

Inverse problems in elastic Finsler geometry

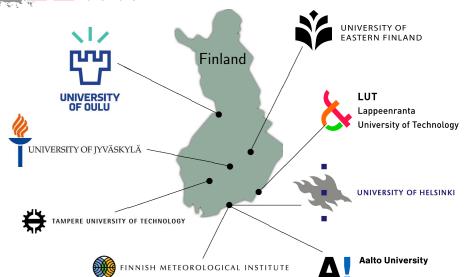
Applied Inverse Problems minisymposium Recent advances in geometric inverse problems

Joonas Ilmavirta

July 9, 2019

Based on joint work with

Maarten de Hoop, Matti Lassas, Keijo Mönkkönen, Teemu Saksala



Conference announcement

The annual Finnish inverse problems conference "Inverse Days" will be organized in Jyväskylä 16–18 December, 2019.

```
http://r.jyu.fi/yVK
(https://www.jyu.fi/science/en/maths/research/inverse-problems/id2019/)
```

Registration opens this week!

Overview of fully anisotropic linear elasticity.

- Overview of fully anisotropic linear elasticity.
- How geometrization leads naturally to Finsler geometry.

- Overview of fully anisotropic linear elasticity.
- How geometrization leads naturally to Finsler geometry.
- Examples of geometric inverse problems in the Finsler setting.

Outline

- 1 The elastic wave equation
 - The stiffness tensor
 - The elastic wave equation
 - The principal symbol
 - Polarization
 - Singularities and the slowness surface
 - Inverse problems
- 2 Finsler geometry
- 3 Examples of inverse problems in Finsler geometry

 When something in an elastic material is displaced from equilibrium, it tends to return back.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- ullet The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.
- The tensor is very symmetric $(c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij})$ and quite positive $(c_{ijkl}\alpha_i\beta_j\beta_k\alpha_l \gtrsim |\alpha|^2 |\beta|^2)$.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- ullet The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.
- The tensor is very symmetric $(c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij})$ and quite positive $(c_{ijkl}\alpha_i\beta_j\beta_k\alpha_l \gtrsim |\alpha|^2 |\beta|^2)$.
- We will also encounter the density normalized stiffness tensor $a_{ijkl}(x) = c_{ijkl}(x)/\rho(x)$.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

• If the material is anisotropic (*c* is no more symmetric than necessary), then the vector nature of the equation cannot be ignored.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

- If the material is anisotropic (*c* is no more symmetric than necessary), then the vector nature of the equation cannot be ignored.
- Elastic waves arising from earthquakes (or marsquakes!) satisfy this
 equation away from the focus of the event to great accuracy.

ullet Suppose c and ho are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p\cdot x - t)}$$

to the EWE.

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p\cdot x - t)}$$

to the EWE.

• Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p\cdot x - t)}$$

to the EWE.

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- Plugging this into the EWE gives

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p\cdot x - t)}$$

to the EWE.

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- Plugging this into the EWE gives

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

The matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k$$

is the Christoffel matrix. It is symmetric and positive definite.

• Suppose c and ρ are constant and let us study plane wave solutions

$$u_i(x,t) = A_i e^{i\omega(p\cdot x - t)}$$

to the EWE.

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- Plugging this into the EWE gives

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

The matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k$$

is the Christoffel matrix. It is symmetric and positive definite.

• The principal symbol of the EWE is $\Gamma(x,\xi) - \omega^2 I$, where $\xi = \omega p$.

• In isotropic elasticity (maximal symmetry of the stiffness tensor c) the polarization vector is either parallel or normal to p.

- In isotropic elasticity (maximal symmetry of the stiffness tensor c) the polarization vector is either parallel or normal to p.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).

- In isotropic elasticity (maximal symmetry of the stiffness tensor c) the polarization vector is either parallel or normal to p.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.

- In isotropic elasticity (maximal symmetry of the stiffness tensor c) the polarization vector is either parallel or normal to p.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.
- \bullet Polarization vectors are eigenvectors of the Christoffel matrix $\Gamma,$ so they are orthogonal.

- In isotropic elasticity (maximal symmetry of the stiffness tensor c) the polarization vector is either parallel or normal to p.
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.
- Polarization vectors are eigenvectors of the Christoffel matrix Γ , so they are orthogonal.
- Decomposition to polarizations only works on the level of singularities. The individual polarizations do not satisfy PDEs.

 We are interested in arrivals of wave fronts from a seismic event to a detector.

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities follow the Hamiltonian flow determined by the principal symbol.

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities follow the Hamiltonian flow determined by the principal symbol.
- The slowness vector p and the polarization A of a singularity at x must satisfy

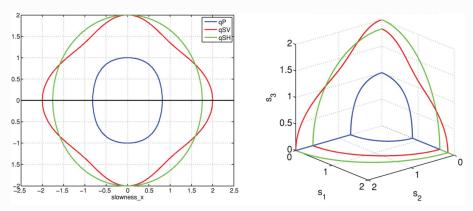
$$[\Gamma(x,p) - I]A = 0.$$

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities follow the Hamiltonian flow determined by the principal symbol.
- The slowness vector p and the polarization A of a singularity at x must satisfy

$$[\Gamma(x,p) - I]A = 0.$$

 The admissible slowness vectors are on the slowness surface given by the equation

$$\det(\Gamma(x,p) - I) = 0.$$



The slowness surface. Smaller slowness \iff faster wave.

ullet Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $a_{ijkl}(x)$ everywhere.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $a_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the slowness surface at every point.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $a_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the slowness surface at every point.
- To solve the physical problem, it remains to uniquely determine the tensor *a* from the slowness surface or a branch thereof.

Outline

- The elastic wave equation
- Pinsler geometry
 - Finsler manifolds
 - Elastic Finsler manifolds
 - Properties on the fiber
 - Inverse problems
- 3 Examples of inverse problems in Finsler geometry

 A Riemannian manifold is a smooth manifold with an inner product on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F: TM \to [0, \infty)$ so that:

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0, \infty)$ so that:
 - igodeligap F is continuous everywhere and smooth on $TM \setminus 0$,

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0, \infty)$ so that:
 - \bullet *F* is continuous everywhere and smooth on $TM \setminus 0$,
 - \bigcirc *F* is positively 1-homogeneous on every fiber,

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - $lackbox{0}$ F is continuous everywhere and smooth on $TM \setminus 0$,
 - $oldsymbol{Q}$ F is positively 1-homogeneous on every fiber, and
 - \bullet \bullet \bullet \bullet is strictly convex (positive definite Hessian) on every fiber.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - igodeligap F is continuous everywhere and smooth on $TM \setminus 0$,
 - ② F is positively 1-homogeneous on every fiber, and
- Lengths of curves are defined in the usual way using the (Minkowski) norm on every tangent space.

Recall the Christoffel matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k,$$

defined for $(x,p) \in T^*\mathbb{R}^3$.

Recall the Christoffel matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k,$$

defined for $(x,p) \in T^*\mathbb{R}^3$.

• Let $\lambda(x,p)$ be the largest eigenvalue of $\Gamma(x,p)$. The largest eigenvalue corresponds to fastest singularity (qP).

Recall the Christoffel matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k,$$

defined for $(x,p) \in T^*\mathbb{R}^3$.

- Let $\lambda(x,p)$ be the largest eigenvalue of $\Gamma(x,p)$. The largest eigenvalue corresponds to fastest singularity (qP).
- The qP singularities follow the Hamiltonian flow of $\lambda \colon T^*M \to \mathbb{R}$.

• The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.

- The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^*\mathbb{R}^3$.

- The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^*\mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface is the unit sphere of $f: T^*\mathbb{R}^3 \to \mathbb{R}$.

- The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface is the unit sphere of $f \colon T^*\mathbb{R}^3 \to \mathbb{R}$.
- We have described Finsler geometry on the cotangent side.

- The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^*\mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface is the unit sphere of $f \colon T^*\mathbb{R}^3 \to \mathbb{R}$.
- We have described Finsler geometry on the cotangent side.
- The Legendre transform turns $f: T^*\mathbb{R}^3 \to \mathbb{R}$ into a function Lf on $T\mathbb{R}^3$, and the Hamiltonian flow of f is the geodesic flow of Lf.

- The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^* \mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface is the unit sphere of $f \colon T^*\mathbb{R}^3 \to \mathbb{R}$.
- We have described Finsler geometry on the cotangent side.
- The Legendre transform turns $f: T^*\mathbb{R}^3 \to \mathbb{R}$ into a function Lf on $T\mathbb{R}^3$, and the Hamiltonian flow of f is the geodesic flow of Lf.
- The fiberwise Legendre transform gives a bijective correspondence $T^*\mathbb{R}^3 \to T\mathbb{R}^3$, but this is non-linear when the norm is non-quadratic.

- The function $\lambda(x,\,\cdot)\colon T_x^*\mathbb{R}^3\to [0,\infty)$ is smooth outside the origin, strictly convex, and 2-homogeneous.
- Therefore $f_x = \sqrt{\lambda(x, \cdot)}$ is a Minkowski norm on $T_x^*\mathbb{R}^3$.
- The set of admissible qP slowness vectors the innermost branch of the slowness surface is the unit sphere of $f \colon T^*\mathbb{R}^3 \to \mathbb{R}$.
- We have described Finsler geometry on the cotangent side.
- The Legendre transform turns $f \colon T^*\mathbb{R}^3 \to \mathbb{R}$ into a function Lf on $T\mathbb{R}^3$, and the Hamiltonian flow of f is the geodesic flow of Lf.
- The fiberwise Legendre transform gives a bijective correspondence $T^*\mathbb{R}^3 \to T\mathbb{R}^3$, but this is non-linear when the norm is non-quadratic.
- Slowness is a covector and the corresponding vector is the group velocity.

 A Riemannian metric tensor or a Finsler function on a manifold is uniquely determined by the distance function.

- A Riemannian metric tensor or a Finsler function on a manifold is uniquely determined by the distance function.
- In elastic Finsler geometry the distance between two points $x, y \in \mathbb{R}^3$ is the shortest time in which an elastic wave can go from x to y.

- A Riemannian metric tensor or a Finsler function on a manifold is uniquely determined by the distance function.
- In elastic Finsler geometry the distance between two points $x, y \in \mathbb{R}^3$ is the shortest time in which an elastic wave can go from x to y.
- Declaring travel time as distance would have defined the same geometry, but in a more implicit manner.

• In general a Finsler function is not necessarily reversible $(F(x, v) \neq F(x, -v))$, but in elasticity it is.

- In general a Finsler function is not necessarily reversible $(F(x,v) \neq F(x,-v))$, but in elasticity it is.
- ullet In addition, the elastic F is real-analytic on every punctured tangent space because it is defined by a polynomial.

- In general a Finsler function is not necessarily reversible $(F(x,v) \neq F(x,-v))$, but in elasticity it is.
- ullet In addition, the elastic F is real-analytic on every punctured tangent space because it is defined by a polynomial.
- Other polarizations are problematic:

- In general a Finsler function is not necessarily reversible $(F(x,v) \neq F(x,-v))$, but in elasticity it is.
- ullet In addition, the elastic F is real-analytic on every punctured tangent space because it is defined by a polynomial.
- Other polarizations are problematic:
 - Distance corresponds to travel time of singularities, not of all solutions to the EWE.

- In general a Finsler function is not necessarily reversible $(F(x,v) \neq F(x,-v))$, but in elasticity it is.
- ullet In addition, the elastic F is real-analytic on every punctured tangent space because it is defined by a polynomial.
- Other polarizations are problematic:
 - Distance corresponds to travel time of singularities, not of all solutions to the EWE.
 - ② The eigenvalues of the Christoffel matrix Γ can degenerate, making microlocal analysis and differential geometry inconvenient.

- In general a Finsler function is not necessarily reversible $(F(x,v) \neq F(x,-v))$, but in elasticity it is.
- In addition, the elastic F is real-analytic on every punctured tangent space because it is defined by a polynomial.
- Other polarizations are problematic:
 - Distance corresponds to travel time of singularities, not of all solutions to the EWE.
 - ② The eigenvalues of the Christoffel matrix Γ can degenerate, making microlocal analysis and differential geometry inconvenient.
 - The flow on T*ℝ³ is still given by the Hamiltonian corresponding to an eigenvalue of Γ, but it can be non-convex. The metric on Tℝ³ is multiple-valued or its geodesic flow does not correspond to singularities.

• A typical inverse problem in Finsler geometry would be: Given some boundary data, find (M, F).

Inverse problems

- A typical inverse problem in Finsler geometry would be: Given some boundary data, find (M,F).
- This is the same problem as finding the slowness surface everywhere (the cosphere bundle) — modulo diffeomorphisms.

Inverse problems

- A typical inverse problem in Finsler geometry would be: Given some boundary data, find (M, F).
- This is the same problem as finding the slowness surface everywhere (the cosphere bundle) — modulo diffeomorphisms.
- Whether the elastic problem has the diffeomorphism gauge freedom is another question.

Outline

- The elastic wave equation
- 2 Finsler geometry
- Examples of inverse problems in Finsler geometry
 - Herglotz (Mönkkönen)
 - Dix (de Hoop, Lassas)
 - Distance function (de Hoop, Lassas, Saksala)
 - Scattering data (de Hoop, Lassas, Saksala)

 Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)
- This is not true for a spherically symmetric Finsler manifold.

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)
- This is not true for a spherically symmetric Finsler manifold.
- There is still a Herglotz condition but it looks different.

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)
- This is not true for a spherically symmetric Finsler manifold.
- There is still a Herglotz condition but it looks different.
- Linearized travel time data leads to X-ray tomography. If the stiffness tensor c is known but ρ unknown, the variations are conformal.

• Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts.

• Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set $U \subset M$ one can see spheres with any center.

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set $U \subset M$ one can see spheres with any center. The data consists of oriented surfaces with radii.

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?
- ullet To geometrize the problem, consider a Finsler manifold (M,F).
- In some measurement set $U \subset M$ one can see spheres with any center. The data consists of oriented surfaces with radii.
- One can follow the geodesics backwards and find the metric on a neighborhood of the lift.

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set $U \subset M$ one can see spheres with any center. The data consists of oriented surfaces with radii.
- One can follow the geodesics backwards and find the metric on a neighborhood of the lift.
- ullet With fiberwise analyticity this information can be globalized to give the universal cover of (M,F).

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor a everywhere without any kind of isotropy assumption?
- ullet To geometrize the problem, consider a Finsler manifold (M,F).
- In some measurement set $U \subset M$ one can see spheres with any center. The data consists of oriented surfaces with radii.
- One can follow the geodesics backwards and find the metric on a neighborhood of the lift.
- ullet With fiberwise analyticity this information can be globalized to give the universal cover of (M,F).
- The "directionality" of Finsler geometry is a major complication in comparison to the Riemannian version (de Hoop-Holman-Iversen-Lassas-Ursin, 2015).

• Any point $x \in M$ determines a boundary distance function $r_x \colon \partial M \to \mathbb{R}$.

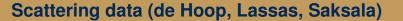
- Any point $x \in M$ determines a boundary distance function $r_x \colon \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?

- Any point $x \in M$ determines a boundary distance function $r_x \colon \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .

- Any point $x \in M$ determines a boundary distance function $r_x \colon \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct M and F on the good set $G \subset TM$, but not outside it.

- Any point $x \in M$ determines a boundary distance function $r_x \colon \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- ullet One can reconstruct M and F on the good set $G\subset TM$, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

- Any point $x \in M$ determines a boundary distance function $r_x \colon \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- ullet One can reconstruct M and F on the good set $G\subset TM$, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).
- If F is fiberwise real analytic (elasticity or Riemann!), then F is determined uniquely.



• Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- ullet This broken scattering relation can see much more of TM, but the trapped set is still invisible.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- ullet This broken scattering relation can see much more of TM, but the trapped set is still invisible.
- Global uniqueness is doable (done) with added assumptions: reversibility and foliation.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- ullet This broken scattering relation can see much more of TM, but the trapped set is still invisible.
- Global uniqueness is doable (done) with added assumptions: reversibility and foliation.
- Almost no assumptions are needed in the Riemannian case (Kurylev–Lassas–Uhlmann, 2010).

Goals

- Overview of fully anisotropic linear elasticity.
- How geometrization leads naturally to Finsler geometry.
- Examples of geometric inverse problems in the Finsler setting.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available at http://users.jyu.fi/~jojapeil