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Introduction

Anisotropy is important to understand and measure. Significant
anisotropy requires extreme conditions:

the build-up of stress prior to an earthquake,
the pressure of Earth’s lower mantle or core, or
(meta)materials engineered to be strongly anisotropic.

Strong anisotropy is complicated to treat properly mathematically. Toy
models do not cover all the physical scenarios we would like to
understand.
Goals of this talk:

Untoying the models to make them general enough.
Finding a balance between tractability and generality.
Describing a geometric way to view anisotropy.
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Einstein’s theory
The goal
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3 Examples
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Newton’s theory

Gravitation is a force and a force causes acceleration.

The gravitational force exerted by the Sun causes the Earth’s
trajectory to curve.

The force is described by a simple formula and the equation of motion
is an ODE in Rn.

The Newtonian approach is straightforward to use and often a good
model.
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Einstein’s theory

Gravitation is interaction between geometry and matter.

The Sun causes the spacetime to curve and the Earth goes straight in
this curved geometry.

There is a relatively simple equation of motion for the planet: The
geodesic equation is a non-linear ODE.

There is a complicated equation of motion for the geometry itself:
Einstein’s field equation is a non-linear system of coupled PDEs.

This model is harder to use but can reach phenomena inaccessible to
Newtonian gravity and provides a more geometric way to see the
essential structures.
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The goal

A geometric theory of elasticity?
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1 Gravitation

2 Elastic geometry
Distance
Ray tracing
Anisotropy
Manifolds to model anisotropy
Inverse problems

3 Examples
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Distance

A geometric object like a Riemannian manifold is uniquely determined
by distance: If you know the distance between any two points, you
can compute areas, angles, curvatures, and all else.
In elastic geometry

the object is an elastic body like the Earth and
the distance is the travel time.

That is, we declare the distance between x and y to be the shortest
amount of time it takes for a wave to travel from x to y.

Distance is measured in units of time.
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Ray tracing

We can think of seismic or other elastic waves as point particles in
different ways:

wave–particle duality,
wave packets, or
microlocal analysis.

We can then study how these particles travel.
Traditional view: The trajectory of the particle is curved because wave
speed varies.
Newer view: The particle goes straight in a curved geometry
(geodesic), and the geometry is curved by variations in wave speed.
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Ray tracing

For every definition of “distance” there is a natural definition of
“straightness”.

In mathematical terms: a metric induces a connection and a
connection allows to defined “straight”.

In elastic geometry we measure distance in travel time, and the
waves go straight in this geometry.

Fermat’s principle: The “particles” corresponding to elastic waves go
straight in the geometry given by travel time.

Fermat’s principle is about going straight in the relevant geometry, not
about taking the shortest path. These are not the same thing over
long distances or shear waves.
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Anisotropy

Let us ignore polarizations for now.

Sometimes wave speed (group velocity) is different in different
directions. This is anisotropy.

Geometrically, these speeds can be described as a sphere. Each
point on it describes how far you can go in unit time, infinitesimally.

Sometimes it is more convenient to look at phase velocity.

The cosphere describes the reciprocal of phase velocity.
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Anisotropy

Anisotropy.
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Anisotropy

Isotropy.
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Anisotropy

Sphere and cosphere, anisotropic.
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Anisotropy

Sphere and cosphere, isotropic.
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Anisotropy

Isotropy = the sphere and cosphere are spheres.

Anisotropy = they might not be.

Elliptic anisotropy = the sphere and cosphere are ellipsoids.
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Anisotropy

Sphere and cosphere, elliptically anisotropic.
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Anisotropy

In three-dimensional space there are three polarizations.

Each polarization has its own slowness sphere and cosphere.

The spheres might not separate cleanly.

If the cosphere is not convex, the sphere can branch.
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Anisotropy

A non-convex cosphere.
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Anisotropy

A branched sphere.
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Manifolds to model anisotropy

Different kinds of situations can be modeled with different manifolds:

Isotropic and homogeneus = Euclidean space.

Isotropic and inhomogeneous = Conformally Euclidean space.

Elliptically anisotropic and inhomogeneous = Riemannian manifold.

General anistropy and inhomogeneity ⊂ Finsler manifolds (for qP).

If the slowness surface is non-convex, we fall outside Finsler geometry, but
there is also useful additional structure.

General(ized) Finsler manifolds leave room for non-Hookean elasticity
(any form of slowness surface), but they have a less strong theory.

Multiple metric structures on the same manifold: Each polarization has its
own geometry and there is the Euclidean spatial geometry.
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Manifolds to model anisotropy

Euclidean spaces are easiest to handle, but allow no anisotropy.

Riemannian geometry is well known and understood and can produce
impressive results, but can only cover elliptic anisotropy.

Finsler geometry is harder to handle, but the results apply to many
kinds of anisotropy.

The kind of Finsler geometry arising from qP waves and Hooke’s law
has additional useful structure. Some results are false for general
Finsler manifolds but true for elastic Finsler manifolds!

Elastic Finsler geometry has a decent balance between tractability
and applicability.
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Inverse problems

Typical inverse problem: Given some boundary data, find the reduced
stiffness tensor ρ−1(x)cijkl(x) everywhere.

A more geometric formulation: Given some boundary data, find the
cosphere (slowness surface) at every point.

From the slowness surface one can then find the material parameters
— the components of the stiffness tensor.
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Inverse problems

The cosphere is different at different points.

The collection of the cospheres at every point is the cosphere bundle.

A geometric elastic inverse problem (using arrival times or
singularities) is to find the cosphere bundle, given some data.

From the cosphere bundle one can tell whether the material is
isotropic, elliptically anisotropic, completely anisotropic, or even fails
to correspond to a stiffness tensor.
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Outline

1 Gravitation

2 Elastic geometry

3 Examples
Distance function (de Hoop, Lassas, Saksala)
Scattering data (de Hoop, Lassas, Saksala)
Ray tracing (Iversen, Ursin, Saksala, de Hoop)
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Distance function (de Hoop, Lassas, Saksala)

Consider a Finsler manifold (M,F ) with boundary — an anisotropic
elastic body with a surface.

Any point x ∈M determines a boundary distance function
rx : ∂M → R.

Question: Does the set {rx;x ∈M} determine (M,F )?

Part of the bundle is invisible: One can only hope to see the Finsler
function at a point v ∈ TM if the geodesic starting at v is minimizing
between its start point in M and endpoint on ∂M .

One can reconstruct M and F on the good set G ⊂ TM , but not
outside it. There is no such complication in Riemannian geometry
(Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

If F is fiberwise real analytic (elasticity or Riemann!), then F is
determined uniquely.
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Scattering data (de Hoop, Lassas, Saksala)

Consider stronger data with access to directions: We know the pairs
of points on ∂inSM whose geodesics meet and the total travel time.

This broken scattering relation can see much more of TM , but the
trapped set is still invisible.

Global uniqueness is can be done with added assumptions:
reversibility (point symmetry) and foliation.

Almost no assumptions are needed in the Riemannian case
(Kurylev–Lassas–Uhlmann, 2010).
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Ray tracing (Iversen, Ursin, Saksala, de Hoop)

We follow seismic rays and study their variations.
There are different coordinates:

Cartesian coordinates where things are trivial to define but equations
are messy.
Ray-centered coordinates which are more complicated to use but more
structure arises.
Fermi coordinates and covariant derivatives of the corresponding
elastic geometry are tricky to set up but the equations are clean.

Variations in position (Q) and momentum (P ) satisfy an equation

∂t

(
Q(t)
P (t)

)
=

(
W T (t) V (t)
−U(t) −W (t)

)(
Q(t)
P (t)

)
.

Written in terms of a Jacobi field J and its covariant derivative, we
have instead

Dt

(
J(t)
DtJ(t)

)
=

(
0 I

−R(t) 0

)(
J(t)
DtJ(t)

)
.
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Conclusion

Goals of this talk were:

Untoying the models to make them general enough.

Finding a balance between tractability and generality.

Describing a geometric way to view anisotropy.

This approach can hopefully give you:

A new way to think about anisotropy.

A new way to encode anisotropy in modeling and computation.
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The stiffness tensor

When something in an elastic material is displaced from equilibrium, it
tends to return back.

The restoring force (stress) depends linearly on the displacement
relative to neighboring points (strain).

The “spring constant” of Hooke’s law is the stiffness “tensor” cijkl(x).
It fully describes the springiness of the material.

The tensor is very symmetric (cijkl = cjikl = cijlk = cklij) and quite
positive (cijklαiβjβkαl & |α|2 |β|2).

We will also encounter the density normalized stiffness tensor
aijkl(x) = cijkl(x)/ρ(x).
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The elastic wave equation

Using Newton’s second law with a restoring force given by Hooke’s
law leads to the elastic wave equation (EWE)

∂j [cijkl(x)∂kul(x, t)]− ρ(x)∂2t ui(x, t) = 0,

where u(x, t) is a small displacement field.

If the material is anisotropic (c is no more symmetric than necessary),
then the vector nature of the equation cannot be ignored.

Elastic waves arising from earthquakes satisfy this equation away
from the focus of the event to great accuracy.
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The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 35 / 41



The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 35 / 41



The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 35 / 41



The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 35 / 41



The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 35 / 41



The principal symbol

Suppose c and ρ are constant and let us study plane wave solutions

ui(x, t) = Aie
iω(p·x−t)

to the EWE.

Here A is the polarization vector, ω is the frequency, and p is the
slowness vector (reciprocal of phase velocity).

Plugging this into the EWE gives

(aijklpjpk − δil)Al = 0.

The matrix
Γil(x, p) = aijkl(x)pjpk

is the Christoffel matrix. It is symmetric and positive definite.

The principal symbol of the EWE is Γ(x, ξ)− ω2I, where ξ = ωp.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 35 / 41

.



Polarization

In isotropic elasticity (maximal symmetry of the stiffness tensor c) the
polarization vector is either parallel or normal to p.

The parallel polarized wave (P wave, pressure wave, primary wave) is
faster than the normally polarized one (S wave, shear wave,
secondary wave).

In anisotropic elasticity it does not work quite as nicely. The fastest
polarization is called quasi-P and the slower ones quasi-S.

Polarization vectors are eigenvectors of the Christoffel matrix Γ, so
they are orthogonal.

Decomposition to polarizations only works on the level of
singularities. The individual polarizations do not satisfy PDEs.
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Singularities and the slowness surface

We are interested in arrivals of wave fronts from a seismic event to a
detector.

Singularities follow the Hamiltonian flow determined by the principal
symbol.

The slowness vector p and the polarization A of a singularity at x
must satisfy

[Γ(x, p)− I]A = 0.

The admissible slowness vectors are on the slowness surface given
by the equation

det(Γ(x, p)− I) = 0.
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Elastic Finsler manifolds

Recall the Christoffel matrix

Γil(x, p) = aijkl(x)pjpk,

defined for (x, p) ∈ T ∗R3.

Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest
eigenvalue corresponds to fastest singularity (qP).

The qP singularities follow the Hamiltonian flow of λ : T ∗M → R.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 38 / 41



Elastic Finsler manifolds

Recall the Christoffel matrix

Γil(x, p) = aijkl(x)pjpk,

defined for (x, p) ∈ T ∗R3.

Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest
eigenvalue corresponds to fastest singularity (qP).

The qP singularities follow the Hamiltonian flow of λ : T ∗M → R.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 38 / 41



Elastic Finsler manifolds

Recall the Christoffel matrix

Γil(x, p) = aijkl(x)pjpk,

defined for (x, p) ∈ T ∗R3.

Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest
eigenvalue corresponds to fastest singularity (qP).

The qP singularities follow the Hamiltonian flow of λ : T ∗M → R.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 38 / 41



Elastic Finsler manifolds

Recall the Christoffel matrix

Γil(x, p) = aijkl(x)pjpk,

defined for (x, p) ∈ T ∗R3.

Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest
eigenvalue corresponds to fastest singularity (qP).

The qP singularities follow the Hamiltonian flow of λ : T ∗M → R.

Joonas Ilmavirta (University of Jyväskylä) Geometry of anisotropy JYU. Since 1863. | Jan 31, ’20 | 38 / 41

.



Elastic Finsler manifolds

The function λ(x, · ) : T ∗
xR3 → [0,∞) is smooth outside the origin,

strictly convex, and 2-homogeneous.

Therefore fx =
√
λ(x, · ) is a Minkowski norm on T ∗

xR3.

The set of admissible qP slowness vectors — the innermost branch of
the slowness surface — is the unit sphere of f : T ∗R3 → R.

We have described Finsler geometry on the cotangent side.

The Legendre transform turns f : T ∗R3 → R into a function Lf on
TR3, and the Hamiltonian flow of f is the geodesic flow of Lf .

The fiberwise Legendre transform gives a bijective correspondence
T ∗R3 → TR3, but this is non-linear when the norm is non-quadratic.

Slowness is a covector and the corresponding vector is the group
velocity.
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Elastic Finsler manifolds

A Riemannian metric tensor or a Finsler function on a manifold is
uniquely determined by the distance function.

In elastic Finsler geometry the distance between two points x, y ∈ R3

is the shortest time in which an elastic wave can go from x to y.

Declaring travel time as distance would have defined the same
geometry, but in a more implicit manner.
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