q̂)(/qi∓ +mi)G(qj±, qi∓)).

(17)

Here the function G(q, q′) represents the rest of the diagram, which typically
depends (through vertex delta functions) on both q and q′.

3.4 Dirac algebra

The following result of a trivial calculation will significantly help simplifying
the Dirac algebra appearing in the calculations:

(1− γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1 + γ5)

= (1− γ5)(±ωjγ0 − γq +mj)(1 +
h

Q
γ0γqγ

5)

× (±′ωiγ0 − γq +mi)(1 + γ5)

= 2(−hQ(mi +mj)±miωj ±′ mjωi)/q0h(1 + γ5).

(18)

9



Here ± and ±′ are two independent signs. Similarly, we find

(1 + γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1 + γ5)

= 2(mimj −Q2 ±±′ωiωj + hQ(±′ωi ∓ ωj))γ0/q0h(1 + γ5).
(19)

To be able to more conveniently use these results, we adopt the notations

A±±
′

ji (Q, h) = −hQ(mi +mj)±miωj ±′ mjωi (20)

and
B±±

′

ji (Q, h) = mimj −Q2 + (±ωj)(±′ωi) + hQ(±′ωi ∓ ωj). (21)

Using these, we get

(1− γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1 + γ5)

= 2A±±
′

ji (Q, h)/q0h(1 + γ5)
(22)

and

(1 + γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1 + γ5)

= 2B±±
′

ji (Q, h)γ0/q0h(1 + γ5).
(23)

Similarly, we find

(1− γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1− γ5)
= 2B±±

′

ji (Q,−h)γ0/q0−h(1− γ
5)

(24)

and

(1 + γ5)(/qj± +mj)(1 + hγ0q̂ · ~γγ5)(/qi±′ +mi)(1− γ5)
= 2A±±

′

ji (Q,−h)/q0−h(1− γ
5).

(25)

Note how helicity changes sign in Eqs. (24) and (25). Also note that when
we replace (1 + hγ0q̂ · ~γγ5) by the helicity projector, we divide by two and
thus lose the coefficient 2 in front of A and B.

Using Eq. (22), we find another result for three three-momenta ~qn (n =
1, 2, 3):

γσ(1− γ5)(/q3j±3
+mj)(1 + h3γ

0q̂3 · ~γγ5)(/q3k±′
3

+mk)

× γλ(1− γ5)(/q2k±2
+mk)(1 + h2γ

0q̂2 · ~γγ5)(/q2l±′
1

+ml)

× γν(1− γ5)(/q1l±1
+ml)(1 + h1γ

0q̂1 · ~γγ5)(/q1i±′
1

+mi)

× γµ(1− γ5)
= 8A

±3±′
3

jk (Q3, h3)A
±2±′

2
kl (Q2, h2)A

±1±′
1

li (Q1, h1)

× γσ/q30h3γ
λ
/q20h2

γν/q10h1
γµ(1− γ5).

(26)
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Furthermore, if we contract this result with gµλgνσ, we obtain7

− 64A
±3±′

3
jk (Q3, h3)A

±2±′
2

kl (Q2, h2)A
±1±′

1
li (Q1, h1)

× (q10h1 · q30h3)/q20h2(1− γ
5).

(27)

The dot product above is simply q10h1 · q30h3 = 1− h1h3
Q1Q3

~q1 · ~q3.
Using Eqs. (22), (23), and (25) we find

γσ(1− γ5)(/q3j±3
+mj)(1 + h3γ

0q̂3 · ~γγ5)(/q3k±′
3

+mk)

× γλ(1− γ5)(/q2k±2
+mk)(1 + h2γ

0q̂2 · ~γγ5)(/q2l±′
1

+ml)

× γν(1 + γ5)(/q1l±1
+ml)(1 + h1γ

0q̂1 · ~γγ5)(/q1i±′
1

+mi)

× γµ(1− γ5)
= 8A

±3±′
3

jk (Q3, h3)B
±2±′

2
kl (Q2,−h2)B±1±′

1
li (Q1, h1)

× γσ/q30h3γ
λγ0/q20−h2

γνγ0/q10h1
γµ(1− γ5),

(28)

and contracting this with gµλgνσ yields

32A
±3±′

3
jk (Q3, h3)B

±2±′
2

kl (Q2,−h2)B±1±′
1

li (Q1, h1)

× /q10−h1/q30−h3/q20h2(1− γ
5).

(29)

In analogue to this we find

γσ(1− γ5)(/q3j±3
+mj)(1 + h3γ

0q̂3 · ~γγ5)(/q3k±′
3

+mk)

× γλ(1 + γ5)(/q2k±2
+mk)(1 + h2γ

0q̂2 · ~γγ5)(/q2l±′
1

+ml)

× γν(1− γ5)(/q1l±1
+ml)(1 + h1γ

0q̂1 · ~γγ5)(/q1i±′
1

+mi)

× γµ(1− γ5)
= 8B

±3±′
3

jk (Q3,−h3)B±2±′
2

kl (Q2, h2)A
±1±′

1
li (Q1, h1)

× γσγ0/q30−h3γ
λγ0/q20h2

γν/q10h1
γµ(1− γ5),

(30)

and the same contraction leads to

32B
±3±′

3
jk (Q3,−h3)B±2±′

2
kl (Q2, h2)A

±1±′
1

li (Q1, h1)

× /q20h2/q10−h1/q30−h3(1− γ
5).

(31)
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µ

f(q′) f(q)

Zµ(k)

Figure 3: A fermion loop Cµ
f (k) with one external Z boson.

3.5 Fermion loops

In the diagrams we calculate in Section 4 various fermion loops arise. We
calculate them here, with all the external vectors amputated. The three loops
calculated here are those appearing in Figs. 3, 4, and 5.

The fermion loop of Fig. 3 with one external Z boson (with momentum
k) takes the following form according to the Feynman rules of Section 3.1:

Cµ
f (k) =

∫
d4q

(2π)4
d4q′

(2π)4
(2π)4δ4(k + q − q′)

× (−1)Tr(Aff (q)F<
ff (q, q

′)Aff (q′)
−ig
2cW

γµ(gfV − gfAγ5)),
(32)

7 Here we use the properties γµγ
αγβγγγµ = −2γγγαγβ and γνγ

αγβγν = 4gαβ .
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where f denotes the fermion in question. Using Eq. (17), we find

Cµ
f =

ig

2cW

∑
h,±

∫
d3q

(2π)3
1

4ωf (~q)2

× [fm<ffh±(~q)(2π)
4δ4(k)

× Tr((/qf± +mf )Ph(q̂)(/qf± +mf )γ
µ(gfV − gfAγ5))

+ f c<ffh±(~q)(2π)
4δ(k0 ∓ 2ωf (Q))δ

3(~k)

× Tr((/qf± +mf )Ph(q̂)(/qf∓ +mf )γ
µ(gfV − gfAγ5))].

(33)

By Eqs. (22) and (25) we have

Tr((/qf± +mf )Ph(q̂)(/qf±′ +mf )γ
µ(1±′′ γ5))

=
1

2
A±±

′

ff (Q,∓′′h) Tr(/q0∓′′h
γµ(1±′′ γ5))

= 2A±±
′

ff (Q,∓′′h)qµ0∓′′h.

(34)

Writing (gfV − gfAγ5) = 1
2
(gfV − gfA)(1+ γ5)+ 1

2
(gfV + gfA)(1− γ5) and using the

above result, we find

Cµ
f (k) =

ig

2cW

∑
h,±

∫
d3q

(2π)3
1

4ωf (~q)2

× [fm<ffh±(~q)(2π)
4δ4(k)

× ((gfV − gfA)A±±ff (Q,−h)qµ0−h + (gfV + gfA)A
±±
ff (Q, h)q

µ
0h)

+ f c<ffh±(~q)(2π)
4δ(k0 ∓ 2ωf (Q))δ

3(~k)

× ((gfV − gfA)A±∓ff (Q,−h)qµ0−h + (gfV + gfA)A
±∓
ff (Q, h)q

µ
0h)].

(35)

If the distribution functions fm,c<ffh±(~q) are independent of either the direction

of ~q, then Ci
f (k) = 0 due to the symmetry in the integral. Even in the absence

of this symmetry, the result for Cµ
f (k) can be further simplified by studying

the components C0
f (k) and C

i
f (k) separately, since q

0
0h = 1 and qi0h = hqi/Q.

A lepton loop with two externalW bosons of momenta k and k′ as shown
in Fig. 4 takes the following form:

C<νµ
W (k, k′) =

∑
α,β,i,j

∫
d4q1
(2π)4

d4q′1
(2π)4

d4q2
(2π)4

d4q′2
(2π)4

× (2π)4δ4(k′ + q2 − q′1)(2π)4δ4(k + q′2 − q1)

× (−1)Tr(Aββ(q1)F<
βα(q1, q

′
1)Aαα(q′1)

−ig
2
√
2
Uαjγ

µ(1− γ5)

×Ajj(q2)F>
ji (q2, q

′
2)Aii(q′2)

−ig
2
√
2
U∗βiγ

ν(1− γ5)).

(36)
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μ ν

W−μ(k′) W−ν(k)

�−α (q
′
1) �−β (q1)

νi(q
′
2)νj(q2)

Figure 4: A fermion loop C<νµ
W (k, k′) with two external W bosons.

Using Eq. (17) gives

C<νµ
W (k, k′) =

g2

8

∑
α,β,i,j

∑
h1,±1,h2,±2

UαjU
∗
βi

×
∫

d3q1
(2π)3

d3q2
(2π)3

1

2ωα(~q1)2ωβ(~q1)

1

2ωi(~q2)2ωj(~q2)

× [fm<βαh1±1
(~q1)f

m>
jih2±2

(~q2)

× (2π)4δ4(k′ + q2j±2 − q1α±1)(2π)
4δ4(k + q2i±2 − q1β±1)

× Tr((/q1β±1
+mβ)Ph1(q̂1)(/q1α±1

+mα)γ
µ(1− γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i±2

+mi)γ
ν(1− γ5))

+ fm<βαh1±1
(~q1)f

c>
jih2±2

(~q2)

× (2π)4δ4(k′ + q2j±2 − q1α±1)(2π)
4δ4(k + q2i∓2 − q1β±1)

× Tr((/q1β±1
+mβ)Ph1(q̂1)(/q1α±1

+mα)γ
µ(1− γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i∓2

+mi)γ
ν(1− γ5))

+ f c<βαh1±1
(~q1)f

m>
jih2±2

(~q2)

× (2π)4δ4(k′ + q2j±2 − q1α∓1)(2π)
4δ4(k + q2i±2 − q1β±1)

× Tr((/q1β±1
+mβ)Ph1(q̂1)(/q1α∓1

+mα)γ
µ(1− γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i±2

+mi)γ
ν(1− γ5))

+ f c<βαh1±1
(~q1)f

c>
jih2±2

(~q2)

× (2π)4δ4(k′ + q2j±2 − q1α∓1)(2π)
4δ4(k + q2i∓2 − q1β±1)

× Tr((/q1β±1
+mβ)Ph1(q̂1)(/q1α∓1

+mα)γ
µ(1− γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i∓2

+mi)γ
ν(1− γ5))].

(37)
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Using Eq. (22)8 we can evaluate the four traces above:

Tr((/q1β±1
+mβ)Ph1(q̂1)(/q1α±′

1

+mα)γ
µ(1− γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i±′

2

+mi)γ
ν(1− γ5))

= 2A
±1±′

1
βα (Q1, h1)A

±2±′
2

ji (Q2, h2)T
µν
+ (q10h1 , q20h2),

(38)

where we have denoted

T µν± (a, b) =
1

4
Tr(γν/aγµ/b(1± γ5))

= aµbν + aνbµ − a · bgµν ± iενγµδaγbδ.
(39)

Thus

C<νµ
W (k, k′) =

g2

4

∑
α,β,i,j

∑
h1,±1,h2,±2

UαjU
∗
βi

×
∫

d3q1
(2π)3

d3q2
(2π)3

1

2ωα(~q1)2ωβ(~q1)

1

2ωi(~q2)2ωj(~q2)

× [fm<βαh1±1
(~q1)f

m>
jih2±2

(~q2)A
±1±1
βα (Q1, h1)A

±2±2
ji (Q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1α±1)(2π)
4δ4(k + q2i±2 − q1β±1)

+ fm<βαh1±1
(~q1)f

c>
jih2±2

(~q2)A
±1±1
βα (Q1, h1)A

±2∓2
ji (Q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1α±1)(2π)
4δ4(k + q2i∓2 − q1β±1)

+ f c<βαh1±1
(~q1)f

m>
jih2±2

(~q2)A
±1∓1
βα (Q1, h1)A

±2±2
ji (Q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1α∓1)(2π)
4δ4(k + q2i±2 − q1β±1)

+ f c<βαh1±1
(~q1)f

c>
jih2±2

(~q2)A
±1∓1
βα (Q1, h1)A

±2∓2
ji (Q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1α∓1)(2π)
4δ4(k + q2i∓2 − q1β±1)]

× T µν+ (q10h1 , q20h2).

(40)

A similar quark loop can be treated in exactly the same way. We only need
to replace the PMNS-matrix U by the CKM-matrix V and use the masses of
quarks instead of leptons.

For a fermion loop with two external Z’s we may proceed in a similar
manner. We take a fermion loop consisting of a fermion f 9 and sum over all

8 We also need the trace formulas Tr(γαγβγγγδ) = 4(gαβgγδ + gαδgβγ − gαγgβδ) and
Tr(γαγβγγγδγ5) = 4iεαβγδ.

9 Here i and j are used as generic flavour indices corresponding to the fermion f . This
is natural when f = ν, but for simplicity we use here the same indices when f = `−,
although α and β would be more natural.
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μ ν

Zμ(k′) Zν(k)

fj(q
′
1) fi(q1)

fi(q
′
2)fj(q2)

Figure 5: A fermion loop C<νµ
Z (k, k′) with two external Z bosons.

f . The loop is shown in Fig. 5 and takes the form

C<νµ
Z (k, k′) =

∑
f

∑
i,j

∫
d4q1
(2π)4

d4q′1
(2π)4

d4q2
(2π)4

d4q′2
(2π)4

× (2π)4δ4(k′ + q2 − q′1)(2π)4δ4(k + q′2 − q1)

× (−1)Tr(Aii(q1)F<
ij (q1, q

′
1)Ajj(q′1)

−ig
2cW

γµ(gfV − gfAγ5)

×Ajj(q2)F>
ji (q2, q

′
2)Aii(q′2)

−ig
2cW

γν(gfV − gfAγ5)).

(41)

We may generalize Eq. (38) to obtain the following two results:

Tr((/q1i±1
+mi)Ph1(q̂1)(/q1j±′

1

+mj)γ
µ(1± γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i±′

2

+mi)γ
ν(1± γ5))

= 2A
±1±′

1
ij (Q1,∓h1)A±2±′

2
ji (Q2,∓h2)T µν∓ (q10∓h1 , q20∓h2)

(42)

and

Tr((/q1i±1
+mi)Ph1(q̂1)(/q1j±′

1

+mj)γ
µ(1± γ5)

× (/q2j±2
+mj)Ph2(q̂2)(/q2i±′

2

+mi)γ
ν(1∓ γ5))

= 2B
±1±′

1
ij (Q1,∓h1)B±2±′

2
ji (Q2,±h2)T̃ µν± (q10±h1 , q20±h2),

(43)

where we have denoted

T̃ µν± (a, b) = 2δµ0T
0ν
± (a, b)− T µν± (a, b). (44)
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Note that the traces in Eq. (43) are of the form T µν± (q10±h1 , q20±h2) rather
than T µν± (q10∓h1 , q20±h2). This is due to γ0/q10∓h1

γ0 = /q10±h1
.

Thus, in analogue to the W boson case, we obtain

C<νµ
Z (k, k′) =

g2

2c2W

∑
f

∑
i,j

∑
h1,±1,h2,±2

×
∫

d3q1
(2π)3

d3q2
(2π)3

1

2ωi(~q1)2ωj(~q1)

1

2ωi(~q2)2ωj(~q2)

× {fm<ijh1±1
(~q1)f

m>
jih2±2

(~q2)E
fµν
±1±1±2±2

(~q1, h1, ~q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1j±1)(2π)
4δ4(k + q2i±2 − q1i±1)

+ fm<ijh1±1
(~q1)f

c>
jih2±2

(~q2)E
fµν
±1±1±2∓2

(~q1, h1, ~q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1j±1)(2π)
4δ4(k + q2i∓2 − q1i±1)

+ f c<ijh1±1
(~q1)f

m>
jih2±2

(~q2)E
fµν
±1∓1±2±2

(~q1, h1, ~q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1j∓1)(2π)
4δ4(k + q2i±2 − q1i±1)

+ f c<ijh1±1
(~q1)f

c>
jih2±2

(~q2)E
fµν
±1∓1±2∓2

(~q1, h1, ~q2, h2)

× (2π)4δ4(k′ + q2j±2 − q1j∓1)(2π)
4δ4(k + q2i∓2 − q1i±1)},

(45)

where

Efµν
±1±′

1±2±′
2
(~q1, h1, ~q2, h2)

=
1

4
[(gfV + gfA)

2A
±1±′

1
ij (Q1, h1)A

±2±′
2

ji (Q2, h2)T
µν
+ (q10h1 , q20h2)

+ (gfV − gfA)2A
±1±′

1
ij (Q1,−h1)A±2±′

2
ji (Q2,−h2)T µν− (q10−h1 , q20−h2)

+ (gfV + gfA)(g
f
V − gfA)B

±1±′
1

ij (Q1,−h1)B±2±′
2

ji (Q2, h2)

× T̃ µν+ (q10h1 , q20h2)

+ (gfV + gfA)(g
f
V − gfA)B

±1±′
1

ij (Q1, h1)B
±2±′

2
ji (Q2,−h2)

× T̃ µν− (q10h1 , q20h2)].

(46)

The tensors T µν± (a, b) and T̃ µν± (a, b) defined in Eqs. (39) and (44) obey the
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following relations:

T µν± (a, b) = T νµ∓ (a, b) = T µν∓ (b, a)

T 00
± (a, b) = a0b0 + ~a ·~b
T ii±(a, b) = a0b0 − ~a ·~b+ 2aibi

T 0i
± (a, b) = (−a0~b− b0~a± i~a×~b)i
T ij± (a, b) = aibj + ajbi ± iεijk(b0ak − a0bk), i 6= j

T̃ 00
± (a, b) = T 00

± (a, b)

T̃ 0i
± (a, b) = T 0i

± (a, b)

T̃ i0± (a, b) = −T i0± (a, b)
T̃ ij± (a, b) = −T ij± (a, b).

(47)

3.6 Gauge boson propagator expansion

The (anti-)Feynman propagator of a non-decaying boson of mass M is

iΔνµ(k) = i
−gµν + kµkν/M

2

k2 −M2 + iMΓ
. (48)

The leading decay width corrections is quadratic, and in the case of weak
interactions Γ ∼ GF , so the arising corrections to the hermitean self energy
of neutrinos calculated below in Section 4.2 is of order G3

F . Such terms
will, however, be neglected in the approximations described in more detail in
Section 4.1, whence we drop decay width contributions entirely from iΔνµ(k).
We may expand this propagator to next-to-leading order as

−gµν + kµkν/M
2

k2 −M2
=M−2gµν −M−4(kµkν − k2gµν), (49)

assuming that k2 is much smaller thanM2. Where Fermi theory is sufficient,
only the first term will be included. In the absence of decay width the
full propagator iΔνµ(k, k

′) factorizes in the form iΔνµ(k, k
′) = (2π)2δ4(k −

k′)iΔνµ(k), whence we will only use the propagator iΔνµ(k). This is why the
Feynman rules given in Section 3.1 were slightly asymmetric with respect to
the description of momentum.

The case of the thermal propagator iΔ<
νµ(k, k

′) is different. Assuming that
temperature is well below M , the gauge field is not significantly thermally
excited. Thus the only nonzero term in iΔ<

νµ(k, k
′) to order M−4 arises

from a lepton loop like the ones in Figs. 4 and 5. But as the fermion loops
C<νµ
W (k, k′) and C<νµ

Z (k, k′) found above in Eqs. (40) and (45) in Section 3.5
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do not conserve energy, we may not simply write iΔ<
νµ(k, k

′) = (2π)2δ4(k −
k′)iΔ<

νµ(k) with iΔ
<
νµ(k) =M−3gµνΓ(k).

10

Instead, we have the fermion loops C<νµ
W (k, k′) and C<νµ

Z (k, k′) between
two leading order (anti-)Feynman propagators iΔνµ(k) = iM−2gµν , yielding

iΔ<νµ
W (k, k′) =M−4

W C<νµ
W (k, k′). (50)

and
iΔ<νµ

Z (k, k′) =M−4
Z C<νµ

Z (k, k′). (51)

Although energy is not conserved in these propagators, three-momentum is.
This is manifestly visible in Eqs. 82 and 83.

4 Self energies

4.1 Outline

For the equation of motion (101) in Section 5 we need Hermitean and ab-
sorptive (emissive) self energies of the neutrinos. These are calculated in
Sections 4.2 and 4.3, and further simplified in Section 4.4. The final forms of
the self energies are listed concisely in Section 4.5 with some remarks.

The self energies are evaluated at four-momentum p and incoming and
outgoing flavours i and j. To simplify the notations, we suppress p, i, and j
and write Σx = Σx

ji(p) for the various self energies Σx.
The calculations here will be done to order G2

F in the Fermi coupling
constant

GF =
g2

4
√
2M2

W

. (52)

This order of expansion determines the diagrams we embark on to calculate
and also the relevant expansion for the gauge boson propagators, which were
discussed in Section 3.6.

As the expansion in the Fermi coupling constant is essentially an expan-
sion in the inverse massM−1

W , we also make an expansion in the (not inverted)
masses of neutrinos. The relevant approximations are given in Section 4.4.1.
These approximations are not used in this thesis, but are presented because
they are likely to be useful in further research.

We work with vacuum renormalized fields, whence we need not calculate
any diagrams consisting of vacuum propagators only. We calculate two kinds

10 In the vacuum theory we have the expansion
−gµν+kµkν/M2

k2−M2 =M−2gµν−M−4(kµkν−
k2gµν)− iM−3Γgµν , which suggests that iΔ<

νµ(k) =M−3gµνΓ(k).
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νi(p)

μ ν

νi(q
′) νj(q) νj(p)

Z(k)

Figure 6: The Z loop diagram contributing to Σh, denoted by Σh,Z .

of self energies for neutrinos: the hermitean self energy describing the effect
of the medium on the virtual cloud of particles surrounding a (bare) neutrino,
and the absorptive self energy describing collisions with the medium.

4.2 Hermitean self energy

There are three diagrams contributing to the hermitean self energy Σh of
neutrinos: the Z loop diagram of Fig. 6 (this contribution is denoted by
Σh,Z), the W loop diagram of Fig. 7 (Σh,W ), and the tadpole diagram of
Fig. 6 (Σh,tad).

Using the Feynman rules presented in Section 3.1, we obtain

Σh,Z = −i
∫

d4q

(2π)4
d4q′

(2π)4
d4k

(2π)4
−ig
4cW

γν(1− γ5)

×Ajj(q)F<
ji (q, q

′)Aii(q′)
−ig
4cW

γµ(1− γ5)

× iΔνµ
Z (k)(2π)4δ4(k + q′ − p).

(53)

Using Eqs. (17) and (22), we find

Σh,Z =
ig2

16c2W

∑
h,±

∫
d3q

(2π)3
d4k

(2π)4
1

2ωi(~q)2ωj(~q)

× [fm<jih±(~q)A
±±
ji (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qi± − p)
+ f c<jih±(~q)A

±∓
ji (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qi± − p)]
× iΔνµ

Z (k).

(54)
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νi(p)

μ ν

�−α (q
′) �−β (q) νj(p)

W+(k)

Figure 7: The W loop diagram contributing to Σh, denoted by Σh,W .

With the expansion (49) for iΔνµ
Z (k, k′) we obtain

Σh,Z =
−g2
16c2W

∑
h,±

∫
d3q

(2π)3
d4k

(2π)4
1

2ωi(~q)2ωj(~q)

× [fm<jih±(~q)A
±±
ji (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qi± − p)
+ f c<jih±(~q)A

±∓
ji (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qi± − p)]
× [(M−2

Z + k2M−4
Z )gµν −M−4

Z kµkν ].

(55)

The W loop diagram of Fig. 7 behaves similarly:

Σh,W =
−g2
8

∑
h,±

∑
α,β

UαiU
∗
βj

∫
d3q

(2π)3
d4k

(2π)4
1

2ωα(~q)2ωβ(~q)

× [fm<βαh±(~q)A
±±
βα (Q, h)γ

ν
/q0hγ

µ(1− γ5)(2π)4δ4(k + qα± − p)
+ f c<βαh±(~q)A

±∓
βα (Q, h)γ

ν
/q0hγ

µ(1− γ5)(2π)4δ4(k + qα± − p)]
× [(M−2

W + k2M−4
W )gµν −M−4

W kµkν ].

(56)

For the tadpole diagram in Fig 8 we get

Σh,tad = −i
∑
f

∫
d4k

(2π)4
−ig
4cW

δijγµ(1− γ5)iΔλµ
Z (k)gλνC

ν
f (k). (57)

As for Σh,Z and Σh,W , we use Eq. (49) for the propagator iΔνµ
Z (k) to get

Σh,tad =
−ig
4cW

δij
∑
f

∫
d4k

(2π)4

× [(M−2
Z +M−4

Z k2)Cν
f (k)γν −M−4

Z kνC
ν
f (k)/k](1− γ5).

(58)
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νi(p)

μ

ν

Z(k′)

f(q′) f(q)

νj(p)

Z(k)

Figure 8: The tadpole diagram contributing to Σh, denoted by Σh,tad.

4.3 Absorptive and emissive self energy

The absorptive and emissive self energies Σ< and Σ> can be obtained from the
same calculations by reversing the signs < and > the distribution functions
f<,>. For simplicity, we will only calculate Σ< explicitly.

There are five diagrams contributing to the absorptive self energy Σ<,>

of neutrinos:

1. the diagram of Fig. 9 with one Z boson (this contribution is denoted
by Σ<,>,Z),

2. the diagram of Fig. 10 with one W boson (Σ<,>,W ),

3. the diagram of Fig. 11 with two Z bosons (Σ<,>,ZZ),

4. the diagram of Fig. 12 with one Z and one W (Σ<,>,WZ), and

5. the similar diagram of Fig. 13 with the roles of Z and W inverted
(Σ<,>,ZW ).

Note that there is no similar diagram for two W ’s11.

11 In such a diagram there will necessarily be a violation in fermion number or charge
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νi(p)

μ ν

Z(k′)

νi(q
′) νj(q) νj(p)

Z(k)

Figure 9: The one-Z diagram contributing to Σ<,>, denoted by Σ<,>,Z .

νi(p)

μ ν

Z(k′)

νi(q
′) νj(q) νj(p)

Z(k)

Figure 10: The one-W diagram contributing to Σ<,>, denoted by Σ<,>,W .

When calculating the self energy contribution Σ<,Z of Fig. 9, we may
proceed as in the calculation of Σh,Z in Section 4.2. We replace the propagator
iΔνµ

Z (k) of Eq. (49) with iΔνµ
Z (k, k′) of Eq. (51). We obtain

Σ<,Z =
ig2

16c2W

∑
h,±

∫
d3q

(2π)3
d4k

(2π)4
d4k′

(2π)4
1

2ωi(~q)2ωj(~q)

× [fm<jih±(~q)A
±±
ji (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qi± − p)
+ f c<jih±(~q)A

±∓
ji (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qi± − p)]
×M−4

Z C<νµ
Z (k, k′).

(59)

For the contribution Σ<,W in Fig. 10 we may proceed in the same manner

conservation. For Majorana neutrinos such a diagram does exist, but is proportional to
(Majorana) masses of neutrinos and would thus be omitted anyway in the approximations
of Section 4.4.
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σ

λ

ν

μ
νj(p)νi(p)

νl(q
′
2)

νk(q2) νj(q3)

νi(q
′
1)

νl(q1)

νk(q
′
3)

Z(k1)

Z(k2)

Figure 11: The two-Z diagram contributing to Σ<,>, denoted by Σ<,>,ZZ .

using Eq. (50) for the gauge boson propagator. We find

Σ<,W =
ig2

8

∑
h,±

∑
α,β

UαiU
∗
βj

∫
d3q

(2π)3
d4k

(2π)4
d4k′

(2π)4
1

2ωα(~q)2ωβ(~q)

× [fm<βαh±(~q)A
±±
βα (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qα± − p)
+ f c<βαh±(~q)A

±∓
βα (Q, h)γν/q0hγµ(1− γ

5)(2π)4δ4(k + qα± − p)]
×M−4

W C<νµ
W (k, k′).

(60)

By the Feynman rules presented in Section 3.1, we can easily construct
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the self-energy contribution Σ<,ZZ represented by Fig. 11:

Σ<,ZZ = −i
∑
k,l

∫
d4q1
(2π)4

d4q′1
(2π)4

d4q2
(2π)4

d4q′2
(2π)4

d4q3
(2π)4

d4q′3
(2π)4

× d4k1
(2π)4

d4k2
(2π)4

× −ig
4cW

γσ(1− γ5)Ajj(q3)F<
jk(q3, q

′
3)Akk(q′3)

× −ig
4cW

γλ(1− γ5)Akk(q2)F>
kl (q2, q

′
2)All(q′2)

× −ig
4cW

γν(1− γ5)All(q1)F<
li (q1, q

′
1)Aii(q′1)

−ig
4cW

γµ(1− γ5)

× iΔλµ
Z (k1)iΔ

σν
Z (k2)(2π)

4δ4(k′1 + q′1 − p)
× (2π)4δ4(k′2 + q′2 − q1)(2π)4δ4(k1 + q2 − q′3).

(61)

Since we only wish to calculate the self energies to order M−4
Z in Z boson

mass, we can immediately drop next-to-leading terms in Eq. (49) and simply
write

iΔλµ
Z (k1) = iM−2

Z gλµ (62)
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and similarly for iΔσν
Z (k2). With this and Eq. (17) we get

Σ<,ZZ = +i

(
g

4cWMZ

)4∑
k,l

∑
h1,±1

∑
h2,±2

∑
h3,±3

×
∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

d4k1
(2π)4

d4k2
(2π)4

× 1

2ωk(~q3)2ωj(~q3)

1

2ωl(~q2)2ωk(~q2)

1

2ωi(~q1)2ωl(~q1)

× γσ(1− γ5)(fm<jkh3±3
(~q3)(2π)

4δ4(k1 + q2k±2 − q3k±3)

× (/q3j±3
+mj)Ph3(q̂3)(/q3k±3

+mk)

+ f c<jkh3±3
(~q3)(2π)

4δ4(k1 + q2k±2 − q3k∓3)

× (/q3j±3
+mj)Ph3(q̂3)(/q3k∓3

+mk))

× γλ(1− γ5)(fm>klh2±2
(~q2)(2π)

4δ4(k2 + q2l±2 − q1l±1)

× (/q2k±2
+mk)Ph2(q̂2)(/q2l±2

+ml)

+ f c>klh2±2
(~q2)(2π)

4δ4(k2 + q2l∓2 − q1l±1)

× (/q2k±2
+mk)Ph2(q̂2)(/q2l∓2

+ml))

× γν(1− γ5)(fm<lih1±1
(~q1)(2π)

4δ4(k1 + q1i±1 − p)
× (/q1l±1

+ml)Ph1(q̂1)(/q1i±1
+mi)

+ f c<lih1±1
(~q1)(2π)

4δ4(k1 + q1i∓1 − p)
× (/q1l±1

+ml)Ph1(q̂1)(/q1i∓1
+mi))

× γµ(1− γ5)gλµgσν .

(63)

By Eqs. (26) and (27) and after carrying out the k1 and k2 integrals we
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obtain

Σ<,ZZ = −8i
(

g

4cWMZ

)4∑
k,l

∑
h1,±1

∑
h2,±2

∑
h3,±3

×
∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

× 1

2ωk(~q3)2ωj(~q3)

1

2ωl(~q2)2ωk(~q2)

1

2ωi(~q1)2ωl(~q1)

× [fm<jkh3±3
(~q3)f

m>
klh2±2

(~q2)f
m<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i±1 − q3k±3)

× A±3±3
jk (Q3, h3)A

±2±2
kl (Q2, h2)A

±1±1
li (Q1, h1)

+ fm<jkh3±3
(~q3)f

m>
klh2±2

(~q2)f
c<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i∓1 − q3k±3)

× A±3±3
jk (Q3, h3)A

±2±2
kl (Q2, h2)A

±1∓1
li (Q1, h1)

+ fm<jkh3±3
(~q3)f

c>
klh2±2

(~q2)f
m<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i±1 − q3k±3)

× A±3±3
jk (Q3, h3)A

±2∓2
kl (Q2, h2)A

±1±1
li (Q1, h1)

+ fm<jkh3±3
(~q3)f

c>
klh2±2

(~q2)f
c<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i∓1 − q3k±3)

× A±3±3
jk (Q3, h3)A

±2∓2
kl (Q2, h2)A

±1∓1
li (Q1, h1)

+ f c<jkh3±3
(~q3)f

m>
klh2±2

(~q2)f
m<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i±1 − q3k∓3)

× A±3∓3
jk (Q3, h3)A

±2±2
kl (Q2, h2)A

±1±1
li (Q1, h1)

+ f c<jkh3±3
(~q3)f

m>
klh2±2

(~q2)f
c<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i∓1 − q3k∓3)

× A±3∓3
jk (Q3, h3)A

±2±2
kl (Q2, h2)A

±1∓1
li (Q1, h1)

+ f c<jkh3±3
(~q3)f

c>
klh2±2

(~q2)f
m<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i±1 − q3k∓3)

× A±3∓3
jk (Q3, h3)A

±2∓2
kl (Q2, h2)A

±1±1
li (Q1, h1)

+ f c<jkh3±3
(~q3)f

c>
klh2±2

(~q2)f
c<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i∓1 − q3k∓3)

× A±3∓3
jk (Q3, h3)A

±2∓2
kl (Q2, h2)A

±1∓1
li (Q1, h1)]

× (q10h1 · q30h3)/q20h2(1− γ
5).

(64)
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ν
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νj(p)νi(p)

�−β (q
′
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�−γ (q2) νj(q3)

�−α (q
′
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�−β (q1)
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′
3)
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Z(k2)

Figure 12: The W -Z diagram contributing to Σ<,>, denoted by Σ<,>,WZ .

For Σ<,WZ (see Fig. 12) the calculation is similar. For charged leptons
g`V = −1

2
+2s2W and g`A = −1

2
, so the chiral part of the coupling of the charged

lepton to Z is

(g`V − g`Aγ5) =
1

2
(g`V − g`A)(1 + γ5) +

1

2
(g`V + g`A)(1− γ5)

= s2W (1 + γ5) +
1

2
(2s2W − 1)(1− γ5).

(65)

28



Thus we may use Eqs. (30) and (31) to see that we may replace the structure

− 8i

(
g

4cWMZ

)4∑
k,l

∑
h1,±1

∑
h2,±2

∑
h3,±3

∫
[· · · ]

×
∑

±′
1,±′

2,±′
3

fm,c<jkh3±3
(~q3)f

m,c>
klh2±2

(~q2)f
m,c<
lih1±1

(~q1)

× A±3±′
3

jk (Q3, h3)A
±2±′

2
kl (Q2, h2)A

±1±′
1

li (Q1, h1)

× (2π)4δ4(p+ q2k±2 − q1i±′
1
− q3k±′

3
)

× (q10h1 · q30h3)/q20h2(1− γ
5)

(66)

in Eq. (64) by

− 8i
g4

82c2WM
2
ZM

2
W

∑
α,β,γ,k

UαiU
∗
γk

∑
h1,±1

∑
h2,±2

∑
h3,±3

∫
[· · · ]

×
∑

±′
1,±′

2,±′
3

fm,c<jkh3±3
(~q3)f

m,c>
γβh2±2

(~q2)f
m,c<
βαh1±1

(~q1)

× (2π)4δ4(p+ q2γ±2 − q1α±′
1
− q3k±′

3
)

× [(s2W −
1

2
)A
±3±′

3
jk (Q3, h3)A

±2±′
2

γβ (Q2, h2)A
±1±′

1
βα (Q1, h1)

× (q10h1 · q30h3)/q20h2
− 1

2
s2WB

±3±′
3

jk (Q3, h3)B
±2±′

2
γβ (Q2,−h2)A±1±′

1
βα (Q1, h1)

× /q20h2/q10−h1/q30−h3 ](1− γ
5)

(67)

to obtain Σ<,WZ instead of Σ<,ZZ .
To find Σ<,ZW , we use Eqs. (28) and (29). The structure of Σ<,ZZ pre-
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Figure 13: The Z-W diagram contributing to Σ<,>, denoted by Σ<,>,ZW .

sented in Eq. (66) can be replaced by

− 8i
g4

82c2WM
2
ZM

2
W

∑
l,α,β,γ

UαlU
∗
γj

∑
h1,±1

∑
h2,±2

∑
h3,±3

∫
[· · · ]

×
∑

±′
1,±′

2,±′
3

fm,c<γβh3±3
(~q3)f

m,c>
βαh2±2

(~q2)f
m,c<
lih1±1

(~q1)

× (2π)4δ4(p+ q2β±2 − q1i±′
1
− q3β±′

3
)

× [(s2W −
1

2
)A
±3±′

3
γβ (Q3, h3)A

±2±′
2

βα (Q2, h2)A
±1±′

1
li (Q1, h1)

× (q10h1 · q30h3)/q20h2
− 1

2
s2WA

±3±′
3

γβ (Q3, h3)B
±2±′

2
βα (Q2, h2)B

±1±′
1

li (Q1, h1)

× /q10−h1/q30−h3/q20h2 ](1− γ
5).

(68)

The additional factor −1
2
in front of the second term in Eqs. (67) and (68)
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is due to the fact that in Eqs. (29) and (31) we have a factor 32 instead of
the factor −64 in Eq. (27).

4.4 Approximations and simplifications

Before simplifying further the expressions for the self energies obtained in
Sections 4.2 and 4.3 we make the assumptions that there are no significant
particle–antiparticle correlations. In practice, this implies that the distribu-
tion functions f c are all identically zero.

We also assume that the distributions fm are isotropic, that is fm<,>jih± (~q) =

fm<,>jih± (Q). We remark that this can only hold in one specific frame, because
Q is not Lorentz-invariant.

Furthermore, we rescale the functions A and B defined in Eqs. (20)
and (21) as follows:

Ã±±
′

ji (Q, h) =
1

2ωi2ωj
A±±

′

ji (Q, h) (69)

and

B̃±±
′

ji (Q, h) =
1

2ωi2ωj
B±±

′

ji (Q, h). (70)

Because we have taken f c = 0, we only need the functions Ã±±ji (Q, h) and

B̃±±ji (Q, h). For these

Ã±±ji (Q, h) =
1

4

[
−hQmi +mj

ωiωj
± mi

ωi
± mj

ωj

]
(71)

and

B̃±±ji (Q, h) =
1

4

[
mimj

ωiωj
− Q2

ωiωj
+ 1± hQ

(
1

ωj
− 1

ωi

)]
. (72)

For the diagonal elements we have

Ã±±ii (Q, h) =
mi

2ωi

[
−hQ

ωi
± 1

]
(73)

and

B̃±±ii (Q, h) =
m2
i

2ω2
i

. (74)
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4.4.1 Approximations for Ã±±ji (Q, h) and B̃±±ji (Q, h)

In the massless case mi = mj = 0 we have Ã±±ji (Q, h) = B̃±±ji (Q, h) = 0. For

small masses, we approximate ω−1i ≈ Q−1 − 1
2
Q−3m2

i to find

Ã±±ji (Q, h) ≈ −h± 1

8

[
2
mi

Q
+ 2

mi

Q
−
(
m3
i

Q3
+
m3
j

Q3

)]
+
h

8

(
mim

2
j

Q3
+
mjm

2
i

Q3

) (75)

and

B̃±±ji (Q, h) ≈ 1± h
8

m2
i

Q2
+

1∓ h
8

m2
j

Q2
+

1

4

mimj

Q2
, (76)

where terms of order m4
i and higher in neutrino mass have been dropped.

For charged leptons the mass scale may not be negligible. But in this
case flavour coherences is presumably small in comparison with neutrinos,
and the distributions fm,c<,>αβh± (~q) may be assumed to be diagonal.

4.4.2 Fermion loops

With the approximations at hand, the fermion loop Cµ
f (k) in Eq. (35) be-

comes

Cµ
f (k) =

ig

2cW
(2π)4δ4(k)δµ0

∑
h,±

∫ ∞
0

Q2dQ

2π2
fm<ffh±(Q)

× [gfV (Ã
±±
ff (Q, h) + Ã±±ff (Q,−h))

+ gfA(Ã
±±
ff (Q, h)− Ã±±ff (Q,−h))].

(77)

In the absence of helicity dependence in fm<ffh±(Q), this simplifies to

Cµ
f (k) =

ig

2cW
(2π)4δ4(k)δµ0

∑
h,±

∫ ∞
0

Q2dQ

2π2

× fm<ffh±(Q)

(
±gfV

mf

ωf
− gfA

mfQ

ω2
f

)
,

(78)

where Eq. (73) was used.
It is convenient to separate the delta functions and the coupling constant

g from the loop; to this end, we write

Cµ
f (k) = ig(2π)4δ4(k)δµ0 C̃f (79)
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whether helicity dependence is included or not.
The loop of Eq. (40) becomes

C<νµ
W (k, k′) =

g2

4
(2π)3δ3(~k − ~k′)

∑
α,β,i,j

∑
h1,±1,h2,±2

UαjU
∗
βi

×
∫

d3q1
(2π)3

d3q2
(2π)3

fm<βαh1±1
(Q1)f

m>
jih2±2

(Q2)

× Ã±1±1
βα (Q1, h1)Ã

±2±2
ji (Q2, h2)

× (2π)5δ(k′
0 ±2 ωj(Q2)∓1 ωα(Q1))

× δ(k0 ±2 ωi(Q2)∓1 ωβ(Q1))δ
3(~k + ~q2 − ~q1)

× T µν+ (q10h1 , q20h2).

(80)

Similarly for the loop with two Z bosons in Eq. (45) we obtain

C<νµ
Z (k, k′) =

g2

2c2W
(2π)3δ3(~k − ~k′)

∑
f

∑
i,j

∑
h1,±1,h2,±2

×
∫

d3q1
(2π)3

d3q2
(2π)3

fm<ijh1±1
(~q1)f

m>
jih2±2

(~q2)

× (2π)5δ(k′
0 ±2 ωj(Q2)∓1 ωj(Q1))

× δ(k0 ±2 ωi(Q2)∓1 ωi(Q1))δ
3(~k + ~q2 − ~q1)

× 1

4
{(gfV + gfA)

2Ã±1±1
ij (Q1, h1)Ã

±2±2
ji (Q2, h2)T

µν
+ (q10h1 , q20h2)

+ (gfV − gfA)2Ã±1±1
ij (Q1,−h1)Ã±2±2

ji (Q2,−h2)T µν− (q10−h1 , q20−h2)

+ (gfV + gfA)(g
f
V − gfA)

× [B̃±1±1
ij (Q1,−h1)B̃±2±2

ji (Q2, h2)T̃
µν
+ (q10h1 , q20h2)

+ B̃
±1±′

1
ij (Q1, h1)B̃

±2±′
2

ji (Q2,−h2)T̃ µν− (q10h1 , q20h2)]}.

(81)

We write the Eqs. (80) and (81) as

C<νµ
W (k, k′) = g2(2π)3δ3(~k − ~k′)C̃<νµ

W (k, k′) (82)

and

C<νµ
Z (k, k′) =

g2

c2W
(2π)3δ3(~k − ~k′)C̃<νµ

Z (k, k′), (83)

thus defining the functions C̃<νµ
W (k, k′) and C̃<νµ

Z (k, k′).
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4.4.3 Hermitean self energy

With these notations and approximations with cWMZ =MW , we obtain from
Eq. (55)12

Σh,Z =
g2

16

∑
h,±

∫ ∞
0

dQ

2π2
Q2fm<jih±(Q)Ã

±±
ji (Q, h)

× [2M−2
W γ0

+ c2WM
−4
W (p2 + 2Q2 + 3m2

i − 2hQ(p0 ± ωi)− 2p0(p0 ∓ ωi))γ0
+ 2c2WM

−4
W (p0 + hQ∓ ωi)γp](1− γ5).

(84)

All terms antisymmetric in ~q have dropped, since they vanish because of the
assumed spherical symmetry of fm<jih±(Q).

The same simplifications for Eq. (56) yield

Σh,W =
g2

8

∑
αβ

UαiU
∗
βj

∑
h,±

∫ ∞
0

dQ

2π2
Q2fm<βαh±(Q)Ã

±±
βα (Q, h)

× [2M−2
W γ0

+M−4
W (p2 + 2Q2 + 3m2

α − 2hQ(p0 ± ωα)− 2p0(p0 ∓ ωα))γ0
+ 2M−4

W (p0 + hQ∓ ωα)γp](1− γ5).

(85)

Let us then turn to the tadpole diagram of Fig. 8, which is presented in
Eq. (58). Eq. (79) demonstrates that Cν

f (k) is proportional to δ
4(k), whence

we obtain

Σh,tad =
g2

4M2
W

cW δij

(∑
f

C̃f

)
γ0(1− γ5), (86)

where the coefficient C̃f is defined in Eq. (79).

4.4.4 Absorptive self energy

For the term Σ<,Z and Σ<,W of Eqs. (59) and (60), we use Eqs. (83) and (82)
to obtain

Σ<,Z =
ig4

16M4
W

∑
h,±

∫
d3q

(2π)3
dk′0

2π

× fm<jih±(Q)Ã
±±
ji (Q, h)γν/q0hγµ(1− γ

5)

× C̃<νµ
Z (p− qi±, (k′0, ~p− ~q))

(87)

12 In the term of order M−4Z we have k2γµ/q0hγ
µ − /k/q0h/k = −k2/q0h − 2k · q0h/k and in

the leading term k2γµ/q0hγ
µ = −2k2/q0h.
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and

Σ<,W =
ig4

8M4
W

∑
h,±

∑
α,β

UαiU
∗
βj

∫
d3q

(2π)3
dk′0

2π

× fm<βαh±(Q)Ã
±±
βα (Q, h)γν/q0hγµ(1− γ

5)

× C̃<νµ
W (p− qα±, (k′0, ~p− ~q)).

(88)

We note that in Eqs. (80) and (81) k′0 only appears in a delta function
(2π)δ(k′0 − . . . ). Thus we get easily for any four-vector a

C̃<νµ
W (a) =

∫
dk′0

2π
C̃<νµ
W (a, (k′

0
,~a))

=
1

4

∑
α,β,i,j

∑
h1,±1,h2,±2

UαjU
∗
βi

×
∫

d3q1
(2π)3

d3q2
(2π)3

fm<βαh1±1
(Q1)f

m>
jih2±2

(Q2)

× Ã±1±1
βα (Q1, h1)Ã

±2±2
ji (Q2, h2)

× (2π)4δ4(a+ q2i±2 − q1β±1)

× T µν+ (q10h1 , q20h2)

(89)

and

C̃<νµ
Z (a) =

∫
dk′0

2π
C̃<νµ
Z (a, (k′

0
,~a))

=
1

2

∑
f

∑
i,j

∑
h1,±1,h2,±2

×
∫

d3q1
(2π)3

d3q2
(2π)3

fm<ijh1±1
(Q1)f

m>
jih2±2

(Q2)

× (2π)4δ4(a+ q2i±2 − q1j±1)

× 1

4
{(gfV + gfA)

2Ã±1±1
ij (Q1, h1)Ã

±2±2
ji (Q2, h2)

× T µν+ (q10h1 , q20h2)

+ (gfV − gfA)2Ã±1±1
ij (Q1,−h1)Ã±2±2

ji (Q2,−h2)
× T µν− (q10−h1 , q20−h2)

+ (gfV + gfA)(g
f
V − gfA)

× [B̃±1±1
ij (Q1,−h1)B̃±2±2

ji (Q2, h2)T̃
µν
+ (q10h1 , q20h2)

+ B̃
±1±′

1
ij (Q1, h1)B̃

±2±′
2

ji (Q2,−h2)T̃ µν− (q10h1 , q20h2)]}.

(90)
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With these notations,

Σ<,Z =
ig4

16M4
W

∑
h,±

∫
d3q

(2π)3

× fm<jih±(Q)Ã
±±
ji (Q, h)γν/q0hγµ(1− γ

5)

× C̃<νµ
Z (p− qi±)

(91)

and

Σ<,W =
ig4

8M4
W

∑
h,±

∑
α,β

UαiU
∗
βj

∫
d3q

(2π)3

× fm<βαh±(Q)Ã
±±
βα (Q, h)γν/q0hγµ(1− γ

5)

× C̃<νµ
W (p− qα±).

(92)

With the approximations at hand, the absorptive self energy Σ<,ZZ in
Eq. (64) becomes

Σ<,ZZ =
−ig4
32M4

W

∑
k,l

∑
h1,±1

∑
h2,±2

∑
h3,±3

×
∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

× fm<jkh3±3
(~q3)f

m>
klh2±2

(~q2)f
m<
lih1±1

(~q1)

× (2π)4δ4(p+ q2k±2 − q1i±1 − q3k±3)

× Ã±3±3
jk (Q3, h3)Ã

±2±2
kl (Q2, h2)Ã

±1±1
li (Q1, h1)

× (q10h1 · q30h3)/q20h2(1− γ
5).

(93)
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Using Eqs. (66), (67), and (68), we also find

Σ<,WZ =
−ig4
8M4

W

∑
α,β,γ,k

UαiU
∗
γk

∑
h1,±1

∑
h2,±2

∑
h3,±3

×
∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

× fm<jkh3±3
(~q3)f

m>
γβh2±2

(~q2)f
m<
βαh1±1

(~q1)

× (2π)4δ4(p+ q2γ±2 − q1α±1 − q3k±3)

× [(s2W −
1

2
)Ã±3±3

jk (Q3, h3)Ã
±2±2
γβ (Q2, h2)Ã

±1±1
βα (Q1, h1)

× (q10h1 · q30h3)/q20h2
− 1

2
s2W B̃

±3±3
jk (Q3, h3)B̃

±2±2
γβ (Q2,−h2)Ã±1±1

βα (Q1, h1)

× /q20h2/q10−h1/q30−h3 ](1− γ
5)

(94)

and

Σ<,ZW =
−ig4
8M4

W

∑
l,α,β,γ

UαlU
∗
γj

∑
h1,±1

∑
h2,±2

∑
h3,±3

×
∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

× fm<γβh3±3
(~q3)f

m>
βαh2±2

(~q2)f
m<
lih1±1

(~q1)

× (2π)4δ4(p+ q2β±2 − q1i±1 − q3β±3)

× [(s2W −
1

2
)A
±3±′

3
γβ (Q3, h3)A

±2±′
2

βα (Q2, h2)A
±1±′

1
li (Q1, h1)

× (q10h1 · q30h3)/q20h2
− 1

2
s2WA

±3±′
3

γβ (Q3, h3)B
±2±′

2
βα (Q2, h2)B

±1±′
1

li (Q1, h1)

× /q10−h1/q30−h3/q20h2 ](1− γ
5).

(95)

4.5 Summary of self energies

The hermitean self energy consists of three parts:

Σh = Σh,Z + Σh,W + Σh,tad, (96)

and the parts were described above:

• Σh,Z (Fig. 6): Eq. (84).

37



• Σh,W (Fig. 7): Eq. (85).

• Σh,tad (Fig. 8): Eqs. (86), (79), and (77).

The absorptive self energy is a similar sum:

Σ< = Σ<,Z + Σ<,W + Σ<,ZZ + Σ<,WZ + Σ<,ZW , (97)

whose terms were also calculated in the preceeding sections:

• Σ<,Z (Fig. 9): Eqs. (91), (83), and (81).

• Σ<,W (Fig. 10): Eqs. (92), (82), and (80).

• Σ<,ZZ (Fig. 11): Eq. (93).

• Σ<,WZ (Fig. 12): Eq. (94).

• Σ<,ZW (Fig. 13): Eq. (95).

We remark again that in the fermion loops C̃<νµ
Z (k, k′) and C̃<νµ

W (k, k′)
defined by Eqs. (83) and (82) should also include summation over quark
loops. In the case of C̃<νµ

Z (k, k′) this is already implicitly included in the
sum over all fermions. The quark loops should be added to C̃<νµ

W (k, k′); we
replace the PMNS-matrix U by the CKM-matrix V and use the masses of
quarks instead of leptons, as already mentioned in Section 3.5.

The mass of t quark is even greater than that of Z [14, 15], so there
is no reason to include tt̄-loops in C̃<νµ

Z (k, k′) or any loops containing t in
C̃<νµ
W (k, k′). If the temperature is so high that the t field is thermally excited

to a significant extent, then also the gauge boson should be, rendering the
present approximation scheme inadequate.

The reader should also bear in mind that despite only Σ< was explicitly
calculated, we will also need Σ> in Section 5. We may obtain Σ> from Σ<

by interchanging all distribution functions fm<ijh± and fm>ijh±. The particle–

antiparticle correlation terms f c<,>ijh± were assumed to be negligible in Sec-
tion 4.4.

5 Equation of motion

The equation of motion in cQPA is Eq. (6). It is an equation of motion for
the Wightman functions S<,> and contains the self energies Σh and Σ<,> as
parameters.
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In Ref. [16] the equation of motion (6) was reduced to an equation of
motion for the hermitean local correlator S̄<,>~k

(t, t) = iS<,>~k
(t, t)γ0:

∂tS̄
<
~k
(t, t) = −i

[
H̃~k,eff (t), S̄

<
~k
(t, t)

]m
− 1

2

({
Σ̃>
~k
(t), S̄<~k (t, t)

}m − {Σ̃<
~k
(t), S̄>~k (t, t)

}m) (98)

with the effective Hamiltonian

H̃~k,eff (t) = H~k0(t) + Σ̃h
~k
(t)

Σ̃~k(t) =

∫
dk0

2π
Σ̄eff (k, t)A(k)A−1k0

Σ̄h = γ0Σh

Σ̄<,> = γ0iΣ<,>

(99)

and the generalized (anti)commutators13[
A,B

]m
= AB −B†A†, {A,B}m = AB +B†A†. (100)

This matrix approach is complicated to handle, but it can be reduced to a
set of scalar equations.

The most convenient scalar to use an equation of motion for the distri-
bution functions fm<,>ijh± . This can be done by taking projections and tracing
over Dirac indices as in Ref. [4]. The main equation of interest is Eq. (3.14)
of Ref. [4]:

∂tf
m
ijh± = ∓i2Δωijfmijh± −

k2m̄ij

2Ω2
mij

{m′

ω2 , f
−
h±}mij + iXm

h±[f ]ij + Cmh±[f ]ij. (101)

The first term on the right hand side generates neutrino oscillations in the
interactionless limit, the second one depends on the time derivative of mass,
the third one is due to mixing gradients and the fourth is due to collisions
with the thermal background. A more detailed description of the notations
used can be found in Section 3.1 of Ref. [4]. We will return to this equation
in Section 5.3 once we are ready to formulate it in the present situation.

The present situation differs slightly from what was done in Ref. [4] in
the following ways:

13These are (up to a constant) the hermitean and antihermitean parts of the ma-
trix AB, and thus [AB,C]m = [A,BC]m = [ABC, 1]m and similarly for {·, ·}m, so the
notation is slightly redundant. The purpose of this notation becomes clear when the
particle–antiparticle correlations are included and one has to introduce the corresponding
(anti)commutators [·, ·]c and {·, ·}c. See Ref. [4] for details.
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• We take the neutrino masses and mixing to be constant, thus dropping
all terms proportional to m′ or Ξ′.14

• We have neglected the particle–antiparticle correlations f c<,>ijh± .

• We have taken Σh into account, although it was neglected in the treat-
ment in Ref. [4]. We manifest this by replacing Ξ′ by −Σh. This is nat-
ural, because in the absence of Σh the effective Hamiltonian is Ĥ0−Ξ′

but with mixing gradients neglected, we have the effective Hamiltonian
Ĥ0 + Σh.

Before proceeding, we adopt the following notations:

ωi = ωi(P )

m̄ij =
1

2
(mi +mj)

Δmij =
1

2
(mi −mj)

ω̄ij =
1

2
(ωi + ωj)

Δωij =
1

2
(ωi − ωj)

Ω2
mij = m̄2

ij −Δω2
ij =

1

2
(ωiωj − P 2 +mimj)(m

ω

)
ij
=
mi

ωi
δij

(v~p)ij =
P

ωi
δij

Nijh± =
ω̄ij
m̄ij

± hPm̄ij

Ω2
mij

=
1
2
(miωj +mjωi)± hPm̄ij

Ω2
mij

(102)

Note that here we use the p as the four-momentum instead of k used in
Ref. [4].

5.1 Hermitean self energy

In Eq. (3.27) and the related discussion in Ref. [4] it was shown that the
mixing gradient term is Ξ′ij = Ξ′+ij + Ξ′−ijγ

5. In the calculations of Section 4
we found that Σh = (ahγ0 + bhγp)PL for some flavour matrices ah and bh15.

14The matrix Ξ′ is defined by Ξ′±ij ≡ i
2

(
V ∂tV

† ± U∂tU
†)
ij
, where U and V are the

unitary matrices used to (locally) diagonalize the mass matrix. For more details, see
Ref. [4].

15We remark that the upper index h here stands for ‘hermitean’ and is not related to
helicity. The lower index appearing below in ξh is a helicity index.
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The hermitean self energy appears as Phγ
0Σh when one solves for fm<ijh± from

the equation of motion similar to Eq. (6) to find Eq. (101). By calculation,
we find

Phγ
0(ahγ0 + bhγp)PL = Ph(a

h + hPbhγ5)PL = Ph(a
h − hPbh)PL. (103)

Since PhΞ
′ = Ph(Ξ

′++Ξ′−γ5) and Phγ
0Σh is to replace PhΞ

′, we can take
ξhij = Ξ′+ij = −Ξ′−ij, where

ξh =
1

2
(ah − hPbh). (104)

With ξ = Ξ′+ = −Ξ′−, the mixing gradient term in Eq. (101) can be
written as (cf. Eq. (3.16) of Ref. [4])

Xm
h±[f ]ij =

1

2

[
ξh

(
1∓ hv~p +Nijh∓

m

ω

)
, fm<h±

]m
ij

− PΔωij
2Ω2

mij

{
ξh (v~P ∓ h) , fm<h±

}m
ij
.

(105)

5.2 Collision term

In Ref. [4] the absorptive self energy is parametrized as

PhiΣ
<,>
eff (p, t) = Ph

(
γ0A<,>h + ~̂p · γ B<,>

h + C<,>
h + ihγ5D<,>

h

)
. (106)

In the calculations of Section 4 we found that iΣ<,> = (a<,>γ0 + b<,>γp)PL
for some flavour matrices a<,> and b<,>. A straightforward (cf. Eqs. (103)
and (104)) calculation yields

Ph(a
<,>γ0 + b<,>γp)PL = α<,>h /p0hPL = α<,>h Ph/p0h, (107)

where we have defined the flavour matrix

α<,>h =
1

2
(a<,> − hPb<,>). (108)

Using the parametrization (106), we find A<,>h = α<,>h , B<,>
h = −hα<,>h , and

C<,>
h = D<,>

h = 0.
In this case the collision term appearing in Eq. (101) is (cf. Eq. (4.21) of

Ref. [4])

Cmh±[f ]ij = −
1

4

({
α>h (1∓ hv~p +Nijh∓

m

ω
), fm<h±

}m
ij

− PΔωij
Ω2
mij

[
α>h (v~p ∓ h), fm<h±

]m
ij

− [>↔<]
)
.

(109)
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5.3 Formulation of the equation of motion

Inserting Eqs. (105) and (109) to Eq. (101), we obtain the equation of motion
in the present situation:

∂tf
m
ijh± = ∓i2Δωijfmijh± +Xm

h±[f ]ij + Cmh±[f ]ij, (110)

where Xm
h±[f ]ij and Cmh±[f ]ij are as they were defined in Eqs. (105) and (109).

This is the fundamental equation of motion, which we shall consider in more
detail in the subsequent sections.

In Eq. (110) the distribution fmijh± only depends on three-momentum ~p,
so the following question arises: On what energy should one evaluate ξh and
α<,>h ? The proper shell is that of the middle index in the sum, that is [4]

ξhij(p
0, ~p)Ajk(~p) = ξhij(ωj(P ), ~p)Ajk(~p). (111)

For practical numerical calculations the choice of shell may not make much
of a difference if the self-energies do not depend too strongly on energy.

We also remark that the flavour matrices ξh and α
<,>
h can be obtained by

ξh =
1

4
Tr(/p0−hΣ

h) and α<,>h =
1

4
Tr(/p0−hiΣ

<,>), (112)

although this may not be practically any more convenient than calculating Σh

and iΣ<,> and identifying the components a and b as in Eqs. (104) and (108).

5.4 Preliminary analysis

To gain a further insight to Eq. (110), our equation of motion, let us consider
it in a couple of simple special cases. A proper analysis of the implications of
the equation calls for a numerical approach, which is omitted here; instead,
we do simplifying approximations and recover the behaviour predicted by
simpler models.

The approximations are coarse and scenarios overly simplified in the fol-
lowing discussion; this is so to illustrate the basic phenomenology without
flooding the analysis with technical details.

5.4.1 No interactions

Let us first consider the case of no interactions. If densities of the neutrinos
and medium are low, this provides a reasonable approximation. The her-
mitean self energy in Eq. (96) is proportional to g2 and the absorptive self
energy to g4. Letting g = 0 thus makes these self energies vanish. Setting
MW =MZ =∞ would have the same effect.
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In this situation the equation of motion (110) simplifies dramatically:

∂tf
m
ijh± = ∓i2Δωijfmijh±. (113)

The equations for different sets of indices i, j, h, and ± fully decouple. Given
an initial condition fmijh±(~p, t = 0), the above equation has the solution

fmijh±(~p, t) = exp(∓i2Δωij(~p)t)fmijh±(~p, 0). (114)

Suppose now that the initial data is such that the distributions fmijh±(~p, t =

0) are peaked near some momentum ~k such that
∣∣∣~k∣∣∣ is much larger than

neutrino masses. Then

2Δωij(~p) ≈
m2
i −m2

j

2
∣∣∣~k∣∣∣ =

Δm2
ij

2E
. (115)

We use the notation E for
∣∣∣~k∣∣∣, since it gives the (approximate) energy for all

neutrinos.
Suppose furthermore that the initial state contains no antineutrinos. Since

neutrinos and antineutrinos are completely decoupled in the absence of in-
teractions, no antineutrinos will appear at any time. Different helicities are
not coupled either, so we drop the helicity index completely.

With these approximations, we obtain the time evolution

fmij (~p, t) = exp

(
−iΔm

2
ij

2E
t

)
fmij (~p, 0). (116)

The diagonal elements fmii (~p, t) describing particle densities (cf. Eq. (11))
remain constant, whereas the off-diagonals describing quantum coherence
between different flavours oscillate with angular frequencies Δm2

ij/2E. When
one transforms this time evolution to flavour basis, fmαβ(~p, t) = UαiU

∗
βjf

m
ij (~p, t),

the oscillation appears also in the diagonal elements, making it measurable
(via weak charged current interactions).

In other words, we recover the usual neutrino oscillations. One should
note that neutrino oscillations are a kinematical phenomenon and are there-
fore present even in the absence of any interactions. But if coherence is
omitted, no oscillations occur, as expected. For a more elaborate discussion
of neutrino oscillations in QFT (and, in particular, comparison between QM
and QFT), see Ref. [17].
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5.4.2 Diagonal distribution

Let us consider the case when the distribution functions fmijh± are diagonal
in flavour indices i and j. The equation of motion (110) does not guaran-
tee that an initially diagonal distribution remains diagonal, but under some
simplifying assumptions the off-diagonal entries do remain at zero.

When the distribution functions are diagonal, so are the hermitean and
absorptive self energies of Section 4.4.3 and 4.4.4 that do not contain W -
bosons (Σh,Z , Σh,tad, Σ<,Z , and Σ<,ZZ). Similarly the diagonality of the
charged lepton distribution functions implies that Σh,W is diagonal in the
flavour basis. The structures of Σ<,WZ and Σ<,ZW are more complicated in
this respect, but are nevertheless greatly simplified from the general case.

Let us neglect neutrino mixing16. Since the distribution functions are
diagonal and there is no mixing, all self energies are diagonal in flavour.
Using Eq. (104) we find that

Xm
h±[f ]ij = 0. (117)

That is, hermitean self energies do not contribute to time evolution in this
case, since the corresponding term in the equation of motion (110) vanishes.

If collisions were neglected, we would have ∂tf
m
iih± = 0 by Eq. (110).

Including collisions leads to nontrivial time evolution. The matrix α<,>h as
defined in Eq. (108) is diagonal, so Eq. (109) yields

Cmh±[f ]ii = − (1∓ hvi) (α>hiifm<iih± − α<hiifm>iih±), (118)

where vi = P/ωi is the velocity corresponding to the momentum P and
flavour i.

With this and Eq. (11) the equation of motion becomes

∂tnih = (1− hvi)[α<hii − (α>hii + α<hii)nih] (119)

for particles and

∂tn̄ih = (1− hvi)[α>hii − (α>hii + α<hii)n̄ih] (120)

for antiparticles. These equations have an immediate interpretation: The
term α>hii + α<hii corresponds to decay and α<hii (α

>
hii) is a source term for

(anti)particles.
The correspondence between α>hii + α<hii and decay is very natural. The

decay width is [4] Γ = i
2
(Σ> + Σ<), whence Eq. (112) gives

α>h + α<h =
1

2
Tr(/p0−hΓ). (121)

16The same result could be obtained by neglecting all diagrams which includeW -bosons.
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Eqs. (119) and (120) give decoupled equations of motion for particles and
antiparticles of different flavours. All coherence is absent, but this is only
due to the assumptions that there is initially no coherence and that neutrino
mixing is trivial.

In a more realistic case of nontrivial mixing, an initially diagonal distri-
bution functions do not remain diagonal. The self energy terms containing
W -bosons are in a generic situation nondiagonal, whence also ∂tf

m
ijh± is non-

diagonal by Eq. (110). That is, mixing in weak charged current interactions
generates coherence between neutrinos of different flavour.

As an example of the relation between mixing and coherence, consider
neutrino production. If a neutrino is created in a process of weak charged cur-
rent from a charged lepton of well-defined flavour (say, an electron), not only
is a superposition between massive neutrino states created, but also coher-
ence between them. This is by no means a surprise; rather, this observation
explains how cQPA can naturally and simply explain essential phenomena in
neutrino oscillations in the QFT framework.

6 Conclusions and outlook

The main result of this work is Eq. (110). This is the equation of motion
for neutrinos in the situation described in the beginning of Section 5. This
equation of motion with its terms as summarised in Sections 4.5, 5.1, and 5.2
gives a tool to analyse time evolution of a neutrino field.

Phenomena that could be studied with this equation of motion (or a suit-
able variant of it) include, for example, electroweak phase transition in the
early Universe and neutrino oscillations.[10] In addition, models of coherent
baryogenesis in the early Universe or neutrino transport in a supernova ex-
plosion could be conveniently described within the cQPA formalism. There
is an additional difficulty to the case of supernovae: special relativity gives
even locally a bad approximation of the structure of spacetime under such
extreme conditions, and therefore the full time evolution of a supernovae is
beyond the reach of the current formalism.

To fully grasp the implications of Eq. (110), one needs to solve the equa-
tion numerically. The preliminary analysis given in Section 5.4 demonstrates
that at a simple level the phenomenology of this equation of motion is as ex-
pected. In particular, the role of coherence in neutrino oscillations is stressed
and explained in the framwork of cQPA.

Applicability of the calculational tools developed in Section 3 is by no
means limited to neutrinos in the Standard Model. With these tools, the self
energy calculations of Section 4 could be carried out for any mixed massive
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spin-1
2
particles. These self energies lead to an equation of motion similar

to Eq. (110). With numerous simplifying assumptions, such as those used
in Section 5, the equation of motion turns out to be rather simple. This
does not, however, mean that the resulting phenomenology is trivial; the
coherence effects remain significant even in the interactionless limit described
in Section 5.4.1.

All these applications have to do with weak interactions. It would be in-
teresting to see how these tools could be generalized to, for example, quantum
chromodynamics (QCD). Weak interactions come with a nontrivial mixing
also in the quark sector and coherence may play an important role even in the
absence of weak interactions, but due to otherwise strong (nonperturbative)
interactions of the quarks the resulting phenomenology is difficult to anal-
yse. Without perturbative diagrammatic expansions for the self energies the
calculations of Section 4 and the subsequent analysis would be dramatically
changed.

In the light of the discussion of Section 5.4, it appears that cQPA is
a natural tool to study and explain phenomena where quantum mechani-
cal coherence, interacting field theory, effects due to nonzero temperature
and temporally varying medium, and special relativity have to be taken into
account simultaneously. A calculationally feasible tool to analyse such phe-
nomena can greatly help us understand, for example, the physics of the early
Universe.
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