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Goals

Understanding how and why to model elastic waves in terms of
Finsler geometry.

Seeing how geometrical tools can be used to solve Dix’s problem in
great generality.
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1 Elastic geometry

2 Dix’s inverse problem
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Elastic waves

In linear elasticity the displacement vector u(x, t) satisfies the elastic wave
equation

∂j [cijkl(x)∂kul(x, t)]− ρ(x)∂2t ui(x, t) = 0,

where cijkl(x) is the stiffness tensor.

This is a good model for low amplitude body waves in the Earth.

Instead of looking at all of a solution u(x, t), we look at singularities
(non-smooth component) of the solutions. This corresponds roughly to the
high frequency limit.

The singularities can be described in geometrical terms as point particles
or wave fronts.
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Propagation of singularities

We can think of singularities as point particles with a polarization vector
attached to them. (Microlocal analysis makes this idea precise.)

The slowness vector p (inverse phase velocity), position x, and
polarization A of the singularity have to satisfy

[Γ(x, p)− I]A = 0,

where Γij(x, p) = ρ−1cikljpkpl is the Christoffel matrix.

The possible values of p are on the slowness surface defined by the
equation

det[Γ(x, p)− I] = 0.
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Propagation of singularities

The slowness surface describes what the singularities can look like, but
not how they move.

Microlocal analysis (or physical reasoning) tells how singularities
propagate: They follow a Hamiltonian flow related to the slowness surface.

If the slowness surface is smooth and strictly convex (qP!), then this
coincides with the geodesic flow of a Finsler manifold, where the Finsler
metric is the Legendre transform of the slowness surface.
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Propagation of singularities

Traditional view: Elastic waves move in the Euclidean space and bend due
to sound speed variations.

Our view: Elastic waves move straight in a curved space whose geometry
is determined by the sound speed. (Interaction is encoded in geometry.)

Distance is the basis of any geometry. In this elastic geometry distance is
measured in travel time.

If the slowness surfaces are ellipsoids, we have a Riemannian manifold.
But we do not assume any kind of isotropy!
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From elasticity to Finsler geometry

Elasticity is described in terms of a stiffness tensor.

The stiffness tensor determines a Christoffel matrix, which in turn
determines the slowness surface.

The slowness surface corresponds to a co-Finsler metric.

Taking the Legendre transform gives a Finsler metric which
corresponds to group velocities.

The singularities of elastic waves (= elastic waves as point particles)
follow geodesics of this Finsler geometry.
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Inverse problems

Problem (Physical inverse problem)
Given some boundary measurements, find the elastic parameters.

Problem (Mathematical inverse problem)
Given some boundary measurements, find the elastic geometry.

Instead of focusing on the reduced stiffness tensor aijkl = ρ−1cijkl, we try
to find the slowness surface at every point. Getting from the slowness
surface back to the stiffness tensor is not trivial.

Gains:
1 Freedom to have any shape of slowness surfaces, not necessarily

arising from Hookean elasticity.
2 Access to powerful tools of differential geometry.
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Changes of coordinates

No matter what boundary measurements you do, the geometric inverse
problem above is never uniquely solvable!

Consider some domain Ω ⊂ R3 (e.g. the Earth) and a Finsler metric F on
it. (It is a function TΩ→ R.)

Take any diffeomorphism (change of coordinates) φ : Ω̄→ Ω̄ so that
φ(x) = x for all x ∈ ∂Ω. This can be any smooth distortion of the planet.

One can define (and write) a new Finsler metric φ∗F , the pullback of F
over φ. All geodesics and everything behaves exactly the same — F and
φ∗F look exactly alike from the surface.
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Changes of coordinates

The freedom to change coordinates is helpful in geometry but problematic
in geophysics: It seems that even if one can find the elastic structure, one
cannot tell whether the coordinates are Euclidean.

The best one can hope for is uniqueness of F up to changes of
coordinates.

This is known to happen in anisotropic electrical impedance tomography
and anisotropic electromagnetism: the geometrical gauge freedom of
diffeomorphisms is inevitable.

But we do not know whether this freedom is there in elasticity. There are
reasons to believe that elasticity would be more sensitive to Euclidean
geometry than electromagnetism, but we have no proof — yet.

Not all Finsler metrics arise from a stiffness tensor. When does φ∗F do?
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1 Elastic geometry

2 Dix’s inverse problem
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The inverse problem for a geometer

Problem (Dix’s geophysical inverse problem)
If you measure the wave fronts coming from interior (real or virtual) point
sources, can you find the properties of the medium?

Problem (Dix’s geometrical inverse problem)
If you measure the wave fronts of the geodesic flow coming from points in
a Finsler manifold, can you find the manifold and its Finsler metric?

There is an unknown Finsler manifold (M,F ) and measurements are
conducted in an open set U ⊂M . The set U can be tiny.

The Riemannian version was solved by de Hoop, Holman, Iversen,
Lassas, and Ursin (2015). Moving to Finsler geometry means that we can
deal with arbitrary (non-elliptic) anisotropy.

We make no assumptions on symmetry, isotropy, or homogeneity.
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The inverse problem for a geometer

Theorem (de Hoop–I.–Lassas)
Let (M,F ) be any Finsler manifold and U ⊂M an open set. Suppose F
is fiberwise analytic. If we know the smooth metric “spheres” (wave fronts
from point sources) together with radii (travel times) in the set U , we can
find the universal cover of (M,F ).

The geometry (= slowness surfaces at all points) is determined uniquely,
but global topology is not. This is not an issue for the Earth.

All Finsler metrics arising from elasticity are fiberwise analytic. This is a
good example of useful additional structure that comes from good
modelling — the model is general enough to handle all anisotropy but
narrow enough to exclude nonphysical oddities.
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Ideas and methods

Given two triples (x, v, t) in U , the data tells whether they hit the
same point.

One does not know anything outside U , so coordinates have to be
built using elements in U . Surface normal coordinates are natural.

Jacobi fields describe local curvature along a geodesic. The data
allows us to find all the Jacobi fields along any geodesic through the
set U by solving a non-linear ODE system.

We can find the geometry along any geodesic, and this information
must be turned into a global geometrical description. This requires
using analyticity and building an atlas (a collection of coordinate
charts).
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