

Functions of constant X-ray transform

Inverse Days
Joonas Ilmavirta
December 11, 2018
Based on joint work with
Gabriel Paternain

Outline

(1) The X-ray transform

- The X-ray transform in a domain
- Range characterizations
- Are constants in the range?
(2) Examples
(3) Characterization of Euclidean domains
(4) Improvements

The X-ray transform in a domain

The X-ray transform in a domain

- Let $\Omega \subset \mathbb{R}^{n}$ be a bounded convex domain (or a simple manifold) and Γ_{Ω} the set of straight lines in Ω.

The X-ray transform in a domain

- Let $\Omega \subset \mathbb{R}^{n}$ be a bounded convex domain (or a simple manifold) and Γ_{Ω} the set of straight lines in Ω.
- The X-ray transform I takes a function $f: \Omega \rightarrow \mathbb{R}$ to the function $I f: \Gamma_{\Omega} \rightarrow \mathbb{R}$ defined by

$$
I f(\gamma)=\int_{\gamma} f
$$

whenever this makes sense.

The X-ray transform in a domain

- Let $\Omega \subset \mathbb{R}^{n}$ be a bounded convex domain (or a simple manifold) and Γ_{Ω} the set of straight lines in Ω.
- The X-ray transform I takes a function $f: \Omega \rightarrow \mathbb{R}$ to the function $I f: \Gamma_{\Omega} \rightarrow \mathbb{R}$ defined by

$$
I f(\gamma)=\int_{\gamma} f
$$

whenever this makes sense.

- Everything is set up in the domain; no lines or points outside Ω are considered.

Range characterizations

Range characterizations

- One basic question regarding the X -ray transform I is to characterize its range.

Range characterizations

- One basic question regarding the X -ray transform I is to characterize its range.
- For example, what is the space $I\left(L^{2}(\Omega)\right)$ or $I\left(C_{c}^{\infty}(\Omega)\right)$?

Range characterizations

- One basic question regarding the X-ray transform I is to characterize its range.
- For example, what is the space $I\left(L^{2}(\Omega)\right)$ or $I\left(C_{c}^{\infty}(\Omega)\right)$?
- In the plane \mathbb{R}^{2} the range of I (the image of C_{c}^{∞}) is characterized by Helgason's moment conditions.

Range characterizations

- One basic question regarding the X-ray transform I is to characterize its range.
- For example, what is the space $I\left(L^{2}(\Omega)\right)$ or $I\left(C_{c}^{\infty}(\Omega)\right)$?
- In the plane \mathbb{R}^{2} the range of I (the image of C_{c}^{∞}) is characterized by Helgason's moment conditions.
- On manifolds there is a Pestov-Uhlmann range characterization (2008).

Range characterizations

- One basic question regarding the X-ray transform I is to characterize its range.
- For example, what is the space $I\left(L^{2}(\Omega)\right)$ or $I\left(C_{c}^{\infty}(\Omega)\right)$?
- In the plane \mathbb{R}^{2} the range of I (the image of C_{c}^{∞}) is characterized by Helgason's moment conditions.
- On manifolds there is a Pestov-Uhlmann range characterization (2008).
- Our question is: Is a non-zero constant function $\Gamma_{\Omega} \rightarrow \mathbb{R}$ in the range of I ?

Range characterizations

- In X-ray tomography the integrals arise in exponents:

Range characterizations

- In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \rightarrow[0, \infty)$, the intensity is reduced by the factor

$$
\exp \left(-\int_{\gamma} f\right)
$$

as an X-ray goes along γ.

Range characterizations

- In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \rightarrow[0, \infty)$, the intensity is reduced by the factor

$$
\exp \left(-\int_{\gamma} f\right)
$$

as an X-ray goes along γ.

- In some applications (e.g. in quantum mechanical contexts), one ends up with quantities like

$$
\exp \left(-i \int_{\gamma} f\right)
$$

Range characterizations

- In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \rightarrow[0, \infty)$, the intensity is reduced by the factor

$$
\exp \left(-\int_{\gamma} f\right)
$$

as an X-ray goes along γ.

- In some applications (e.g. in quantum mechanical contexts), one ends up with quantities like

$$
\exp \left(-i \int_{\gamma} f\right)
$$

If $I f$ only takes values in $2 \pi \mathbb{Z}$, it looks as if $f \equiv 0$.

Range characterizations

- In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \rightarrow[0, \infty)$, the intensity is reduced by the factor

$$
\exp \left(-\int_{\gamma} f\right)
$$

as an X-ray goes along γ.

- In some applications (e.g. in quantum mechanical contexts), one ends up with quantities like

$$
\exp \left(-i \int_{\gamma} f\right)
$$

If $I f$ only takes values in $2 \pi \mathbb{Z}$, it looks as if $f \equiv 0$.

- Conclusion: Functions with piecewise constant X-ray transform can be transparent in some sense.

Are constants in the range?

Are constants in the range?

Question

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \rightarrow \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Are constants in the range?

Question

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \rightarrow \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Two observations:

Are constants in the range?

Question

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \rightarrow \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Two observations:

- Geodesics get short near the boundary, so f has to blow up at the boundary.

Are constants in the range?

Question

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \rightarrow \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Two observations:

- Geodesics get short near the boundary, so f has to blow up at the boundary.
- If $I f$ is constant, so is $I^{*} I f$.

Are constants in the range?

Theorem (Monard-Nickl-Paternain, to appear)

The normal operator is a bijection

$$
I^{*} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Are constants in the range?

Theorem (Monard-Nickl-Paternain, to appear)

The normal operator is a bijection

$$
I^{*} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Two conclusions:

Are constants in the range?

Theorem (Monard-Nickl-Paternain, to appear)

The normal operator is a bijection

$$
I^{*} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Two conclusions:

- If $=$ const. $\Longrightarrow I^{*} I f=$ const. $\Longrightarrow f \in d^{-1 / 2} C^{\infty}(M)$.

Are constants in the range?

Theorem (Monard-Nickl-Paternain, to appear)

The normal operator is a bijection

$$
I^{*} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Two conclusions:

- If $=$ const. $\Longrightarrow I^{*} I f=$ const. $\Longrightarrow f \in d^{-1 / 2} C^{\infty}(M)$.
- If there is f with $I f \equiv 1$, it is unique.

Outline

(1) The X-ray transform
(2) Examples

- Euclidean ball
- Radially symmetric Riemannian manifold
- Piecewise constant X-ray transform
(3) Characterization of Euclidean domains
(4) Improvements

Euclidean ball

Euclidean ball

- In the Euclidean unit ball the function

$$
f(x)=\frac{1}{\pi \sqrt{1-|x|^{2}}}
$$

integrates to one over every line in the ball.

Euclidean ball

- In the Euclidean unit ball the function

$$
f(x)=\frac{1}{\pi \sqrt{1-|x|^{2}}}
$$

integrates to one over every line in the ball.

- There are no other such functions in the ball.

Euclidean ball

- In the Euclidean unit ball the function

$$
f(x)=\frac{1}{\pi \sqrt{1-|x|^{2}}}
$$

integrates to one over every line in the ball.

- There are no other such functions in the ball.
- The function is exactly the same in every dimension, and radially symmetric.

Radially symmetric Riemannian manifold

Radially symmetric Riemannian manifold

- Any rotation invariant Riemannian metric on a ball can be written as

$$
g=c(r)^{-2} e,
$$

where e is the Euclidean metric. (de Hoop-I.-Katsnelson, 2017)

Radially symmetric Riemannian manifold

- Any rotation invariant Riemannian metric on a ball can be written as

$$
g=c(r)^{-2} e,
$$

where e is the Euclidean metric. (de Hoop-I.-Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently $\frac{\mathrm{d}}{\mathrm{d} r}(r / c)>0$.

Radially symmetric Riemannian manifold

- Any rotation invariant Riemannian metric on a ball can be written as

$$
g=c(r)^{-2} e,
$$

where e is the Euclidean metric. (de Hoop-I.-Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently $\frac{\mathrm{d}}{\mathrm{d} r}(r / c)>0$.
- This condition (the Herglotz condition) is weaker than simplicity.

Radially symmetric Riemannian manifold

- Any rotation invariant Riemannian metric on a ball can be written as

$$
g=c(r)^{-2} e,
$$

where e is the Euclidean metric. (de Hoop-I.-Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently $\frac{\mathrm{d}}{\mathrm{d} r}(r / c)>0$.
- This condition (the Herglotz condition) is weaker than simplicity.
- Assuming the Herglotz condition, there is a function a so that $f(x)=a(|x|)$ satisfies $I f \equiv 1$, and a can be computed from c explicitly.

Radially symmetric Riemannian manifold

- Any rotation invariant Riemannian metric on a ball can be written as

$$
g=c(r)^{-2} e,
$$

where e is the Euclidean metric. (de Hoop-I.-Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently $\frac{\mathrm{d}}{\mathrm{d} r}(r / c)>0$.
- This condition (the Herglotz condition) is weaker than simplicity.
- Assuming the Herglotz condition, there is a function a so that $f(x)=a(|x|)$ satisfies $I f \equiv 1$, and a can be computed from c explicitly.
- If the Herglotz condition fails, there is no such function.

Piecewise constant X-ray transform

Piecewise constant X-ray transform

- In any domain $\Omega \subset \mathbb{R}^{n}$ and any ball $B \subset \Omega$ we can use the aforementioned function in the ball and extend by zero to all Ω.

Piecewise constant X-ray transform

- In any domain $\Omega \subset \mathbb{R}^{n}$ and any ball $B \subset \Omega$ we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.

Piecewise constant X-ray transform

- In any domain $\Omega \subset \mathbb{R}^{n}$ and any ball $B \subset \Omega$ we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.
- Any sum of functions of this form has a piecewise constant X-ray transform and is "transparent" in the sense mentioned earlier.

Piecewise constant X-ray transform

- In any domain $\Omega \subset \mathbb{R}^{n}$ and any ball $B \subset \Omega$ we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.
- Any sum of functions of this form has a piecewise constant X-ray transform and is "transparent" in the sense mentioned earlier.
- This is possible in any domain, but the X-ray transform is not constant and the function itself has interior singularities.

Piecewise constant X-ray transform

- In any domain $\Omega \subset \mathbb{R}^{n}$ and any ball $B \subset \Omega$ we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.
- Any sum of functions of this form has a piecewise constant X-ray transform and is "transparent" in the sense mentioned earlier.
- This is possible in any domain, but the X-ray transform is not constant and the function itself has interior singularities.
- The same construction does not seem to be possible on all simple manifolds.

Outline

(1) The X-ray transform
(2) Examples
(3) Characterization of Euclidean domains

- A result
- A sketchy proof: two dimensions
- A sketchy proof: higher dimensions

4. Improvements

A result

A result

```
Theorem (I.-Paternain, 2018)
Let }\Omega\subset\mp@subsup{\mathbb{R}}{}{n},n\geq2\mathrm{ , be a strictly convex, smooth, and bounded domain. The following are equivalent:
```


A result

Theorem (I.-Paternain, 2018)

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a strictly convex, smooth, and bounded domain. The following are equivalent:

- There is a function $f \in L^{1}(\Omega)$ for which $I f: \Gamma_{\Omega} \rightarrow \mathbb{R}$ is a non-zero constant.

A result

Theorem (I.-Paternain, 2018)

Let $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$, be a strictly convex, smooth, and bounded domain. The following are equivalent:

- There is a function $f \in L^{1}(\Omega)$ for which $I f: \Gamma_{\Omega} \rightarrow \mathbb{R}$ is a non-zero constant.
(2) Ω is a ball.

A sketchy proof: two dimensions

A sketchy proof: two dimensions

- Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{2}$.

A sketchy proof: two dimensions

- Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{2}$.
- Divide Ω in parallel slices in any direction.

A sketchy proof: two dimensions

- Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{2}$.
- Divide Ω in parallel slices in any direction.
- Since f integrates to one over every line, Fubini's theorem gives that $\int_{\Omega} f$ is the width of Ω.

A sketchy proof: two dimensions

- Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{2}$.
- Divide Ω in parallel slices in any direction.
- Since f integrates to one over every line, Fubini's theorem gives that $\int_{\Omega} f$ is the width of Ω.
- Therefore Ω has the same width in all directions.

A sketchy proof: two dimensions

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) \mathrm{d} x$.

A sketchy proof: two dimensions

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) \mathrm{d} x$.
- The disc is not the only domain with constant width, so the proof is not over.

A sketchy proof: two dimensions

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) \mathrm{d} x$.
- The disc is not the only domain with constant width, so the proof is not over.
- One can study the first moments

$$
\int_{\Omega}\langle x, v\rangle f(x) \mathrm{d} x
$$

for all $v \in \mathbb{R}^{2}$ in a similar fashion.

A sketchy proof: two dimensions

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) \mathrm{d} x$.
- The disc is not the only domain with constant width, so the proof is not over.
- One can study the first moments

$$
\int_{\Omega}\langle x, v\rangle f(x) \mathrm{d} x
$$

for all $v \in \mathbb{R}^{2}$ in a similar fashion.

- Combining this new information with constant width shows that Ω must be a disc.

A sketchy proof: higher dimensions

A sketchy proof: higher dimensions

Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{n}, n \geq 3$.

A sketchy proof: higher dimensions

Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{n}, n \geq 3$.

Lemma

If there is such a function on a simple manifold M, then the boundary is umbilical: the second fundamental form is a conformal multiple of the metric.

A sketchy proof: higher dimensions

Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{n}, n \geq 3$.

Abstract

Lemma If there is such a function on a simple manifold M, then the boundary is umbilical: the second fundamental form is a conformal multiple of the metric.

This does not help in 2D, since all curves are umbilical.

A sketchy proof: higher dimensions

Suppose $f: \Omega \rightarrow \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^{n}, n \geq 3$.

Lemma

If there is such a function on a simple manifold M, then the boundary is umbilical: the second fundamental form is a conformal multiple of the metric.

This does not help in 2D, since all curves are umbilical.
The theorem for $n \geq 3$ follows from this lemma, as the only bounded domains with umbilical boundary are balls.

A sketchy proof: higher dimensions

- To prove the lemma, recall the boundary behavior of the function:

$$
f(x)=d(x, \partial M)^{-1 / 2} w(x)
$$

near ∂M, where $w \in C^{\infty}(\bar{M})$.

A sketchy proof: higher dimensions

- To prove the lemma, recall the boundary behavior of the function:

$$
f(x)=d(x, \partial M)^{-1 / 2} w(x)
$$

near ∂M, where $w \in C^{\infty}(\bar{M})$.

- Let $x \in \partial M$ and take any $v \in S_{x} M$ tangential to the boundary.

A sketchy proof: higher dimensions

- To prove the lemma, recall the boundary behavior of the function:

$$
f(x)=d(x, \partial M)^{-1 / 2} w(x)
$$

near ∂M, where $w \in C^{\infty}(\bar{M})$.

- Let $x \in \partial M$ and take any $v \in S_{x} M$ tangential to the boundary. The integral of f over a short geodesic near x in direction v is approximately

$$
\sqrt{2 / \mathbb{I}(v, v)} \pi w(x)
$$

where $\mathbb{I}(\cdot, \cdot)$ is the second fundamental form.

A sketchy proof: higher dimensions

- To prove the lemma, recall the boundary behavior of the function:

$$
f(x)=d(x, \partial M)^{-1 / 2} w(x)
$$

near ∂M, where $w \in C^{\infty}(\bar{M})$.

- Let $x \in \partial M$ and take any $v \in S_{x} M$ tangential to the boundary. The integral of f over a short geodesic near x in direction v is approximately

$$
\sqrt{2 / \mathbb{I}(v, v)} \pi w(x)
$$

where $\mathbb{I}(\cdot, \cdot)$ is the second fundamental form.

- We get

$$
\sqrt{2 / \mathbb{I}(v, v)} \pi w(x)=1
$$

for all v, so the second fundamental form is independent of direction. Thus the boundary is umbilical at x.

Outline

(1) The X-ray transform
(2) Examples
(3) Characterization of Euclidean domains
(4) Improvements

- Local result
- Radon transforms
- Simple manifolds

Local result

Local result

- In 2D the X-ray transform is critically determined, and all data should be necessary.

Local result

- In 2D the X-ray transform is critically determined, and all data should be necessary.
- In higher dimensions the X-ray transform is overdetermined, and much data can be thrown out.

Local result

- In 2D the X-ray transform is critically determined, and all data should be necessary.
- In higher dimensions the X-ray transform is overdetermined, and much data can be thrown out.

```
Theorem (I.-Paternain, 2018)
Let }\Omega\subset\mp@subsup{\mathbb{R}}{}{n},n\geq3\mathrm{ , be a strictly convex bounded domain and let }\varepsilon>0\mathrm{ . If there is a function \(f \in L^{1}(\Omega)\) for which If \((\gamma)=1\) for all lines \(\gamma\) of length \(<\varepsilon\), then \(\Omega\) is a ball.
```


Radon transforms

Radon transforms

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?

Radon transforms

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?
- The same can be asked about the d-plane Radon transform in \mathbb{R}^{n} for any $1 \leq d<n$.

Radon transforms

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?
- The same can be asked about the d-plane Radon transform in \mathbb{R}^{n} for any $1 \leq d<n$.
- These questions only make sense in Euclidean geometry.

Radon transforms

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?
- The same can be asked about the d-plane Radon transform in \mathbb{R}^{n} for any $1 \leq d<n$.
- These questions only make sense in Euclidean geometry.
- Ramya Dutta and Suman Kumar Sahoo verified that in all these cases the domain can only be a ball.

Simple manifolds

Simple manifolds

Question

Let M be a simple Riemannian manifold with $\operatorname{dim}(M) \geq 2$. If there exists a function $f \in L^{1}(M)$ that integrates to 1 over every geodesic, is it true that M is spherically symmetric?

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at
http://users.jyu.fi/~jojapeil

