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Goals

Building bridges between theory and practice now that we have a
various kinds of experts in the same room.

Describing how deep learning might help experimentalists and
theorists learn from each other.

Finding a reliable way to reconstruct as much information as possible
from the spectrum of free oscillations.

The audience telling me whether any of this is possible.
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The spectrum of free oscillations

Like any elastic object, the Earth can vibrate. These vibrations are
known as free oscillations.

The oscillations are excited by large earthquakes.

The amplitudes of different modes vary between different events, but
the frequencies are always the same.

The set of these frequencies is the spectrum of free oscillations.

About 10 000 first frequencies are known.
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Geometry

The classical point of view is that elastic waves do not go straight if
the medium is inhomogeneous.

My point of view is that elastic waves go straight no matter what, and
the inhomogeneity is seen as non-Euclidean geometry.

Compare to the change of paradigm from Newton’s to Einstein’s
gravity: The old view is that the Earth is on a curved path because of
a force exerted by the Sun. The new view is that the Earth goes
straight in a geometry influenced by the Sun.

In this “elastic geometry” the distance between two points is the
shortest travel time. All other geometrical quantities we need can be
derived from length.

There is one geometry for each wave speed. Due to several
polarizations there are several geometries. In the simplest case there
is a P-geometry and an S-geometry.
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Reconstructing geometry from spectrum

Problem (Actual problem)
Does the spectrum of free oscillations determine the geometry?

This problem is hard in theory (mathematical proof of uniqueness) and
practice (reliable numerical reconstruction from real data).

Problem (Meta problem)
How can theoretical and practical endeavors with the problem benefit from
each other?
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Reconstructing geometry from spectrum

Spectral inverse problems tend to be hard, and this one is no
exception.

We would like to reconstruct the geometry in the Cartesian
coordinates. Alas, this is not possible in anisotropic elasticity without
severe constraints. The elastic model is not sensitive to the
underlying Euclidean geometry and is therefore blind to it.

Once one has reconstruced the elastic geometry, one would like to
interpret it physically and chemically. I believe it is beneficial to
separate the two steps: first find the geometry, then interpret it.
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A simplified model

A large class of anisotropy can be modeled by a Riemannian manifold
(M, g) with boundary.

A spherically symmetric Earth is M = B̄(0, 1) ⊂ R3 with g = c−2e
and c(x) = c(|x|).
If g is a rotation invariant Riemannian metric on M , there is a radial
(more complicated if n = 2) diffeomorphism φ : M →M so that φ∗g
is of this form.
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A simplified model

The modes of free oscillations are modeled as scalar Neumann
eigenfunctions of the Laplace–Beltrami operator of (M, g).

Reconstructing a Riemannian manifold (M, g) from the Neumann
spectrum of ∆g

≈
Reconstructing elliptically inhomogeneous elastic object from the
spectrum of free oscillations.
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A simplified model

We need geometrical assumptions on our spherical Earth.

Definition
A radial sound speed c(r) satisfies the Herglotz condition if

d

dr

(
r

c(r)

)
> 0

for all r ∈ (0, 1].

Intuitively, this means that geodesics (straight lines) curve outwards.
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A simplified model

We also need regularity for our geometry in order to prove anything.

The Earth does not fully satisfy our assumptions:

The radial Preliminary Reference Earth Model (PREM) is not smooth.
Both pressure and shear waves have jump discontinuities.

In addition, the shear wave speed vanishes in the liquid outer core.

Apart from these problems (jumps and liquid) both shear and pressure
wave speeds do satisfy the Herglotz condition everywhere.
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Spectral rigidity of the round Earth

Theorem (de Hoop–I.–Katsnelson (2017))

Let M be the closed unit ball in R3. Let cs(r) be a family of radial sound
speeds depending C∞-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1].
Assume each cs satisfies the Herglotz condition and a generic geometrical
condition.

If each cs gives rise to the same spectrum (of the corresponding
Laplace–Beltrami operator), then cs = c0 for all s.

This simple model of the round Earth is spectrally rigid!
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Limitations

No proof works without spherical symmetry, but the result might be
more general.

Our model only included P waves. A full linear elastic model should
come with polarizations.

The outer core is liquid, not solid.

There are interfaces where the sound speed jumps. The real elastic
geometry is non-smooth.

The proof only works with strong assumptions, but the same auxiliary
quantities might be useful to look at in any setting.
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Data combination

To reconstruct the deep structures of a planet, we want to use more
than just spectral data.

Mathematical models, solutions to inverse problems, and explicit
reconstruction algorithms tend to be simple-minded: a single type of
data is used to find a single quantity.

All data can be used together in an algorithm based on machine
learning or iteration. This method is rarely provably reliable.
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Extracting useful quantities

In some cases spectral data is enough to reconstruct the geometry.
Full data can lead to better results, but only the subalgorithm has
theoretical support.

This reliable reconstruction from partial data is useful data for a
machine learning algorithm.

Also less final data can be useful. We need not know how to use it.

What are useful (and reliably computable) quantities?
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Extracting useful quantities

Recall our mathematical result:

Theorem (de Hoop–I.–Katsnelson (2017))

Isospectral deformations of a spherically symmetric Riemannian manifold
are trivial.

In a weak sense in spherical symmetry:
The spectrum determines the geometry.
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Extracting useful quantities

Outline of our proof:

1 From eigenvalues λ0, λ1, λ2, . . . compute the function

f(t) =
∞∑
k=0

cos(
√
λk · t).

This is the trace of the (formal) operator cos(
√
−∆g · t).

2 See where f has singularities. The set of singularities is (more or
less) the length spectrum.

3 Linearized length spectral data is periodic broken ray transform data.
4 The periodic broken ray transform can be inverted explicitly.
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Extracting useful quantities

Useful quantities to look at:

The function

f(t) =
∞∑
k=0

cos(
√
λk · t).

The points where f behaves badly (singularities).

The length spectrum (also accessible in other ways).
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Extracting useful quantities

Example:

We want to find the length of an interval, given its Neumann
spectrum.

If the length of the interval is L, the eigenvalues are

λk =

(
kπ

L

)2

, k = 0, 1, 2, . . .

Suppose L = 1
2 and we have measured the numbers 0, 4π2, 16π2, . . .

We compute and plot the trace function

f(t) =

∞∑
k=0

cos(
√
λk · t).
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Extracting useful quantities

Eigenfunctions for k = 0, 1, 2, 3, 4.
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Extracting useful quantities

Trace function computed from k = 0, 1, 2, 3, 4.
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Extracting useful quantities

The singularities give the length spectrum.

The length spectrum determines the geometry (length) of the interval.

Perhaps the trace would be a useful quantity to extract for machine
learning with spectral data. The singularities contain geometrical
information, and we want to reconstruct the geometry.

Perhaps other theorists have other potentially useful quantities to
throw at a machine and improve performance.
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Dealing with data blow-up

We have multiplied the amount of data by offering the machine a
number of possibly useful quantities.

Some of the promising auxiliary quantities can be useless.

The learning process can be unnecessarily (unfeasibly?) heavy.
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Dealing with data blow-up

Problem

Can a machine learning algorithm tell which parts of the data it eventually
needs?

Effects:
1 The process is lighter if it only does what it needs to do.
2 We do not need to collect expensive but unnecessary data. This

would help improve experiment design.
3 Theorists get hints of what quantities are useful to look at.

For example, we do not know whether the trace function is useful in more
complicated spectral inverse problems.
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Deep teaching

Goal of this meeting: People from different fields sharing insights.

Goal of this talk: Theorists and experimentalists sharing insights of
what is a useful thing to look at.
Examples:

1 To extract structural information from spectral data, look at the trace
function and its singularities.

2 Deep teaching: If a machine learning algorithm learns what data is
useful, it can tell it to those collecting data and working with theory.
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Deep teaching

Different forms of machine learning can produce algorithms that perform
well.

Performance is much like intuition: The machine just knows.

Problem
Can a machine have not only intuition, but also understanding?

Understanding = ability to communicate ideas to humans.

Problem
Machines can learn. But can they pass on what they have learned to us?

I would like to see this happen at various scales: the specific spectral
inverse problem, geophysics in general, and machine learning at large.
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Outline

1 The problem

2 A mathematical result

3 Deep learning deep structures

4 Appendix A: Anisotropy and geometry
Elliptic and general elastic anisotropy
Pressure and shear waves
Anisotropy and coordinates
Our model

5 Appendix B: Ray transforms in low regularity and drums

6 Appendix C: More detailed spectral rigidity
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Elliptic and general elastic anisotropy

A material is anisotropic if sound speed depends on direction. There
are different types of direction dependence:

General elliptic anisotropy corresponds to a Riemannian manifold (a
manifold with a Riemann metric).
General anisotropy corresponds to a Finsler manifold (a manifold with a
Finsler metric).
Riemannian manifolds are a very special subclass of Finsler manifolds.

A material is isotropic if sound speed is independent of direction. This
can be modeled by a conformally Euclidean metric.
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Pressure and shear waves

There are pressure and shear waves in an elastic medium, and they
have different sound speeds.

To model elastic waves in general anisotropy, one needs a manifold
with two Finsler metrics, one for pressure and one for shear waves.

In fact, the shear wave speed might not even by a Finsler metric in the
traditional sense.
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Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.

The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.

Joonas Ilmavirta (University of Jyväskylä) Deep learning and teaching JYU. Since 1863. | January 26, 2018 |∞ /∞



Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.

The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.

Joonas Ilmavirta (University of Jyväskylä) Deep learning and teaching JYU. Since 1863. | January 26, 2018 |∞ /∞



Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.

The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.

Joonas Ilmavirta (University of Jyväskylä) Deep learning and teaching JYU. Since 1863. | January 26, 2018 |∞ /∞



Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.

The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.

Joonas Ilmavirta (University of Jyväskylä) Deep learning and teaching JYU. Since 1863. | January 26, 2018 |∞ /∞



Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.

The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.

Joonas Ilmavirta (University of Jyväskylä) Deep learning and teaching JYU. Since 1863. | January 26, 2018 |∞ /∞



Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.

The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.

Joonas Ilmavirta (University of Jyväskylä) Deep learning and teaching JYU. Since 1863. | January 26, 2018 |∞ /∞



Our model

No S-waves. — Only one metric.

Isotropic P-wave speed. — Conformally Euclidean metric.

Spherical symmetry.

Reconstruction possible in the natural Cartesian coordinates. — No
gauge freedom.
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X-ray transforms

Theorem (de Hoop–I.(2017))

Let M be a rotation symmetric non-trapping manifold with a piecewise
C1,1 metric and strictly convex boundary. Then the geodesic X-ray
transform is injective on L2(M).

Earlier similar results:

The X-ray transform (Radon et al.): Euclidean metric (c is constant).

Mukhometov, 1977: Smooth simple metrics (simplicity is stronger
than Herglotz).

Sharafutdinov, 1997: C∞ metrics and C∞ functions.
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Periodic broken ray transforms

Theorem (de Hoop–I.(2017))

Let M be a rotation symmetric non-trapping manifold with a C1,1 metric
and strictly convex boundary and dimension at least three. Assume that
there are not too many conjugate points at the boundary. The integrals of
a function f ∈ Lp(M), p > 3, over all periodic broken rays determines the
even part of the function.

Very little can be recovered of the odd part.

Tools used:

Planar average ray transform.

Abel transform.

Funk transform.

Fourier series.
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Hearing the shape of a drum

If we know that the metric on M ⊂ Rn is (conformally) Euclidean, this
ambiguity due to diffeomorphisms goes away.

This is why the answer to Kac’s famous question “Can you hear the
shape of a drum?” is not trivially “No!”.

. . . but it is non-trivially “No!” if there are no geometrical restrictions.
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Hearing the shape of a drum

These two drums sound exactly alike. (Wikimedia Commons)
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A simplified model

We model the Earth as a Riemannian manifold with boundary.

In practice, the Earth is the closed unit ball M = B̄(0, 1) ⊂ R3. The
anisotropic sound speed is modeled with a Riemannian metric g on
M .

Physically, this corresponds to omitting S-waves and including only
elliptic anisotropy.
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A simplified model

Let M = B̄(0, 1) ⊂ Rn be the closed unit ball and c(x) = c(|x|) a
C1,1 sound speed.

The Riemannian metric on M is g = c−2(x)e. This makes (M, g) into
a radially conformally Euclidean manifold.

If g is a rotation invariant Riemannian metric on M , there is a radial
(more complicated if n = 2) diffeomorphism φ : M →M so that φ∗g
is radially conformally Euclidean.
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A simplified model

The modes of free oscillations are modeled as Neumann
eigenfunctions of the Laplace–Beltrami operator of (M, g).

If the sound speed is isotropic, then g = c−2e and the
Laplace–Beltrami operator in dimension n is

∆gu(x) = c(x)4−n div(c(x)n−2∇u(x)).

The spectrum of free oscillations is the Neumann spectrum of the
Laplace–Beltrami operator ∆g.
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A simplified model

We need geometrical assumptions on our spherical Earth.

Definition
A radial sound speed c(r) satisfies the Herglotz condition if

d

dr

(
r

c(r)

)
> 0

for all r ∈ (0, 1].

Equivalent formulations:

All spheres {r = constant} are strictly convex. (Foliation condition!)

The manifold is non-trapping and has strictly convex boundary.

Geodesics curve outwards.
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A simplified model

The radial Preliminary Reference Earth Model (PREM) is not C1,1.
Both pressure and shear waves have jump discontinuities.

In addition, the shear wave speed vanishes in the liquid outer core.

Apart from these problems (jumps and liquid) both shear and
pressure wave speeds do satisfy the Herglotz condition everywhere.
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Spectral rigidity of the round Earth

Theorem (de Hoop–I.–Katsnelson (2017))

Let M be the closed unit ball in R3. Let cs(r) be a family of radial sound
speeds depending C∞-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1].
Assume each cs satisfies the Herglotz condition and a generic geometrical
condition.

If each cs gives rise to the same spectrum (of the corresponding
Laplace–Beltrami operator), then cs = c0 for all s.

This simple model of the round Earth is spectrally rigid!
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Spectral rigidity of the round Earth

Corollary (de Hoop–I.–Katsnelson (2017))

Let M be the closed unit ball in R3. Let gs be a family of rotation invariant
metrics depending C∞-smoothly on s ∈ (−ε, ε). Suppose each gs is
non-trapping with strictly convex boundary and assume a generic
geometrical condition.

If the spectra of the Laplace–Beltrami operators ∆gs are all equal, then
there is a family of radial diffeomorphisms φs : M →M so that φ∗sgs = g0
for all s. That is, the manifolds (M, gs) are isometric.
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Outline of the proof

Lemma (Trace formula)

Let λ0 < λ1 ≤ λ2 ≤ . . . be the positive eigenvalues of the
Laplace–Beltrami operator. Define a function f : R→ R by

f(t) =

∞∑
k=0

cos
(√

λk · t
)
.

Assume that the radial sound speed c satisfies some generic condition.

The function f(t) is singular precisely at the length spectrum.

In particular, the spectrum determines the length spectrum.
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Outline of the proof

Similar “trace formulas” and related results are known on closed manifolds
(eg. Duistermaat–Guillemin 1975) and a weaker version on some
manifolds with boundary (eg. Guillemin–Melrose 1979).

Corollary
Spectral rigidity follows if we can prove length spectral rigidity.
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Outline of the proof

Theorem (de Hoop–I.–Katsnelson (2017))

Let M be the closed unit ball in Rn, n ≥ 2. Let cs(r) be a family of radial
sound speeds depending C1,1-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1].
Assume each cs satisfies the Herglotz condition and a generic geometrical
condition.

If each cs gives rise to the same length spectrum, then cs = c0 for all s.

This simple model of the round Earth is length spectrally rigid!
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Outline of the proof

Corollary (de Hoop–I.–Katsnelson (2017))
Let M be the closed unit ball in Rn, n ≥ 2. Let gs be a family of rotation
invariant metrics depending C1,1-smoothly on s ∈ (−ε, ε). Suppose each
gs is non-trapping with strictly convex boundary and satisfy a generic
geometrical condition.

If the length spectra of the manifolds (M, gs) are all equal, then there is a
family of radial (or more general if n = 2) diffeomorphisms φs : M →M so
that φ∗sgs = g0 for all s. That is, the manifolds (M, gs) are isometric.
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Outline of the proof

Lemma

Let γs be a periodic broken ray (w.r.t. cs) depending smoothly enough on
s. Then

d

ds
`(γs) =

1

2

∫
γs

d

ds
c−2s .

In particular, if the length spectrum does not depend on s, then d
dsc
−2
s

integrates to zero over (almost) all periodic broken rays.
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Outline of the proof

Lemma (Periodic broken ray transform)

Assume the Herglotz condition. A radially symmetric function is uniquely
determined by its integrals over (almost) all periodic broken rays.

Therefore d
dsc
−2
s vanishes, and so cs is independent of s.

This concludes the proof.
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Restrictions

No proof works without spherical symmetry, but the result might be
more general.

Our model only included P waves. A full linear elastic model should
come with polarizations.

The outer core is liquid, not solid.

There are interfaces where the sound speed jumps. The real elastic
geometry is non-smooth.

No planet is precisely spherically symmetric.

The proof only works with strong assumptions, but the same auxiliary
quantities might be useful to look at in any setting.
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