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Prelude

Can you hear what is inside the Earth?

What can one tell about the Earth just by the spectrum of its free
oscillations?

This is an inverse spectral problem. A hard one.

There is a weaker and more tractable version of the spectral problem:
the spectral rigidity problem.
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The Earth as a geometrical object

Any geometry (Euclidean, hyperbolic, Riemannian, Finsler. . . ) is fully
described by distance.

In the Earth we measure distances in travel time: The distance
between two points is the shortest time it takes for a wave to move
between them.

Fermat’s principle: A seismic wave path corresponds to a geodesic in
the elastic geometry.

In isotropic or elliptically anisotropic medium this “Elastic geometry” is
Riemannian geometry. (In general anisotropy something else is
needed.)

For a geometer, the problem of finding the interior structure of the
Earth or another planet is a problem of finding a Riemannian manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 4 /∞



The Earth as a geometrical object

Any geometry (Euclidean, hyperbolic, Riemannian, Finsler. . . ) is fully
described by distance.

In the Earth we measure distances in travel time: The distance
between two points is the shortest time it takes for a wave to move
between them.

Fermat’s principle: A seismic wave path corresponds to a geodesic in
the elastic geometry.

In isotropic or elliptically anisotropic medium this “Elastic geometry” is
Riemannian geometry. (In general anisotropy something else is
needed.)

For a geometer, the problem of finding the interior structure of the
Earth or another planet is a problem of finding a Riemannian manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 4 /∞



The Earth as a geometrical object

Any geometry (Euclidean, hyperbolic, Riemannian, Finsler. . . ) is fully
described by distance.

In the Earth we measure distances in travel time: The distance
between two points is the shortest time it takes for a wave to move
between them.

Fermat’s principle: A seismic wave path corresponds to a geodesic in
the elastic geometry.

In isotropic or elliptically anisotropic medium this “Elastic geometry” is
Riemannian geometry. (In general anisotropy something else is
needed.)

For a geometer, the problem of finding the interior structure of the
Earth or another planet is a problem of finding a Riemannian manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 4 /∞



The Earth as a geometrical object

Any geometry (Euclidean, hyperbolic, Riemannian, Finsler. . . ) is fully
described by distance.

In the Earth we measure distances in travel time: The distance
between two points is the shortest time it takes for a wave to move
between them.

Fermat’s principle: A seismic wave path corresponds to a geodesic in
the elastic geometry.

In isotropic or elliptically anisotropic medium this “Elastic geometry” is
Riemannian geometry. (In general anisotropy something else is
needed.)

For a geometer, the problem of finding the interior structure of the
Earth or another planet is a problem of finding a Riemannian manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 4 /∞



The Earth as a geometrical object

Any geometry (Euclidean, hyperbolic, Riemannian, Finsler. . . ) is fully
described by distance.

In the Earth we measure distances in travel time: The distance
between two points is the shortest time it takes for a wave to move
between them.

Fermat’s principle: A seismic wave path corresponds to a geodesic in
the elastic geometry.

In isotropic or elliptically anisotropic medium this “Elastic geometry” is
Riemannian geometry. (In general anisotropy something else is
needed.)

For a geometer, the problem of finding the interior structure of the
Earth or another planet is a problem of finding a Riemannian manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 4 /∞



The Earth as a geometrical object

Any geometry (Euclidean, hyperbolic, Riemannian, Finsler. . . ) is fully
described by distance.

In the Earth we measure distances in travel time: The distance
between two points is the shortest time it takes for a wave to move
between them.

Fermat’s principle: A seismic wave path corresponds to a geodesic in
the elastic geometry.

In isotropic or elliptically anisotropic medium this “Elastic geometry” is
Riemannian geometry. (In general anisotropy something else is
needed.)

For a geometer, the problem of finding the interior structure of the
Earth or another planet is a problem of finding a Riemannian manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 4 /∞

.



Spherically symmetric manifolds

Let M = B̄(0, 1) ⊂ Rn be the closed unit ball and c(x) = c(|x|) a
C1,1 sound speed.

The Riemannian metric on M is g = c−2(x)e. This makes (M, g) into
a radially conformally Euclidean manifold and the Earth isotropic.

If g is a rotation invariant Riemannian metric on M , there is a radial
(more complicated if n = 2) diffeomorphism φ : M →M so that φ∗g
is radially conformally Euclidean.
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The Herglotz condition

Definition
A radial sound speed c(r) satisfies the Herglotz condition if

d

dr

(
r

c(r)

)
> 0

for all r ∈ (0, 1].

The radial Preliminary Reference Earth Model (PREM) is piecewise C1,1

and satisfies (weak) Herglotz up to the core–mantle boundary (CMB).

Perhaps the condition automatically holds for a spherically symmetric
planet in dynamical equilibrium?
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The Herglotz condition

The Herglotz condition is satisfied: ray paths curve outwards. (Wikimedia Commons)
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The spectrum of free oscillations

Like any elastic object, the Earth can vibrate. These vibrations are
known as free oscillations.

The amplitudes of different modes vary between different events, but
the frequencies are always the same. We are interested in
characteristics of the Earth, not of individual events.

The set of these frequencies (with multiplicity) is the spectrum of free
oscillations.

About 10 000 first frequencies are known.
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The spectrum of free oscillations

The modes of free oscillations correspond to Neumann
eigenfunctions of the Laplace–Beltrami operator of (M, g).

If the sound speed is isotropic, then g = c−2e and the
Laplace–Beltrami operator in dimension n is

∆gu(x) = c(x)n div(c(x)2−n∇u(x)).

The spectrum of free oscillations is the Neumann spectrum of the
Laplace–Beltrami operator ∆g.
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The spectrum of free oscillations

Spectrum of free oscillations from an earthquake.
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The spectrum of periodic orbits

One can think of seismic waves in terms of ray theory: Individual
points in a seismic wave (front) travel along a certain path that reflects
at the surface. (Propagation of singularities.)

Some of the wave paths are periodic. Every periodic wave path has a
length (in time).

The set of all lengths of periodic seismic wave paths is the “length
spectrum” of the Earth.

Originally the length spectrum was just a mathematical tool, but it
turns out it can be measured directly.

Geometrically, the length spectrum of (M, g) is the set of all lengths
of the periodic broken rays.
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The goal

Problem
Given the spectrum of free oscillations or the length spectrum of the Earth,
reconstruct the Earth.

Problem
Given the Neumann spectrum of Laplace–Beltrami operator or the length
spectrum of a Riemannian manifold with boundary, reconstruct the
manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 13 /∞



The goal

Problem
Given the spectrum of free oscillations or the length spectrum of the Earth,
reconstruct the Earth.

Problem
Given the Neumann spectrum of Laplace–Beltrami operator or the length
spectrum of a Riemannian manifold with boundary, reconstruct the
manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 13 /∞



The goal

Problem
Given the spectrum of free oscillations or the length spectrum of the Earth,
reconstruct the Earth.

Problem
Given the Neumann spectrum of Laplace–Beltrami operator or the length
spectrum of a Riemannian manifold with boundary, reconstruct the
manifold.

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 13 /∞

.



Outline

1 Geometry

2 Seismic spectral data

3 Different forms of uniqueness
Difficulties
Diffeomorphisms and coordinates
Hearing the shape of a drum
Global uniqueness
Local uniqueness
Spectral rigidity

4 The main results

5 Anisotropy and geometry

6 Appendix

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 | 14 /∞



Difficulties

The obvious first conjecture is that the spectrum determines the
Riemannian structure (anisotropic wave speed) uniquely.
Proving this conjecture is difficult for two reasons:

1 The required tools do not yet exist on general manifolds with boundary.
2 The conjecture is false.
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Diffeomorphisms and coordinates

The main obstacle to uniqueness is that there are no preferred
coordinates.

If φ : M →M is a diffeomorphism, then (M, g) and (M,φ∗g) give the
same spectrum.

We can take any change of coordinates whatsoever and use it to
distort the metric, but the spectrum stays the same.

Physically: There are preferred and natural Cartesian coordinates.
But the anisotropic model is not “sensitive to the underlying Euclidean
geometry”, so the Cartesian coordinates cannot be recognized. It is
impossible to find the metric (elliptically anisotropic sound speed) in
Cartesian coordinates from spectral data.
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Hearing the shape of a drum

If we know that the metric on M ⊂ Rn is (conformally) Euclidean, this
ambiguity due to diffeomorphisms goes away.

This is why the answer to Kac’s famous question “Can you hear the
shape of a drum?” is not trivially “No!”.

. . . but it is non-trivially “No!” if there are no geometrical restrictions.
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Hearing the shape of a drum

These two drums sound exactly alike. (Wikimedia Commons)
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Global uniqueness

Problem
Let g1 and g2 be two Riemannian metrics on a manifold M with boundary.
If they give the same spectrum, is there a diffeomorphism φ : M →M so
that g1 = φ∗g2?

This is too hard.
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Local uniqueness

Problem
Let g1 and g2 be two Riemannian metrics on a manifold M with boundary.
Suppose g1 is very close to g2. If they give the same spectrum, is there a
diffeomorphism φ : M →M so that g1 = φ∗g2?

This is still too hard.
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Spectral rigidity

Problem
Let gs be family of Riemannian metrics on a manifold M with boundary,
depending on a parameter s ∈ (−ε, ε). If they all give the same spectrum,
are there a diffeomorphisms φs : M →M so that g0 = φ∗sgs?

In other words, are isospectral deformations necessarily trivial?

This is within reach!
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Spectral rigidity

Spectral rigidity has been previously proven on closed manifolds
(compact, no boundary):

Negatively curved surfaces: Guillemin–Kazhdan 1980.
Negatively curved manifolds: Croke–Sharafutdinov 1998.
Anosov surfaces: Paternain–Salo–Uhlmann 2014.
Some more general manifolds: Paternain–Salo–Uhlmann 2015.

We have adapted similar ideas of proof to manifolds with boundary.
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Spectral rigidity

Theorem (de Hoop–I.–Katsnelson, 2017)

Let M be the closed unit ball in R3. Let cs(r) be a family of radial sound
speeds depending C∞-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1].
Assume each cs satisfies the Herglotz condition and a generic geometrical
condition.

If each cs gives rise to the same spectrum (of the corresponding
Laplace–Beltrami operator), then cs = c0 for all s.

This simple model of the round Earth is spectrally rigid!
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Length spectral rigidity

Theorem (de Hoop–I.–Katsnelson, 2017)

Let M be the closed unit ball in Rn, n ≥ 2. Let cs(r) be a family of radial
sound speeds depending C1,1-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1].
Assume each cs satisfies the Herglotz condition and a generic geometrical
condition.

If each cs gives rise to the same length spectrum, then cs = c0 for all s.

This simple model of the round Earth is length spectrally rigid!
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Length spectral rigidity

Corollary (de Hoop–I.–Katsnelson, 2017)

Both results hold for rotation invariant metrics gs satisfying similar
conditions. The conclusion is that there is a family of radial (or more
general if n = 2) diffeomorphisms φs : M →M so that φ∗sgs = g0 for all s.
That is, the manifolds (M, gs) are isometric.
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Ideas behind the proof

Lemma (Trace formula)
Let λ0 < λ1 ≤ λ2 ≤ . . . be the positive eigenvalues of the
Laplace–Beltrami operator. Define a function f : R→ R by

f(t) =

∞∑
k=0

cos
(√

λk · t
)
.

Assume that the radial sound speed c satisfies some generic conditions.

The function f(t) = tr(∂tG) is singular precisely at the length spectrum.

In particular, the spectrum determines the length spectrum.
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Ideas behind the proof

Similar “trace formulas” and related results are known on closed manifolds
(eg. Duistermaat–Guillemin 1975) and a weaker version on some
manifolds with boundary (eg. Guillemin–Melrose 1979).

Corollary
Spectral rigidity follows from length spectral rigidity.
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Ideas behind the proof

Lemma
Let γs be a periodic broken ray (w.r.t. cs) depending smoothly enough on
s. Then

d

ds
`s(γs) =

1

2

∫
γs

d

ds
c−2s .

In particular, if the length spectrum does not depend on s, then d
dsc
−2
s

integrates to zero over (almost) all periodic broken rays.
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Ideas behind the proof

Lemma (Periodic broken ray transform)
Assume the Herglotz condition. A radially symmetric function is uniquely
determined by its integrals over (almost) all periodic broken rays.

Therefore d
dsc
−2
s vanishes, and so cs is independent of s.

This concludes the proof.

Remark: No proof works without spherical symmetry.
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Recap

From eigenvalues λ0, λ1, λ2, . . . compute the function

f(t) =
∞∑
k=0

cos(
√
λk · t).

This is the trace of the operator cos(
√
−∆ · t).

See where f has singularities. The set of singularities is (more or
less) the length spectrum.

Linearized length spectral data is periodic broken ray transform data.

The periodic broken ray transform can be inverted explicitly for radial
functions using an Abel transform.
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Elliptic and general elastic anisotropy

A material is anisotropic if wave speed depends on direction. There
are different types of direction dependence:

General elliptic anisotropy corresponds to a Riemannian manifold (a
manifold with a Riemann metric).
General anisotropy corresponds to a Finsler manifold (a manifold with a
Finsler metric) for qP.
Riemannian manifolds are a very special subclass of Finsler manifolds.

A material is isotropic if sound speed is independent of direction. This
can be modeled by a conformally Euclidean metric.
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Pressure and shear waves

There are pressure and shear waves in an elastic medium, and they
have different sound speeds.

To model elastic waves in general anisotropy, one needs a manifold
with two Finsler metrics, one for pressure and one for shear waves.

In fact, the shear wave speed might not even by a Finsler metric in the
traditional sense.
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Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.

If g (or F ) is a Riemannian (or Finsler) metric on M , then the pullback
φ∗g (or φ∗F ) is different Riemannian metric that behaves exactly the
same for boundary measurements.

The unknown geometry can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes
of coordinates.

The best one can hope for is reconstruction up to changes of
coordinates.
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1 Geometry

2 Seismic spectral data

3 Different forms of uniqueness

4 The main results

5 Anisotropy and geometry

6 Appendix
A numerical example of the trace formula
X-ray transform
Periodic broken ray transform

Joonas Ilmavirta (University of Jyväskylä) Spectral Geometry for the Earth JYU. Since 1863. | Sept 14, ’18 |∞ /∞



A numerical example of the trace formula

Recall our proof:

1 From eigenvalues λ0, λ1, λ2, . . . compute the function

f(t) =

∞∑
k=0

cos(
√
λk · t).

This is the trace of the operator cos(
√
−∆ · t).

2 See where f has singularities. The set of singularities is (more or
less) the length spectrum.

3 Linearized length spectral data is periodic broken ray transform data.
4 The periodic broken ray transform can be inverted explicitly for radial

functions.
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A numerical example of the trace formula

Example:

We want to find the length of an interval, given its Neumann
spectrum.

If the length of the interval is L, the eigenvalues are

λk =

(
kπ

L

)2

, k = 0, 1, 2, . . .

Suppose L = 1
2 and we have measured the numbers 0, 4π2, 16π2, . . .

We compute and plot the trace function

f(t) =

∞∑
k=0

cos(
√
λk · t).
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A numerical example of the trace formula

Eigenfunctions for k = 0, 1, 2, 3, 4.
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A numerical example of the trace formula

Trace function computed from k = 0, 1, 2, 3, 4.
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X-ray transform

Theorem (de Hoop–I., 2017)
Let M be a rotation symmetric non-trapping manifold with a piecewise
C1,1 metric and strictly convex boundary. Then the geodesic X-ray
transform is injective on L2(M).

Earlier similar results:

The X-ray transform (Radon et al.): Euclidean metric (c is constant).

Mukhometov, 1977: Smooth simple metrics (simplicity is stronger
than Herglotz).

Sharafutdinov, 1997: C∞ metrics and C∞ functions.
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Periodic broken ray transform

Theorem (de Hoop–I., 2017)

Let M be a rotation symmetric non-trapping manifold with a C1,1 metric
and strictly convex boundary and dimension at least three. Assume that
there are not too many conjugate points at the boundary. The integrals of
a function f ∈ Lp(M), p > 3, over all periodic broken rays determines the
even part of the function.

Very little can be recovered of the odd part.

Tools used:

Planar average ray transform.

Abel transform.

Funk transform.

Fourier series.
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