Quantum mechanical tomography and neutrino oscillation Inverse Days 2015

Joonas Ilmavirta

University of Jyväskylä

9.12.2015

Outline

- Neutrino oscillation
 - Neutrinos
 - Schrödinger's equation and mass
 - Oscillation
 - Matter effects
- Quantum mechanical tomography

Neutrin<u>os</u>

• Neutrinos are very light and very weakly interacting particles. They have no electric charge and are difficult to detect.

- Neutrinos are very light and very weakly interacting particles. They
 have no electric charge and are difficult to detect.
- There are three generations of neutrinos corresponding to the charged leptons:
 - ullet the electron neutrino u_e
 - ullet the muon neutrino u_{μ}
 - the tau neutrino $\nu_{ au}$

- Neutrinos are very light and very weakly interacting particles. They
 have no electric charge and are difficult to detect.
- There are three generations of neutrinos corresponding to the charged leptons:
 - ullet the electron neutrino u_e
 - ullet the muon neutrino u_{μ}
 - the tau neutrino $\nu_{ au}$
- Neutrino masses are $\lesssim 1$ eV. (Natural units: $c=\hbar=1$.)

- Neutrinos are very light and very weakly interacting particles. They
 have no electric charge and are difficult to detect.
- There are three generations of neutrinos corresponding to the charged leptons:
 - ullet the electron neutrino u_e
 - ullet the muon neutrino u_{μ}
 - ullet the tau neutrino $u_{ au}$
- Neutrino masses are $\lesssim 1$ eV. (Natural units: $c=\hbar=1$.) For comparison, the masses of an electron and a neutron are $5\cdot 10^5$ eV and $2\cdot 10^9$ eV.

• We can think of neutrinos as point particles. The state of a neutrino is

$$\Psi(x,t) = \begin{pmatrix} \Psi_{\nu_e}(x,t) \\ \Psi_{\nu_{\mu}}(x,t) \\ \Psi_{\nu_{\tau}}(x,t) \end{pmatrix} \in \mathbb{C}^3.$$

All flavours are collected into a single state. If the state is measured, the probability of finding ν_e at (x,t) is $|\Psi_{\nu_e}(x,t)|^2$.

We can think of neutrinos as point particles. The state of a neutrino is

$$\Psi(x,t) = \begin{pmatrix} \Psi_{\nu_e}(x,t) \\ \Psi_{\nu_{\mu}}(x,t) \\ \Psi_{\nu_{\tau}}(x,t) \end{pmatrix} \in \mathbb{C}^3.$$

All flavours are collected into a single state. If the state is measured, the probability of finding ν_e at (x,t) is $|\Psi_{\nu_e}(x,t)|^2$.

ullet We need an equation of motion for $\Psi(x,t)$.

 Neutrinos are ultrarelativistic. Non-relativistic neutrinos cannot be detected.

- Neutrinos are ultrarelativistic. Non-relativistic neutrinos cannot be detected.
- The Schrödinger equation reads

$$i\partial_t \Psi(x,t) = H(x,t)\Psi(x,t),$$

where ${\cal H}$ is the Hamiltonian matrix. The Hamiltonian is the energy operator.

- Neutrinos are ultrarelativistic. Non-relativistic neutrinos cannot be detected.
- The Schrödinger equation reads

$$i\partial_t \Psi(x,t) = H(x,t)\Psi(x,t),$$

where H is the Hamiltonian matrix. The Hamiltonian is the energy operator.

ullet If an ultrarelativistic particle has momentum p and mass m, its energy is

$$\sqrt{p^2 + m^2} \approx p + \frac{m^2}{2p}.$$

- Neutrinos are ultrarelativistic. Non-relativistic neutrinos cannot be detected.
- The Schrödinger equation reads

$$i\partial_t \Psi(x,t) = H(x,t)\Psi(x,t),$$

where ${\cal H}$ is the Hamiltonian matrix. The Hamiltonian is the energy operator.

ullet If an ultrarelativistic particle has momentum p and mass m, its energy is

$$\sqrt{p^2 + m^2} \approx p + \frac{m^2}{2p}.$$

• In vacuum we obtain the ultrarelativistic Schrödinger equation

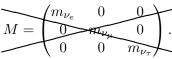
$$i\partial_t \Psi(x,t) = (p + \frac{1}{2p}M^2)\Psi(x,t),$$

where M is the neutrino mass matrix.

• If the neutrinos ν_e, ν_μ, ν_τ had masses $m_{\nu_e}, m_{\nu_\mu}, m_{\nu_\tau}$, the mass matrix would be

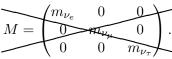
$$M = \begin{pmatrix} m_{\nu_e} & 0 & 0 \\ 0 & m_{\nu_{\mu}} & 0 \\ 0 & 0 & m_{\nu_{\tau}} \end{pmatrix}.$$

• If the neutrinos ν_e, ν_μ, ν_τ had masses $m_{\nu_e}, m_{\nu_\mu}, m_{\nu_\tau}$, the mass matrix would be



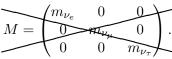
• The neutrino mass matrix is not diagonal!

• If the neutrinos ν_e, ν_μ, ν_τ had masses $m_{\nu_e}, m_{\nu_\mu}, m_{\nu_\tau}$, the mass matrix would be



- The neutrino mass matrix is not diagonal!
- There are two natural bases for the state space \mathbb{C}^3 :
 - the flavor basis consisting of flavor states ν_e , ν_μ and $\nu_ au$,
 - the mass basis consisting of the eigenstates of the mass matrix.

• If the neutrinos ν_e, ν_μ, ν_τ had masses $m_{\nu_e}, m_{\nu_\mu}, m_{\nu_\tau}$, the mass matrix would be



- The neutrino mass matrix is not diagonal!
- There are two natural bases for the state space \mathbb{C}^3 :
 - the flavor basis consisting of flavor states ν_e , ν_μ and ν_τ ,
 - the mass basis consisting of the eigenstates of the mass matrix.

The basis can be changed via the PMNS matrix U.

ullet Because the mass matrix M in the ultrarelativistic SE

$$i\partial_t \Psi = (p + \frac{1}{2p}M^2)\Psi$$

is not diagonal (in flavor basis), the different flavours are coupled.

ullet Because the mass matrix M in the ultrarelativistic SE

$$i\partial_t \Psi = (p + \frac{1}{2p}M^2)\Psi$$

is not diagonal (in flavor basis), the different flavours are coupled.

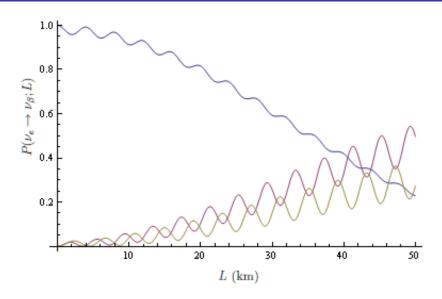
• This leads to what is known as *neutrino oscillation*: neutrinos change flavors spontaneously.

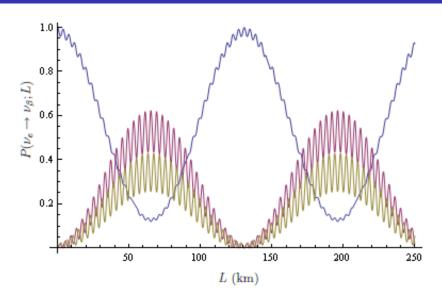
ullet Because the mass matrix M in the ultrarelativistic SE

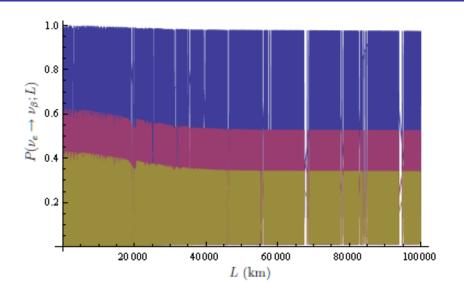
$$i\partial_t \Psi = (p + \frac{1}{2p}M^2)\Psi$$

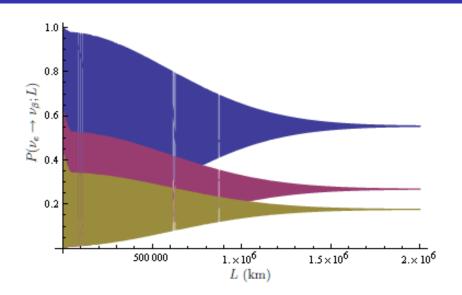
is not diagonal (in flavor basis), the different flavours are coupled.

- This leads to what is known as neutrino oscillation: neutrinos change flavors spontaneously.
- Different mass states have slightly different velocities and therefore they slowly drift apart. They lose coherence and no longer oscillate.
 We will focus on coherent phenomena.









• What we described was neutrino oscillation in vacuum.

- What we described was neutrino oscillation in vacuum.
- The oscillation is not a dynamical phenomenon, but a kinematical one.
 No interaction is involved.

- What we described was neutrino oscillation in vacuum.
- The oscillation is not a dynamical phenomenon, but a kinematical one.
 No interaction is involved.
- Interactions with the background change the oscillation.

- What we described was neutrino oscillation in vacuum.
- The oscillation is not a dynamical phenomenon, but a kinematical one.
 No interaction is involved.
- Interactions with the background change the oscillation.
- Question: Can we reconstruct the background from neutrino oscillation data?

Outline

- Neutrino oscillation
- Quantum mechanical tomography
 - The model
 - The data
 - The problem
 - The result
 - X-ray transforms with matrix weights

• Consider a point-like particle with N possible states, so that the state space is \mathbb{C}^N . (For neutrinos N=3.)

- Consider a point-like particle with N possible states, so that the state space is \mathbb{C}^N . (For neutrinos N=3.)
- The particle travels with constant speed v, |v|=1, through a domain $\Omega\subset\mathbb{R}^n$. (Classical point particle.)

- Consider a point-like particle with N possible states, so that the state space is \mathbb{C}^N . (For neutrinos N=3.)
- The particle travels with constant speed v, |v|=1, through a domain $\Omega \subset \mathbb{R}^n$. (Classical point particle.)
- The Hamilton matrix $H(x) \in \mathbb{C}^{N \times N}$ depends on $x \in \Omega$.

- Consider a point-like particle with N possible states, so that the state space is \mathbb{C}^N . (For neutrinos N=3.)
- The particle travels with constant speed v, |v|=1, through a domain $\Omega \subset \mathbb{R}^n$. (Classical point particle.)
- The Hamilton matrix $H(x) \in \mathbb{C}^{N \times N}$ depends on $x \in \Omega$.
- The time evolution of a state $\Psi(t) \in \mathbb{C}^N$ along the trajectory $t \mapsto x_0 + tv$ is given by $i\partial_t \Psi(t) = H(x_0 + tv)\Psi(t)$.

• There is a collection of initial states in \mathbb{C}^N that we can produce as $\Psi(t=0).$

- There is a collection of initial states in \mathbb{C}^N that we can produce as $\Psi(t=0).$
- There is a collection of reference states $f \in \mathbb{C}^N$ for which we can measure $|\langle f, \Psi(t=T) \rangle|^2$.

- There is a collection of initial states in \mathbb{C}^N that we can produce as $\Psi(t=0)$.
- There is a collection of reference states $f \in \mathbb{C}^N$ for which we can measure $|\langle f, \Psi(t=T) \rangle|^2$.
- For neutrinos, both sets are the flavor basis (three orthogonal unit vectors in \mathbb{C}^3).

- There is a collection of initial states in \mathbb{C}^N that we can produce as $\Psi(t=0)$.
- There is a collection of reference states $f \in \mathbb{C}^N$ for which we can measure $|\langle f, \Psi(t=T) \rangle|^2$.
- For neutrinos, both sets are the flavor basis (three orthogonal unit vectors in \mathbb{C}^3).
- We measure this number $|\langle f, \Psi(T) \rangle|^2$ for all initial states $\Psi(0)$, all reference states f and all trajectories through Ω .

• Question: Given all this data, can we recover the Hamiltonian H(x)?

- Question: Given all this data, can we recover the Hamiltonian H(x)?
- No!

- Question: Given all this data, can we recover the Hamiltonian H(x)?
- No! If $\tilde{H}(x) = H(x) + \phi(x)I$ for some scalar function $\phi \colon \Omega \to \mathbb{R}$, the Hamiltonians H and \tilde{H} give the same data.

- Question: Given all this data, can we recover the Hamiltonian H(x)?
- No! If $\tilde{H}(x) = H(x) + \phi(x)I$ for some scalar function $\phi \colon \Omega \to \mathbb{R}$, the Hamiltonians H and \tilde{H} give the same data.
- For positive results we need to assume "ideal data".

- Question: Given all this data, can we recover the Hamiltonian H(x)?
- No! If $\tilde{H}(x) = H(x) + \phi(x)I$ for some scalar function $\phi \colon \Omega \to \mathbb{R}$, the Hamiltonians H and \tilde{H} give the same data.
- For positive results we need to assume "ideal data".
 - ullet Example: All states in \mathbb{C}^N are available as initial and reference states.
 - Non-example: Neutrino oscillation data.

The result

The result

Theorem (I., 2015)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a bounded convex domain. Let $N \geq 1$ be an integer and suppose $H, \tilde{H} \in C^{1,\alpha}(\bar{\Omega}, \mathbb{C}^{N \times N})$ for some $\alpha > 0$ are pointwise hermitean.

Assume ideal data in the described measurements. The two Hamiltonians H and \tilde{H} give the same data if and only if $\tilde{H}=H+\phi I$ for a scalar function ϕ .

• The proof relies on inverting X-ray transforms with matrix weight.

- The proof relies on inverting X-ray transforms with matrix weight.
- Fix $M \in \mathbb{N}$ and consider a matrix-valued function $W \colon \bar{\Omega} \times S^{n-1} \to \mathbb{C}^{M \times M}$.

- The proof relies on inverting X-ray transforms with matrix weight.
- Fix $M \in \mathbb{N}$ and consider a matrix-valued function $W \colon \bar{\Omega} \times S^{n-1} \to \mathbb{C}^{M \times M}$.
- The weighted integral of a function $f\colon \bar\Omega\to\mathbb{C}^M$ over a smooth unit speed curve $\gamma\colon [0,T]\to \bar\Omega$ is

$$\int_0^T W(\gamma(t), \dot{\gamma}(t)) f(\gamma(t)) dt.$$

- The proof relies on inverting X-ray transforms with matrix weight.
- Fix $M \in \mathbb{N}$ and consider a matrix-valued function $W \colon \bar{\Omega} \times S^{n-1} \to \mathbb{C}^{M \times M}$.
- The weighted integral of a function $f\colon \bar\Omega\to\mathbb{C}^M$ over a smooth unit speed curve $\gamma\colon [0,T]\to \bar\Omega$ is

$$\int_0^T W(\gamma(t), \dot{\gamma}(t)) f(\gamma(t)) dt.$$

Theorem (I., 2015)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a bounded convex domain. If W is $C^{1,\alpha}$ for some $\alpha > 0$ and pointwise invertible, then a continuous $f \colon \bar{\Omega} \to \mathbb{C}^M$ is uniquely determined by its weighted integrals over all straight lines.

End

J. Ilmavirta: **Coherent quantum tomography**, preprint, arXiv:1507.00558.

Slides and papers will appear at http://users.jyu.fi/~jojapeil.

J. Ilmavirta: **Coherent quantum tomography**, preprint, arXiv:1507.00558.

Slides and papers will appear at http://users.jyu.fi/~jojapeil.

Thank you.