Pestov identities for generalized X-ray transforms 100 Years of the Radon Transform RICAM

Joonas Ilmavirta (University of Jyväskylä) including joint work with Gabriel Paternain and Mikko Salo

University of Jyväskylä

31 March 2017

Outline

(1) Ray tomography on simple manifolds

- The sphere bundle
- From ray transform to transport equation
- The Pestov identity
- Consequences
(2) Broken ray tomography
(3) Pseudo-Riemannian manifolds

The sphere bundle

- Let M be a Riemannian manifold with boundary.

The sphere bundle

- Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

The sphere bundle

- Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

- Two important derivatives on SM:

The sphere bundle

- Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

- Two important derivatives on $S M$:
- The geodesic vector field $X=v \cdot \nabla_{x}$ generates the geodesic flow (a dynamical system on $S M$).

The sphere bundle

- Let M be a Riemannian manifold with boundary.
- Its sphere bundle (unit tangent bundle) is

$$
S M=\left\{(x, v) ; x \in M, v \in T_{x} M,|v|=1\right\} .
$$

- Two important derivatives on $S M$:
- The geodesic vector field $X=v \cdot \nabla_{x}$ generates the geodesic flow (a dynamical system on $S M$).
- The vertical gradient $\stackrel{\vee}{\nabla}$ differentiates with respect to the direction variable $v .(\ln 2 \mathrm{D} \stackrel{\mathrm{v}}{\nabla}$ is the vertical vector field V.)

From ray transform to transport equation

From ray transform to transport equation

- We want to know if a function on a manifold is uniquely determined by its integrals over all maximal geodesics. That is, if $f \in C^{\infty}(M)$ integrates to zero over all geodesics, is $f \equiv 0$?

From ray transform to transport equation

- We want to know if a function on a manifold is uniquely determined by its integrals over all maximal geodesics. That is, if $f \in C^{\infty}(M)$ integrates to zero over all geodesics, is $f \equiv 0$?
- If $(x, v) \in S M$, denote by $\gamma_{x, v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.

From ray transform to transport equation

- We want to know if a function on a manifold is uniquely determined by its integrals over all maximal geodesics. That is, if $f \in C^{\infty}(M)$ integrates to zero over all geodesics, is $f \equiv 0$?
- If $(x, v) \in S M$, denote by $\gamma_{x, v}$ the geodesic with $\gamma(0)=x$ and $\dot{\gamma}(0)=v$.
- Let $\tau_{x, v} \geq 0$ be the exit time of the geodesic $\gamma_{x, v}$.

From ray transform to transport equation

- Assume $f \in C^{\infty}(M)$ integrates to zero over all geodesics.

From ray transform to transport equation

- Assume $f \in C^{\infty}(M)$ integrates to zero over all geodesics.
- Define $u^{f}: S M \rightarrow \mathbb{R}$ as

$$
u^{f}(x, v)=\int_{0}^{\tau_{x, v}} f\left(\gamma_{x, v}(t)\right) \mathrm{d} t
$$

From ray transform to transport equation

- Assume $f \in C^{\infty}(M)$ integrates to zero over all geodesics.
- Define $u^{f}: S M \rightarrow \mathbb{R}$ as

$$
u^{f}(x, v)=\int_{0}^{\tau_{x, v}} f\left(\gamma_{x, v}(t)\right) \mathrm{d} t
$$

- Since u^{f} is the integral of f along a geodesic, the fundamental theorem of calculus gives

$$
X u^{f}(x, v)=-f(x)
$$

for all $(x, v) \in S M$. This is the transport equation.

From ray transform to transport equation

- In the transport equation $X u^{f}=-f$ we may regard both sides as functions on $S M$.

From ray transform to transport equation

- In the transport equation $X u^{f}=-f$ we may regard both sides as functions on $S M$.
- Since f only depends on x, we have $\stackrel{\vee}{\nabla} f=0$, and so

$$
\stackrel{\mathrm{v}}{\nabla} X u^{f}=0
$$

From ray transform to transport equation

- In the transport equation $X u^{f}=-f$ we may regard both sides as functions on $S M$.
- Since f only depends on x, we have $\stackrel{\vee}{\nabla} f=0$, and so

$$
\stackrel{\mathrm{v}}{\nabla} X u^{f}=0
$$

- Since f integrates to zero over all geodesics, u^{f} is zero at $\partial(S M)$.

From ray transform to transport equation

Problem

Does the second order PDE

$$
\begin{cases}\stackrel{\mathrm{v}}{\nabla} X u=0 & \text { in } S M \\ u=0 & \text { on } \partial(S M)\end{cases}
$$

have a unique solution?

From ray transform to transport equation

Problem

Does the second order PDE

$$
\begin{cases}\stackrel{\mathrm{v}}{\nabla} X u=0 & \text { in } S M \\ u=0 & \text { on } \partial(S M)\end{cases}
$$

have a unique solution?
If yes, then the X -ray transform is injective: it follows that $u^{f}=0$ and thus $f=-X u^{f}=0$.

The Pestov identity

The Pestov identity

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian manifold with boundary. If $u \in C^{\infty}(S M)$ with $\left.u\right|_{\partial(S M)}=0$, then

$$
\|\stackrel{\mathrm{v}}{\nabla} X u\|^{2}=\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}-\langle R \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\rangle+(n-1)\|X u\|^{2} .
$$

The norms and inner products are those of $L^{2}(S M)$ and R is an operator given by the Riemann curvature tensor.

The Pestov identity

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian manifold with boundary. If $u \in C^{\infty}(S M)$ with $\left.u\right|_{\partial(S M)}=0$, then

$$
\|\stackrel{\mathrm{v}}{\nabla} X u\|^{2}=\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}-\langle R \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\rangle+(n-1)\|X u\|^{2} .
$$

The norms and inner products are those of $L^{2}(S M)$ and R is an operator given by the Riemann curvature tensor.

Proof

Calculate $\|\stackrel{\mathrm{v}}{\nabla} X u\|^{2}-\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}$ using integration by parts and commutator relations (2D): $[X, V]=X_{\perp},\left[V, X_{\perp}\right]=X,\left[X, X_{\perp}\right]=-K V$.

The Pestov identity

- Apply the Pestov identity to u^{f} which satisfies $\stackrel{\vee}{\nabla} X u^{f}=0$:

$$
0=\left\|X \stackrel{\mathrm{v}}{\nabla} u^{f}\right\|^{2}-\left\langle R \stackrel{\mathrm{v}}{\nabla} u^{f}, \stackrel{\mathrm{v}}{\nabla} u^{f}\right\rangle+(n-1)\left\|X u^{f}\right\|^{2}
$$

The Pestov identity

- Apply the Pestov identity to u^{f} which satisfies $\stackrel{\mathrm{v}}{\nabla} X u^{f}=0$:

$$
0=\left\|X \stackrel{\mathrm{v}}{\nabla} u^{f}\right\|^{2}-\left\langle R \stackrel{\mathrm{v}}{\nabla} u^{f}, \stackrel{\mathrm{v}}{\nabla} u^{f}\right\rangle+(n-1)\left\|X u^{f}\right\|^{2}
$$

- If the sectional curvature is non-positive, then all terms are non-negative and therefore vanish. In particular, $f=-X u^{f}=0$.

The Pestov identity

- Apply the Pestov identity to u^{f} which satisfies $\stackrel{\mathrm{v}}{\nabla} X u^{f}=0$:

$$
0=\left\|X \stackrel{\mathrm{v}}{\nabla} u^{f}\right\|^{2}-\left\langle R \stackrel{\mathrm{v}}{\nabla} u^{f}, \stackrel{\mathrm{v}}{\nabla} u^{f}\right\rangle+(n-1)\left\|X u^{f}\right\|^{2}
$$

- If the sectional curvature is non-positive, then all terms are non-negative and therefore vanish. In particular, $f=-X u^{f}=0$.
- If the manifold is simple, then

$$
\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}-\langle R \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\rangle \geq 0
$$

for all $u \in C^{\infty}(S M)$, and the same conclusion holds. [Mukhometov 1977, ...]

The Pestov identity

- Apply the Pestov identity to u^{f} which satisfies $\stackrel{\mathrm{v}}{\nabla} X u^{f}=0$:

$$
0=\left\|X \stackrel{\mathrm{v}}{\nabla} u^{f}\right\|^{2}-\left\langle R \stackrel{\mathrm{v}}{\nabla} u^{f}, \stackrel{\mathrm{v}}{\nabla} u^{f}\right\rangle+(n-1)\left\|X u^{f}\right\|^{2}
$$

- If the sectional curvature is non-positive, then all terms are non-negative and therefore vanish. In particular, $f=-X u^{f}=0$.
- If the manifold is simple, then

$$
\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}-\langle R \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\rangle \geq 0
$$

for all $u \in C^{\infty}(S M)$, and the same conclusion holds. [Mukhometov 1977, ...]

- The Pestov identity can also be used on non-compact manifolds. [Lehtonen, 2016]

Consequences

Consequences

Theorem

The X-ray transform is injective in all dimensions if the boundary is strictly convex and the sectional curvature non-positive.

Consequences

Theorem

The X-ray transform is injective in all dimensions if the boundary is strictly convex and the sectional curvature non-positive.

Theorem (Mukhometov 1977)

The X-ray transform is injective on all simple manifolds.

Consequences

Theorem

The X-ray transform is injective in all dimensions if the boundary is strictly convex and the sectional curvature non-positive.

Theorem (Mukhometov 1977)

The X-ray transform is injective on all simple manifolds.
Analysis on the sphere bundle provides a convenient invariant framework for the analysis of ray transforms.

Outline

(1) Ray tomography on simple manifolds
(2) Broken ray tomography

- The broken ray transform
- Two dimensions
- Higher dimensions
(3) Pseudo-Riemannian manifolds

The broken ray transform

One reflecting obstacle in a domain. Two broken rays.

The broken ray transform

Problem

Is a function determined by its integrals over all broken rays in the geometry of the previous slide?

The broken ray transform

Problem

Is a function determined by its integrals over all broken rays in the geometry of the previous slide?

The broken ray transform can also mean other things; cf. Ambartsoumian's talk.

Two dimensions

Two dimensions

- Let R be the reflecting part of the boundary, and denote $S R=\{(x, v) \in S M ; x \in R\}$.

Two dimensions

- Let R be the reflecting part of the boundary, and denote $S R=\{(x, v) \in S M ; x \in R\}$.
- The reflection $\rho: S R \rightarrow S R$ is $\rho(x, v)=(x, v-\langle v, \nu(x)\rangle \nu(x))$.

Two dimensions

- Let R be the reflecting part of the boundary, and denote $S R=\{(x, v) \in S M ; x \in R\}$.
- The reflection $\rho: S R \rightarrow S R$ is $\rho(x, v)=(x, v-\langle v, \nu(x)\rangle \nu(x))$.
- We define $u^{f}: S M \rightarrow \mathbb{R}$ as before, integrating along broken rays until they hit $\partial M \backslash R$.

Two dimensions

- Let R be the reflecting part of the boundary, and denote $S R=\{(x, v) \in S M ; x \in R\}$.
- The reflection $\rho: S R \rightarrow S R$ is $\rho(x, v)=(x, v-\langle v, \nu(x)\rangle \nu(x))$.
- We define $u^{f}: S M \rightarrow \mathbb{R}$ as before, integrating along broken rays until they hit $\partial M \backslash R$.
- This u^{f} satisfies $u^{f}=u^{f} \circ \rho$ on $S R$.

Two dimensions

Lemma (Pestov identity)

Two dimensions

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian surface with boundary. If $u \in C^{\infty}(S M)$ with $\left.u\right|_{\partial(S M) \backslash S R}=0$ and $u=u \circ \rho$ on $S R$, then

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2}-\int_{S R} \kappa(x)|V u(x, v)|^{2}
$$

Two dimensions

Lemma (Pestov identity)

Let M be a a compact, orientable Riemannian surface with boundary. If $u \in C^{\infty}(S M)$ with $\left.u\right|_{\partial(S M) \backslash S R}=0$ and $u=u \circ \rho$ on $S R$, then

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2}-\int_{S R} \kappa(x)|V u(x, v)|^{2}
$$

Technical problem: The function u^{f} is not a priori smooth at all!

Two dimensions

Theorem (I.-Salo, 2016)
 Let M be a non-positively curved Riemannian surface with strictly convex boundary. Add a strictly convex reflecting obstacle. Then the broken ray transform is injective.

Higher dimensions

Higher dimensions

- Pestov identity in 2D with boundary term:

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2}-\int_{S R} \kappa(x)|V u(x)|^{2} .
$$

Higher dimensions

- Pestov identity in 2D with boundary term:

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2}-\int_{S R} \kappa(x)|V u(x)|^{2} .
$$

- Pestov identity in HD without boundary term:

$$
\|\stackrel{\mathrm{v}}{\nabla} X u\|^{2}=\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}-\langle R \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\rangle+(n-1)\|X u\|^{2} .
$$

Higher dimensions

- Pestov identity in 2D with boundary term:

$$
\|V X u\|^{2}=\|X V u\|^{2}-\langle K V u, V u\rangle+\|X u\|^{2}-\int_{S R} \kappa(x)|V u(x)|^{2} .
$$

- Pestov identity in HD without boundary term:

$$
\left\|\nabla{ }^{\mathrm{v}} X u\right\|^{2}=\|X \stackrel{\mathrm{v}}{\nabla} u\|^{2}-\langle R \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\rangle+(n-1)\|X u\|^{2} .
$$

- There is a similar boundary term in higher dimensions.

Higher dimensions

Theorem (I.-Paternain, unpublished)

Higher dimensions

Theorem (I.-Paternain, unpublished)
Let M be a non-positively curved Riemannian manifold with strictly convex boundary. Add a strictly convex reflecting obstacle. Then the broken ray transform is injective.

Outline

(1) Ray tomography on simple manifolds
(2) Broken ray tomography
(3) Pseudo-Riemannian manifolds

- Pseudo-Riemannian products
- The Pestov identity
- Lorentz geometry

Pseudo-Riemannian products

Pseudo-Riemannian products

- A Riemannian metric at a point can be written as the diagonal matrix

$$
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right)
$$

Pseudo-Riemannian products

- A Riemannian metric at a point can be written as the diagonal matrix

$$
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right)
$$

- A pseudo-Riemannian metric of signature $\left(n_{1}, n_{2}\right)$ is like the matrix

with n_{1} positive signs and n_{2} negative ones.

Pseudo-Riemannian products

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Pseudo-Riemannian products

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Theorem (I., 2016)

Let M_{1} and M_{2} be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2. Then the null geodesic X-ray transform (light ray transform) is injective on the pseudo-Riemannian product $\left(M_{1} \times M_{2}, g_{1} \ominus g_{2}\right)$.

Pseudo-Riemannian products

For two Riemannian manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ we can equip the product manifold $M_{1} \times M_{2}$ with the Riemannian product metric $g_{1} \oplus g_{2}$ or the pseudo-Riemannian product metric $g_{1} \ominus g_{2}$.

Theorem (I., 2016)

Let M_{1} and M_{2} be two Riemannian manifolds of non-negative sectional curvature, strictly convex boundary and dimension ≥ 2. Then the null geodesic X-ray transform (light ray transform) is injective on the pseudo-Riemannian product $\left(M_{1} \times M_{2}, g_{1} \ominus g_{2}\right)$.

The proof is based on a Pestov identity.

The Pestov identity

The Pestov identity

- In product geometry we can consider "unit speed null geodesics" on $M_{1} \times M_{2}$. Both components are unit speed geodesics.

The Pestov identity

- In product geometry we can consider "unit speed null geodesics" on $M_{1} \times M_{2}$. Both components are unit speed geodesics.
- The null geodesic flow is a dynamical system on the compact light cone bundle $L M=S M_{1} \times S M_{2}$.

The Pestov identity

- In product geometry we can consider "unit speed null geodesics" on $M_{1} \times M_{2}$. Both components are unit speed geodesics.
- The null geodesic flow is a dynamical system on the compact light cone bundle $L M=S M_{1} \times S M_{2}$.
- We can use the natural operators on both sphere bundles: $X_{1}, \stackrel{\mathrm{v}}{\nabla_{2}}, \ldots$

The Pestov identity

- In product geometry we can consider "unit speed null geodesics" on $M_{1} \times M_{2}$. Both components are unit speed geodesics.
- The null geodesic flow is a dynamical system on the compact light cone bundle $L M=S M_{1} \times S M_{2}$.
- We can use the natural operators on both sphere bundles: $X_{1}, \stackrel{\mathrm{v}}{\nabla_{2}}, \ldots$
- The null geodesic flow is generated by $X=X_{1}+X_{2}$.

The Pestov identity

Lemma (Pestov identity)

The Pestov identity

Lemma (Pestov identity)

If $u: L M \rightarrow \mathbb{R}$ is smooth and vanishes at the boundary, then

$$
\begin{aligned}
& \left(n_{2}-1\right)\|\stackrel{\mathrm{v}}{\nabla} X u\|^{2}+\left(n_{1}-1\right)\|\stackrel{\mathrm{v}}{2} X u\|^{2} \\
& =\left(n_{2}-1\right)\left\|X \stackrel{\mathrm{v}}{\nabla}_{1} u\right\|^{2}+\left(n_{1}-1\right)\left\|X \stackrel{\mathrm{v}}{\nabla}_{2} u\right\|^{2} \\
& -\left(n_{2}-1\right)\left\langle R_{1} \stackrel{\stackrel{\vee}{\nabla}}{1} u, \stackrel{\vee}{\nabla}{ }_{1} u\right\rangle-\left(n_{1}-1\right)\left\langle R_{2} \stackrel{\stackrel{\vee}{\nabla}}{2} u, \stackrel{\mathrm{~V}_{\nabla}}{2} u\right\rangle \\
& +\left(n_{1}-1\right)\left(n_{2}-1\right)\|X u\|^{2} \text {. }
\end{aligned}
$$

Lorentz geometry

Lorentz geometry

- No useful Pestov identity is known for Lorentz geometry ($n_{1}=1$ or $n_{2}=1$).

Lorentz geometry

- No useful Pestov identity is known for Lorentz geometry ($n_{1}=1$ or $n_{2}=1$).
- Other methods are known:

Lorentz geometry

- No useful Pestov identity is known for Lorentz geometry $\left(n_{1}=1\right.$ or $n_{2}=1$).
- Other methods are known:
- Real analytic Lorentz manifolds. [Stefanov, 2017]
- Products $M \times \mathbb{R}$ where M has an injective Riemannian ray transform. [Oksanen-Kian, unpublished]

Lorentz geometry

- No useful Pestov identity is known for Lorentz geometry ($n_{1}=1$ or $n_{2}=1$).
- Other methods are known:
- Real analytic Lorentz manifolds. [Stefanov, 2017]
- Products $M \times \mathbb{R}$ where M has an injective Riemannian ray transform. [Oksanen-Kian, unpublished]
- For other Lorentzian and pseudo-Riemannian manifolds the problem is open.

End

Thank you.

Slides are available at http://users.jyu.fi/~jojapeil.

