

Spectral and travel time tomography on Mars with InSight

Applied Inverse Problems minisymposium

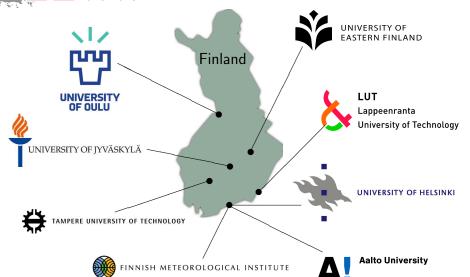
How to see inside the Earth? Theory and applications of seismic inverse problems

Joonas Ilmavirta

July 12, 2019

Based on joint work with

Maarten de Hoop and Vitaly Katsnelson



Conference announcement

The annual Finnish inverse problems conference "Inverse Days" will be organized in Jyväskylä 16–18 December, 2019.

```
http://r.jyu.fi/yVK
(https://www.jyu.fi/science/en/maths/research/inverse-problems/id2019/)
```

Registration opens this week!

• We want a reliable reconstruction of Mars, backed up by a theory.

- We want a reliable reconstruction of Mars, backed up by a theory.
- Assume perfect measurements from a single ideal seismometer.
 What can you say for sure and is there an inversion algorithm?

- We want a reliable reconstruction of Mars, backed up by a theory.
- Assume perfect measurements from a single ideal seismometer.
 What can you say for sure and is there an inversion algorithm?
- Identifying useful data sets can help future mission planning.

- We want a reliable reconstruction of Mars, backed up by a theory.
- Assume perfect measurements from a single ideal seismometer.
 What can you say for sure and is there an inversion algorithm?
- Identifying useful data sets can help future mission planning.
- Grand goal: A mathematical theory of seismic planetary exploration.

Outline

- Seeing the radial Martian mantle with InSight
- Seeing an entire planet

 The InSight lander has deployed its seismic instrument SEIS on Mars in late 2018. We want to figure out the structure of the planet from the data.

- The InSight lander has deployed its seismic instrument SEIS on Mars in late 2018. We want to figure out the structure of the planet from the data.
- There are methods to find a model to match data. How do we know that the obtained reconstruction is the only possible one? And is there a way to reconstruct directly?

- The InSight lander has deployed its seismic instrument SEIS on Mars in late 2018. We want to figure out the structure of the planet from the data.
- There are methods to find a model to match data. How do we know that the obtained reconstruction is the only possible one? And is there a way to reconstruct directly?
- Mars is roughly spherically symmetric. There are reliable ways to reconstruct a radial model of the (upper) mantle from a single station. (The mantle determines the CMB.)

- The InSight lander has deployed its seismic instrument SEIS on Mars in late 2018. We want to figure out the structure of the planet from the data.
- There are methods to find a model to match data. How do we know that the obtained reconstruction is the only possible one? And is there a way to reconstruct directly?
- Mars is roughly spherically symmetric. There are reliable ways to reconstruct a radial model of the (upper) mantle from a single station. (The mantle determines the CMB.)
- I will ignore noise, model errors, finiteness, stability, and many other practical things.

 All kinds of noise and events generate seismic waves which travel around the planet and reflect at the surface and interfaces.

- All kinds of noise and events generate seismic waves which travel around the planet and reflect at the surface and interfaces.
- Some of these waves are periodic. Calculating temporal correlations of noise tells which periods are present.

- All kinds of noise and events generate seismic waves which travel around the planet and reflect at the surface and interfaces.
- Some of these waves are periodic. Calculating temporal correlations of noise tells which periods are present.
- If the seismometer can measure directions, we also know the directions corresponding to the periodic travel times.

- All kinds of noise and events generate seismic waves which travel around the planet and reflect at the surface and interfaces.
- Some of these waves are periodic. Calculating temporal correlations of noise tells which periods are present.
- If the seismometer can measure directions, we also know the directions corresponding to the periodic travel times.
- Data: Pairs of directions (\approx angle from normal) and times. Uknown: Wave speed (\approx geometry).

- All kinds of noise and events generate seismic waves which travel around the planet and reflect at the surface and interfaces.
- Some of these waves are periodic. Calculating temporal correlations of noise tells which periods are present.
- If the seismometer can measure directions, we also know the directions corresponding to the periodic travel times.
- Data: Pairs of directions (≈ angle from normal) and times.
 Uknown: Wave speed (≈ geometry).
- The set of all periodic travel times is the length spectrum.

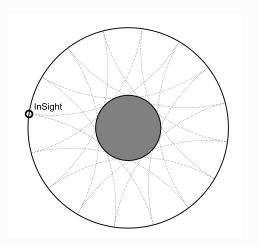
• Wave speed variations define a geometry: The distance between any two points is the shortest wave travel time between them.

- Wave speed variations define a geometry: The distance between any two points is the shortest wave travel time between them.
- This geometry is conformally Euclidean if the material is isotropic.

- Wave speed variations define a geometry: The distance between any two points is the shortest wave travel time between them.
- This geometry is conformally Euclidean if the material is isotropic.
- Reconstructing the wave speed from travel time data is hard, even with data everywhere on the surface.

- Wave speed variations define a geometry: The distance between any two points is the shortest wave travel time between them.
- This geometry is conformally Euclidean if the material is isotropic.
- Reconstructing the wave speed from travel time data is hard, even with data everywhere on the surface.
- Solution: Linearize!

- Wave speed variations define a geometry: The distance between any two points is the shortest wave travel time between them.
- This geometry is conformally Euclidean if the material is isotropic.
- Reconstructing the wave speed from travel time data is hard, even with data everywhere on the surface.
- Solution: Linearize!
- Linearized data: Pairs of periodic broken rays and integrals over them.
 Uknown: Variations of wave speed (a function).



Periodic seismic ray reflecting on the surface and CMB.

Theorem (de Hoop-I., 2017)

Theorem (de Hoop-I., 2017)

If the mantle satisfies the Herglotz condition, then the integrals over periodic broken rays determine a radial function uniquely.

Theorem (de Hoop-I., 2017)

If the mantle satisfies the Herglotz condition, then the integrals over periodic broken rays determine a radial function uniquely.

If the Herglotz condition $\frac{\mathrm{d}}{\mathrm{d}r}(r/c(r))>0$ is valid down to some depth, then the result is valid down to that depth. At least the upper mantle should satisfy the condition.

Theorem (de Hoop-I., 2017)

If the mantle satisfies the Herglotz condition, then the integrals over periodic broken rays determine a radial function uniquely.

If the Herglotz condition $\frac{\mathrm{d}}{\mathrm{d}r}(r/c(r))>0$ is valid down to some depth, then the result is valid down to that depth. At least the upper mantle should satisfy the condition.

Solving the linearized problem gives an iterative algorithm to solve the nonlinear one.

Theorem (de Hoop-I., 2017)

If the mantle satisfies the Herglotz condition, then the integrals over periodic broken rays determine a radial function uniquely.

If the Herglotz condition $\frac{\mathrm{d}}{\mathrm{d}r}(r/c(r))>0$ is valid down to some depth, then the result is valid down to that depth. At least the upper mantle should satisfy the condition.

Solving the linearized problem gives an iterative algorithm to solve the nonlinear one.

(Uniqueness should be provable for the non-linear one, too.)

Like Earth, Mars has free oscillations.

- Like Earth, Mars has free oscillations.
- The oscillations are excited by marsquakes, atmosphere, meteorite impacts, and other possible events.

- Like Earth, Mars has free oscillations.
- The oscillations are excited by marsquakes, atmosphere, meteorite impacts, and other possible events.
- The oscillations can be decomposed into eigenmodes which have their own frequencies.

- Like Earth, Mars has free oscillations.
- The oscillations are excited by marsquakes, atmosphere, meteorite impacts, and other possible events.
- The oscillations can be decomposed into eigenmodes which have their own frequencies.
- The different modes are excited differently in different events, but one thing remains: the set of frequencies — the spectrum of free oscillations. (We are at first interested in properties of the planet, not properties of the events.)

- Like Earth, Mars has free oscillations.
- The oscillations are excited by marsquakes, atmosphere, meteorite impacts, and other possible events.
- The oscillations can be decomposed into eigenmodes which have their own frequencies.
- The different modes are excited differently in different events, but one thing remains: the set of frequencies — the spectrum of free oscillations. (We are at first interested in properties of the planet, not properties of the events.)
- The spectrum of free oscillations can be measured from any single point.

- Like Earth, Mars has free oscillations.
- The oscillations are excited by marsquakes, atmosphere, meteorite impacts, and other possible events.
- The oscillations can be decomposed into eigenmodes which have their own frequencies.
- The different modes are excited differently in different events, but one thing remains: the set of frequencies — the spectrum of free oscillations. (We are at first interested in properties of the planet, not properties of the events.)
- The spectrum of free oscillations can be measured from any single point.
- Mathematically, the spectrum of free oscillations corresponds to the Neumann spectrum of the Laplace—Beltrami operator on a manifold.

Question

Does the spectrum of free oscillations determine c(r) globally? How about just the mantle?

Question

Does the spectrum of free oscillations determine c(r) globally? How about just the mantle?

For simplicity, I will assume that we measure the spectrum of the mantle and that the mantle satisfies the Herglotz condition.

Question

Does the spectrum of free oscillations determine c(r) globally? How about just the mantle?

For simplicity, I will assume that we measure the spectrum of the mantle and that the mantle satisfies the Herglotz condition. (Neither should really be necessary.)

Question

Does the spectrum of free oscillations determine c(r) globally? How about just the mantle?

For simplicity, I will assume that we measure the spectrum of the mantle and that the mantle satisfies the Herglotz condition. (Neither should really be necessary.)

Question

If a family of wave speeds $c_s(r)$ have the same spectrum, are the equal? Is the (Martian) mantle spectrally rigid?

Theorem (de Hoop–I.–Katsnelson, 2017)

Theorem (de Hoop–I.–Katsnelson, 2017)

Let $c_s(r)$ be a family of nice radial sound speeds.

Theorem (de Hoop–I.–Katsnelson, 2017)

Let $c_s(r)$ be a family of nice radial sound speeds.

If each c_s gives rise to the same spectrum, then $c_s = c_0$ for all s.

Theorem (de Hoop–I.–Katsnelson, 2017)

Let $c_s(r)$ be a family of nice radial sound speeds.

If each c_s gives rise to the same spectrum, then $c_s=c_0$ for all s.

This simple model of the round Martian mantle is spectrally rigid!

Theorem (de Hoop–I.–Katsnelson, 2017)

Let $c_s(r)$ be a family of nice radial sound speeds.

If each c_s gives rise to the same spectrum, then $c_s = c_0$ for all s.

This simple model of the round Martian mantle is spectrally rigid!

This is based on linearization.

Theorem (de Hoop–I.–Katsnelson, 2017)

Let $c_s(r)$ be a family of nice radial sound speeds.

If each c_s gives rise to the same spectrum, then $c_s=c_0$ for all s.

This simple model of the round Martian mantle is spectrally rigid!

This is based on linearization. With a trace formula one ends up showing that the Martian mantle is length spectrally rigid.

 Seismic events with known sources are another source of information, and the most useful type seems to be meteorite impacts.

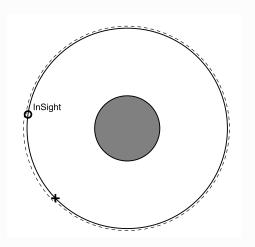
- Seismic events with known sources are another source of information, and the most useful type seems to be meteorite impacts.
- We do not know the exact form of the source, but we know that it is sharply localized in space and time. This makes geometric methods more useful than PDE ones.

- Seismic events with known sources are another source of information, and the most useful type seems to be meteorite impacts.
- We do not know the exact form of the source, but we know that it is sharply localized in space and time. This makes geometric methods more useful than PDE ones.
- An orbiter can verify the impact position, but time will be unknown apart from rough windowing.

- Seismic events with known sources are another source of information, and the most useful type seems to be meteorite impacts.
- We do not know the exact form of the source, but we know that it is sharply localized in space and time. This makes geometric methods more useful than PDE ones.
- An orbiter can verify the impact position, but time will be unknown apart from rough windowing.
- Surface waves will come from the event to InSight two ways along the great circle containing the impact site and InSight.

- Seismic events with known sources are another source of information, and the most useful type seems to be meteorite impacts.
- We do not know the exact form of the source, but we know that it is sharply localized in space and time. This makes geometric methods more useful than PDE ones.
- An orbiter can verify the impact position, but time will be unknown apart from rough windowing.
- Surface waves will come from the event to InSight two ways along the great circle containing the impact site and InSight.
- If there are no other events on the same great circle around the same time, we can measure the time difference δ .

- Seismic events with known sources are another source of information, and the most useful type seems to be meteorite impacts.
- We do not know the exact form of the source, but we know that it is sharply localized in space and time. This makes geometric methods more useful than PDE ones.
- An orbiter can verify the impact position, but time will be unknown apart from rough windowing.
- Surface waves will come from the event to InSight two ways along the great circle containing the impact site and InSight.
- If there are no other events on the same great circle around the same time, we can measure the time difference δ .
- Multiple arrivals or a priori information tells the time T around the great circle.



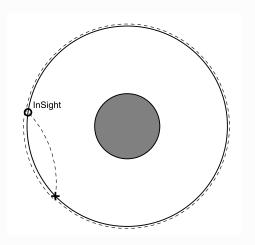
Two surface wave arrivals from the same event.

• The two great circle distances from InSight to the impact are $\frac{1}{2}(T\mp\delta)$.

- The two great circle distances from InSight to the impact are $\frac{1}{2}(T\mp\delta)$.
- Assuming the seismometer can detect directions of surface wave arrivals, we can deduce the time and place of the event.

- The two great circle distances from InSight to the impact are $\frac{1}{2}(T\mp\delta)$.
- Assuming the seismometer can detect directions of surface wave arrivals, we can deduce the time and place of the event.
- This was all done on surface, and it gives rise to interior data: Now using body waves we know the travel time between InSight and the source.

- The two great circle distances from InSight to the impact are $\frac{1}{2}(T\mp\delta)$.
- Assuming the seismometer can detect directions of surface wave arrivals, we can deduce the time and place of the event.
- This was all done on surface, and it gives rise to interior data: Now using body waves we know the travel time between InSight and the source.
- To get here, we needed to assume spherical symmetry only on the surface, but the arising problem is easiest to solve if the symmetry extends inside.



The body wave whose initial point and time were located with surface waves.

 This travel time information is enough to determine a radial wave speed. (Herglotz, 1905)

- This travel time information is enough to determine a radial wave speed. (Herglotz, 1905)
- The linearized problem is X-ray tomography (or an Abel transform), and can also be solved explicitly. (e.g. de Hoop-I., 2017)

• We have three methods to obtain the wave speed c(r) in the mantle down to the depth where the Herglotz condition first fails.

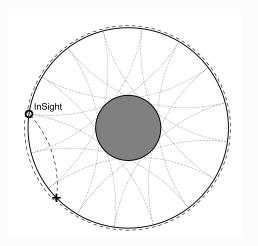
- We have three methods to obtain the wave speed c(r) in the mantle down to the depth where the Herglotz condition first fails.
- Proofs work for one wave speed, the results should hold for polarized waves.

- ullet We have three methods to obtain the wave speed c(r) in the mantle down to the depth where the Herglotz condition first fails.
- Proofs work for one wave speed, the results should hold for polarized waves.
- In the Earth the Herglotz condition is satisfied in the whole mantle for both P and S. On Mars it will at least hold in the upper mantle.

- ullet We have three methods to obtain the wave speed c(r) in the mantle down to the depth where the Herglotz condition first fails.
- Proofs work for one wave speed, the results should hold for polarized waves.
- In the Earth the Herglotz condition is satisfied in the whole mantle for both P and S. On Mars it will at least hold in the upper mantle.
- The three methods use independently obtained datasets.

- ullet We have three methods to obtain the wave speed c(r) in the mantle down to the depth where the Herglotz condition first fails.
- Proofs work for one wave speed, the results should hold for polarized waves.
- In the Earth the Herglotz condition is satisfied in the whole mantle for both P and S. On Mars it will at least hold in the upper mantle.
- The three methods use independently obtained datasets.
- If the three reconstructions all work and give similar results, we can be quite confident.

- ullet We have three methods to obtain the wave speed c(r) in the mantle down to the depth where the Herglotz condition first fails.
- Proofs work for one wave speed, the results should hold for polarized waves.
- In the Earth the Herglotz condition is satisfied in the whole mantle for both P and S. On Mars it will at least hold in the upper mantle.
- The three methods use independently obtained datasets.
- If the three reconstructions all work and give similar results, we can be quite confident.
- This gives us an isotropic radially symmetric reference model of the mantle, which is a stepping stone towards deeper and finer structure.



Three ways to see the mantle from InSight.

- A: From noise correlations to (linearized) travel times.
- B: From spectrum to length spectrum.
- C: Meteorites; body wave data calibrated by surface waves.

Outline

- Seeing the radial Martian mantle with InSight
- Seeing an entire planet

 Proving precise results outside spherical symmetry with one measurement point is hard.

- Proving precise results outside spherical symmetry with one measurement point is hard.
- A natural approach to small lateral inhomogeneities is perturbation theory with respect to a spherically symmetric reference model.

- Proving precise results outside spherical symmetry with one measurement point is hard.
- A natural approach to small lateral inhomogeneities is perturbation theory with respect to a spherically symmetric reference model.
- The data is purely spectral: we do not have access to boundary behaviour of the modes.

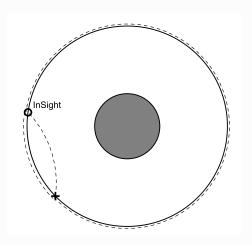
- Proving precise results outside spherical symmetry with one measurement point is hard.
- A natural approach to small lateral inhomogeneities is perturbation theory with respect to a spherically symmetric reference model.
- The data is purely spectral: we do not have access to boundary behaviour of the modes.
- Linearized spectral information can only determine the structure up to rotations — infintely many of them!

- Proving precise results outside spherical symmetry with one measurement point is hard.
- A natural approach to small lateral inhomogeneities is perturbation theory with respect to a spherically symmetric reference model.
- The data is purely spectral: we do not have access to boundary behaviour of the modes.
- Linearized spectral information can only determine the structure up to rotations — infintely many of them!
- It remains to be proven that this is indeed the only obstruction to uniqueness.

• Recall the third method for reconstructing the radial mantle.

- Recall the third method for reconstructing the radial mantle.
- We assumed that the surface is spherically symmetric (or otherwise known), but we needed no assumption on the interior.

- Recall the third method for reconstructing the radial mantle.
- We assumed that the surface is spherically symmetric (or otherwise known), but we needed no assumption on the interior.
- This leads to travel time data: The travel times (geometrically: distances) are known from all points on the surface to a single fixed point.



The body wave whose initial point and time were located with surface waves.

Question

Let M be a Riemannian (or Finsler) manifold with boundary. Is the metric uniquely determined by the distances between a fixed boundary point and all other boundary points?

Question

Let M be a Riemannian (or Finsler) manifold with boundary. Is the metric uniquely determined by the distances between a fixed boundary point and all other boundary points?

Question

What if the point is replaced by a small open set — a detector array?

Question

Let M be a Riemannian (or Finsler) manifold with boundary. Is the metric uniquely determined by the distances between a fixed boundary point and all other boundary points?

Question

What if the point is replaced by a small open set — a detector array?

Question

What if we linearize the problem? (X-ray tomography.)

Question

Let M be a Riemannian (or Finsler) manifold with boundary. Is the metric uniquely determined by the distances between a fixed boundary point and all other boundary points?

Question

What if the point is replaced by a small open set — a detector array?

Question

What if we linearize the problem? (X-ray tomography.)

This is possible at least in Euclidean geometry or with real analytic perturbations but always unstable.

Planets like Earth and Mars have layers.

- Planets like Earth and Mars have layers.
- Most geometrical inverse problems work with smooth manifolds. How to add conormal singularities and finite interior regularity?

- Planets like Earth and Mars have layers.
- Most geometrical inverse problems work with smooth manifolds. How to add conormal singularities and finite interior regularity?
- How does spectral rigidity and X-ray tomography work in a rough onion?

- Planets like Earth and Mars have layers.
- Most geometrical inverse problems work with smooth manifolds. How to add conormal singularities and finite interior regularity?
- How does spectral rigidity and X-ray tomography work in a rough onion?
- What is the geometry of periodic broken rays?

 We have taken the first steps towards a theory of tomography on Mars or any other planet or moon.

- We have taken the first steps towards a theory of tomography on Mars or any other planet or moon.
- We do not have

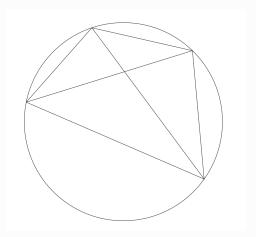
- We have taken the first steps towards a theory of tomography on Mars or any other planet or moon.
- We do not have
 - a complete geometrical theory of elasticity

- We have taken the first steps towards a theory of tomography on Mars or any other planet or moon.
- We do not have
 - a complete geometrical theory of elasticity, nor
 - a good mathematical theory of seismic planetary exploration

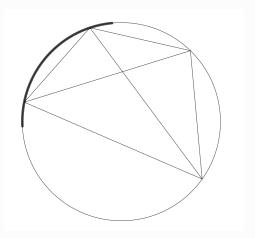
- We have taken the first steps towards a theory of tomography on Mars or any other planet or moon.
- We do not have
 - a complete geometrical theory of elasticity, nor
 - a good mathematical theory of seismic planetary exploration yet.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at http://users.jyu.fi/~jojapeil

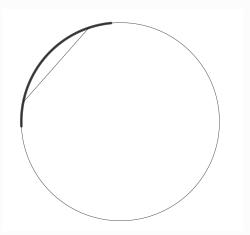


Boundary distance rigidity: Do the distances between all boundary points determine the meometry?

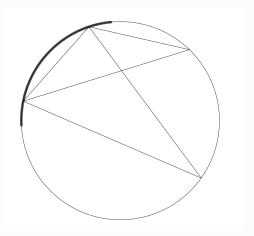


We have an accessible region — a measurement array.

The size is exaggerated.



In the local boundary distance problem one knows the distances between the points in the small set and wants to find the geometry near that set.



The "half-local" boundary distance data has more information and one wants to reconstruct the whole geometry.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at http://users.jyu.fi/~jojapeil