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The question

How to see the interior of the Earth via seismic rays?
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Elastic wave equation

Quantities:

Displacement u(t, x) ∈ Rn.

Density ρ(x) ∈ R.

Stiffness tensor cijkl(x) ∈ Rn4
.

Properties:

ρ > 0.

cijkl = cklij = cjikl.∑
i,j,k,l cijklAijAkl > 0 whenever A = AT ̸= 0.

Equation of motion (EWE): ρ(x)∂2
t ui(t, x)−

∑
j,k,l

∂j [cijkl(x)∂kul(x)] = 0.

Compare: Newton (F = mẍ) and Hooke (F = −kx).
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Propagation of singularities

A wave-type equation can have singular solutions:

(∂2
t − ∂2

x)δ(t− x) = 0.

To understand singularities of solutions to the EWE, freeze ρ and c to be constants for a
moment. (For details: study microlocal analysis.)
If u = Aeiω(t−p·x), then the EWE becomes

ρω2[−I + Γ(p)]A = 0,

where
Γil(p) =

∑
j,k

ρ−1cijklpjpk

is the Christoffel matrix.
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Propagation of singularities

If we choose not to keep track of the polarization A, the condition becomes

det[Γ(p)− I] = 0.

In general, singularities of the elastic wave equation (mostly) satisfy

det[Γ(x, p)− I] = 0,

where c and ρ are allowed to depend on x.

This describes where the singularities (point particles instead of waves) can be but not yet how
they can move.
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Propagation of singularities

Let x ∈ Ω ⊂ Rn and p ∈ T ∗
xΩ. Consider the mth eigenvalue λm(x, p) of the Christoffel matrix

Γ(x, p).

λm defines a Hamiltonian on T ∗Ω and the singularities corresponding to the mth fastest
eigenvalue follow the Hamiltonian flow.

λ
1/2
1 defines a norm on T ∗Ω.

The dual norm F = (λ
1/2
1 )∗ on TΩ is a Finsler norm.

The singularities follow the geodesics of the Finsler geometry given by F .

Difficulties:

Eigenvalues can degenerate.

For m > 1 the Hamiltonian or norm can fail to be convex.

The propagation of singularities only depends on the reduced stiffness tensor a = ρ−1c.
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Slowness polynomial and slowness surface

A reduced stiffness tensor aijkl defines

a Christoffel matrix Γa(p) and

a slowness polynomial Pa(p) = det[Γa(p)− I].

The set where singularities are possible is the slowness surface

Σa = {p ∈ Rn;Pa(p) = 0}.

Knowing the slowness polynomial ⇐⇒ knowing the slowness surface.
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Slowness polynomial and slowness surface

A slowness surface in 2D with its two branches, and the corresponding two Finsler norms.
The quasi pressure (qP) polarization behaves well.

Anisotropy ⇐⇒ dependence on direction ⇐⇒ not circles.
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Slowness polynomial and slowness surface

Left: The set (slowness surface) of cotangent vectors, momenta, or phase velocities in T ∗
xΩ.

Right: The set of tangent vectors, velocities, group velocities in TxΩ.
Duality between microlocal analysis and algebra on the left and geometry on the right.
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Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on ∂Ω, find the parameters c(x)
and ρ(x) for all x ∈ Ω.

Geometrized inverse problem
Given the travel times of singularities (geodesic distances) between boundary points, find the
qP Finsler manifold (Ω, F ).

Remarks:
Geometric inverse problems like this can be solved for qP geometries.
Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid
and interesting stiffness tensors.
Knowing the metric is the same as knowing the (co)sphere bundle:
(M, g) or (M,F ) ⇐⇒ (M,SM) ⇐⇒ (M,S∗M).
The cospheres of the Finsler geometry are the qP branches of the slowness surfaces.
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Geometrization of an analytic problem

Rays follow geodesics and tell about the interior structure.
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1 Inverse problems in elasticity

2 Geometry of slowness surfaces
Algebraic variety
Generic irreducibility
Generically unique reduced stiffness tensor
Singularity
Characterization of slowness polynomials

3 Coordinate gauge
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Algebraic variety

Definition
A set V ⊂ Rn is an algebraic variety if it is the vanishing set of a collection of polynomials
Rn → R.

Observation
The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

The study of the geometry of varieties is a part of algebraic geometry.
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Algebraic variety

Given any set F of functions f : Rn → R, we can define a closure for all A ⊂ Rn:

clF (A) = {x ∈ Rn;∀f ∈ F : f |A = 0 =⇒ f(x) = 0}.

(This satisfies the Kuratowski axioms if F is a unital ring.)

Examples:

F = C(Rn)⇝ standard Euclidean topology.

F = C∞(Rn)⇝ standard Euclidean topology.

F = {polynomial functions}⇝ Zariski topology.

A variety is the same as a Zariski-closed set.
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Generic irreducibility

Definition
A variety V ⊂ Rn is reducible if it can be written as the union of two varieties in a non-trivial
way.

The vanishing set of a single polynomial is reducible if the polynomial can be written as the
product of two polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset of stiffness tensors a so that the slowness
polynomial Pa is irreducible.

This is not true for all a but only generically.
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Generic irreducibility

Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)
When the slowness surface Σa is irreducible, any (Euclidean) relatively open subset
determines the whole slowness surface.
If n ∈ {2, 3}, this is generically true.

It suffices to measure the well-behaved qP branch!
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Generic irreducibility

Any small part of the well-behaved quasi pressure branch
determines the whole thing via Zariski closure.
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Generic irreducibility

Comments:

If the stiffness tensor is isotropic, the slowness polynomial is reducible:

Pa(p) = (c2P |p|2 − 1)(c2S |p|2 − 1)n−1.

It is a general rule of thumb that in a family of polynomials almost every one is irreducible.
But it could well happen that that our special subset of polynomials is within the reducible
locus.

It takes the full power of scheme theory to prove that the set of stiffness tensors a for
which the slowness polynomial Pa is irreducible is open in the Zariski topology.

It takes a single concrete example to show that that set is not empty.
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Generically unique reduced stiffness tensor

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset W of stiffness tensors a so that the map
W ∋ a → Pa is injective.

Proof idea: The size of the preimage (in dimension and number) of a polynomial is upper
semicontinuous in the Zariski topology, so a single unique example shows uniqueness is
generic.

Note: Uniqueness is not always true. Orthorhombic materials come in quadruplets of
anomalous companions.

Corollary (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset W of stiffness tensors a so that for all
a ∈ W any small subset of the slowness surface Σa determines a.
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Singularity

Definition
A point x on a variety {x ∈ Rn;P (x) = 0} is a singular point if ∇P (x) = 0.

A variety is called smooth or singular depending on whether there are singular points.

Intuition: Cusps and intersections.

Observation
Singular points of the slowness surface correspond exactly to degenerate non-zero
eigenvalues of the Christoffel matrix.

We may think of the real or complex slowness surface, a subset in Rn or Cn.
The slowness polynomial stays the same.
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Singularity

Theorem (Ilmavirta)
Let n /∈ {1, 2, 4, 8}. Then for all stiffness tensors a > 0 the complex slowness surface is
singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is
singular.

Theorem (Ilmavirta)
Let n = 2. Then the real and complex slowness surface is generically smooth. There is a
simple test for singularity.

The case n = 1 is uninteresting and the cases n ∈ {4, 8} are open.
The qP branch can still be smooth — and it often is.
This is not typical behaviour of a family of varieties: slowness surfaces are special.
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Characterization of slowness polynomials

The slowness polynomial was defined by

Pa(p) = det[Γa(p)− I].

It is an even polynomial of degree 2n in n variables.

Not all even polynomials of degree 2n in n variables are slowness polynomials.

In 2D there is an explicit test for whether such a polynomial arises from a stiffness tensor.

The closure of the range of a 7→ Pa (the set of valid slowness polynomials) is a variety with
explicit polynomial conditions.

We know this to be true in all dimensions, but we do not know the polynomials.
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Outline

1 Inverse problems in elasticity

2 Geometry of slowness surfaces

3 Coordinate gauge
Coordinate gauge in geometric inverse problems
Degeometrization
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Coordinate gauge in geometric inverse problems

Coordinates never matter in differential geometry.

If a manifold (M,F ) gives the correct data on ∂M and ϕ : M → M is a diffeomorphism with
ϕ(x) = x for all x ∈ ∂M , then (M,ϕ∗F ) gives the same correct data.

Only the isometry class of the manifold matters, so in a coordinate representation there is a
gauge freedom of diffeomorphisms.
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Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge
freedom. But how about the original problem?

Question
Let a and b be two different stiffness tensor fields on a domain Ω ⊂ Rn and ϕ : Ω → Ω a
diffeomorphism fixing the boundary. Is it possible that F qP

a = ϕ∗F qP
b — i.e., that (Ω, F qP

a ) and
(Ω, F qP

b ) are isometric?

It turns out that the answer depends heavily on the symmetry type of the stiffness tensor!

Observation

The usual pullback of a tensor field does not work: typically ϕ∗F qP
a ̸=F qP

ϕ∗a.
The pullback ϕ∗a may also lose symmetries.

Changing the physical model (symmetry type) fundamentally changes the result.
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