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The problem

Consider an X-ray fired along a line (the real axis).
If the intensity at x ∈ R is denoted I(x), then the Beer–Lambert law
gives us the differential equation

I ′(x) = −f(x)I(x),

where f(x) is the attenuation coefficient which may depend on
position.
This can be solved:

I(L) = I(0) exp

(
−
∫ L

0
f(x)dx

)
.

If we measure the initial and final intensities I(0) and I(L), we in fact
measure the integral ∫ L

0
f(x)dx.
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The problem

If we take X-ray images of an object from all directions, we measure
the integrals of the attenuation coefficient over all lines through the
object.

Problem: Given the integrals of a function f : Rn → R over all lines,
find the function f .
This problem was first solved by Johann Radon in 1917 and again by
Allan Cormack in 1963. In 1979 Cormack and Hounsfield got the
Nobel Prize in medicine for developing the CT scan.
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The problem

The problem is most interesting in R3, but it is enough to solve it in
R2.
CT scanners make their scan slice by slice.
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The X-ray transform

Let Γ be the set of lines in R2.
For a sufficiently regular function f : R2 → R, we define its X-ray
transform If : Γ→ R as

If(γ) =

∫
γ
fds.

The X-ray transform is a continuous linear map between many spaces,
for example I : C∞0 (R2)→ C∞(Γ).
We want to know if a function can be recovered from its integrals over
all lines. In other words, we want to know if the X-ray transform I is
injective.
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The X-ray transform on a manifold

Let M be a smooth and compact Riemannian manifold with boundary.
Assume that every maximal geodesic has finite length.
If Γ is the set of geodesics on M , the X-ray transform If : Γ→ R of
f ∈ C(M) is

If(γ) =

∫
γ
fds.

Is this I injective? What do we need to assume about the manifold
and the function f?
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The X-ray transform on a manifold

In Euclidean spaces we have several inversion formulas to find f from
If .
On manifolds there typically are no simple formulas, but there are
iterative algorithms (Neumann series).
The focus in this talk is in proving injectivity.
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The unit sphere bundle SM

The unit sphere bundle SM of M is

SM = {(x, v);x ∈M,v ∈ TxM, |v| = 1}.

This is a subbundle of the tangent bundle TM . The fiber SxM is a
sphere on the tangent space TxM .
If M = Ω̄ for a domain Ω ⊂ Rn, then SM = M × Sn−1.
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The unit sphere bundle SM

The geodesic flow (of unit speed geodesics) is a dynamical system on
SM .
If (x, v) ∈ SM , denote by γx,v the geodesic with γ(0) = x and
γ̇(0) = v.
The geodesic flow φt is simply given by φt(x, v) = (γx,v(t), γ̇x,v(t)).
Notice that φt(x, v) is not defined for all t since the geodesics reach
the boundary, so φt : SM → SM is only a partial map if t 6= 0.
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Three vector fields on SM

Let M be a smooth and compact Riemannian surface (dim(M) = 2)
with boundary and SM its unit sphere bundle. Assume that every
maximal geodesic has finite length.
Let X denote the derivative along the geodesic flow. That is,

Xu(x, v) =
d

dt
u(φt(x, v))

∣∣∣∣
t=0

,

for a function u on SM . This X is a vector field on SM .
X is the geodesic vector field. It generates the geodesic flow.
In Euclidean geometry X = v · ∇x.
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Three vector fields on SM

In two dimensions we can write the direction v in local coordinates as
vθ = (cos θ, sin θ).
We define the derivative V as

V u(x, vθ) =
d

dθ
u(x, vθ).

This is globally well defined an independent of coordinates if M is
orientable.
V is known as the vertical vector field.
The integral curves of V are the fibers SxM .
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Three vector fields on SM

We define a third vector field as X⊥ = [X,V ]. This is a derivative
with respect to x in the direction orthogonal to v.
These three vector fields X,V,X⊥ are a global orthonormal frame on
SM when SM is equipped with the Sasaki metric.
We have the commutator relations

[X,V ] = X⊥,

[V,X⊥] = X and
[X,X⊥] = −KV,

where K is the Gaussian curvature.
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The transport equation

Assume f ∈ C2(M) integrates to zero over all geodesics.
Define uf : SM → R as

uf (x, v) =

∫ τx,v

0
f(γx,v(t))dt.

Here τx,v ≥ 0 is the exit time of the geodesic γx,v.
Since uf is the integral of f along a geodesic, the fundamental
theorem of calculus gives

Xuf (x, v) = −f(x)

for all (x, v) ∈ SM . This is the transport equation.
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The transport equation

In the transport equation Xuf = −f we may regard both sides as
functions on SM .
Since f only depends on x, we have V f = 0, and so

V Xuf = 0.

Since f integrates to zero over all geodesics, uf is zero at ∂(SM).
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The transport equation

Problem
Does the second order PDE{

V Xu = 0 in SM
u = 0 on ∂(SM)

have a unique solution?

If yes, then If = 0 implies uf = 0. This means that f = −Xuf = 0, so
the X-ray transform is injective!
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The Pestov identity

The PDE V Xu = 0 is not elliptic, parabolic or hyperbolic, so standard
techniques do not apply. In fact,

V X =
1

4
(X + V )2 − 1

4
(X − V )2 − 1

2
X⊥.

The lower order term 1
2X⊥ plays a role: if we change its sign, we

always lose unique solvability.
There is an energy identity for this PDE that allows us to deduce that
solutions are unique on some manifolds.
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The Pestov identity

Lemma (Pestov identity)
Let M be a a compact, orientable Riemannian surface with boundary. If
u ∈ C2(SM) with u|∂(SM) = 0, then

‖V Xu‖2 = ‖XV u‖2 − 〈KV u, V u〉+ ‖Xu‖2 .

The norms and inner products are those of L2(SM).

Proof.
Calculate ‖V Xu‖2 − ‖XV u‖2 using the commutator relations and
integration by parts.
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Injectivity of the X-ray transform

Theorem
Let M be a smooth and compact Riemannian surface with strictly convex
boundary and non-positive Gaussian curvature. The X-ray transform on M
is injective on C2(M).

Proof.
Suppose f ∈ C2(M) integrates to zero over all geodesics. Then
uf ∈ C2(SM) with zero boundary values and V Xuf = 0. The Pestov
identity gives 0 =

∥∥XV uf∥∥2 − 〈KV uf , V uf〉+
∥∥Xuf∥∥2. Since K ≤ 0, all

terms are non-negative, so they must all vanish. In particular,
f = −Xuf = 0.
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Injectivity of the X-ray transform

Definition (Simple manifold)

A compact manifold M with boundary is simple if
∂M is strictly convex and
any two boundary points are joined by a unique geodesic which
depends smoothly on the endpoints.

A surface with non-positive curvature and strictly convex boundary is
simple.
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Injectivity of the X-ray transform

Lemma

On a simple surface ‖Xw‖2− 〈Kw,w〉 ≥ 0 for any function w ∈ C2(SM).

Proof.
A calculation using the Santaló formula gives

‖Xw‖2 − 〈Kw,w〉 =

∫
∂inward(SM)

Iγx,v(w) |v · ν| dxdv,

where Iγ is the index form on the geodesic γ. On a simple manifold there
are no conjugate points, so the index forms are positive definite.
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Injectivity of the X-ray transform

Theorem (Mukhometov 1977)
Let M be a simple surface. The X-ray transform on M is injective on
C2(M).

Proof.
Suppose f ∈ C2(M) integrates to zero over all geodesics. Then
uf ∈ C2(SM) with zero boundary values and V Xuf = 0. The Pestov
identity gives 0 =

∥∥XV uf∥∥2 − 〈KV uf , V uf〉+
∥∥Xuf∥∥2. Since∥∥XV uf∥∥2 − 〈KV uf , V uf〉 ≥ 0, we must have
∥∥Xuf∥∥ = 0. Therefore

f = −Xuf = 0.
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Injectivity of the X-ray transform

The idea of a Pestov identity goes back to Mukhometov; it is not
originally due to Pestov.
The Pestov identity can also be used to prove other similar results.
For the Pestov identity in 2D, see

Paternain–Salo–Uhlmann (Invent. Math. 2013): Tensor
tomography on surfaces

and references therein. Several people have contributed to the topic:
Mukhometov, Guillemin, Kazhdan, Sharafutdinov, Pestov, Uhlmann,
Salo, Paternain. . .
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Outline

1 X-ray imaging

2 X-ray tomography and manifolds

3 The Pestov identity

4 Various generalizations
Higher dimensions
Vector fields
Tensor fields
Pseudo-Riemannian manifolds
Closed manifolds
Broken rays
Rough metrics

5 Applications
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Higher dimensions

If dim(M) ≥ 3, we can still define X as before, but V (and therefore
X⊥) needs to be redefined.
On Sn−1 there are several directions when n ≥ 3, so V is replaced
with a vertical gradient. For a scalar u, the derivative V u is now a
vector field of some kind. Also X⊥ is replaced with a vector field,
called the horizontal gradient.
In 2D we had V ∗ = −V and X∗⊥ = −X⊥, but in higher dimensions
the vertical and horizontal gradients are different objects than the
vertical and horizontal divergences.
I will be very brief. For more details in higher dimensions, see

Paternain–Salo–Uhlmann (Math. Ann. 2015): Invariant
distributions, Beurling transforms and tensor tomography in
higher dimensions

and references therein.
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vector field of some kind. Also X⊥ is replaced with a vector field,
called the horizontal gradient.
In 2D we had V ∗ = −V and X∗⊥ = −X⊥, but in higher dimensions
the vertical and horizontal gradients are different objects than the
vertical and horizontal divergences.
I will be very brief. For more details in higher dimensions, see

Paternain–Salo–Uhlmann (Math. Ann. 2015): Invariant
distributions, Beurling transforms and tensor tomography in
higher dimensions

and references therein.
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Higher dimensions

Lemma (Pestov identity)
Let M be a compact manifold with boundary, with dim(M) = n. If
u ∈ C2(SM) with u|∂(SM) = 0, then

‖V Xu‖2 = ‖XV u‖2 − 〈RV u, V u〉+ (n− 1) ‖Xu‖2 ,

where R is an operator given by the Riemann curvature tensor. The norms
and inner products are those of L2(SM).

If M has non-positive sectional curvature, all terms are non-negative.
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Higher dimensions

Theorem (Mukhometov 1977)
The X-ray transform is injective on all simple manifolds.
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Vector fields

Question: If f is a vector field (one-form more naturally) and
integrates to zero over all geodesics on M , is f zero?
No! If f = dφ for any function φ : M → R that vanishes on ∂M , then
If = 0.
New question: If f is a vector field and integrates to zero over all
geodesics on M , is there a function φ so that φ|∂M = 0 and f = dφ?
(Do the integrals of f determine f up to gauge?)
Sometimes yes! At least on simple manifolds. A simple proof with the
Pestov identity works again.
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Tensor fields

What if f is a tensor field of higher order?
The integral of a tensor field f over γ is∫ T

0
fγ(t)(γ̇(t), . . . , γ̇(t))dt.

On a simple surface, if a symmetric tensor field f of order m
integrates to zero over all geodesics, then f = dφ for a symmetric
tensor field φ of order m− 1. (P–S–U, 2013)
In dimensions n ≥ 3 this is open. There are only partial results.
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Pseudo-Riemannian manifolds

A Riemannian metric at a point can be written as the diagonal matrix1
. . .

1

 .

A pseudo-Riemannian metric of signature (n,m) is like the matrix

−1
. . .

−1
1

. . .
1


,

with n negative signs and m positive ones.

Joonas Ilmavirta (Jyväskylä) X-ray tomography 15 September 2016 31 / ∞



Pseudo-Riemannian manifolds

A Riemannian metric at a point can be written as the diagonal matrix1
. . .

1

 .

A pseudo-Riemannian metric of signature (n,m) is like the matrix

−1
. . .

−1
1

. . .
1


,

with n negative signs and m positive ones.

Joonas Ilmavirta (Jyväskylä) X-ray tomography 15 September 2016 31 / ∞



Pseudo-Riemannian manifolds

A Riemannian metric at a point can be written as the diagonal matrix1
. . .

1

 .

A pseudo-Riemannian metric of signature (n,m) is like the matrix

−1
. . .

−1
1

. . .
1


,

with n negative signs and m positive ones.

Joonas Ilmavirta (Jyväskylä) X-ray tomography 15 September 2016 31 / ∞

.



Pseudo-Riemannian manifolds

For two Riemannian manifolds (M1, g1) and (M2, g2) we can equip the
product manifold M1 ×M2 with the Riemannian product metric g1 ⊕ g2 or
the pseudo-Riemannian product metric g1 	 g2.

Theorem (I., 2016)
Let M1 and M2 be two Riemannian manifolds of non-negative sectional
curvature, strictly convex boundary and dimension ≥ 2. Then the null
geodesic X-ray transform is injective on the pseudo-Riemannian product
M1 ×M2.

The proof is based on a Pestov identity. We assume that the signature
(m,n) satisfies m ≥ 2 and n ≥ 2. No Pestov identity method is known in
Lorentzian geometry (m = 1).
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Closed manifolds

One can also consider similar problems on closed manifolds (compact
manifolds without boundary).
It is no longer easy to find a solution u to the equation Xu = −f .
One needs what is called a Livšic theorem to prove existence of
solutions.
The “closed analogue” of a simple surface is an Anosov surface.
On an Anosov surface, if a symmetric tensor field f of order m
integrates to zero over all geodesics, then f = dφ for a symmetric
tensor field φ of order m− 1. (P–S–U 2014)
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Broken rays
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Broken rays

One reflecting obstacle in a domain. Two broken rays.
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Broken rays

Theorem (I.–Salo, 2016)
Let M be a non-positively curved Riemannian surface with strictly convex
boundary. Add a strictly convex reflecting obstacle. Then the broken ray
transform is injective.

The same result is true higher dimensions as well, and in two dimensions in
the absence of conjugate points along broken rays. (I.–Paternain)
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Rough metrics

For geophysical purposes, we would like to understand X-ray tomography
on manifolds with a rough metric.

Theorem (de Hoop–I.)

On a spherically symmetric non-trapping manifold with a piecewise C1,1

metric the geodesic X-ray transform is injective on L2 functions.
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Outline

1 X-ray imaging

2 X-ray tomography and manifolds

3 The Pestov identity

4 Various generalizations

5 Applications
Linearized length
Rigidity of length spectrum
Rigidity of spectrum
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Linearized length

Do all distances between boundary points uniquely determine a
Riemannian manifold?
Do travel times of earthquakes which occur near the surface uniquely
determine the interior structure of the Earth?
We linearize this problem.
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Linearized length

Let gs be a family of Riemannian metrics on a manifold M . The
“infinitesimal variation” f = d

dsgs
∣∣
s=0

is a symmetric second order
tensor field on M .
Fix two points at the boundary: x, y ∈ ∂M . Let γs be the shortest
geodesic joining x and y in the metric gs. Then

d

ds
`(γs)

∣∣∣∣
s=0

= 2If(γ0).
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Linearized length

Linearized travel time tomography is geodesic X-ray tomography.

If we already know the conformal class of the manifold, the unknown
function f can be considered scalar instead of a rank two tensor.
Linearizing lengths of broken rays leads to broken ray tomography.
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Rigidity of length spectrum

The length spectrum of a closed manifold is the set of lengths of
periodic geodesics.
The length spectrum of a manifold with boundary is the set of lengths
of periodic broken rays.
The length spectrum is said to be rigid if small variations preserving
the length spectrum are necessarily trivial.
Proofs of rigidity results typically provide an iterative reconstruction
algorithm (without proof of convergence).
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Rigidity of length spectrum

Theorem (Paternain–Salo–Uhlmann, 2014)
The length spectrum of every Anosov surface is rigid.

Theorem (de Hoop–I.)
The length spectrum of every spherically symmetric non-trapping smooth
manifold with boundary is rigid.
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Rigidity of length spectrum

Problem
Can we measure the length spectrum of the Earth?

It can be done indirectly in spherical symmetry.
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Rigidity of spectrum

We can measure the frequencies of free oscillations in the Earth.
In the Riemannian model the corresponding data is the spectrum of
the Laplace–Beltrami operator on the manifold.
These two kinds of spectra are related to each other.
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Rigidity of spectrum

Theorem (de Hoop–I.)
The spectrum of the Laplace–Beltrami operator on a spherically symmetric
non-trapping 3-dimensional Riemannian manifold uniquely determines the
length spectrum.

Corollary (de Hoop–I.)
The spectrum is rigid on such manifolds.
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End

Thank you.

Slides are available at http://users.jyu.fi/~jojapeil.
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