

Geophysics and algebraic geometry

Inverse Days

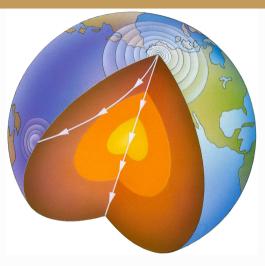
Joonas Ilmavirta

December 15, 2022

Based on joint work with Maarten de Hoop, Matti Lassas, Anthony Várilly-Alvarado

JYU. Since 1863.

The question



How to see the interior of the Earth via seismic rays?

Joonas Ilmavirta (University of Jyväskylä)

Geophysics and algebraic geometry

Outline

Inverse problems in elasticity

- Elastic wave equation
- Propagation of singularities
- Slowness polynomial and slowness surface
- Geometrization of an analytic problem
- Geometry of slowness surfaces

3 Coordinate gauge

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^n$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{ijkl}(x) \in \mathbb{R}^{n^4}$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^n$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{ijkl}(x) \in \mathbb{R}^{n^4}$.

Properties:

- $\bullet \ \rho > 0.$
- $c_{ijkl} = c_{klij} = c_{jikl}$.
- $\sum_{i,j,k,l} c_{ijkl} A_{ij} A_{kl} > 0$ whenever $A = A^T \neq 0$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^n$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{ijkl}(x) \in \mathbb{R}^{n^4}$.

Properties:

- $\bullet \ \rho > 0.$
- $c_{ijkl} = c_{klij} = c_{jikl}$.
- $\sum_{i,j,k,l} c_{ijkl} A_{ij} A_{kl} > 0$ whenever $A = A^T \neq 0$.

Equation of motion:

$$\rho(x)\partial_t^2 u_i(t,x) - \sum_{j,k,l} \partial_j [c_{ijkl}(x)\partial_k u_l(x)] = 0.$$

.

A wave-type equation can have singular solutions:

$$(\partial_t^2 - \partial_x^2)\delta(t - x) = 0.$$

A wave-type equation can have singular solutions:

$$(\partial_t^2 - \partial_x^2)\delta(t - x) = 0.$$

To understand singularities of solutions to the EWE, freeze ρ and c to be constants.

A wave-type equation can have singular solutions:

$$(\partial_t^2 - \partial_x^2)\delta(t - x) = 0.$$

To understand singularities of solutions to the EWE, freeze ρ and c to be constants. If $u = Ae^{i\omega(t-p\cdot x)}$, then the EWE becomes

 $\rho\omega^2[-I+\Gamma(p)]A=0,$

where

$$\Gamma_{il}(p) = \sum_{j,k} \rho^{-1} c_{ijkl} p_j p_k$$

is the Christoffel matrix.

If we choose not to keep track of the polarization A, the condition becomes

 $\det[\Gamma(p) - I] = 0.$

If we choose not to keep track of the polarization A, the condition becomes

 $\det[\Gamma(p) - I] = 0.$

In general, singularities of the elastic wave equation (mostly!) satisfy

 $\det[\Gamma(x,p) - I] = 0,$

where c and ρ are allowed to depend on x.

If we choose not to keep track of the polarization A, the condition becomes

 $\det[\Gamma(p) - I] = 0.$

In general, singularities of the elastic wave equation (mostly!) satisfy

 $\det[\Gamma(x,p) - I] = 0,$

where c and ρ are allowed to depend on x.

The singularities move according to the geodesic flow of the Finsler geometry given by $F^{qP} = [\lambda_1(\Gamma)^{1/2}]^*$.

Joonas Ilmavirta (University of Jyväskylä)

Slowness polynomial and slowness surface

A reduced stiffness tensor a_{ijkl} defines

- a Christoffel matrix $\Gamma_a(p)$ and
- a slowness polynomial $P_a(p) = \det[\Gamma_a(p) I]$.

A reduced stiffness tensor a_{ijkl} defines

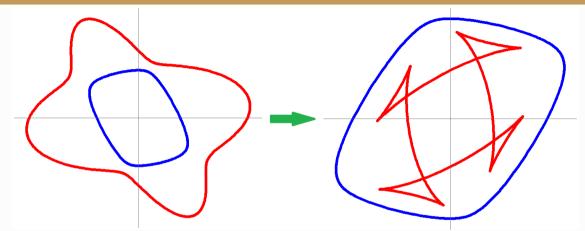
- a Christoffel matrix $\Gamma_a(p)$ and
- a slowness polynomial $P_a(p) = \det[\Gamma_a(p) I]$.

The set where singularities are possible is the slowness surface

$$\Sigma_a = \{ p \in \mathbb{R}^n; P_a(p) = 0 \}.$$

Knowing the slowness polynomial \iff knowing the slowness surface.

Slowness polynomial and slowness surface



A slowness surface in 2D with its two branches, and the corresponding two Finsler norms. The quasi pressure (qP) polarization behaves well.

Anisotropy \iff dependence on direction \iff not circles.

Joonas Ilmavirta (University of Jyväskylä)

Geophysics and algebraic geometry

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial\Omega$, find the parameters c(x) and $\rho(x)$ for all $x \in \Omega$.

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial\Omega$, find the parameters c(x) and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F) .

Original inverse problem

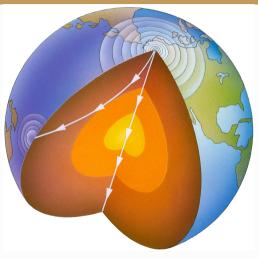
Given information of the solutions to the elastic wave equation on $\partial\Omega$, find the parameters c(x) and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F) .

Remarks:

- Geometric inverse problems like this can be solved for qP geometries.
- Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid and interesting stiffness tensors.
- Knowing the metric is the same as knowing the (co)sphere bundle: $(M,g) \text{ or } (M,F) \iff (M,SM) \iff (M,S^*M).$
- The cospheres of the Finsler geometry are the qP branches of the slowness surface.



Rays follow geodesics and tell about the interior structure.

Joonas Ilmavirta (University of Jyväskylä)

Geophysics and algebraic geometry

Outline

Inverse problems in elasticity

Geometry of slowness surfaces

- Algebraic variety
- Generic irreducibility
- Generically unique reduced stiffness tensor
- Singularity

Definition A set $V \subset \mathbb{R}^n$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^n \to \mathbb{R}$.

A set $V \subset \mathbb{R}^n$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^n \to \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

A set $V \subset \mathbb{R}^n$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^n \to \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

The study of the geometry of varieties is a part of algebraic geometry.

A variety $V \subset \mathbb{R}^n$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

A variety $V \subset \mathbb{R}^n$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2, 3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_a is irreducible.

A variety $V \subset \mathbb{R}^n$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2, 3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_a is irreducible.

This is not true for all a.

Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)

When the slowness surface Σ_a is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.

If $n \in \{2, 3\}$, this is generically true.

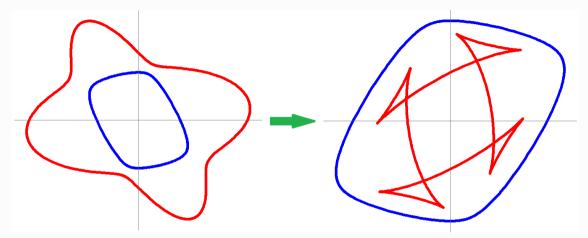
Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)

When the slowness surface Σ_a is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.

If $n \in \{2, 3\}$, this is generically true.

It suffices to measure the well-behaved qP branch!

Generic irreducibility



Any small part of the well-behaved quasi pressure branch determines the whole thing via Zariski closure.

Joonas Ilmavirta (University of Jyväskylä)

Geophysics and algebraic geometry

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \to P_a$ is injective.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \to P_a$ is injective.

We do not know if this is always true.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2, 3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \to P_a$ is injective.

We do not know if this is always true.

Corollary (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)

Let $n \in \{2, 3\}$. There is an open and dense subset W of stiffness tensors a so that for all $a \in W$ any small subset of the slowness surface Σ_a determines a.

A point x on a variety $\{x \in \mathbb{R}^n; P(x) = 0\}$ is a singular point if $\nabla P(x) = 0$.

A variety is called smooth or singular depending on whether there are singular points.

A point x on a variety $\{x \in \mathbb{R}^n; P(x) = 0\}$ is a singular point if $\nabla P(x) = 0$.

A variety is called smooth or singular depending on whether there are singular points.

We may think of the real or complex slowness surface, a subset in \mathbb{R}^n or \mathbb{C}^n . The slowness polynomial stays the same.

Singularity

Theorem (Ilmavirta)

Let $n \notin \{1, 2, 4, 8\}$. Then for all stiffness tensors a > 0 the complex slowness surface is singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is singular.

Singularity

Theorem (Ilmavirta)

Let $n \notin \{1, 2, 4, 8\}$. Then for all stiffness tensors a > 0 the complex slowness surface is singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is singular.

Theorem (Ilmavirta)

Let n = 2. Then the real and complex slowness surface is generically smooth. There is a simple test for singularity.

Singularity

Theorem (Ilmavirta)

Let $n \notin \{1, 2, 4, 8\}$. Then for all stiffness tensors a > 0 the complex slowness surface is singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is singular.

Theorem (Ilmavirta)

Let n = 2. Then the real and complex slowness surface is generically smooth. There is a simple test for singularity.

The case n = 1 is uninteresting. The cases $n \in \{4, 8\}$ are open. The qP branch can still be smooth — and it often is.

Inverse problems in elasticity

- Geometry of slowness surfaces
- Coordinate gauge
 - Coordinate gauge in geometric inverse problems
 - Degeometrization

Coordinates never matter in differential geometry.

Coordinates never matter in differential geometry.

If a manifold (M, F) gives the right data on ∂M and $\phi \colon M \to M$ is a diffeomorphism with $\phi(x) = x$ for all $x \in \partial M$, then $(M, \phi^* F)$ gives the same data.

Coordinates never matter in differential geometry.

If a manifold (M, F) gives the right data on ∂M and $\phi \colon M \to M$ is a diffeomorphism with $\phi(x) = x$ for all $x \in \partial M$, then $(M, \phi^* F)$ gives the same data.

Only the isometry class of the manifold matters, so in a coordinate representation there is a gauge freedom of diffeomorphisms.

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^n$ and $\phi \colon \Omega \to \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_a^{qP} = \phi^* F_b^{qP}$ —i.e., that (Ω, F_a^{qP}) and (Ω, F_b^{qP}) are isometric?

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^n$ and $\phi \colon \Omega \to \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_a^{qP} = \phi^* F_b^{qP}$ —i.e., that (Ω, F_a^{qP}) and (Ω, F_b^{qP}) are isometric?

Stay tuned...

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available: http://users.jyu.fi/~jojapeil

> Ask for details: joonas.ilmavirta@jyu.fi