

The geometry of anisotropy

Math + X symposium on inverse problems and deep learning, mitigating natural hazards

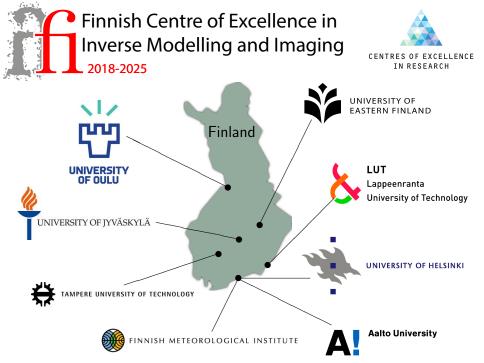
Joonas Ilmavirta

January 31, 2020

Based on joint work with

Maarten V. de Hoop, Einar Iversen, Matti Lassas, Teemu Saksala, Bjørn Ursin

JYU. Since 1863.



Introduction

 Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core,

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core, or
 - (meta)materials engineered to be strongly anisotropic.

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core, or
 - (meta)materials engineered to be strongly anisotropic.
- Strong anisotropy is complicated to treat properly mathematically. Toy models do not cover all the physical scenarios we would like to understand.

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core, or
 - (meta)materials engineered to be strongly anisotropic.
- Strong anisotropy is complicated to treat properly mathematically. Toy models do not cover all the physical scenarios we would like to understand.
- Goals of this talk:

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core, or
 - (meta)materials engineered to be strongly anisotropic.
- Strong anisotropy is complicated to treat properly mathematically. Toy models do not cover all the physical scenarios we would like to understand.
- Goals of this talk:
 - Untoying the models to make them general enough.

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core, or
 - (meta)materials engineered to be strongly anisotropic.
- Strong anisotropy is complicated to treat properly mathematically. Toy models do not cover all the physical scenarios we would like to understand.
- Goals of this talk:
 - Untoying the models to make them general enough.
 - Finding a balance between tractability and generality.

- Anisotropy is important to understand and measure. Significant anisotropy requires extreme conditions:
 - the build-up of stress prior to an earthquake,
 - the pressure of Earth's lower mantle or core, or
 - (meta)materials engineered to be strongly anisotropic.
- Strong anisotropy is complicated to treat properly mathematically. Toy models do not cover all the physical scenarios we would like to understand.
- Goals of this talk:
 - Untoying the models to make them general enough.
 - Finding a balance between tractability and generality.
 - Describing a geometric way to view anisotropy.

Outline

Gravitation

- Newton's theory
- Einstein's theory
- The goal

Elastic geometry

3 Examples

Newton's theory

• Gravitation is a force and a force causes acceleration.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.
- The force is described by a simple formula and the equation of motion is an ODE in \mathbb{R}^n .

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.
- The force is described by a simple formula and the equation of motion is an ODE in ℝⁿ.
- The Newtonian approach is straightforward to use and often a good model.

Einstein's theory

• Gravitation is interaction between geometry and matter.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.
- There is a complicated equation of motion for the geometry itself: Einstein's field equation is a non-linear system of coupled PDEs.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.
- There is a complicated equation of motion for the geometry itself: Einstein's field equation is a non-linear system of coupled PDEs.
- This model is harder to use but can reach phenomena inaccessible to Newtonian gravity and provides a more geometric way to see the essential structures.

A geometric theory of elasticity?

Outline

Gravitation

Elastic geometry

- Distance
- Ray tracing
- Anisotropy
- Manifolds to model anisotropy
- Inverse problems

Examples

Distance

• A geometric object like a Riemannian manifold is uniquely determined by distance:

• A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y.
- Distance is measured in units of time.

Ray tracing

 We can think of seismic or other elastic waves as point particles in different ways:

- We can think of seismic or other elastic waves as point particles in different ways:
 - wave-particle duality,

- We can think of seismic or other elastic waves as point particles in different ways:
 - wave-particle duality,
 - wave packets,

- We can think of seismic or other elastic waves as point particles in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.

- We can think of seismic or other elastic waves as point particles in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.
- We can then study how these particles travel.

- We can think of seismic or other elastic waves as point particles in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the particle is curved because wave speed varies.

- We can think of seismic or other elastic waves as point particles in different ways:
 - wave-particle duality,
 - wave packets, or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the particle is curved because wave speed varies.
 - Newer view: The particle goes straight in a curved geometry (geodesic), and the geometry is curved by variations in wave speed.

In mathematical terms: a metric induces a connection and a connection allows to defined "straight".

In mathematical terms: a metric induces a connection and a connection allows to defined "straight".

 In elastic geometry we measure distance in travel time, and the waves go straight in this geometry.

In mathematical terms: a metric induces a connection and a connection allows to defined "straight".

- In elastic geometry we measure distance in travel time, and the waves go straight in this geometry.
- Fermat's principle: The "particles" corresponding to elastic waves go straight in the geometry given by travel time.

In mathematical terms: a metric induces a connection and a connection allows to defined "straight".

- In elastic geometry we measure distance in travel time, and the waves go straight in this geometry.
- Fermat's principle: The "particles" corresponding to elastic waves go straight in the geometry given by travel time.
- Fermat's principle is about going straight in the relevant geometry, not about taking the shortest path. These are not the same thing over long distances or shear waves.

Anisotropy

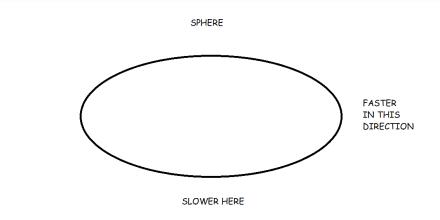
Joonas Ilmavirta (University of Jyväskylä)

• Let us ignore polarizations for now.

- Let us ignore polarizations for now.
- Sometimes wave speed (group velocity) is different in different directions. This is anisotropy.

- Let us ignore polarizations for now.
- Sometimes wave speed (group velocity) is different in different directions. This is anisotropy.
- Geometrically, these speeds can be described as a sphere. Each point on it describes how far you can go in unit time, infinitesimally.

Anisotropy



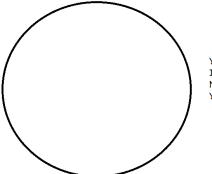
Anisotropy.

Joonas Ilmavirta (University of Jyväskylä)

Geometry of anisotropy

JYU. Since 1863. | Jan 31, '20 | 10/41

ISOTROPIC SPHERE



YOU CAN GO EQUALLY FAR IN A GIVEN AMOUNT OF TIME, NO MATTER WHICH WAY YOU GO

Isotropy.

Joonas Ilmavirta (University of Jyväskylä)

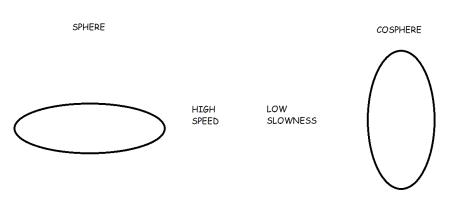
Geometry of anisotropy

JYU. Since 1863. | Jan 31, '20 | 11/41

- Let us ignore polarizations for now.
- Sometimes wave speed (group velocity) is different in different directions. This is anisotropy.
- Geometrically, these speeds can be described as a sphere. Each point on it describes how far you can go in unit time, infinitesimally.

- Let us ignore polarizations for now.
- Sometimes wave speed (group velocity) is different in different directions. This is anisotropy.
- Geometrically, these speeds can be described as a sphere. Each point on it describes how far you can go in unit time, infinitesimally.
- Sometimes it is more convenient to look at phase velocity.

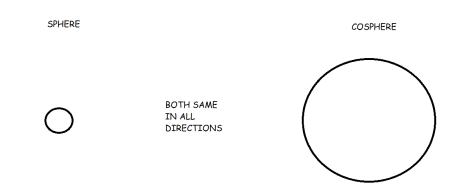
- Let us ignore polarizations for now.
- Sometimes wave speed (group velocity) is different in different directions. This is anisotropy.
- Geometrically, these speeds can be described as a sphere. Each point on it describes how far you can go in unit time, infinitesimally.
- Sometimes it is more convenient to look at phase velocity.
- The cosphere (the slowness surface) describes the reciprocal of phase velocity.



Sphere and cosphere, anisotropic.

Joonas Ilmavirta (University of Jyväskylä)

Geometry of anisotropy



Sphere and cosphere, isotropic.

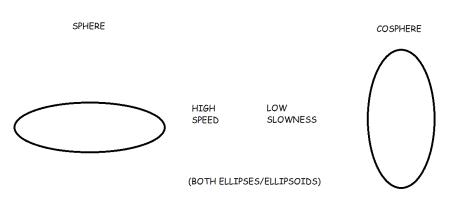
Joonas Ilmavirta (University of Jyväskylä)

Geometry of anisotropy

Isotropy = the sphere and cosphere are spheres.

- Isotropy = the sphere and cosphere are spheres.
- Anisotropy = they might not be.

- Isotropy = the sphere and cosphere are spheres.
- Anisotropy = they might not be.
- Elliptic anisotropy = the sphere and cosphere are ellipsoids.



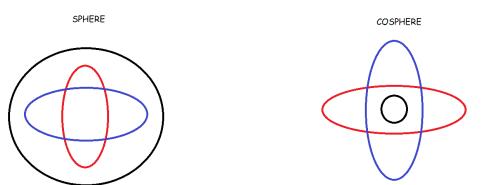
Sphere and cosphere, elliptically anisotropic.

Joonas Ilmavirta (University of Jyväskylä)

Geometry of anisotropy

• In three-dimensional space there are three polarizations.

- In three-dimensional space there are three polarizations.
- Each polarization has its own slowness sphere and cosphere.



Three polarizations, all elliptically anisotropic.

Joonas Ilmavirta (University of Jyväskylä)

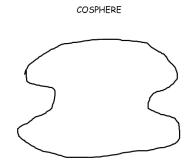
Geometry of anisotropy

JYU. Since 1863. | Jan 31, '20 | 18/41

- In three-dimensional space there are three polarizations.
- Each polarization has its own slowness sphere and cosphere.
- The spheres might not separate cleanly.

- In three-dimensional space there are three polarizations.
- Each polarization has its own slowness sphere and cosphere.
- The spheres might not separate cleanly.
- If the cosphere is not convex, the sphere can branch.

Anisotropy



A non-convex cosphere.

Joonas Ilmavirta (University of Jyväskylä)

Geometry of anisotropy

JYU. Since 1863. | Jan 31, '20 | 20/41

A branched sphere.

Joonas Ilmavirta (University of Jyväskylä)

Geometry of anisotropy

• Isotropic and homogeneus = Euclidean space.

- Isotropic and homogeneus = Euclidean space.
- Isotropic and inhomogeneous = Conformally Euclidean space.

- Isotropic and homogeneus = Euclidean space.
- Isotropic and inhomogeneous = Conformally Euclidean space.
- Elliptically anisotropic and inhomogeneous = Riemannian manifold.

- Isotropic and homogeneus = Euclidean space.
- Isotropic and inhomogeneous = Conformally Euclidean space.
- Elliptically anisotropic and inhomogeneous = Riemannian manifold.
- General anistropy and inhomogeneity \subset Finsler manifolds (for qP).

- Isotropic and homogeneus = Euclidean space.
- Isotropic and inhomogeneous = Conformally Euclidean space.
- Elliptically anisotropic and inhomogeneous = Riemannian manifold.
- General anistropy and inhomogeneity \subset Finsler manifolds (for qP).

If the slowness surface is non-convex, we fall outside Finsler geometry, but there is also useful additional structure.

- Isotropic and homogeneus = Euclidean space.
- Isotropic and inhomogeneous = Conformally Euclidean space.
- Elliptically anisotropic and inhomogeneous = Riemannian manifold.
- General anistropy and inhomogeneity \subset Finsler manifolds (for qP).

If the slowness surface is non-convex, we fall outside Finsler geometry, but there is also useful additional structure.

General(ized) Finsler manifolds leave room for non-Hookean elasticity (any form of slowness surface), but they have a less strong theory.

- Isotropic and homogeneus = Euclidean space.
- Isotropic and inhomogeneous = Conformally Euclidean space.
- Elliptically anisotropic and inhomogeneous = Riemannian manifold.
- General anistropy and inhomogeneity \subset Finsler manifolds (for qP).

If the slowness surface is non-convex, we fall outside Finsler geometry, but there is also useful additional structure.

General(ized) Finsler manifolds leave room for non-Hookean elasticity (any form of slowness surface), but they have a less strong theory.

Multiple metric structures on the same manifold: Each polarization has its own geometry and there is the Euclidean spatial geometry.

Euclidean spaces are easiest to handle, but allow no anisotropy.

- Euclidean spaces are easiest to handle, but allow no anisotropy.
- Riemannian geometry is well known and understood and can produce impressive results, but can only cover elliptic anisotropy.

- Euclidean spaces are easiest to handle, but allow no anisotropy.
- Riemannian geometry is well known and understood and can produce impressive results, but can only cover elliptic anisotropy.
- Finsler geometry is harder to handle, but the results apply to many kinds of anisotropy.

- Euclidean spaces are easiest to handle, but allow no anisotropy.
- Riemannian geometry is well known and understood and can produce impressive results, but can only cover elliptic anisotropy.
- Finsler geometry is harder to handle, but the results apply to many kinds of anisotropy.
- The kind of Finsler geometry arising from qP waves and Hooke's law has additional useful structure. Some results are false for general Finsler manifolds but true for elastic Finsler manifolds!

- Euclidean spaces are easiest to handle, but allow no anisotropy.
- Riemannian geometry is well known and understood and can produce impressive results, but can only cover elliptic anisotropy.
- Finsler geometry is harder to handle, but the results apply to many kinds of anisotropy.
- The kind of Finsler geometry arising from qP waves and Hooke's law has additional useful structure. Some results are false for general Finsler manifolds but true for elastic Finsler manifolds!
- Elastic Finsler geometry has a decent balance between tractability and applicability.

Inverse problems

Joonas Ilmavirta (University of Jyväskylä)

• Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.
- From the slowness surface one can then find the material parameters

 the components of the stiffness tensor.

• The cosphere is different at different points.

- The cosphere is different at different points.
- The collection of the cospheres at every point is the cosphere bundle.

- The cosphere is different at different points.
- The collection of the cospheres at every point is the cosphere bundle.
- A geometric elastic inverse problem (using arrival times or singularities) is to find the cosphere bundle, given some data.

- The cosphere is different at different points.
- The collection of the cospheres at every point is the cosphere bundle.
- A geometric elastic inverse problem (using arrival times or singularities) is to find the cosphere bundle, given some data.
- From the cosphere bundle one can tell whether the material is isotropic, elliptically anisotropic, completely anisotropic, or even fails to correspond to a stiffness tensor.

Gravitation

Elastic geometry

- Examples
 - Distance function (de Hoop, Lassas, Saksala)
 - Scattering data (de Hoop, Lassas, Saksala)
 - Ray tracing (Iversen, Ursin, Saksala, de Hoop)

• Consider a Finsler manifold (M, F) with boundary — an anisotropic elastic body with a surface.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct M and F on the good set $G \subset TM$, but not outside it.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct *M* and *F* on the good set *G* ⊂ *TM*, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct *M* and *F* on the good set *G* ⊂ *TM*, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).
- If *F* is fiberwise real analytic (elasticity or Riemann!), then *F* is determined uniquely.

Scattering data (de Hoop, Lassas, Saksala)

• Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.
- Global uniqueness is can be done with added assumptions: reversibility (point symmetry) and foliation.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.
- Global uniqueness is can be done with added assumptions: reversibility (point symmetry) and foliation.
- Almost no assumptions are needed in the Riemannian case (Kurylev–Lassas–Uhlmann, 2010).

• We follow seismic rays and study their variations.

- We follow seismic rays and study their variations.
- There are different coordinates:

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.

Ray tracing (Iversen, Ursin, Saksala, de Hoop)

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.
 - Fermi coordinates and covariant derivatives of the corresponding elastic geometry are tricky to set up but the equations are clean.

Ray tracing (Iversen, Ursin, Saksala, de Hoop)

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.
 - Fermi coordinates and covariant derivatives of the corresponding elastic geometry are tricky to set up but the equations are clean.
- Variations in position (Q) and momentum (P) satisfy an equation

$$\partial_t \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} W^T(t) & V(t) \\ -U(t) & -W(t) \end{pmatrix} \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix}.$$

Ray tracing (Iversen, Ursin, Saksala, de Hoop)

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.
 - Fermi coordinates and covariant derivatives of the corresponding elastic geometry are tricky to set up but the equations are clean.
- Variations in position (Q) and momentum (P) satisfy an equation

$$\partial_t \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} W^T(t) & V(t) \\ -U(t) & -W(t) \end{pmatrix} \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix}.$$

• Written in terms of a Jacobi field *J* and its covariant derivative, we have instead

$$D_t \begin{pmatrix} J(t) \\ D_t J(t) \end{pmatrix} = \begin{pmatrix} 0 & I \\ -R(t) & 0 \end{pmatrix} \begin{pmatrix} J(t) \\ D_t J(t) \end{pmatrix}.$$

• Untoying the models to make them general enough.

- Untoying the models to make them general enough.
- Finding a balance between tractability and generality.

- Untoying the models to make them general enough.
- Finding a balance between tractability and generality.
- Describing a geometric way to view anisotropy.

- Untoying the models to make them general enough.
- Finding a balance between tractability and generality.
- Describing a geometric way to view anisotropy.

This approach can hopefully give you:

- Untoying the models to make them general enough.
- Finding a balance between tractability and generality.
- Describing a geometric way to view anisotropy.

This approach can hopefully give you:

• A new way to think about anisotropy.

- Untoying the models to make them general enough.
- Finding a balance between tractability and generality.
- Describing a geometric way to view anisotropy.

This approach can hopefully give you:

- A new way to think about anisotropy.
- A new way to encode anisotropy in modeling and computation.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at http://users.jyu.fi/~jojapeil

Outline

The elastic wave equation

- The stiffness tensor
- The elastic wave equation
- The principal symbol
- Polarization
- Singularities and the slowness surface
- Elastic Finsler manifolds

The stiffness tensor

Joonas Ilmavirta (University of Jyväskylä)

• When something in an elastic material is displaced from equilibrium, it tends to return back.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.
- The tensor is very symmetric $(c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij})$ and quite positive $(c_{ijkl}\alpha_i\beta_j\beta_k\alpha_l \gtrsim |\alpha|^2 |\beta|^2)$.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.
- The tensor is very symmetric $(c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij})$ and quite positive $(c_{ijkl}\alpha_i\beta_j\beta_k\alpha_l \gtrsim |\alpha|^2 |\beta|^2)$.
- We will also encounter the density normalized stiffness tensor $a_{ijkl}(x) = c_{ijkl}(x)/\rho(x)$.

Joonas Ilmavirta (University of Jyväskylä)

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

 $\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$

where u(x,t) is a small displacement field.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

 $\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$

where u(x,t) is a small displacement field.

• If the material is anisotropic (*c* is no more symmetric than necessary), then the vector nature of the equation cannot be ignored.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

 $\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$

where u(x,t) is a small displacement field.

- If the material is anisotropic (*c* is no more symmetric than necessary), then the vector nature of the equation cannot be ignored.
- Elastic waves arising from earthquakes satisfy this equation away from the focus of the event to great accuracy.

Joonas Ilmavirta (University of Jyväskylä)

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

to the EWE.

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

to the EWE.

• Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

to the EWE.

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- Plugging this into the EWE gives

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

to the EWE.

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- Plugging this into the EWE gives

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

The matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k$$

is the Christoffel matrix. It is symmetric and positive definite.

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

to the EWE.

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- Plugging this into the EWE gives

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

The matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k$$

is the Christoffel matrix. It is symmetric and positive definite. • The principal symbol of the EWE is $\Gamma(x,\xi) - \omega^2 I$, where $\xi = \omega p$.

Polarization

Joonas Ilmavirta (University of Jyväskylä)

• In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector is either parallel or normal to *p*.

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector is either parallel or normal to *p*.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector is either parallel or normal to *p*.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector is either parallel or normal to *p*.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.
- Polarization vectors are eigenvectors of the Christoffel matrix Γ , so they are orthogonal.

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector is either parallel or normal to *p*.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.
- Polarization vectors are eigenvectors of the Christoffel matrix Γ, so they are orthogonal.
- Decomposition to polarizations only works on the level of singularities. The individual polarizations do not satisfy PDEs.

Singularities and the slowness surface

Joonas Ilmavirta (University of Jyväskylä)

Singularities and the slowness surface

 We are interested in arrivals of wave fronts from a seismic event to a detector.

Singularities and the slowness surface

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities follow the Hamiltonian flow determined by the principal symbol.

Singularities and the slowness surface

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities follow the Hamiltonian flow determined by the principal symbol.
- The slowness vector \boldsymbol{p} and the polarization \boldsymbol{A} of a singularity at \boldsymbol{x} must satisfy

$$[\Gamma(x,p) - I]A = 0.$$

Singularities and the slowness surface

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities follow the Hamiltonian flow determined by the principal symbol.
- The slowness vector \boldsymbol{p} and the polarization \boldsymbol{A} of a singularity at \boldsymbol{x} must satisfy

$$[\Gamma(x,p) - I]A = 0.$$

• The admissible slowness vectors are on the slowness surface given by the equation

$$\det(\Gamma(x,p) - I) = 0.$$

Joonas Ilmavirta (University of Jyväskylä)

Recall the Christoffel matrix

 $\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k,$

defined for $(x,p) \in T^* \mathbb{R}^3$.

Recall the Christoffel matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k,$$

defined for $(x, p) \in T^* \mathbb{R}^3$.

 Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest eigenvalue corresponds to fastest singularity (qP).

Recall the Christoffel matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k,$$

defined for $(x, p) \in T^* \mathbb{R}^3$.

- Let λ(x, p) be the largest eigenvalue of Γ(x, p). The largest eigenvalue corresponds to fastest singularity (qP).
- The qP singularities follow the Hamiltonian flow of $\lambda: T^*M \to \mathbb{R}$.

• The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.

- The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.

- The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface — is the unit sphere of *f* : *T*^{*}ℝ³ → ℝ.

- The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface — is the unit sphere of *f* : *T*^{*}ℝ³ → ℝ.
- We have described Finsler geometry on the cotangent side.

- The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface — is the unit sphere of *f* : *T*^{*}ℝ³ → ℝ.
- We have described Finsler geometry on the cotangent side.
- The Legendre transform turns $f: T^* \mathbb{R}^3 \to \mathbb{R}$ into a function Lf on $T\mathbb{R}^3$, and the Hamiltonian flow of f is the geodesic flow of Lf.

- The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface — is the unit sphere of *f* : *T*^{*}ℝ³ → ℝ.
- We have described Finsler geometry on the cotangent side.
- The Legendre transform turns $f: T^* \mathbb{R}^3 \to \mathbb{R}$ into a function Lf on $T\mathbb{R}^3$, and the Hamiltonian flow of f is the geodesic flow of Lf.
- The fiberwise Legendre transform gives a bijective correspondence $T^*\mathbb{R}^3 \to T\mathbb{R}^3$, but this is non-linear when the norm is non-quadratic.

- The function $\lambda(x, \cdot): T_x^* \mathbb{R}^3 \to [0, \infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface — is the unit sphere of *f* : *T*^{*}ℝ³ → ℝ.
- We have described Finsler geometry on the cotangent side.
- The Legendre transform turns $f: T^* \mathbb{R}^3 \to \mathbb{R}$ into a function Lf on $T\mathbb{R}^3$, and the Hamiltonian flow of f is the geodesic flow of Lf.
- The fiberwise Legendre transform gives a bijective correspondence $T^*\mathbb{R}^3 \to T\mathbb{R}^3$, but this is non-linear when the norm is non-quadratic.
- Slowness is a covector and the corresponding vector is the group velocity.

• A Riemannian metric tensor or a Finsler function on a manifold is uniquely determined by the distance function.

- A Riemannian metric tensor or a Finsler function on a manifold is uniquely determined by the distance function.
- In elastic Finsler geometry the distance between two points $x, y \in \mathbb{R}^3$ is the shortest time in which an elastic wave can go from x to y.

- A Riemannian metric tensor or a Finsler function on a manifold is uniquely determined by the distance function.
- In elastic Finsler geometry the distance between two points x, y ∈ ℝ³ is the shortest time in which an elastic wave can go from x to y.
- Declaring travel time as distance would have defined the same geometry, but in a more implicit manner.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at http://users.jyu.fi/~jojapeil