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The sphere bundle

Let M be a Riemannian manifold with boundary.

Its sphere bundle (unit tangent bundle) is

SM = {(x, v);x ∈M,v ∈ TxM, |v| = 1}.

Two important derivatives on SM :
The geodesic vector field X = v · ∇x generates the geodesic flow (a
dynamical system on SM).

The vertical gradient
v

∇ differentiates with respect to the direction

variable v. (In 2D
v

∇ is the vertical vector field V .)
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From ray transform to transport equation

We want to know if a function on a manifold is uniquely determined
by its integrals over all maximal geodesics. That is, if f ∈ C∞(M)
integrates to zero over all geodesics, is f ≡ 0?
If (x, v) ∈ SM , denote by γx,v the geodesic with γ(0) = x and
γ̇(0) = v.
Let τx,v ≥ 0 be the exit time of the geodesic γx,v.
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From ray transform to transport equation

Assume f ∈ C∞(M) integrates to zero over all geodesics.

Define uf : SM → R as

uf (x, v) =

∫ τx,v

0
f(γx,v(t))dt.

Since uf is the integral of f along a geodesic, the fundamental
theorem of calculus gives

Xuf (x, v) = −f(x)

for all (x, v) ∈ SM . This is the transport equation.
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From ray transform to transport equation

In the transport equation Xuf = −f we may regard both sides as
functions on SM .

Since f only depends on x, we have
v
∇ f = 0, and so

v
∇Xuf = 0.

Since f integrates to zero over all geodesics, uf is zero at ∂(SM).
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From ray transform to transport equation

Problem
Does the second order PDE{ v

∇Xu = 0 in SM
u = 0 on ∂(SM)

have a unique solution?

If yes, then the X-ray transform is injective: it follows that uf = 0 and thus
f = −Xuf = 0.
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The Pestov identity

Lemma (Pestov identity)
Let M be a a compact, orientable Riemannian manifold with boundary. If
u ∈ C∞(SM) with u|∂(SM) = 0, then∥∥∥∥ v

∇Xu
∥∥∥∥2 = ∥∥∥∥X v

∇u
∥∥∥∥2 −〈R v

∇u,
v
∇u
〉
+ (n− 1) ‖Xu‖2 .

The norms and inner products are those of L2(SM) and R is an operator
given by the Riemann curvature tensor.

Proof.

Calculate
∥∥∥∥ v
∇Xu

∥∥∥∥2−∥∥∥∥X v
∇u
∥∥∥∥2 using integration by parts and commutator

relations (2D): [X,V ] = X⊥, [V,X⊥] = X, [X,X⊥] = −KV .
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The Pestov identity

Apply the Pestov identity to uf which satisfies
v
∇Xuf = 0:

0 =

∥∥∥∥X v
∇uf

∥∥∥∥2 −〈R v
∇uf ,

v
∇uf

〉
+ (n− 1)

∥∥∥Xuf∥∥∥2 .

If the sectional curvature is non-positive, then all terms are
non-negative and therefore vanish. In particular, f = −Xuf = 0.
If the manifold is simple, then∥∥∥∥X v

∇u
∥∥∥∥2 −〈R v

∇u,
v
∇u
〉
≥ 0

for all u ∈ C∞(SM), and the same conclusion holds. [Mukhometov
1977, . . . ]
The Pestov identity can also be used on non-compact manifolds.
[Lehtonen, 2016]
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Consequences

Theorem
The X-ray transform is injective in all dimensions if the boundary is strictly
convex and the sectional curvature non-positive.

Theorem (Mukhometov 1977)
The X-ray transform is injective on all simple manifolds.

Analysis on the sphere bundle provides a convenient invariant framework
for the analysis of ray transforms.
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The broken ray transform

One reflecting obstacle in a domain. Two broken rays.
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The broken ray transform

Problem
Is a function determined by its integrals over all broken rays in the
geometry of the previous slide?

The broken ray transform can also mean other things; cf. Ambartsoumian’s
talk.
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Two dimensions

Let R be the reflecting part of the boundary, and denote
SR = {(x, v) ∈ SM ;x ∈ R}.
The reflection ρ : SR→ SR is ρ(x, v) = (x, v − 〈v, ν(x)〉 ν(x)).
We define uf : SM → R as before, integrating along broken rays until
they hit ∂M \R.
This uf satisfies uf = uf ◦ ρ on SR.
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Two dimensions

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian surface with boundary. If
u ∈ C∞(SM) with u|∂(SM)\SR = 0 and u = u ◦ ρ on SR, then

‖V Xu‖2 = ‖XV u‖2 − 〈KV u, V u〉+ ‖Xu‖2 −
∫
SR

κ(x) |V u(x, v)|2 .

Technical problem: The function uf is not a priori smooth at all!
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Two dimensions

Theorem (I.–Salo, 2016)
Let M be a non-positively curved Riemannian surface with strictly convex
boundary. Add a strictly convex reflecting obstacle. Then the broken ray
transform is injective.
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Higher dimensions

Pestov identity in 2D with boundary term:

‖V Xu‖2 = ‖XV u‖2 − 〈KV u, V u〉+ ‖Xu‖2 −
∫
SR

κ(x) |V u(x)|2 .

Pestov identity in HD without boundary term:∥∥∥∥ v
∇Xu

∥∥∥∥2 = ∥∥∥∥X v
∇u
∥∥∥∥2 −〈R v

∇u,
v
∇u
〉
+ (n− 1) ‖Xu‖2 .

There is a similar boundary term in higher dimensions.
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Higher dimensions

Theorem (I.–Paternain, unpublished)

Let M be a non-positively curved Riemannian manifold with strictly convex
boundary. Add a strictly convex reflecting obstacle. Then the broken ray
transform is injective.
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Outline

1 Ray tomography on simple manifolds

2 Broken ray tomography

3 Pseudo-Riemannian manifolds
Pseudo-Riemannian products
The Pestov identity
Lorentz geometry
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Pseudo-Riemannian products

A Riemannian metric at a point can be written as the diagonal matrix1
. . .

1

 .

A pseudo-Riemannian metric of signature (n1, n2) is like the matrix

1
. . .

1
−1

. . .
−1


,

with n1 positive signs and n2 negative ones.
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Pseudo-Riemannian products

For two Riemannian manifolds (M1, g1) and (M2, g2) we can equip the
product manifold M1 ×M2 with the Riemannian product metric g1 ⊕ g2 or
the pseudo-Riemannian product metric g1 	 g2.

Theorem (I., 2016)
Let M1 and M2 be two Riemannian manifolds of non-negative sectional
curvature, strictly convex boundary and dimension ≥ 2. Then the null
geodesic X-ray transform (light ray transform) is injective on the
pseudo-Riemannian product (M1 ×M2, g1 	 g2).

The proof is based on a Pestov identity.
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The Pestov identity

In product geometry we can consider “unit speed null geodesics” on
M1 ×M2. Both components are unit speed geodesics.
The null geodesic flow is a dynamical system on the compact light
cone bundle LM = SM1 × SM2.

We can use the natural operators on both sphere bundles: X1,
v
∇2, . . .

The null geodesic flow is generated by X = X1 +X2.
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The Pestov identity

Lemma (Pestov identity)

If u : LM → R is smooth and vanishes at the boundary, then

(n2 − 1)

∥∥∥∥ v
∇1Xu

∥∥∥∥2 + (n1 − 1)

∥∥∥∥ v
∇2Xu

∥∥∥∥2
= (n2 − 1)

∥∥∥∥X v
∇1 u

∥∥∥∥2 + (n1 − 1)

∥∥∥∥X v
∇2 u

∥∥∥∥2
− (n2 − 1)

〈
R1

v
∇1 u,

v
∇1 u

〉
− (n1 − 1)

〈
R2

v
∇2 u,

v
∇2 u

〉
+ (n1 − 1)(n2 − 1) ‖Xu‖2 .
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Lorentz geometry

No useful Pestov identity is known for Lorentz geometry (n1 = 1 or
n2 = 1).
Other methods are known:

Real analytic Lorentz manifolds. [Stefanov, 2017]
Products M × R where M has an injective Riemannian ray transform.
[Oksanen–Kian, unpublished]

For other Lorentzian and pseudo-Riemannian manifolds the problem is
open.
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End

Thank you.

Slides are available at http://users.jyu.fi/~jojapeil.

Joonas Ilmavirta (Jyväskylä) Generalized Pestov identities 31 March 2017 ∞ / ∞

.


	Ray tomography on simple manifolds
	The sphere bundle
	From ray transform to transport equation
	The Pestov identity
	Consequences

	Broken ray tomography
	The broken ray transform
	Two dimensions
	Higher dimensions

	Pseudo-Riemannian manifolds
	Pseudo-Riemannian products
	The Pestov identity
	Lorentz geometry


