

Functions of constant X-ray transform

Inverse Days

Joonas Ilmavirta

December 11, 2018

Based on joint work with Gabriel Paternain

JYU. Since 1863.

Outline

The X-ray transform

- The X-ray transform in a domain
- Range characterizations
- Are constants in the range?

Examples

- Characterization of Euclidean domains
- Improvements

The X-ray transform in a domain

• Let $\Omega \subset \mathbb{R}^n$ be a bounded convex domain (or a simple manifold) and Γ_{Ω} the set of straight lines in Ω .

- Let $\Omega \subset \mathbb{R}^n$ be a bounded convex domain (or a simple manifold) and Γ_{Ω} the set of straight lines in Ω .
- The X-ray transform I takes a function $f: \Omega \to \mathbb{R}$ to the function $If: \Gamma_{\Omega} \to \mathbb{R}$ defined by

$$If(\gamma) = \int_{\gamma} f$$

whenever this makes sense.

- Let $\Omega \subset \mathbb{R}^n$ be a bounded convex domain (or a simple manifold) and Γ_{Ω} the set of straight lines in Ω .
- The X-ray transform I takes a function $f: \Omega \to \mathbb{R}$ to the function $If: \Gamma_{\Omega} \to \mathbb{R}$ defined by

$$If(\gamma) = \int_{\gamma} f$$

whenever this makes sense.

• Everything is set up in the domain; no lines or points outside Ω are considered.

• One basic question regarding the X-ray transform *I* is to characterize its range.

- One basic question regarding the X-ray transform *I* is to characterize its range.
- For example, what is the space $I(L^2(\Omega))$ or $I(C_c^{\infty}(\Omega))$?

- One basic question regarding the X-ray transform *I* is to characterize its range.
- For example, what is the space $I(L^2(\Omega))$ or $I(C_c^{\infty}(\Omega))$?
- In the plane \mathbb{R}^2 the range of *I* (the image of C_c^{∞}) is characterized by Helgason's moment conditions.

- One basic question regarding the X-ray transform *I* is to characterize its range.
- For example, what is the space $I(L^2(\Omega))$ or $I(C_c^{\infty}(\Omega))$?
- In the plane \mathbb{R}^2 the range of *I* (the image of C_c^{∞}) is characterized by Helgason's moment conditions.
- On manifolds there is a Pestov–Uhlmann range characterization (2008).

- One basic question regarding the X-ray transform *I* is to characterize its range.
- For example, what is the space $I(L^2(\Omega))$ or $I(C_c^{\infty}(\Omega))$?
- In the plane \mathbb{R}^2 the range of *I* (the image of C_c^{∞}) is characterized by Helgason's moment conditions.
- On manifolds there is a Pestov–Uhlmann range characterization (2008).
- Our question is: Is a non-zero constant function Γ_Ω → ℝ in the range of *I*?

In X-ray tomography the integrals arise in exponents:

• In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \to [0, \infty)$, the intensity is reduced by the factor

$$\exp\left(-\int_{\gamma}f\right)$$

as an X-ray goes along γ .

• In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \to [0, \infty)$, the intensity is reduced by the factor

$$\exp\left(-\int_{\gamma}f\right)$$

as an X-ray goes along γ .

 In some applications (e.g. in quantum mechanical contexts), one ends up with quantities like

$$\exp\left(-i\int_{\gamma}f
ight).$$

• In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \to [0, \infty)$, the intensity is reduced by the factor

$$\exp\left(-\int_{\gamma}f\right)$$

as an X-ray goes along γ .

 In some applications (e.g. in quantum mechanical contexts), one ends up with quantities like

$$\exp\left(-i\int_{\gamma}f\right).$$

If If only takes values in $2\pi\mathbb{Z}$, it looks as if $f \equiv 0$.

• In X-ray tomography the integrals arise in exponents: If the attenuation coefficient is $f: \Omega \to [0, \infty)$, the intensity is reduced by the factor

$$\exp\left(-\int_{\gamma}f\right)$$

as an X-ray goes along γ .

 In some applications (e.g. in quantum mechanical contexts), one ends up with quantities like

$$\exp\left(-i\int_{\gamma}f\right).$$

If If only takes values in $2\pi\mathbb{Z}$, it looks as if $f \equiv 0$.

• Conclusion: Functions with piecewise constant X-ray transform can be transparent in some sense.

Are constants in the range?

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \to \mathbb{R}$ so that f integrates to one over every maximal geodesic?

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \to \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Two observations:

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \to \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Two observations:

• Geodesics get short near the boundary, so *f* has to blow up at the boundary.

If M is a simple Riemannian manifold (or the closure of a strictly convex smooth Euclidean domain), is there a function $f: M \to \mathbb{R}$ so that f integrates to one over every maximal geodesic?

Two observations:

- Geodesics get short near the boundary, so *f* has to blow up at the boundary.
- If If is constant, so is I^*If .

The normal operator is a bijection

 $I^*I\colon d^{-1/2}C^\infty(M)\to C^\infty(M)$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

 $7/\infty$

The normal operator is a bijection

 $I^*I\colon d^{-1/2}C^{\infty}(M)\to C^{\infty}(M)$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Two conclusions:

The normal operator is a bijection

 $I^*I\colon d^{-1/2}C^{\infty}(M)\to C^{\infty}(M)$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Two conclusions:

• $If = \text{const.} \implies I^*If = \text{const.} \implies f \in d^{-1/2}C^{\infty}(M).$

 $7/\infty$

The normal operator is a bijection

 $I^*I\colon d^{-1/2}C^\infty(M)\to C^\infty(M)$

for a simple Riemannian manifold M, where d is a non-vanishing smooth function which coincides with distance to the boundary near the boundary.

Two conclusions:

• $If = \text{const.} \implies I^*If = \text{const.} \implies f \in d^{-1/2}C^{\infty}(M).$

• If there is f with $If \equiv 1$, it is unique.

 $7/\infty$

Outline

The X-ray transform

Examples

- Euclidean ball
- Radially symmetric Riemannian manifold
- Piecewise constant X-ray transform
- Characterization of Euclidean domains

Improvements

• In the Euclidean unit ball the function

$$f(x) = \frac{1}{\pi\sqrt{1 - |x|^2}}$$

integrates to one over every line in the ball.

• In the Euclidean unit ball the function

$$f(x) = \frac{1}{\pi\sqrt{1 - |x|^2}}$$

integrates to one over every line in the ball.

J

• There are no other such functions in the ball.

• In the Euclidean unit ball the function

$$f(x) = \frac{1}{\pi\sqrt{1 - |x|^2}}$$

integrates to one over every line in the ball.

- There are no other such functions in the ball.
- The function is exactly the same in every dimension, and radially symmetric.

Any rotation invariant Riemannian metric on a ball can be written as

$$g = c(r)^{-2}e,$$

where e is the Euclidean metric. (de Hoop–I.–Katsnelson, 2017)

Any rotation invariant Riemannian metric on a ball can be written as

$$g = c(r)^{-2}e,$$

where e is the Euclidean metric. (de Hoop–I.–Katsnelson, 2017)

 The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently d/dr (r/c) > 0.

Any rotation invariant Riemannian metric on a ball can be written as

$$g = c(r)^{-2}e,$$

where e is the Euclidean metric. (de Hoop–I.–Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently d/dr (r/c) > 0.
- This condition (the Herglotz condition) is weaker than simplicity.

Any rotation invariant Riemannian metric on a ball can be written as

$$g = c(r)^{-2}e,$$

where e is the Euclidean metric. (de Hoop–I.–Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently d/dr (r/c) > 0.
- This condition (the Herglotz condition) is weaker than simplicity.
- Assuming the Herglotz condition, there is a function a so that f(x) = a(|x|) satisfies $If \equiv 1$, and a can be computed from c explicitly.
Radially symmetric Riemannian manifold

Any rotation invariant Riemannian metric on a ball can be written as

$$g = c(r)^{-2}e,$$

where e is the Euclidean metric. (de Hoop–I.–Katsnelson, 2017)

- The X-ray transform behaves best if all maximal geodesics reach the boundary. This means that the manifold is non-trapping, or equivalently d/dr (r/c) > 0.
- This condition (the Herglotz condition) is weaker than simplicity.
- Assuming the Herglotz condition, there is a function a so that f(x) = a(|x|) satisfies $If \equiv 1$, and a can be computed from c explicitly.
- If the Herglotz condition fails, there is no such function.

Piecewise constant X-ray transform

Piecewise constant X-ray transform

 In any domain Ω ⊂ ℝⁿ and any ball B ⊂ Ω we can use the aforementioned function in the ball and extend by zero to all Ω. In any domain Ω ⊂ ℝⁿ and any ball B ⊂ Ω we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.

- In any domain Ω ⊂ ℝⁿ and any ball B ⊂ Ω we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.
- Any sum of functions of this form has a piecewise constant X-ray transform and is "transparent" in the sense mentioned earlier.

- In any domain Ω ⊂ ℝⁿ and any ball B ⊂ Ω we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.
- Any sum of functions of this form has a piecewise constant X-ray transform and is "transparent" in the sense mentioned earlier.
- This is possible in any domain, but the X-ray transform is not constant and the function itself has interior singularities.

- In any domain Ω ⊂ ℝⁿ and any ball B ⊂ Ω we can use the aforementioned function in the ball and extend by zero to all Ω. This gives a function with piecewise constant X-ray transform: the integral is one if a line meets B, zero otherwise.
- Any sum of functions of this form has a piecewise constant X-ray transform and is "transparent" in the sense mentioned earlier.
- This is possible in any domain, but the X-ray transform is not constant and the function itself has interior singularities.
- The same construction does not seem to be possible on all simple manifolds.

Outline

The X-ray transform

Examples

- A result
- A sketchy proof: two dimensions
- A sketchy proof: higher dimensions

Improvements

 $12/\infty$

A result

Theorem (I.–Paternain, 2018)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a strictly convex, smooth, and bounded domain. The following are equivalent:

Theorem (I.-Paternain, 2018)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a strictly convex, smooth, and bounded domain. The following are equivalent:

• There is a function $f \in L^1(\Omega)$ for which $If \colon \Gamma_\Omega \to \mathbb{R}$ is a non-zero constant.

Theorem (I.-Paternain, 2018)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a strictly convex, smooth, and bounded domain. The following are equivalent:

- There is a function $f \in L^1(\Omega)$ for which $If \colon \Gamma_\Omega \to \mathbb{R}$ is a non-zero constant.
- $\bigcirc \Omega$ is a ball.

A sketchy proof: two dimensions

• Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^2$.

- Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^2$.
- Divide Ω in parallel slices in any direction.

- Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^2$.
- Divide Ω in parallel slices in any direction.
- Since *f* integrates to one over every line, Fubini's theorem gives that $\int_{\Omega} f$ is the width of Ω .

- Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^2$.
- Divide Ω in parallel slices in any direction.
- Since *f* integrates to one over every line, Fubini's theorem gives that $\int_{\Omega} f$ is the width of Ω .
- Therefore Ω has the same width in all directions.

• We found that Ω has constant width by using the integral $\int_{\Omega} f(x) dx$.

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) dx$.
- The disc is not the only domain with constant width, so the proof is not over.

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) dx$.
- The disc is not the only domain with constant width, so the proof is not over.
- One can study the first moments

$$\int_{\Omega} \left\langle x, v \right\rangle f(x) \mathrm{d}x$$

 $15/\infty$

for all $v \in \mathbb{R}^2$ in a similar fashion.

- We found that Ω has constant width by using the integral $\int_{\Omega} f(x) dx$.
- The disc is not the only domain with constant width, so the proof is not over.
- One can study the first moments

$$\int_{\Omega} \langle x, v \rangle f(x) \mathrm{d}x$$

for all $v \in \mathbb{R}^2$ in a similar fashion.

• Combining this new information with constant width shows that Ω must be a disc.

Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^n$, $n \ge 3$.

Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^n$, $n \ge 3$.

Lemma

If there is such a function on a simple manifold M, then the boundary is umbilical: the second fundamental form is a conformal multiple of the metric.

Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^n$, $n \ge 3$.

Lemma

If there is such a function on a simple manifold M, then the boundary is umbilical: the second fundamental form is a conformal multiple of the metric.

This does not help in 2D, since all curves are umbilical.

Suppose $f: \Omega \to \mathbb{R}$ integrates to one over every line in $\Omega \subset \mathbb{R}^n$, $n \ge 3$.

Lemma

If there is such a function on a simple manifold M, then the boundary is umbilical: the second fundamental form is a conformal multiple of the metric.

This does not help in 2D, since all curves are umbilical.

The theorem for $n \ge 3$ follows from this lemma, as the only bounded domains with umbilical boundary are balls.

• To prove the lemma, recall the boundary behavior of the function:

$$f(x) = d(x, \partial M)^{-1/2} w(x)$$

near ∂M , where $w \in C^{\infty}(\overline{M})$.

• To prove the lemma, recall the boundary behavior of the function:

$$f(x) = d(x, \partial M)^{-1/2} w(x)$$

near ∂M , where $w \in C^{\infty}(\overline{M})$.

• Let $x \in \partial M$ and take any $v \in S_x M$ tangential to the boundary.

• To prove the lemma, recall the boundary behavior of the function:

$$f(x) = d(x, \partial M)^{-1/2} w(x)$$

near ∂M , where $w \in C^{\infty}(\overline{M})$.

 Let x ∈ ∂M and take any v ∈ S_xM tangential to the boundary. The integral of f over a short geodesic near x in direction v is approximately

 $\sqrt{2/\mathbb{I}(v,v)}\pi w(x),$

where $I\!I(\cdot, \cdot)$ is the second fundamental form.

• To prove the lemma, recall the boundary behavior of the function:

$$f(x) = d(x, \partial M)^{-1/2} w(x)$$

near ∂M , where $w \in C^{\infty}(\overline{M})$.

• Let $x \in \partial M$ and take any $v \in S_x M$ tangential to the boundary. The integral of f over a short geodesic near x in direction v is approximately

 $\sqrt{2/\mathbb{I}(v,v)}\pi w(x),$

where $I\!I(\cdot, \cdot)$ is the second fundamental form.

We get

$$\sqrt{2/\mathbb{I}(v,v)}\pi w(x) = 1$$

for all v, so the second fundamental form is independent of direction. Thus the boundary is umbilical at x.

Outline

The X-ray transform

- 2 Examples
 - Characterization of Euclidean domains

Improvements

- Local result
- Radon transforms
- Simple manifolds

Local result

• In 2D the X-ray transform is critically determined, and all data should be necessary.

- In 2D the X-ray transform is critically determined, and all data should be necessary.
- In higher dimensions the X-ray transform is overdetermined, and much data can be thrown out.

- In 2D the X-ray transform is critically determined, and all data should be necessary.
- In higher dimensions the X-ray transform is overdetermined, and much data can be thrown out.

Theorem (I.–Paternain, 2018)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a strictly convex bounded domain and let $\varepsilon > 0$. If there is a function $f \in L^1(\Omega)$ for which $If(\gamma) = 1$ for all lines γ of length $< \varepsilon$, then Ω is a ball.

Radon transforms

Joonas Ilmavirta (University of Jyväskylä) Functions of constant X-ray transform
• One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?
- The same can be asked about the *d*-plane Radon transform in ℝⁿ for any 1 ≤ *d* < *n*.

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?
- The same can be asked about the *d*-plane Radon transform in ℝⁿ for any 1 ≤ *d* < *n*.
- These questions only make sense in Euclidean geometry.

- One can ask the same question for Radon transforms: If a function has constant Radon transform in a domain, is the domain a ball?
- The same can be asked about the *d*-plane Radon transform in ℝⁿ for any 1 ≤ *d* < *n*.
- These questions only make sense in Euclidean geometry.
- Ramya Dutta and Suman Kumar Sahoo verified that in all these cases the domain can only be a ball.

Simple manifolds

Question

Let M be a simple Riemannian manifold with $\dim(M) \ge 2$. If there exists a function $f \in L^1(M)$ that integrates to 1 over every geodesic, is it true that M is spherically symmetric?

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at http://users.jyu.fi/~jojapeil