Pestov identities for generalized X-ray transforms 100 Years of the Radon Transform RICAM

Joonas Ilmavirta (University of Jyväskylä) including joint work with Gabriel Paternain and Mikko Salo

University of Jyväskylä

31 March 2017

Outline

- Ray tomography on simple manifolds
 - The sphere bundle
 - From ray transform to transport equation
 - The Pestov identity
 - Consequences
- Broken ray tomography
- Pseudo-Riemannian manifolds

 \bullet Let M be a Riemannian manifold with boundary.

- ullet Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$SM = \{(x, v); x \in M, v \in T_xM, |v| = 1\}.$$

- ullet Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$SM = \{(x, v); x \in M, v \in T_xM, |v| = 1\}.$$

• Two important derivatives on SM:

- Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$SM = \{(x, v); x \in M, v \in T_xM, |v| = 1\}.$$

- Two important derivatives on *SM*:
 - The geodesic vector field $X = v \cdot \nabla_x$ generates the geodesic flow (a dynamical system on SM).

- ullet Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$SM = \{(x, v); x \in M, v \in T_xM, |v| = 1\}.$$

- Two important derivatives on SM:
 - The geodesic vector field $X = v \cdot \nabla_x$ generates the geodesic flow (a dynamical system on SM).
 - The vertical gradient $\dot{\nabla}$ differentiates with respect to the direction variable v. (In 2D $\overset{\mathrm{v}}{\nabla}$ is the vertical vector field V.)

• We want to know if a function on a manifold is uniquely determined by its integrals over all maximal geodesics. That is, if $f \in C^{\infty}(M)$ integrates to zero over all geodesics, is $f \equiv 0$?

- We want to know if a function on a manifold is uniquely determined by its integrals over all maximal geodesics. That is, if $f \in C^{\infty}(M)$ integrates to zero over all geodesics, is $f \equiv 0$?
- If $(x,v) \in SM$, denote by $\gamma_{x,v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.

- We want to know if a function on a manifold is uniquely determined by its integrals over all maximal geodesics. That is, if $f \in C^{\infty}(M)$ integrates to zero over all geodesics, is $f \equiv 0$?
- If $(x,v) \in SM$, denote by $\gamma_{x,v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.
- Let $\tau_{x,v} \geq 0$ be the exit time of the geodesic $\gamma_{x,v}$.

• Assume $f \in C^{\infty}(M)$ integrates to zero over all geodesics.

- Assume $f \in C^{\infty}(M)$ integrates to zero over all geodesics.
- Define $u^f \colon SM \to \mathbb{R}$ as

$$u^f(x,v) = \int_0^{\tau_{x,v}} f(\gamma_{x,v}(t)) dt.$$

- Assume $f \in C^{\infty}(M)$ integrates to zero over all geodesics.
- ullet Define $u^f\colon SM o\mathbb{R}$ as

$$u^{f}(x,v) = \int_{0}^{\tau_{x,v}} f(\gamma_{x,v}(t)) dt.$$

 \bullet Since u^f is the integral of f along a geodesic, the fundamental theorem of calculus gives

$$Xu^f(x,v) = -f(x)$$

for all $(x, v) \in SM$. This is the transport equation.

• In the transport equation $Xu^f=-f$ we may regard both sides as functions on SM.

- In the transport equation $Xu^f = -f$ we may regard both sides as functions on SM.
- Since f only depends on x, we have $\overset{\mathrm{v}}{\nabla} f = 0$, and so

$$\overset{\mathrm{v}}{\nabla} X u^f = 0.$$

- In the transport equation $Xu^f = -f$ we may regard both sides as functions on SM.
- ullet Since f only depends on x, we have $\overset{\mathrm{v}}{
 abla}f=0$, and so

$$\overset{\mathrm{v}}{\nabla} X u^f = 0.$$

• Since f integrates to zero over all geodesics, u^f is zero at $\partial(SM)$.

Problem

Does the second order PDE

$$\begin{cases} \overset{\text{v}}{\nabla} X u = 0 & \text{ in } SM \\ u = 0 & \text{ on } \partial(SM) \end{cases}$$

have a unique solution?

Problem

Does the second order PDE

$$\begin{cases} \overset{\text{v}}{\nabla} X u = 0 & \text{ in } SM \\ u = 0 & \text{ on } \partial(SM) \end{cases}$$

have a unique solution?

If yes, then the X-ray transform is injective: it follows that $u^f=0$ and thus $f=-Xu^f=0$.

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian manifold with boundary. If $u \in C^{\infty}(SM)$ with $u|_{\partial(SM)}=0$, then

$$\left\| \overset{\mathbf{v}}{\nabla} X u \right\|^2 = \left\| X \overset{\mathbf{v}}{\nabla} u \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u, \overset{\mathbf{v}}{\nabla} u \right\rangle + (n-1) \left\| X u \right\|^2.$$

The norms and inner products are those of $L^2(SM)$ and R is an operator given by the Riemann curvature tensor.

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian manifold with boundary. If $u \in C^{\infty}(SM)$ with $u|_{\partial(SM)}=0$, then

$$\left\| \overset{\mathbf{v}}{\nabla} X u \right\|^2 = \left\| X \overset{\mathbf{v}}{\nabla} u \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u, \overset{\mathbf{v}}{\nabla} u \right\rangle + (n-1) \left\| X u \right\|^2.$$

The norms and inner products are those of $L^2(SM)$ and R is an operator given by the Riemann curvature tensor.

Proof

• Apply the Pestov identity to u^f which satisfies $\overset{\mathrm{v}}{\nabla} X u^f = 0$:

$$0 = \left\| X \overset{\mathbf{v}}{\nabla} u^f \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u^f, \overset{\mathbf{v}}{\nabla} u^f \right\rangle + (n-1) \left\| X u^f \right\|^2.$$

• Apply the Pestov identity to u^f which satisfies $\overset{\mathrm{v}}{\nabla} X u^f = 0$:

$$0 = \left\| X \overset{\mathbf{v}}{\nabla} u^f \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u^f, \overset{\mathbf{v}}{\nabla} u^f \right\rangle + (n-1) \left\| X u^f \right\|^2.$$

• If the sectional curvature is non-positive, then all terms are non-negative and therefore vanish. In particular, $f=-Xu^f=0$.

• Apply the Pestov identity to u^f which satisfies $\overset{\mathrm{v}}{\nabla} X u^f = 0$:

$$0 = \left\| X \overset{\mathbf{v}}{\nabla} u^f \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u^f, \overset{\mathbf{v}}{\nabla} u^f \right\rangle + (n-1) \left\| X u^f \right\|^2.$$

- If the sectional curvature is non-positive, then all terms are non-negative and therefore vanish. In particular, $f=-Xu^f=0$.
- If the manifold is simple, then

$$\left\| X \overset{\mathbf{v}}{\nabla} u \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u, \overset{\mathbf{v}}{\nabla} u \right\rangle \ge 0$$

for all $u \in C^{\infty}(SM)$, and the same conclusion holds. [Mukhometov 1977, . . .]

• Apply the Pestov identity to u^f which satisfies $\overset{\mathrm{v}}{\nabla} X u^f = 0$:

$$0 = \left\| X \overset{\mathbf{v}}{\nabla} u^f \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u^f, \overset{\mathbf{v}}{\nabla} u^f \right\rangle + (n-1) \left\| X u^f \right\|^2.$$

- If the sectional curvature is non-positive, then all terms are non-negative and therefore vanish. In particular, $f=-Xu^f=0$.
- If the manifold is simple, then

$$\left\| X \overset{\mathbf{v}}{\nabla} u \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u, \overset{\mathbf{v}}{\nabla} u \right\rangle \ge 0$$

for all $u \in C^{\infty}(SM)$, and the same conclusion holds. [Mukhometov 1977, . . .]

• The Pestov identity can also be used on non-compact manifolds. [Lehtonen, 2016]

Consequences

Consequences¹

Theorem

The X-ray transform is injective in all dimensions if the boundary is strictly convex and the sectional curvature non-positive.

Consequences

Theorem

The X-ray transform is injective in all dimensions if the boundary is strictly convex and the sectional curvature non-positive.

Theorem (Mukhometov 1977)

The X-ray transform is injective on all simple manifolds.

Consequences

Theorem

The X-ray transform is injective in all dimensions if the boundary is strictly convex and the sectional curvature non-positive.

Theorem (Mukhometov 1977)

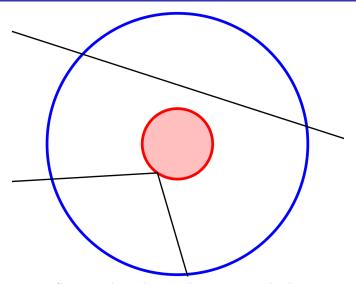
The X-ray transform is injective on all simple manifolds.

Analysis on the sphere bundle provides a convenient invariant framework for the analysis of ray transforms.

Outline

- Ray tomography on simple manifolds
- 2 Broken ray tomography
 - The broken ray transform
 - Two dimensions
 - Higher dimensions
- Pseudo-Riemannian manifolds

The broken ray transform



One reflecting obstacle in a domain. Two broken rays.

The broken ray transform

Problem

Is a function determined by its integrals over all broken rays in the geometry of the previous slide?

The broken ray transform

Problem

Is a function determined by its integrals over all broken rays in the geometry of the previous slide?

The broken ray transform can also mean other things; cf. Ambartsoumian's talk.

Two dimensions

Two dimensions

• Let R be the reflecting part of the boundary, and denote $SR = \{(x, v) \in SM; x \in R\}.$

- Let R be the reflecting part of the boundary, and denote $SR = \{(x, v) \in SM; x \in R\}.$
- The reflection $\rho \colon SR \to SR$ is $\rho(x,v) = (x,v \langle v,\nu(x)\rangle \, \nu(x))$.

- Let R be the reflecting part of the boundary, and denote $SR = \{(x, v) \in SM; x \in R\}.$
- The reflection $\rho \colon SR \to SR$ is $\rho(x,v) = (x,v-\langle v,\nu(x)\rangle\,\nu(x)).$
- We define $u^f \colon SM \to \mathbb{R}$ as before, integrating along broken rays until they hit $\partial M \setminus R$.

- Let R be the reflecting part of the boundary, and denote $SR = \{(x, v) \in SM; x \in R\}.$
- The reflection $\rho \colon SR \to SR$ is $\rho(x,v) = (x,v-\langle v,\nu(x)\rangle\,\nu(x)).$
- We define $u^f \colon SM \to \mathbb{R}$ as before, integrating along broken rays until they hit $\partial M \setminus R$.
- This u^f satisfies $u^f = u^f \circ \rho$ on SR.

Lemma (Pestov identity)

Let M be a compact, orientable Riemannian surface with boundary. If $u \in C^{\infty}(SM)$ with $u|_{\partial(SM)\backslash SR}=0$ and $u=u\circ\rho$ on SR, then

$$||VXu||^2 = ||XVu||^2 - \langle KVu, Vu \rangle + ||Xu||^2 - \int_{SB} \kappa(x) |Vu(x, v)|^2.$$

Lemma (Pestov identity)

Let M be a compact, orientable Riemannian surface with boundary. If $u \in C^{\infty}(SM)$ with $u|_{\partial(SM)\backslash SR}=0$ and $u=u\circ\rho$ on SR, then

$$||VXu||^2 = ||XVu||^2 - \langle KVu, Vu \rangle + ||Xu||^2 - \int_{SR} \kappa(x) |Vu(x, v)|^2.$$

Technical problem: The function u^f is not a priori smooth at all!

Theorem (I.-Salo, 2016)

Let M be a non-positively curved Riemannian surface with strictly convex boundary. Add a strictly convex reflecting obstacle. Then the broken ray transform is injective.

• Pestov identity in 2D with boundary term:

$$||VXu||^2 = ||XVu||^2 - \langle KVu, Vu \rangle + ||Xu||^2 - \int_{SR} \kappa(x) |Vu(x)|^2.$$

• Pestov identity in 2D with boundary term:

$$||VXu||^2 = ||XVu||^2 - \langle KVu, Vu \rangle + ||Xu||^2 - \int_{SR} \kappa(x) |Vu(x)|^2.$$

Pestov identity in HD without boundary term:

$$\left\| \overset{\mathbf{v}}{\nabla} X u \right\|^2 = \left\| X \overset{\mathbf{v}}{\nabla} u \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u, \overset{\mathbf{v}}{\nabla} u \right\rangle + (n-1) \left\| X u \right\|^2.$$

• Pestov identity in 2D with boundary term:

$$||VXu||^2 = ||XVu||^2 - \langle KVu, Vu \rangle + ||Xu||^2 - \int_{SR} \kappa(x) |Vu(x)|^2.$$

Pestov identity in HD without boundary term:

$$\left\| \overset{\mathbf{v}}{\nabla} X u \right\|^2 = \left\| X \overset{\mathbf{v}}{\nabla} u \right\|^2 - \left\langle R \overset{\mathbf{v}}{\nabla} u, \overset{\mathbf{v}}{\nabla} u \right\rangle + (n-1) \left\| X u \right\|^2.$$

There is a similar boundary term in higher dimensions.

Theorem (I.-Paternain, unpublished)

Theorem (I.-Paternain, unpublished)

Let M be a non-positively curved Riemannian manifold with strictly convex boundary. Add a strictly convex reflecting obstacle. Then the broken ray transform is injective.

Outline

- Ray tomography on simple manifolds
- Broken ray tomography
- 3 Pseudo-Riemannian manifolds
 - Pseudo-Riemannian products
 - The Pestov identity
 - Lorentz geometry

A Riemannian metric at a point can be written as the diagonal matrix

$$\begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$$
.

A Riemannian metric at a point can be written as the diagonal matrix

$$\begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}.$$

ullet A pseudo-Riemannian metric of signature (n_1,n_2) is like the matrix

$$\begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & & \ddots & \\ & & & & -1 \end{pmatrix},$$

with n_1 positive signs and n_2 negative ones.

For two Riemannian manifolds (M_1,g_1) and (M_2,g_2) we can equip the product manifold $M_1 \times M_2$ with the Riemannian product metric $g_1 \oplus g_2$ or the pseudo-Riemannian product metric $g_1 \oplus g_2$.

For two Riemannian manifolds (M_1,g_1) and (M_2,g_2) we can equip the product manifold $M_1\times M_2$ with the Riemannian product metric $g_1\oplus g_2$ or the pseudo-Riemannian product metric $g_1\ominus g_2$.

Theorem (I., 2016)

Let M_1 and M_2 be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2 . Then the null geodesic X-ray transform (light ray transform) is injective on the pseudo-Riemannian product $(M_1 \times M_2, g_1 \ominus g_2)$.

For two Riemannian manifolds (M_1,g_1) and (M_2,g_2) we can equip the product manifold $M_1\times M_2$ with the Riemannian product metric $g_1\oplus g_2$ or the pseudo-Riemannian product metric $g_1\ominus g_2$.

Theorem (I., 2016)

Let M_1 and M_2 be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2 . Then the null geodesic X-ray transform (light ray transform) is injective on the pseudo-Riemannian product $(M_1 \times M_2, g_1 \ominus g_2)$.

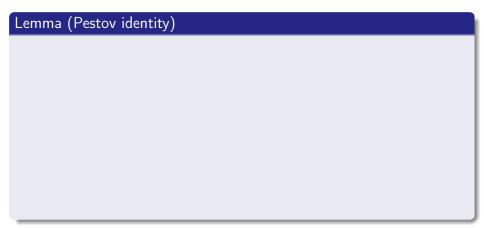
The proof is based on a Pestov identity.

• In product geometry we can consider "unit speed null geodesics" on $M_1 \times M_2$. Both components are unit speed geodesics.

- In product geometry we can consider "unit speed null geodesics" on $M_1 \times M_2$. Both components are unit speed geodesics.
- The null geodesic flow is a dynamical system on the compact light cone bundle $LM = SM_1 \times SM_2$.

- In product geometry we can consider "unit speed null geodesics" on $M_1 \times M_2$. Both components are unit speed geodesics.
- The null geodesic flow is a dynamical system on the compact light cone bundle $LM = SM_1 \times SM_2$.
- ullet We can use the natural operators on both sphere bundles: X_1 , $\stackrel{\mathrm{v}}{
 abla}_2$, \dots

- In product geometry we can consider "unit speed null geodesics" on $M_1 \times M_2$. Both components are unit speed geodesics.
- The null geodesic flow is a dynamical system on the compact light cone bundle $LM = SM_1 \times SM_2$.
- ullet We can use the natural operators on both sphere bundles: X_1 , $\stackrel{\mathrm{v}}{
 abla}_2$, \dots
- The null geodesic flow is generated by $X = X_1 + X_2$.



Lemma (Pestov identity)

If $u \colon LM \to \mathbb{R}$ is smooth and vanishes at the boundary, then

$$(n_{2}-1) \left\| \overset{\mathbf{v}}{\nabla}_{1} X u \right\|^{2} + (n_{1}-1) \left\| \overset{\mathbf{v}}{\nabla}_{2} X u \right\|^{2}$$

$$= (n_{2}-1) \left\| X \overset{\mathbf{v}}{\nabla}_{1} u \right\|^{2} + (n_{1}-1) \left\| X \overset{\mathbf{v}}{\nabla}_{2} u \right\|^{2}$$

$$- (n_{2}-1) \left\langle R_{1} \overset{\mathbf{v}}{\nabla}_{1} u, \overset{\mathbf{v}}{\nabla}_{1} u \right\rangle - (n_{1}-1) \left\langle R_{2} \overset{\mathbf{v}}{\nabla}_{2} u, \overset{\mathbf{v}}{\nabla}_{2} u \right\rangle$$

$$+ (n_{1}-1)(n_{2}-1) \left\| X u \right\|^{2}.$$

• No useful Pestov identity is known for Lorentz geometry $(n_1 = 1 \text{ or } n_2 = 1)$.

- No useful Pestov identity is known for Lorentz geometry $(n_1 = 1 \text{ or } n_2 = 1)$.
- Other methods are known:

- No useful Pestov identity is known for Lorentz geometry $(n_1 = 1)$ or $n_2 = 1$.
- Other methods are known:
 - Real analytic Lorentz manifolds. [Stefanov, 2017]
 - \bullet Products $M\times \mathbb{R}$ where M has an injective Riemannian ray transform. [Oksanen–Kian, unpublished]

- No useful Pestov identity is known for Lorentz geometry $(n_1 = 1)$ or $n_2 = 1$.
- Other methods are known:
 - Real analytic Lorentz manifolds. [Stefanov, 2017]
 - \bullet Products $M\times \mathbb{R}$ where M has an injective Riemannian ray transform. [Oksanen–Kian, unpublished]
- For other Lorentzian and pseudo-Riemannian manifolds the problem is open.

End

Thank you.

Slides are available at http://users.jyu.fi/~jojapeil.