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The question

How to see the interior of the Earth via seismic rays?

Joonas Ilmavirta (University of Jyväskylä) Geophysics and algebraic geometry JYU. Since 1863. | Dec 15, 2022 | 2 / 22

.



Outline

1 Inverse problems in elasticity
Elastic wave equation
Propagation of singularities
Slowness polynomial and slowness surface
Geometrization of an analytic problem

2 Geometry of slowness surfaces

3 Coordinate gauge

Joonas Ilmavirta (University of Jyväskylä) Geophysics and algebraic geometry JYU. Since 1863. | Dec 15, 2022 | 3 / 22



Elastic wave equation

Quantities:

Displacement u(t, x) ∈ Rn.

Density ρ(x) ∈ R.

Stiffness tensor cijkl(x) ∈ Rn4
.

Properties:

ρ > 0.

cijkl = cklij = cjikl.∑
i,j,k,l cijklAijAkl > 0 whenever A = AT ̸= 0.

Equation of motion: ρ(x)∂2
t ui(t, x)−

∑
j,k,l

∂j [cijkl(x)∂kul(x)] = 0.
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Propagation of singularities

A wave-type equation can have singular solutions:

(∂2
t − ∂2

x)δ(t− x) = 0.

To understand singularities of solutions to the EWE, freeze ρ and c to be constants.
If u = Aeiω(t−p·x), then the EWE becomes

ρω2[−I + Γ(p)]A = 0,

where
Γil(p) =

∑
j,k

ρ−1cijklpjpk

is the Christoffel matrix.
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Propagation of singularities

If we choose not to keep track of the polarization A, the condition becomes

det[Γ(p)− I] = 0.

In general, singularities of the elastic wave equation (mostly!) satisfy

det[Γ(x, p)− I] = 0,

where c and ρ are allowed to depend on x.

The singularities move according to the geodesic flow of the Finsler geometry given by
F qP = [λ1(Γ)

1/2]∗.
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Slowness polynomial and slowness surface

A reduced stiffness tensor aijkl defines

a Christoffel matrix Γa(p) and

a slowness polynomial Pa(p) = det[Γa(p)− I].

The set where singularities are possible is the slowness surface

Σa = {p ∈ Rn;Pa(p) = 0}.

Knowing the slowness polynomial ⇐⇒ knowing the slowness surface.
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Slowness polynomial and slowness surface

A slowness surface in 2D with its two branches, and the corresponding two Finsler norms.
The quasi pressure (qP) polarization behaves well.

Anisotropy ⇐⇒ dependence on direction ⇐⇒ not circles.
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Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on ∂Ω, find the parameters c(x)
and ρ(x) for all x ∈ Ω.

Geometrized inverse problem
Given the travel times of singularities (geodesic distances) between boundary points, find the
qP Finsler manifold (Ω, F ).

Remarks:
Geometric inverse problems like this can be solved for qP geometries.
Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid
and interesting stiffness tensors.
Knowing the metric is the same as knowing the (co)sphere bundle:
(M, g) or (M,F ) ⇐⇒ (M,SM) ⇐⇒ (M,S∗M).
The cospheres of the Finsler geometry are the qP branches of the slowness surface.
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Geometrization of an analytic problem

Rays follow geodesics and tell about the interior structure.
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Algebraic variety

Definition
A set V ⊂ Rn is an algebraic variety if it is the vanishing set of a collection of polynomials
Rn → R.

Observation
The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

The study of the geometry of varieties is a part of algebraic geometry.
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Generic irreducibility

Definition
A variety V ⊂ Rn is reducible if it can be written as the union of two varieties in a non-trivial
way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two
polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset of stiffness tensors a so that the slowness
polynomial Pa is irreducible.

This is not true for all a.
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Generic irreducibility

Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)
When the slowness surface Σa is irreducible, any (Euclidean) relatively open subset
determines the whole slowness surface.
If n ∈ {2, 3}, this is generically true.

It suffices to measure the well-behaved qP branch!
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Generic irreducibility

Any small part of the well-behaved quasi pressure branch
determines the whole thing via Zariski closure.
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Generically unique reduced stiffness tensor

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset W of stiffness tensors a so that the map
W ∋ a → Pa is injective.

We do not know if this is always true.

Corollary (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset W of stiffness tensors a so that for all
a ∈ W any small subset of the slowness surface Σa determines a.
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Singularity

Definition
A point x on a variety {x ∈ Rn;P (x) = 0} is a singular point if ∇P (x) = 0.

A variety is called smooth or singular depending on whether there are singular points.

We may think of the real or complex slowness surface, a subset in Rn or Cn.
The slowness polynomial stays the same.

Joonas Ilmavirta (University of Jyväskylä) Geophysics and algebraic geometry JYU. Since 1863. | Dec 15, 2022 | 17 / 22



Singularity

Definition
A point x on a variety {x ∈ Rn;P (x) = 0} is a singular point if ∇P (x) = 0.

A variety is called smooth or singular depending on whether there are singular points.

We may think of the real or complex slowness surface, a subset in Rn or Cn.
The slowness polynomial stays the same.

Joonas Ilmavirta (University of Jyväskylä) Geophysics and algebraic geometry JYU. Since 1863. | Dec 15, 2022 | 17 / 22

.



Singularity

Theorem (Ilmavirta)
Let n /∈ {1, 2, 4, 8}. Then for all stiffness tensors a > 0 the complex slowness surface is
singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is
singular.

Theorem (Ilmavirta)
Let n = 2. Then the real and complex slowness surface is generically smooth. There is a
simple test for singularity.

The case n = 1 is uninteresting.
The cases n ∈ {4, 8} are open.
The qP branch can still be smooth — and it often is.
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Coordinate gauge in geometric inverse problems

Coordinates never matter in differential geometry.

If a manifold (M,F ) gives the right data on ∂M and ϕ : M → M is a diffeomorphism with
ϕ(x) = x for all x ∈ ∂M , then (M,ϕ∗F ) gives the same data.

Only the isometry class of the manifold matters, so in a coordinate representation there is a
gauge freedom of diffeomorphisms.
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Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge
freedom. But how about the original problem?

Question
Let a and b be two different stiffness tensor fields on a domain Ω ⊂ Rn and ϕ : Ω → Ω a
diffeomorphism fixing the boundary. Is it possible that F qP

a = ϕ∗F qP
b — i.e., that (Ω, F qP

a ) and
(Ω, F qP

b ) are isometric?

Stay tuned. . .
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DISCOVERING MATH
at JYU.Since 1863.

Slides and papers available:
http://users.jyu.fi/~jojapeil

Ask for details:
joonas.ilmavirta@jyu.fi
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