
Spectral rigidity of the round Earth
Applied Inverse Problems

Joonas Ilmavirta (University of Jyväskylä)
with Maarten de Hoop and Vitaly Katsnelson (Rice University)

Slides and papers will appear at http://users.jyu.fi/~jojapeil

2 June 2017

Joonas Ilmavirta (Jyväskylä) Spectral rigidity of the round Earth 2 June 2017 1 / ∞



Prelude

Can you hear what is inside the Earth?
What can one tell about the Earth just by the spectrum of its free
oscillations?
This is an inverse spectral problem. A hard one.
There is a weaker version of the spectral problem: the spectral rigidity
problem.
Can we solve the simpler problem if we assume the Earth to be
spherically symmetric?
Yes!
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The spectrum of free oscillations

Like any elastic object, the Earth can vibrate. These vibrations are
known as free oscillations.
The oscillations are excited (started) by large earthquakes. Oscillations
are visible once the more violent and transient first stages pass.
The amplitudes of different modes vary between different events, but
the frequencies are always the same.
The set of these frequencies is the spectrum of free oscillations.
About 10 000 first frequencies are known.
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The spectrum of free oscillations

Spectrum of free oscillations from an earthquake.
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The spectrum of periodic orbits

One can think of seismic waves in terms of ray theory: Individual
points in a seismic wave (front) travel along a certain path.
Some of the wave paths are periodic. Every periodic wave path has a
length (in time).
The set of all lengths of periodic seismic wave paths is the “length
spectrum” of the Earth.
Originally the length spectrum was just a mathematical tool, but it
turns out it can be measured directly using deep earthquakes.
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The spectrum of periodic orbits

Seismic wave paths and the P-wave shadow zone. (Wikimedia Commons)

Joonas Ilmavirta (Jyväskylä) Spectral rigidity of the round Earth 2 June 2017 6 / ∞

.



The goal

Problem
Given the spectrum of free oscillations or the length spectrum of the Earth,
reconstruct the Earth.

This problem only makes sense within a given model.

We want to reconstruct the Earth in the natural Cartesian coordinates.
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Manifolds with boundary

We model the Earth as a Riemannian manifold with boundary.
In practice, the Earth is the closed unit ball M = B̄(0, 1) ⊂ R3. The
anisotropic sound speed is modeled with a Riemannian metric g on M .
Physically, this corresponds to omitting S-waves and including only
elliptic anisotropy.
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The spectrum of the Laplacian

The modes of free oscillations correspond to Neumann eigenfunctions
of the Laplace–Beltrami operator of (M, g).
If the sound speed is isotropic, then g = c−2e and the
Laplace–Beltrami operator in dimension n is

∆gu(x) = c(x)n div(c(x)2−n∇u(x)).

The spectrum of free oscillations is the Neumann spectrum of the
Laplace–Beltrami operator ∆g.
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The length spectrum

A seismic wave path corresponds to a geodesic.
Seismic waves reflect at the surface, so they are in fact billiard
trajectories or broken rays.
The length spectrum of (M, g) is the set of all lengths of the periodic
broken rays.
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Difficulties

The obvious first conjecture is that the spectrum determines the
Riemannian manifold (with boundary) uniquely.
Proving this conjecture is difficult for two reasons:

1 The required tools do not yet exist on general manifolds with boundary.
2 The conjecture is false.
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Diffeomorphisms and coordinates

The main obstacle to uniqueness is that there are no preferred
coordinates.
If φ : M →M is a diffeomorphism, then (M, g) and (M,φ∗g) give the
same spectrum.
We can take any change of coordinates whatsoever and use it to
distort the metric, but the spectrum stays the same.
Physically: There are preferred and natural Cartesian coordinates. But
the anisotropic model is not “sensitive to the underlying Euclidean
geometry”, so the Cartesian coordinates cannot be recognized. It is
impossible to find the metric (anisotropic sound speed) in Cartesian
coordinates from spectral data.
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Global uniqueness

Problem
Let g1 and g2 be two Riemannian metrics on a manifold M with boundary.
If they give the same spectrum, is there a diffeomorphism φ : M →M so
that g1 = φ∗g2?

This is too hard.
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Local uniqueness

Problem
Let g1 and g2 be two Riemannian metrics on a manifold M with boundary.
Suppose g1 is very close to g2. If they give the same spectrum, is there a
diffeomorphism φ : M →M so that g1 = φ∗g2?

This is still too hard.
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Spectral rigidity

Problem
Let gs be family of Riemannian metrics on a manifold M with boundary,
depending on a parameter s ∈ (−ε, ε). If they all give the same spectrum,
are there a diffeomorphisms φs : M →M so that g0 = φ∗sgs?

In other words, are isospectral deformations necessarily trivial?

This is within reach!
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Spectral rigidity

Spectral rigidity has been previously proven on closed manifolds
(compact, no boundary):

Negatively curved surfaces: Guillemin–Kazhdan 1980.
Negatively curved manifolds: Croke–Sharafutdinov 1998.
Anosov surfaces: Paternain–Salo–Uhlmann 2014.
Some more general manifolds: Paternain–Salo–Uhlmann 2015.

We have adapted similar ideas of proof to manifolds with boundary.
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Spherically symmetric manifolds

Let M = B̄(0, 1) ⊂ Rn be the closed unit ball and c(x) = c(|x|) a
C1,1 sound speed.
The Riemannian metric on M is g = c−2(x)e. This makes (M, g) into
a radially conformally Euclidean manifold.
If g is a rotation invariant Riemannian metric on M , there is a radial
(more complicated if n = 2) diffeomorphism φ : M →M so that φ∗g
is radially conformally Euclidean.
The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.
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a radially conformally Euclidean manifold.
If g is a rotation invariant Riemannian metric on M , there is a radial
(more complicated if n = 2) diffeomorphism φ : M →M so that φ∗g
is radially conformally Euclidean.
The Earth is spherically symmetric to a good approximation, but the
best (elliptically anisotropic) radial model might not be conformally
Euclidean. After a radial change of coordinates the metric becomes
conformal — and Cartesian coordinates are lost.
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The Herglotz condition

Definition
A radial sound speed c(r) satisfies the Herglotz condition if

d

dr

(
r

c(r)

)
> 0

for all r ∈ (0, 1].

Equivalent formulations:
All spheres {r = constant} are strictly convex. (Foliation condition!)
The manifold is non-trapping and has strictly convex boundary.
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The Herglotz condition

The radial Preliminary Reference Earth Model (PREM) is not C1,1.
Both pressure and shear waves have jump discontinuities.

In addition, the shear wave speed vanishes in the liquid outer core.
Apart from these problems (jumps and liquid) both shear and pressure
wave speeds do satisfy the Herglotz condition everywhere.
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The Herglotz condition

Some P-waves are trapped in the outer core. (Wikimedia Commons)
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Spectral rigidity

Theorem (de Hoop–I.–Katsnelson)

Let M be the closed unit ball in R3. Let cs(r) be a family of radial sound
speeds depending C∞-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1]. Assume
each cs satisfies the Herglotz condition and a generic geometrical condition.

If each cs gives rise to the same spectrum (of the corresponding
Laplace–Beltrami operator), then cs = c0 for all s.

This simple model of the round Earth is spectrally rigid!
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Spectral rigidity

Corollary (de Hoop–I.–Katsnelson)

Let M be the closed unit ball in R3. Let gs be a family of rotation
invariant metrics depending C∞-smoothly on s ∈ (−ε, ε). Suppose each gs
is non-trapping with strictly convex boundary and assume a generic
geometrical condition.

If the spectra of the Laplace–Beltrami operators ∆gs are all equal, then
there is a family of radial diffeomorphisms φs : M →M so that φ∗sgs = g0
for all s. That is, the manifolds (M, gs) are isometric.
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Length spectral rigidity

Theorem (de Hoop–I.–Katsnelson)

Let M be the closed unit ball in Rn, n ≥ 2. Let cs(r) be a family of radial
sound speeds depending C1,1-smoothly on both s ∈ (−ε, ε) and r ∈ [0, 1].
Assume each cs satisfies the Herglotz condition and a generic geometrical
condition.

If each cs gives rise to the same length spectrum, then cs = c0 for all s.

This simple model of the round Earth is length spectrally rigid!
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Length spectral rigidity

Corollary (de Hoop–I.–Katsnelson)

Let M be the closed unit ball in Rn, n ≥ 2. Let gs be a family of rotation
invariant metrics depending C1,1-smoothly on s ∈ (−ε, ε). Suppose each
gs is non-trapping with strictly convex boundary and satisfy a generic
geometrical condition.

If the length spectra of the manifolds (M, gs) are all equal, then there is a
family of radial (or more general if n = 2) diffeomorphisms φs : M →M so
that φ∗sgs = g0 for all s. That is, the manifolds (M, gs) are isometric.
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Ideas behind the proof

Lemma (Trace formula)
Let λ0 < λ1 ≤ λ2 ≤ . . . be the positive eigenvalues of the
Laplace–Beltrami operator. Define a function f : R→ R by

f(t) =

∞∑
k=0

cos
(√

λk · t
)
.

Assume that the radial sound speed c satisfies some generic condition.

The function f(t) is singular precisely at the length spectrum.

In particular, the spectrum determines the length spectrum.
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Ideas behind the proof

Similar “trace formulas” and related results are known on closed manifolds
(eg. Duistermaat–Guillemin 1975) and a weaker version on some manifolds
with boundary (eg. Guillemin–Melrose 1979).

Corollary
Spectral rigidity follows from length spectral rigidity.
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Ideas behind the proof

Lemma
Let γs be a periodic broken ray (w.r.t. cs) depending smoothly enough on
s. Then

d

ds
`(γs) =

1

2

∫
γs

d

ds
c−2s .

In particular, if the length spectrum does not depend on s, then d
dsc
−2
s

integrates to zero over (almost) all periodic broken rays.
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Ideas behind the proof

Lemma (Periodic broken ray transform)
Assume the Herglotz condition. A radially symmetric function is uniquely
determined by its integrals over (almost) all periodic broken rays.

Therefore d
dsc
−2
s vanishes, and so cs is independent of s.

This concludes the proof.

Remark: No proof works without spherical symmetry.
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Elliptic and general elastic anisotropy

A material is anisotropic if sound speed depends on direction. There
are different types of direction dependence:

General elliptic anisotropy corresponds to a Riemannian manifold (a
manifold with a Riemann metric).
General anisotropy corresponds to a Finsler manifold (a manifold with a
Finsler metric).
Riemannian manifolds are a very special subclass of Finsler manifolds.

A material is isotropic if sound speed is independent of direction. This
can be modeled by a conformally Euclidean metric.
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Pressure and shear waves

There are pressure and shear waves in an elastic medium, and they
have different sound speeds.
To model elastic waves in general anisotropy, one needs a manifold
with two Finsler metrics, one for pressure and one for shear waves.
In fact, the shear wave speed might not even by a Finsler metric in the
traditional sense.
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Anisotropy and coordinates

Let φ : M →M be a diffeomorphism of a manifold that keeps the
boundary fixed.
If g (or F ) is a Riemannian (or Finsler) metric on M , then the
pullback φ∗g (or φ∗F ) is different Riemannian metric that behaves
exactly the same for boundary measurements.
A fully anisotropic model can never be reconstructed from boundary
measurements uniquely. The data is always invariant under changes of
coordinates.
The best one can hope for is reconstruction up to changes of
coordinates.
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The best one can hope for is reconstruction up to changes of
coordinates.
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Our model

No S-waves. — Only one metric.
Isotropic P-wave speed. — Conformally Euclidean metric.
Spherical symmetry.
Reconstruction possible in the natural Cartesian coordinates. — No
gauge freedom.
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X-ray transforms

Theorem (de Hoop–I.)
Let M be a rotation symmetric non-trapping manifold with a piecewise
C1,1 metric and strictly convex boundary. Then the geodesic X-ray
transform is injective on L2(M).

Earlier similar results:
The X-ray transform (Radon et al.): Euclidean metric (c is constant).
Mukhometov, 1977: Smooth simple metrics (simplicity is stronger
than Herglotz).
Sharafutdinov, 1997: C∞ metrics and C∞ functions.
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Periodic broken ray transforms

Theorem (de Hoop–I.)

Let M be a rotation symmetric non-trapping manifold with a C1,1 metric
and strictly convex boundary and dimension at least three. Assume that
there are not too many conjugate points at the boundary. The integrals of
a function f ∈ Lp(M), p > 3, over all periodic broken rays determines the
even part of the function.

Very little can be recovered of the odd part.

Tools used:
Planar average ray transform.
Abel transform.
Funk transform.
Fourier series.
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End

Slides and papers will appear at http://users.jyu.fi/~jojapeil.

Thank you.
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