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Self-introduction

• Name: Joonas Ilmavirta
• Field: Applicable mathematics, specifically inverse problems
• MSc 2012 in theoretical physics
• PhD 2014 in mathematics
• Position: Senior researcher

• Send email: joonas.ilmavirta@jyu.fi
• Come chat: MaD310



Part I
Inverse problems
The mathematics of indirect measurement



Direct and inverse problem

Direct problem
• We know the cause

(e.g. shape of drum)

• We must find the effect
(e.g. sound of drum)

Inverse problem
• We know the effect

(e.g. sound of drum)

• We must find the cause
(e.g. shape of drum)

Kac’s inverse problem:
Can you hear the shape of a
drum?



Problem 1: Is the bone broken?

• Cause: Bones and other
interior structure of a human

• Effect: Attenuation of X-rays
(X-ray images from different
directions)



Problem 2: What is inside the Earth?

• Cause: Interior structure of the
Earth (minerals, density,
structure, phase, elastic
moduli)

• Effect: Frequencies of Earth’s
oscillation (the spectrum of
free oscillations)



Problem 3: Is a concrete block intact?

• Cause: Fractures and other
problems in the block

• Effect: Electric conductivity
of the block



Inverse problems

• Many things cannot be studied directly for various reasons. We have
to measure indircetly.

• There is a great number of these inverse problems, but they are not
always called that.

• Physics, medicine, industry…
• These are (difficult) mathematical problems once modelled.



Problem 1: Is the bone broken?

Physical problem
If we measure the attenuation of
X-rays from all directions, can we
find the position-dependent
attenuation coefficient (the 3D
structure of the object)?

Mathematical problem
If we know the integrals of a
function (defined in the three-
dimensional space) over all lines,
can we find the function itself?



Problem 2: What is inside the Earth?

Physical problem
If we know all the frequencies of
free oscillations, can we find the
density and structure of matter
inside the planet?

Mathematical problem
If we know the Neumann
spectrum of the Laplace–Beltrami
operator of a Riemannian
manifold with boundary, can we
find the manifold?
(This is just a toy version.)



Problem 3: Is the concrete block intact?

Physical problem
Can we find the electrical
conductivity everywhere inside an
object by making current and
voltage measurements at the
surface?

Mathematical problem
Can we find γ ∈ ାஶܮ Ω if we know

,డΩ|ݑ ν ȉ డΩ|ݑߘߛ
for all ݑ ∈ ܹଵ,ଶ Ω that solve the
equation ߘ ȉ ݑߘߛ = 0?

(Calderón’s inverse problem)



From applications to mathematics

• An applied person finds a wall, a mathematician finds a way to see
through it. Hopefully.

• The walls are physically very different, but mathematically very
similar. Usually.

• This allows us to have a theory of inverse problems and a general set
of tools that often helps with similar problems.



Purity of fields (www.xkcd.com/435)



The benefit of abstraction

• Mathematics is related to everything because it has nothing to do
with anything.

• The same mathematics can be used for many purposes exactly
because it is not tied to a specific application or other context.

• This benefit has conditions:
• We must be able to translate the problem into mathematics.
• We must be able to solve the mathematical problem.
• We must be able to interpret the mathematical solution physically.

• If these conditions are not met, mathematics is useless in the
problem.



Different problems

• We have measured the attenuation of X-rays through a ball. How to
find what is inside?

• Suppose a small planet is almost but not quite homogeneous. If we
measure the travel times of waves from meteorite impacts at many
points, how can we find the deviation from homogeneity?

• Suppose we have a function defined on the three-dimensional ball. If
we know its integrals over all lines, how do we find the function?



Level of abstraction

• Rule of thumb: The more abstract mathematics you know, the more
applications it has.

• Identification of the essential structure and focusing on it.
• Example: Some problems in geophysics are best understood through

Finsler geometry. Many mathematicians consider such geometry
unnecessarily esoteric.

• Elementary mathematics is not abstract enough to have interesting
applications.

• Without the basics the advanced stuff means nothing. (What is the
derivative of the spectrum with respect to the geometry?)



Problem 1: Is the bone broken?

Physical problem
If we measure the attenuation of
X-rays from all directions, can we
find the position-dependent
attenuation coefficient (the 3D
structure of the object)?

Mathematical problem
If we know the integrals of a
function (defined in the three-
dimensional space) over all lines,
can we find the function itself?



Problem 1: Needed mathematical tools

• Lines in space and integration over them. (The question is fairly
straightforward to ask for a freshman!)

• Functional analysis: function spaces, integral transforms (e.g. Fourier
transform and Riesz potential).

• Depending on approach: potential theory, microlocal analysis, partial
differential equations.

• The department has a whole course on just this problem.



Problem 2: What is inside the Earth?

Physical problem
If we know all the frequencies of
free oscillations, can we find the
density and structure of matter
inside the planet?

Mathematical problem
If we know the Neumann
spectrum of the Laplace–Beltrami
operator of a Riemannian
manifold with boundary, can we
find the manifold?
(This is just a toy version.)



Problem 2: Needed mathematical tools

• Differential geometry, Riemann or Finsler manifolds.
• Partial differential equations and their spectral theory.
• Distribution theory (generalized functions).
• Integral transforms: Fourier transform, Abel transform, ray transforms

on manifolds (previous problem!), …
• Regularity of functions and spaces.
• Microlocal analysis: Fourier integral operators and movement of

singularities.
• Continuous time dynamical systems.



Problem 3: Is the concrete block intact?

Physical problem
Can we find the electrical
conductivity everywhere inside an
object by making current and
voltage measurements at the
surface?

Mathematical problem
Can we find γ ∈ ାஶܮ Ω if we know

,డΩ|ݑ ν ȉ డΩ|ݑߘߛ
for all ݑ ∈ ܹଵ,ଶ Ω that solve the
equation ߘ ȉ ݑߘߛ = 0?

(Calderón’s inverse problem)



Problem 3: Needed mathematical tools

• Theory of weak solutions of partial differential equations.
• Functional analysis: function spaces, quotient spaces, duals, Banach

spaces.
• Complex geometrical optics.
• The Schrödinger equation.
• Fourier transform.



Part II
Geometry
The mathematics of shape



Surfaces inside Euclidean spaces

• The Euclidean space is flat: Everything looks the same everywhere in
all directions and the sum of interior angles of triangles is always
180°.

• A flat surface (an affine subspace) is something like a plane or a line in
3D space.

• A curved surface could be any shape: a curve, a sphere, a donut, a
saddle…

• When you zoom in on a point on a curved surface, it starts looking
flat. This flat surface at the point is known as the tangent space.



Surfaces from within

• On the previous slide we had embedded surfaces: surfaces that sit
inside a bigger space.

• An abstract surface (manifold) exists in itself, not as part of something
else. Having no ambient space helps.

• We can separate the surface itself (a manifold) and geometry on it
(e.g. a Riemannian metric).

• Theorem: Any Riemannian manifold can be embedded in a Euclidean
space. The embedding is isometric, so the geometry is right. (“All
abstract surfaces can be made concrete.”)



Distance

• Tangent spaces can be defined internally.
• There is a concept of distance on each tangent space.

• If Pythagoras’ theorem holds, the manifold is Riemannian.
• Otherwise we have a Finsler manifold.

• The length of curve is ݈ ߛ = ∫ (ݐ)ߛ̇  ݐ݀
 . Informally, split the curve to

small segments and measure each on tangent space.
• The distance between points is the length of the shortest curve.
• All geometric concepts (angle, area, curvature, …) can be derived

from distance.



Geodesic

• There is a way to define what it means for a curve to be straight. (Its
tangent vector is parallel transported with respect to the metric
connection.)

• Theorem: The shortest curve between any two points is straight.
• These curves are called geodesics.
• ”A geodesics is a straight line in a curved space.”
• In Euclidean geometry geodesics are just straight lines.



Part III
Geometrization of geophysics
The shape of planet Earth



The linear elastic wave equation

• Hooke’s law: The restoring force (stress) in an elastic material
depends linearly on the relative displacement (strain).

• The ”spring constant” is the so-called stiffness tensor. It can be pretty
complicated.

• Newton’s second law: Force is mass times acceleration.
• Combining these leads to the elastic wave equation

௝߲ ܿ௜௝௞௟ ݔ ߲௞ݑ௟ ,ݔ ݐ − ߩ ݔ ߲௧ଶݑ௜ ,ݔ ݐ = 0.
• This is a partial differential equation.



Singularities

• A function is smooth if it can be differentiated as much as you want.
• A function has a singularity if it is not smooth somewhere.
• Solutions of the elastic wave equation need not be smooth; they can

have singularities.
• These singularities move in predictable ways. Microlocal analysis

studies this in detail.
• We can think of singularities as point particles instead of waves. This

is wave–particle duality from a mathematical point of view for elastic
waves.



Elastic geometry

• We can define a geometry by declaring that the distance between
two points is the shortest time it takes for elastic waves (their
singularities which are points) to travel between them.

• Fermat’s principle: Waves take the path of shortest time.
• Microlocal analysis: Singularities travel straight in this geometry.
• This geometry is typically non-Euclidean and even non-Riemannian.
• We demand that waves from earthquakes travel straight and define

”straight” and the whole geometry accordingly.
• The Finsler metric is given by the Legendre transform of the top

eigenvalue of the Christoffel matrix.



Inverse problems

• Typical geophysical inverse problem: Given some data measured at
the surface, find the elastic parameters inside the planet.

• Typical geometrical inverse problem: Given some data measured at
the boundary, find the manifold.

• The geometry is given by the elastic properties, so in this geometrical
way of thinking these problems are the same!

• The tools of geometrical inverse problems become available, and one
can start building a mathematical theory of geophysics.

• One needs to develop Finsler geometry itself, not just apply it.



Two geometrizations

Gravitation
• Newton: A planet travels on a

curved path. It is curved by a
force exerted by the Sun.

• Einstein: A planet travels
straight. The geometry is
influenced by the presence of
the Sun.

Geophysics
• Old way: A seismic wave travels

on a curved path. It is curved by
variations in wave speed.

• New way: A seismic wave travels
straight. The geometry is
determined by the wave speed.



Part IV
Conclusion
Looking back and forward



What just happened?

• Inverse problems: The mathematics of indirect measurement.
• Geometry: Straight lines in curved spaces, geodesics on manifolds.
• Elastic waves can be thought of as points (singularities) which go

straight in ”elastic geometry”.
• The shape of our planet is its interior structure.

• I hope I gave a flavour of what mathematics can actually be like.



Research at Jyväskylä

• The inverse problems group at Jyväskylä studies
• inverse problems,
• geometry,
• geophysics,
• and much more.

• You can join us:
• Write a thesis at any level,
• come chat with us, or
• check out Inverse Days, December 16–18 in Jyväskylä.



Thank you!

• Questions?
• Comments?

Find me later:
MaD310
joonas.ilmavirta@jyu.fi


