Geodesic X-ray tomography and geophysical applications Special lecture at CAAM Rice University

Joonas Ilmavirta
University of Jyväskylä

15 September 2016

Outline

(1) X-ray imaging

- The problem
- The X-ray transform
(2) X-ray tomography and manifolds
(3) The Pestov identity
(4) Various generalizations
(5) Applications

The problem

The problem

- Consider an X-ray fired along a line (the real axis).

The problem

- Consider an X-ray fired along a line (the real axis).
- If the intensity at $x \in \mathbb{R}$ is denoted $I(x)$, then the Beer-Lambert law gives us the differential equation

$$
I^{\prime}(x)=-f(x) I(x)
$$

where $f(x)$ is the attenuation coefficient which may depend on position.

The problem

- Consider an X-ray fired along a line (the real axis).
- If the intensity at $x \in \mathbb{R}$ is denoted $I(x)$, then the Beer-Lambert law gives us the differential equation

$$
I^{\prime}(x)=-f(x) I(x)
$$

where $f(x)$ is the attenuation coefficient which may depend on position.

- This can be solved:

$$
I(L)=I(0) \exp \left(-\int_{0}^{L} f(x) \mathrm{d} x\right)
$$

The problem

- Consider an X-ray fired along a line (the real axis).
- If the intensity at $x \in \mathbb{R}$ is denoted $I(x)$, then the Beer-Lambert law gives us the differential equation

$$
I^{\prime}(x)=-f(x) I(x)
$$

where $f(x)$ is the attenuation coefficient which may depend on position.

- This can be solved:

$$
I(L)=I(0) \exp \left(-\int_{0}^{L} f(x) \mathrm{d} x\right)
$$

- If we measure the initial and final intensities $I(0)$ and $I(L)$, we in fact measure the integral

$$
\int_{0}^{L} f(x) \mathrm{d} x
$$

The problem

- If we take X-ray images of an object from all directions, we measure the integrals of the attenuation coefficient over all lines through the object.

The problem

- If we take X-ray images of an object from all directions, we measure the integrals of the attenuation coefficient over all lines through the object.
- Problem: Given the integrals of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over all lines, find the function f.

The problem

- If we take X-ray images of an object from all directions, we measure the integrals of the attenuation coefficient over all lines through the object.
- Problem: Given the integrals of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over all lines, find the function f.
- This problem was first solved by Johann Radon in 1917 and again by Allan Cormack in 1963. In 1979 Cormack and Hounsfield got the Nobel Prize in medicine for developing the CT scan.

The problem

The problem

- The problem is most interesting in \mathbb{R}^{3}, but it is enough to solve it in \mathbb{R}^{2}.

The problem

- The problem is most interesting in \mathbb{R}^{3}, but it is enough to solve it in \mathbb{R}^{2}.
- CT scanners make their scan slice by slice.

The X-ray transform

The X-ray transform

- Let Γ be the set of lines in \mathbb{R}^{2}.

The X-ray transform

- Let Γ be the set of lines in \mathbb{R}^{2}.
- For a sufficiently regular function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we define its X-ray transform If: $\Gamma \rightarrow \mathbb{R}$ as

$$
I f(\gamma)=\int_{\gamma} f \mathrm{~d} s
$$

The X-ray transform

- Let Γ be the set of lines in \mathbb{R}^{2}.
- For a sufficiently regular function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we define its X-ray transform $I f: \Gamma \rightarrow \mathbb{R}$ as

$$
I f(\gamma)=\int_{\gamma} f \mathrm{~d} s
$$

- The X-ray transform is a continuous linear map between many spaces, for example $I: C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}(\Gamma)$.

The X-ray transform

- Let Γ be the set of lines in \mathbb{R}^{2}.
- For a sufficiently regular function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we define its X-ray transform If: $\Gamma \rightarrow \mathbb{R}$ as

$$
I f(\gamma)=\int_{\gamma} f \mathrm{~d} s
$$

- The X-ray transform is a continuous linear map between many spaces, for example $I: C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}(\Gamma)$.
- We want to know if a function can be recovered from its integrals over all lines.

The X-ray transform

- Let Γ be the set of lines in \mathbb{R}^{2}.
- For a sufficiently regular function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we define its X-ray transform If: $\Gamma \rightarrow \mathbb{R}$ as

$$
I f(\gamma)=\int_{\gamma} f \mathrm{~d} s
$$

- The X-ray transform is a continuous linear map between many spaces, for example $I: C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}(\Gamma)$.
- We want to know if a function can be recovered from its integrals over all lines. In other words, we want to know if the X-ray transform I is injective.

Outline

(1) X-ray imaging
(2) X-ray tomography and manifolds

- The X-ray transform on a manifold
- The unit sphere bundle $S M$
- Three vector fields on $S M$
(3) The Pestov identity

4 Various generalizations
(5) Applications

The X-ray transform on a manifold

The X-ray transform on a manifold

- Let M be a smooth and compact Riemannian manifold with boundary. Assume that every maximal geodesic has finite length.

The X-ray transform on a manifold

- Let M be a smooth and compact Riemannian manifold with boundary. Assume that every maximal geodesic has finite length.
- If Γ is the set of geodesics on M, the X-ray transform $I f: \Gamma \rightarrow \mathbb{R}$ of $f \in C(M)$ is

$$
I f(\gamma)=\int_{\gamma} f \mathrm{~d} s
$$

The X -ray transform on a manifold

- Let M be a smooth and compact Riemannian manifold with boundary. Assume that every maximal geodesic has finite length.
- If Γ is the set of geodesics on M, the X-ray transform $I f: \Gamma \rightarrow \mathbb{R}$ of $f \in C(M)$ is

$$
I f(\gamma)=\int_{\gamma} f \mathrm{~d} s
$$

- Is this I injective? What do we need to assume about the manifold and the function f ?

The X-ray transform on a manifold

The X-ray transform on a manifold

- In Euclidean spaces we have several inversion formulas to find f from $I f$.

The X-ray transform on a manifold

- In Euclidean spaces we have several inversion formulas to find f from $I f$.
- On manifolds there typically are no simple formulas, but there are iterative algorithms (Neumann series).

The X-ray transform on a manifold

- In Euclidean spaces we have several inversion formulas to find f from $I f$.
- On manifolds there typically are no simple formulas, but there are iterative algorithms (Neumann series).
- The focus in this talk is in proving injectivity.

The unit sphere bundle $S M$

The unit sphere bundle $S M$

- The unit sphere bundle $S M$ of M is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

The unit sphere bundle $S M$

- The unit sphere bundle $S M$ of M is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

- This is a subbundle of the tangent bundle $T M$. The fiber $S_{x} M$ is a sphere on the tangent space $T_{x} M$.

The unit sphere bundle $S M$

- The unit sphere bundle $S M$ of M is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

- This is a subbundle of the tangent bundle $T M$. The fiber $S_{x} M$ is a sphere on the tangent space $T_{x} M$.
- If $M=\bar{\Omega}$ for a domain $\Omega \subset \mathbb{R}^{n}$, then $S M=M \times S^{n-1}$.

The unit sphere bundle $S M$

The unit sphere bundle $S M$

- The geodesic flow (of unit speed geodesics) is a dynamical system on SM.

The unit sphere bundle $S M$

- The geodesic flow (of unit speed geodesics) is a dynamical system on SM.
- If $(x, v) \in S M$, denote by $\gamma_{x, v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.

The unit sphere bundle $S M$

- The geodesic flow (of unit speed geodesics) is a dynamical system on SM.
- If $(x, v) \in S M$, denote by $\gamma_{x, v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.
- The geodesic flow ϕ_{t} is simply given by $\phi_{t}(x, v)=\left(\gamma_{x, v}(t), \dot{\gamma}_{x, v}(t)\right)$.

The unit sphere bundle $S M$

- The geodesic flow (of unit speed geodesics) is a dynamical system on $S M$.
- If $(x, v) \in S M$, denote by $\gamma_{x, v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.
- The geodesic flow ϕ_{t} is simply given by $\phi_{t}(x, v)=\left(\gamma_{x, v}(t), \dot{\gamma}_{x, v}(t)\right)$.
- Notice that $\phi_{t}(x, v)$ is not defined for all t since the geodesics reach the boundary, so $\phi_{t}: S M \rightarrow S M$ is only a partial map if $t \neq 0$.

Three vector fields on $S M$

Three vector fields on $S M$

- Let M be a smooth and compact Riemannian surface ($\operatorname{dim}(M)=2$) with boundary and $S M$ its unit sphere bundle. Assume that every maximal geodesic has finite length.

Three vector fields on $S M$

- Let M be a smooth and compact Riemannian surface ($\operatorname{dim}(M)=2$) with boundary and $S M$ its unit sphere bundle. Assume that every maximal geodesic has finite length.
- Let X denote the derivative along the geodesic flow.

Three vector fields on $S M$

- Let M be a smooth and compact Riemannian surface ($\operatorname{dim}(M)=2$) with boundary and $S M$ its unit sphere bundle. Assume that every maximal geodesic has finite length.
- Let X denote the derivative along the geodesic flow. That is,

$$
X u(x, v)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} u\left(\phi_{t}(x, v)\right)\right|_{t=0}
$$

for a function u on $S M$. This X is a vector field on $S M$.

Three vector fields on $S M$

- Let M be a smooth and compact Riemannian surface ($\operatorname{dim}(M)=2$) with boundary and $S M$ its unit sphere bundle. Assume that every maximal geodesic has finite length.
- Let X denote the derivative along the geodesic flow. That is,

$$
X u(x, v)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} u\left(\phi_{t}(x, v)\right)\right|_{t=0}
$$

for a function u on $S M$. This X is a vector field on $S M$.

- X is the geodesic vector field. It generates the geodesic flow.

Three vector fields on $S M$

- Let M be a smooth and compact Riemannian surface ($\operatorname{dim}(M)=2$) with boundary and $S M$ its unit sphere bundle. Assume that every maximal geodesic has finite length.
- Let X denote the derivative along the geodesic flow. That is,

$$
X u(x, v)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} u\left(\phi_{t}(x, v)\right)\right|_{t=0}
$$

for a function u on $S M$. This X is a vector field on $S M$.

- X is the geodesic vector field. It generates the geodesic flow.
- In Euclidean geometry $X=v \cdot \nabla_{x}$.

Three vector fields on $S M$

Three vector fields on $S M$

- In two dimensions we can write the direction v in local coordinates as $v_{\theta}=(\cos \theta, \sin \theta)$.

Three vector fields on $S M$

- In two dimensions we can write the direction v in local coordinates as $v_{\theta}=(\cos \theta, \sin \theta)$.
- We define the derivative V as

$$
V u\left(x, v_{\theta}\right)=\frac{\mathrm{d}}{\mathrm{~d} \theta} u\left(x, v_{\theta}\right) .
$$

Three vector fields on $S M$

- In two dimensions we can write the direction v in local coordinates as $v_{\theta}=(\cos \theta, \sin \theta)$.
- We define the derivative V as

$$
V u\left(x, v_{\theta}\right)=\frac{\mathrm{d}}{\mathrm{~d} \theta} u\left(x, v_{\theta}\right) .
$$

This is globally well defined an independent of coordinates if M is orientable.

Three vector fields on $S M$

- In two dimensions we can write the direction v in local coordinates as $v_{\theta}=(\cos \theta, \sin \theta)$.
- We define the derivative V as

$$
V u\left(x, v_{\theta}\right)=\frac{\mathrm{d}}{\mathrm{~d} \theta} u\left(x, v_{\theta}\right) .
$$

This is globally well defined an independent of coordinates if M is orientable.

- V is known as the vertical vector field.

Three vector fields on $S M$

- In two dimensions we can write the direction v in local coordinates as $v_{\theta}=(\cos \theta, \sin \theta)$.
- We define the derivative V as

$$
V u\left(x, v_{\theta}\right)=\frac{\mathrm{d}}{\mathrm{~d} \theta} u\left(x, v_{\theta}\right) .
$$

This is globally well defined an independent of coordinates if M is orientable.

- V is known as the vertical vector field.
- The integral curves of V are the fibers $S_{x} M$.

Three vector fields on $S M$

Three vector fields on $S M$

- We define a third vector field as $X_{\perp}=[X, V]$.

Three vector fields on $S M$

- We define a third vector field as $X_{\perp}=[X, V]$. This is a derivative with respect to x in the direction orthogonal to v.

Three vector fields on $S M$

- We define a third vector field as $X_{\perp}=[X, V]$. This is a derivative with respect to x in the direction orthogonal to v.
- These three vector fields X, V, X_{\perp} are a global orthonormal frame on $S M$ when $S M$ is equipped with the Sasaki metric.

Three vector fields on $S M$

- We define a third vector field as $X_{\perp}=[X, V]$. This is a derivative with respect to x in the direction orthogonal to v.
- These three vector fields X, V, X_{\perp} are a global orthonormal frame on $S M$ when $S M$ is equipped with the Sasaki metric.
- We have the commutator relations

$$
\begin{aligned}
{[X, V] } & =X_{\perp} \\
{\left[V, X_{\perp}\right] } & =X \text { and } \\
{\left[X, X_{\perp}\right] } & =-K V
\end{aligned}
$$

where K is the Gaussian curvature.

Outline

(1) X-ray imaging
(2) X-ray tomography and manifolds
(3) The Pestov identity

- The transport equation
- The Pestov identity
- Injectivity of the X-ray transform
(4) Various generalizations
(5) Applications

The transport equation

The transport equation

- Assume $f \in C^{2}(M)$ integrates to zero over all geodesics.

The transport equation

- Assume $f \in C^{2}(M)$ integrates to zero over all geodesics.
- Define $u^{f}: S M \rightarrow \mathbb{R}$ as

$$
u^{f}(x, v)=\int_{0}^{\tau_{x, v}} f\left(\gamma_{x, v}(t)\right) \mathrm{d} t
$$

Here $\tau_{x, v} \geq 0$ is the exit time of the geodesic $\gamma_{x, v}$.

The transport equation

- Assume $f \in C^{2}(M)$ integrates to zero over all geodesics.
- Define $u^{f}: S M \rightarrow \mathbb{R}$ as

$$
u^{f}(x, v)=\int_{0}^{\tau_{x, v}} f\left(\gamma_{x, v}(t)\right) \mathrm{d} t
$$

Here $\tau_{x, v} \geq 0$ is the exit time of the geodesic $\gamma_{x, v}$.

- Since u^{f} is the integral of f along a geodesic, the fundamental theorem of calculus gives

$$
X u^{f}(x, v)=-f(x)
$$

for all $(x, v) \in S M$. This is the transport equation.

The transport equation

The transport equation

- In the transport equation $X u^{f}=-f$ we may regard both sides as functions on $S M$.

The transport equation

- In the transport equation $X u^{f}=-f$ we may regard both sides as functions on $S M$.
- Since f only depends on x, we have $V f=0$, and so

$$
V X u^{f}=0 .
$$

The transport equation

- In the transport equation $X u^{f}=-f$ we may regard both sides as functions on $S M$.
- Since f only depends on x, we have $V f=0$, and so

$$
V X u^{f}=0 .
$$

- Since f integrates to zero over all geodesics, u^{f} is zero at $\partial(S M)$.

The transport equation

The transport equation

Problem

Does the second order PDE

$$
\begin{cases}V X u=0 & \text { in } S M \\ u=0 & \text { on } \partial(S M)\end{cases}
$$

have a unique solution?

The transport equation

Problem

Does the second order PDE

$$
\begin{cases}V X u=0 & \text { in } S M \\ u=0 & \text { on } \partial(S M)\end{cases}
$$

have a unique solution?
If yes, then $I f=0$ implies $u^{f}=0$.

The transport equation

Problem

Does the second order PDE

$$
\begin{cases}V X u=0 & \text { in } S M \\ u=0 & \text { on } \partial(S M)\end{cases}
$$

have a unique solution?
If yes, then $I f=0$ implies $u^{f}=0$. This means that $f=-X u^{f}=0$, so the X -ray transform is injective!

The Pestov identity

The Pestov identity

- The PDE $V X u=0$ is not elliptic, parabolic or hyperbolic, so standard techniques do not apply.

The Pestov identity

- The PDE $V X u=0$ is not elliptic, parabolic or hyperbolic, so standard techniques do not apply. In fact,

$$
V X=\frac{1}{4}(X+V)^{2}-\frac{1}{4}(X-V)^{2}-\frac{1}{2} X_{\perp} .
$$

The Pestov identity

- The PDE $V X u=0$ is not elliptic, parabolic or hyperbolic, so standard techniques do not apply. In fact,

$$
V X=\frac{1}{4}(X+V)^{2}-\frac{1}{4}(X-V)^{2}-\frac{1}{2} X_{\perp} .
$$

- The lower order term $\frac{1}{2} X_{\perp}$ plays a role: if we change its sign, we always lose unique solvability.

The Pestov identity

- The PDE $V X u=0$ is not elliptic, parabolic or hyperbolic, so standard techniques do not apply. In fact,

$$
V X=\frac{1}{4}(X+V)^{2}-\frac{1}{4}(X-V)^{2}-\frac{1}{2} X_{\perp}
$$

- The lower order term $\frac{1}{2} X_{\perp}$ plays a role: if we change its sign, we always lose unique solvability.
- There is an energy identity for this PDE that allows us to deduce that solutions are unique on some manifolds.

The Pestov identity

The Pestov identity

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian surface with boundary. If $u \in C^{2}(S M)$ with $\left.u\right|_{\partial(S M)}=0$, then

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2} .
$$

The norms and inner products are those of $L^{2}(S M)$.

The Pestov identity

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian surface with boundary. If $u \in C^{2}(S M)$ with $\left.u\right|_{\partial(S M)}=0$, then

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2} .
$$

The norms and inner products are those of $L^{2}(S M)$.

Proof

Calculate $\|V X u\|^{2}-\|X V u\|^{2}$ using the commutator relations and integration by parts.

Injectivity of the X-ray transform

Injectivity of the X-ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Injectivity of the X -ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Injectivity of the X -ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics.

Injectivity of the X -ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$.

Injectivity of the X-ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$. The Pestov identity gives $0=\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle+\left\|X u^{f}\right\|^{2}$.

Injectivity of the X -ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$. The Pestov identity gives $0=\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle+\left\|X u^{f}\right\|^{2}$. Since $K \leq 0$, all terms are non-negative, so they must all vanish.

Injectivity of the X -ray transform

Theorem

Let M be a smooth and compact Riemannian surface with strictly convex boundary and non-positive Gaussian curvature. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$. The Pestov identity gives $0=\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle+\left\|X u^{f}\right\|^{2}$. Since $K \leq 0$, all terms are non-negative, so they must all vanish. In particular, $f=-X u^{f}=0$.

Injectivity of the X-ray transform

Definition (Simple manifold)

Injectivity of the X -ray transform

Definition (Simple manifold)

A compact manifold M with boundary is simple if

- ∂M is strictly convex

Injectivity of the X-ray transform

Definition (Simple manifold)

A compact manifold M with boundary is simple if

- ∂M is strictly convex and
- any two boundary points are joined by a unique geodesic which depends smoothly on the endpoints.

A surface with non-positive curvature and strictly convex boundary is simple.

Injectivity of the X-ray transform

Lemma

Injectivity of the X -ray transform

Lemma

On a simple surface $\|X w\|^{2}-\langle K w, w\rangle \geq 0$ for any function $w \in C^{2}(S M)$.

Injectivity of the X -ray transform

Lemma

On a simple surface $\|X w\|^{2}-\langle K w, w\rangle \geq 0$ for any function $w \in C^{2}(S M)$.

Proof

A calculation using the Santaló formula gives

$$
\|X w\|^{2}-\langle K w, w\rangle=\int_{\partial_{\text {inward }}(S M)} \mathcal{I}_{\gamma_{x, v}}(w)|v \cdot \nu| \mathrm{d} x \mathrm{~d} v
$$

where \mathcal{I}_{γ} is the index form on the geodesic γ.

Injectivity of the X -ray transform

Lemma

On a simple surface $\|X w\|^{2}-\langle K w, w\rangle \geq 0$ for any function $w \in C^{2}(S M)$.

Proof

A calculation using the Santaló formula gives

$$
\|X w\|^{2}-\langle K w, w\rangle=\int_{\partial_{\text {inward }}(S M)} \mathcal{I}_{\gamma_{x, v}}(w)|v \cdot \nu| \mathrm{d} x \mathrm{~d} v
$$

where \mathcal{I}_{γ} is the index form on the geodesic γ. On a simple manifold there are no conjugate points, so the index forms are positive definite.

Injectivity of the X-ray transform

Injectivity of the X -ray transform

Theorem (Mukhometov 1977)

Let M be a simple surface. The X-ray transform on M is injective on $C^{2}(M)$.

Injectivity of the X -ray transform

Theorem (Mukhometov 1977)

Let M be a simple surface. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics.

Injectivity of the X -ray transform

Theorem (Mukhometov 1977)

Let M be a simple surface. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$.

Injectivity of the X -ray transform

Theorem (Mukhometov 1977)

Let M be a simple surface. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$. The Pestov identity gives $0=\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle+\left\|X u^{f}\right\|^{2}$.

Injectivity of the X-ray transform

Theorem (Mukhometov 1977)

Let M be a simple surface. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$. The Pestov identity gives $0=\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle+\left\|X u^{f}\right\|^{2}$. Since $\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle \geq 0$, we must have $\left\|X u^{f}\right\|=0$.

Injectivity of the X-ray transform

Theorem (Mukhometov 1977)

Let M be a simple surface. The X-ray transform on M is injective on $C^{2}(M)$.

Proof

Suppose $f \in C^{2}(M)$ integrates to zero over all geodesics. Then $u^{f} \in C^{2}(S M)$ with zero boundary values and $V X u^{f}=0$. The Pestov identity gives $0=\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle+\left\|X u^{f}\right\|^{2}$. Since $\left\|X V u^{f}\right\|^{2}-\left\langle K V u^{f}, V u^{f}\right\rangle \geq 0$, we must have $\left\|X u^{f}\right\|=0$. Therefore $f=-X u^{f}=0$.

Injectivity of the X-ray transform

Injectivity of the X-ray transform

- The idea of a Pestov identity goes back to Mukhometov; it is not originally due to Pestov.

Injectivity of the X-ray transform

- The idea of a Pestov identity goes back to Mukhometov; it is not originally due to Pestov.
- The Pestov identity can also be used to prove other similar results.

Injectivity of the X-ray transform

- The idea of a Pestov identity goes back to Mukhometov; it is not originally due to Pestov.
- The Pestov identity can also be used to prove other similar results.
- For the Pestov identity in 2D, see

> Paternain-Salo-Uhlmann (Invent. Math. 2013): Tensor tomography on surfaces

and references therein. Several people have contributed to the topic: Mukhometov, Guillemin, Kazhdan, Sharafutdinov, Pestov, Uhlmann, Salo, Paternain. . .

Outline

(1) X-ray imaging
(2) X-ray tomography and manifolds
(3) The Pestov identity
(4) Various generalizations

- Higher dimensions
- Vector fields
- Tensor fields
- Pseudo-Riemannian manifolds
- Closed manifolds
- Broken rays
- Rough metrics
(5) Applications

Higher dimensions

Higher dimensions

- If $\operatorname{dim}(M) \geq 3$, we can still define X as before, but V (and therefore X_{\perp}) needs to be redefined.

Higher dimensions

- If $\operatorname{dim}(M) \geq 3$, we can still define X as before, but V (and therefore X_{\perp}) needs to be redefined.
- On S^{n-1} there are several directions when $n \geq 3$, so V is replaced with a vertical gradient. For a scalar u, the derivative $V u$ is now a vector field of some kind.

Higher dimensions

- If $\operatorname{dim}(M) \geq 3$, we can still define X as before, but V (and therefore X_{\perp}) needs to be redefined.
- On S^{n-1} there are several directions when $n \geq 3$, so V is replaced with a vertical gradient. For a scalar u, the derivative $V u$ is now a vector field of some kind. Also X_{\perp} is replaced with a vector field, called the horizontal gradient.

Higher dimensions

- If $\operatorname{dim}(M) \geq 3$, we can still define X as before, but V (and therefore X_{\perp}) needs to be redefined.
- On S^{n-1} there are several directions when $n \geq 3$, so V is replaced with a vertical gradient. For a scalar u, the derivative $V u$ is now a vector field of some kind. Also X_{\perp} is replaced with a vector field, called the horizontal gradient.
- In 2D we had $V^{*}=-V$ and $X_{\perp}^{*}=-X_{\perp}$, but in higher dimensions the vertical and horizontal gradients are different objects than the vertical and horizontal divergences.

Higher dimensions

- If $\operatorname{dim}(M) \geq 3$, we can still define X as before, but V (and therefore X_{\perp}) needs to be redefined.
- On S^{n-1} there are several directions when $n \geq 3$, so V is replaced with a vertical gradient. For a scalar u, the derivative $V u$ is now a vector field of some kind. Also X_{\perp} is replaced with a vector field, called the horizontal gradient.
- In 2D we had $V^{*}=-V$ and $X_{\perp}^{*}=-X_{\perp}$, but in higher dimensions the vertical and horizontal gradients are different objects than the vertical and horizontal divergences.
- I will be very brief. For more details in higher dimensions, see Paternain-Salo-Uhlmann (Math. Ann. 2015): Invariant distributions, Beurling transforms and tensor tomography in higher dimensions
and references therein.

Higher dimensions

Higher dimensions

Lemma (Pestov identity)

Let M be a compact manifold with boundary, with $\operatorname{dim}(M)=n$. If $u \in C^{2}(S M)$ with $\left.u\right|_{\partial(S M)}=0$, then

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle R V u, V u\rangle+(n-1)\|X u\|^{2},
$$

where R is an operator given by the Riemann curvature tensor. The norms and inner products are those of $L^{2}(S M)$.

Higher dimensions

Lemma (Pestov identity)

Let M be a compact manifold with boundary, with $\operatorname{dim}(M)=n$. If $u \in C^{2}(S M)$ with $\left.u\right|_{\partial(S M)}=0$, then

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle R V u, V u\rangle+(n-1)\|X u\|^{2},
$$

where R is an operator given by the Riemann curvature tensor. The norms and inner products are those of $L^{2}(S M)$.

If M has non-positive sectional curvature, all terms are non-negative.

Higher dimensions

Theorem (Mukhometov 1977)
The X-ray transform is injective on all simple manifolds.

Vector fields

Vector fields

- Question: If f is a vector field (one-form more naturally) and integrates to zero over all geodesics on M, is f zero?

Vector fields

- Question: If f is a vector field (one-form more naturally) and integrates to zero over all geodesics on M, is f zero?
- No! If $f=\mathrm{d} \phi$ for any function $\phi: M \rightarrow \mathbb{R}$ that vanishes on ∂M, then $I f=0$.

Vector fields

- Question: If f is a vector field (one-form more naturally) and integrates to zero over all geodesics on M, is f zero?
- No! If $f=\mathrm{d} \phi$ for any function $\phi: M \rightarrow \mathbb{R}$ that vanishes on ∂M, then $I f=0$.
- New question: If f is a vector field and integrates to zero over all geodesics on M, is there a function ϕ so that $\left.\phi\right|_{\partial M}=0$ and $f=\mathrm{d} \phi$? (Do the integrals of f determine f up to gauge?)

Vector fields

- Question: If f is a vector field (one-form more naturally) and integrates to zero over all geodesics on M, is f zero?
- No! If $f=\mathrm{d} \phi$ for any function $\phi: M \rightarrow \mathbb{R}$ that vanishes on ∂M, then $I f=0$.
- New question: If f is a vector field and integrates to zero over all geodesics on M, is there a function ϕ so that $\left.\phi\right|_{\partial M}=0$ and $f=\mathrm{d} \phi$? (Do the integrals of f determine f up to gauge?)
- Sometimes yes! At least on simple manifolds. A simple proof with the Pestov identity works again.

Tensor fields

Tensor fields

- What if f is a tensor field of higher order?

Tensor fields

- What if f is a tensor field of higher order?
- The integral of a tensor field f over γ is

$$
\int_{0}^{T} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

Tensor fields

- What if f is a tensor field of higher order?
- The integral of a tensor field f over γ is

$$
\int_{0}^{T} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

- On a simple surface, if a symmetric tensor field f of order m integrates to zero over all geodesics, then $f=\mathrm{d} \phi$ for a symmetric tensor field ϕ of order $m-1$. (P-S-U, 2013)

Tensor fields

- What if f is a tensor field of higher order?
- The integral of a tensor field f over γ is

$$
\int_{0}^{T} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

- On a simple surface, if a symmetric tensor field f of order m integrates to zero over all geodesics, then $f=\mathrm{d} \phi$ for a symmetric tensor field ϕ of order $m-1$. (P-S-U, 2013)
- In dimensions $n \geq 3$ this is open. There are only partial results.

Pseudo-Riemannian manifolds

Pseudo-Riemannian manifolds

- A Riemannian metric at a point can be written as the diagonal matrix

$$
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right) .
$$

Pseudo-Riemannian manifolds

- A Riemannian metric at a point can be written as the diagonal matrix

$$
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right)
$$

- A pseudo-Riemannian metric of signature (n, m) is like the matrix

$$
\left(\begin{array}{cccccc}
-1 & & & & & \\
& \ddots & & & & \\
& & -1 & & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & & 1
\end{array}\right)
$$

with n negative signs and m positive ones.

Pseudo-Riemannian manifolds

Pseudo-Riemannian manifolds

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Pseudo-Riemannian manifolds

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Theorem (I., 2016)

Let M_{1} and M_{2} be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2. Then the null geodesic X-ray transform is injective on the pseudo-Riemannian product $M_{1} \times M_{2}$.

Pseudo-Riemannian manifolds

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Theorem (I., 2016)

Let M_{1} and M_{2} be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2. Then the null geodesic X-ray transform is injective on the pseudo-Riemannian product $M_{1} \times M_{2}$.

The proof is based on a Pestov identity.

Pseudo-Riemannian manifolds

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Theorem (I., 2016)

Let M_{1} and M_{2} be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2. Then the null geodesic X-ray transform is injective on the pseudo-Riemannian product $M_{1} \times M_{2}$.

The proof is based on a Pestov identity. We assume that the signature (m, n) satisfies $m \geq 2$ and $n \geq 2$. No Pestov identity method is known in Lorentzian geometry $(m=1)$.

Closed manifolds

Closed manifolds

- One can also consider similar problems on closed manifolds (compact manifolds without boundary).

Closed manifolds

- One can also consider similar problems on closed manifolds (compact manifolds without boundary).
- It is no longer easy to find a solution u to the equation $X u=-f$. One needs what is called a Livšic theorem to prove existence of solutions.

Closed manifolds

- One can also consider similar problems on closed manifolds (compact manifolds without boundary).
- It is no longer easy to find a solution u to the equation $X u=-f$. One needs what is called a Livšic theorem to prove existence of solutions.
- The "closed analogue" of a simple surface is an Anosov surface.

Closed manifolds

- One can also consider similar problems on closed manifolds (compact manifolds without boundary).
- It is no longer easy to find a solution u to the equation $X u=-f$. One needs what is called a Livšic theorem to prove existence of solutions.
- The "closed analogue" of a simple surface is an Anosov surface.
- On an Anosov surface, if a symmetric tensor field f of order m integrates to zero over all geodesics, then $f=\mathrm{d} \phi$ for a symmetric tensor field ϕ of order $m-1$. (P-S-U 2014)

Broken rays

Broken rays

One reflecting obstacle in a domain. Two broken rays.

Broken rays

Broken rays

Theorem (I.-Salo, 2016)

Let M be a non-positively curved Riemannian surface with strictly convex boundary. Add a strictly convex reflecting obstacle. Then the broken ray transform is injective.

Broken rays

Theorem (I.-Salo, 2016)

Let M be a non-positively curved Riemannian surface with strictly convex boundary. Add a strictly convex reflecting obstacle. Then the broken ray transform is injective.

The same result is true higher dimensions as well, and in two dimensions in the absence of conjugate points along broken rays. (I.-Paternain)

Rough metrics

Rough metrics

For geophysical purposes, we would like to understand X-ray tomography on manifolds with a rough metric.

Rough metrics

For geophysical purposes, we would like to understand X-ray tomography on manifolds with a rough metric.

Theorem (de Hoop-I.)

On a spherically symmetric non-trapping manifold with a piecewise $C^{1,1}$ metric the geodesic X-ray transform is injective on L^{2} functions.

Outline

(1) X-ray imaging
(2) X-ray tomography and manifolds
(3) The Pestov identity
(4) Various generalizations
(5) Applications

- Linearized length
- Rigidity of length spectrum
- Rigidity of spectrum

Linearized length

Linearized length

- Do all distances between boundary points uniquely determine a Riemannian manifold?

Linearized length

- Do all distances between boundary points uniquely determine a Riemannian manifold?
- Do travel times of earthquakes which occur near the surface uniquely determine the interior structure of the Earth?

Linearized length

- Do all distances between boundary points uniquely determine a Riemannian manifold?
- Do travel times of earthquakes which occur near the surface uniquely determine the interior structure of the Earth?
- We linearize this problem.

Linearized length

Linearized length

- Let g_{s} be a family of Riemannian metrics on a manifold M. The "infinitesimal variation" $f=\left.\frac{\mathrm{d}}{\mathrm{d} s} g_{s}\right|_{s=0}$ is a symmetric second order tensor field on M.

Linearized length

- Let g_{s} be a family of Riemannian metrics on a manifold M. The "infinitesimal variation" $f=\left.\frac{\mathrm{d}}{\mathrm{d} s} g_{s}\right|_{s=0}$ is a symmetric second order tensor field on M.
- Fix two points at the boundary: $x, y \in \partial M$. Let γ_{s} be the shortest geodesic joining x and y in the metric g_{s}. Then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \ell\left(\gamma_{s}\right)\right|_{s=0}=2 \operatorname{If}\left(\gamma_{0}\right)
$$

Linearized length

- Linearized travel time tomography is geodesic X-ray tomography.

Linearized length

- Linearized travel time tomography is geodesic X-ray tomography.
- If we already know the conformal class of the manifold, the unknown function f can be considered scalar instead of a rank two tensor.

Linearized length

- Linearized travel time tomography is geodesic X-ray tomography.
- If we already know the conformal class of the manifold, the unknown function f can be considered scalar instead of a rank two tensor.
- Linearizing lengths of broken rays leads to broken ray tomography.

Rigidity of length spectrum

Rigidity of length spectrum

- The length spectrum of a closed manifold is the set of lengths of periodic geodesics.

Rigidity of length spectrum

- The length spectrum of a closed manifold is the set of lengths of periodic geodesics.
- The length spectrum of a manifold with boundary is the set of lengths of periodic broken rays.

Rigidity of length spectrum

- The length spectrum of a closed manifold is the set of lengths of periodic geodesics.
- The length spectrum of a manifold with boundary is the set of lengths of periodic broken rays.
- The length spectrum is said to be rigid if small variations preserving the length spectrum are necessarily trivial.

Rigidity of length spectrum

- The length spectrum of a closed manifold is the set of lengths of periodic geodesics.
- The length spectrum of a manifold with boundary is the set of lengths of periodic broken rays.
- The length spectrum is said to be rigid if small variations preserving the length spectrum are necessarily trivial.
- Proofs of rigidity results typically provide an iterative reconstruction algorithm (without proof of convergence).

Rigidity of length spectrum

Theorem (Paternain-Salo-Uhlmann, 2014)

The length spectrum of every Anosov surface is rigid.

Rigidity of length spectrum

Theorem (Paternain-Salo-UhImann, 2014)

The length spectrum of every Anosov surface is rigid.

Theorem (de Hoop-l.)

The length spectrum of every spherically symmetric non-trapping smooth manifold with boundary is rigid.

Rigidity of length spectrum

Rigidity of length spectrum

Problem

Can we measure the length spectrum of the Earth?

Rigidity of length spectrum

Problem

Can we measure the length spectrum of the Earth?
It can be done indirectly in spherical symmetry.

Rigidity of spectrum

Rigidity of spectrum

- We can measure the frequencies of free oscillations in the Earth.

Rigidity of spectrum

- We can measure the frequencies of free oscillations in the Earth.
- In the Riemannian model the corresponding data is the spectrum of the Laplace-Beltrami operator on the manifold.

Rigidity of spectrum

- We can measure the frequencies of free oscillations in the Earth.
- In the Riemannian model the corresponding data is the spectrum of the Laplace-Beltrami operator on the manifold.
- These two kinds of spectra are related to each other.

Rigidity of spectrum

Rigidity of spectrum

Theorem (de Hoop-l.)

The spectrum of the Laplace-Beltrami operator on a spherically symmetric non-trapping 3-dimensional Riemannian manifold uniquely determines the length spectrum.

Rigidity of spectrum

Theorem (de Hoop-l.)

The spectrum of the Laplace-Beltrami operator on a spherically symmetric non-trapping 3-dimensional Riemannian manifold uniquely determines the length spectrum.

Corollary (de Hoop-l.)

The spectrum is rigid on such manifolds.

End

Thank you.

Slides are available at http://users.jyu.fi/~jojapeil.

