

Geophysics and algebraic geometry

NCSU Geometry and Topology Seminar

Joonas Ilmavirta
April 26, 2023
Based on joint work with
Maarten de Hoop, Matti Lassas, Anthony Várilly-Alvarado

The question

How to see the interior of the Earth via seismic rays?

Outline

(1) Inverse problems in elasticity

- Elastic wave equation
- Propagation of singularities
- Slowness polynomial and slowness surface
- Geometrization of an analytic problem

2 Geometry of slowness surfaces
(3) Coordinate gauge

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Properties:

- $\rho>0$.
- $c_{i j k l}=c_{k l i j}=c_{j i k l}$.
- $\sum_{i, j, k, l} c_{i j k l} A_{i j} A_{k l}>0$ whenever $A=A^{T} \neq 0$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Properties:

- $\rho>0$.
- $c_{i j k l}=c_{k l i j}=c_{j i k l}$.
- $\sum_{i, j, k, l} c_{i j k l} A_{i j} A_{k l}>0$ whenever $A=A^{T} \neq 0$.

Equation of motion (EWE): $\quad \rho(x) \partial_{t}^{2} u_{i}(t, x)-\sum_{j, k, l} \partial_{j}\left[c_{i j k l}(x) \partial_{k} u_{l}(x)\right]=0$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^{n}$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{i j k l}(x) \in \mathbb{R}^{n^{4}}$.

Properties:

- $\rho>0$.
- $c_{i j k l}=c_{k l i j}=c_{j i k l}$.
- $\sum_{i, j, k, l} c_{i j k l} A_{i j} A_{k l}>0$ whenever $A=A^{T} \neq 0$.

Equation of motion (EWE): $\quad \rho(x) \partial_{t}^{2} u_{i}(t, x)-\sum_{j, k, l} \partial_{j}\left[c_{i j k l}(x) \partial_{k} u_{l}(x)\right]=0$.
Compare: $\operatorname{Newton~}(F=m \ddot{x})$ and Hooke $(F=-k x)$.

Propagation of singularities

A wave-type equation can have singular solutions:

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \delta(t-x)=0
$$

Propagation of singularities

A wave-type equation can have singular solutions:

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \delta(t-x)=0
$$

To understand singularities of solutions to the EWE, freeze ρ and c to be constants for a moment. (For details: study microlocal analysis.)

Propagation of singularities

A wave-type equation can have singular solutions:

$$
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) \delta(t-x)=0
$$

To understand singularities of solutions to the EWE, freeze ρ and c to be constants for a moment. (For details: study microlocal analysis.)
If $u=A e^{i \omega(t-p \cdot x)}$, then the EWE becomes

$$
\rho \omega^{2}[-I+\Gamma(p)] A=0,
$$

where

$$
\Gamma_{i l}(p)=\sum_{j, k} \rho^{-1} c_{i j k l} p_{j} p_{k}
$$

is the Christoffel matrix.

Propagation of singularities

If we choose not to keep track of the polarization A, the condition becomes

$$
\operatorname{det}[\Gamma(p)-I]=0
$$

Propagation of singularities

If we choose not to keep track of the polarization A, the condition becomes

$$
\operatorname{det}[\Gamma(p)-I]=0
$$

In general, singularities of the elastic wave equation (mostly) satisfy

$$
\operatorname{det}[\Gamma(x, p)-I]=0
$$

where c and ρ are allowed to depend on x.

Propagation of singularities

If we choose not to keep track of the polarization A, the condition becomes

$$
\operatorname{det}[\Gamma(p)-I]=0
$$

In general, singularities of the elastic wave equation (mostly) satisfy

$$
\operatorname{det}[\Gamma(x, p)-I]=0
$$

where c and ρ are allowed to depend on x.
This describes where the singularities (point particles instead of waves) can be but not yet how they can move.

Propagation of singularities

Let $x \in \Omega \subset \mathbb{R}^{n}$ and $p \in T_{x}^{*} \Omega$. Consider the m th eigenvalue $\lambda_{m}(x, p)$ of the Christoffel matrix $\Gamma(x, p)$.

Propagation of singularities

Let $x \in \Omega \subset \mathbb{R}^{n}$ and $p \in T_{x}^{*} \Omega$. Consider the m th eigenvalue $\lambda_{m}(x, p)$ of the Christoffel matrix $\Gamma(x, p)$.

- λ_{m} defines a Hamiltonian on $T^{*} \Omega$ and the singularities corresponding to the m th fastest eigenvalue follow the Hamiltonian flow.
- $\lambda_{1}^{1 / 2}$ defines a norm on $T^{*} \Omega$.
- The dual norm $F=\left(\lambda_{1}^{1 / 2}\right)^{*}$ on $T \Omega$ is a Finsler norm.
- The singularities follow the geodesics of the Finsler geometry given by F.

Propagation of singularities

Let $x \in \Omega \subset \mathbb{R}^{n}$ and $p \in T_{x}^{*} \Omega$. Consider the m th eigenvalue $\lambda_{m}(x, p)$ of the Christoffel matrix $\Gamma(x, p)$.

- λ_{m} defines a Hamiltonian on $T^{*} \Omega$ and the singularities corresponding to the m th fastest eigenvalue follow the Hamiltonian flow.
- $\lambda_{1}^{1 / 2}$ defines a norm on $T^{*} \Omega$.
- The dual norm $F=\left(\lambda_{1}^{1 / 2}\right)^{*}$ on $T \Omega$ is a Finsler norm.
- The singularities follow the geodesics of the Finsler geometry given by F.

Difficulties:

- Eigenvalues can degenerate.
- For $m>1$ the Hamiltonian or norm can fail to be convex.

Propagation of singularities

Let $x \in \Omega \subset \mathbb{R}^{n}$ and $p \in T_{x}^{*} \Omega$. Consider the m th eigenvalue $\lambda_{m}(x, p)$ of the Christoffel matrix $\Gamma(x, p)$.

- λ_{m} defines a Hamiltonian on $T^{*} \Omega$ and the singularities corresponding to the m th fastest eigenvalue follow the Hamiltonian flow.
- $\lambda_{1}^{1 / 2}$ defines a norm on $T^{*} \Omega$.
- The dual norm $F=\left(\lambda_{1}^{1 / 2}\right)^{*}$ on $T \Omega$ is a Finsler norm.
- The singularities follow the geodesics of the Finsler geometry given by F.

Difficulties:

- Eigenvalues can degenerate.
- For $m>1$ the Hamiltonian or norm can fail to be convex.

The propagation of singularities only depends on the reduced stiffness tensor $a=\rho^{-1} c$.

Slowness polynomial and slowness surface

A reduced stiffness tensor $a_{i j k l}$ defines

- a Christoffel matrix $\Gamma_{a}(p)$ and
- a slowness polynomial $P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right]$.

Slowness polynomial and slowness surface

A reduced stiffness tensor $a_{i j k l}$ defines

- a Christoffel matrix $\Gamma_{a}(p)$ and
- a slowness polynomial $P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right]$.

The set where singularities are possible is the slowness surface

$$
\Sigma_{a}=\left\{p \in \mathbb{R}^{n} ; P_{a}(p)=0\right\} .
$$

Knowing the slowness polynomial \Longleftrightarrow knowing the slowness surface.

Slowness polynomial and slowness surface

A slowness surface in 2D with its two branches, and the corresponding two Finsler norms. The quasi pressure (qP) polarization behaves well.
Anisotropy \Longleftrightarrow dependence on direction \Longleftrightarrow not circles.

Slowness polynomial and slowness surface

Left: The set (slowness surface) of cotangent vectors, momenta, or phase velocities in $T_{x}^{*} \Omega$.
Right: The set of tangent vectors, velocities, group velocities in $T_{x} \Omega$.
Duality between microlocal analysis and algebra on the left and geometry on the right.

Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on $\partial \Omega$, find the parameters $c(x)$ and $\rho(x)$ for all $x \in \Omega$.

Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on $\partial \Omega$, find the parameters $c(x)$ and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F).

Geometrization of an analytic problem

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial \Omega$, find the parameters $c(x)$ and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F).

Remarks:

- Geometric inverse problems like this can be solved for qP geometries.
- Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid and interesting stiffness tensors.
- Knowing the metric is the same as knowing the (co)sphere bundle: (M, g) or $(M, F) \Longleftrightarrow(M, S M) \Longleftrightarrow\left(M, S^{*} M\right)$.
- The cospheres of the Finsler geometry are the qP branches of the slowness surfaces.

Geometrization of an analytic problem

Rays follow geodesics and tell about the interior structure.

Outline

(1) Inverse problems in elasticity

2 Geometry of slowness surfaces

- Algebraic variety
- Generic irreducibility
- Generically unique reduced stiffness tensor
- Singularity
- Characterization of slowness polynomials
(3) Coordinate gauge

Algebraic variety

Definition

A set $V \subset \mathbb{R}^{n}$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Algebraic variety

Definition
A set $V \subset \mathbb{R}^{n}$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

Algebraic variety

Definition

A set $V \subset \mathbb{R}^{n}$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.
The study of the geometry of varieties is a part of algebraic geometry.

Algebraic variety

Given any set F of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can define a closure for all $A \subset \mathbb{R}^{n}$:

$$
\operatorname{cl}_{F}(A)=\left\{x \in \mathbb{R}^{n} ; \forall f \in F:\left.f\right|_{A}=0 \Longrightarrow f(x)=0\right\} .
$$

(This satisfies the Kuratowski axioms if F is a unital ring.)

Algebraic variety

Given any set F of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can define a closure for all $A \subset \mathbb{R}^{n}$:

$$
\operatorname{cl}_{F}(A)=\left\{x \in \mathbb{R}^{n} ; \forall f \in F:\left.f\right|_{A}=0 \Longrightarrow f(x)=0\right\}
$$

(This satisfies the Kuratowski axioms if F is a unital ring.)
Examples:

- $F=C\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.

Algebraic variety

Given any set F of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can define a closure for all $A \subset \mathbb{R}^{n}$:

$$
\operatorname{cl}_{F}(A)=\left\{x \in \mathbb{R}^{n} ; \forall f \in F:\left.f\right|_{A}=0 \Longrightarrow f(x)=0\right\}
$$

(This satisfies the Kuratowski axioms if F is a unital ring.)
Examples:

- $F=C\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=C^{\infty}\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.

Algebraic variety

Given any set F of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can define a closure for all $A \subset \mathbb{R}^{n}$:

$$
\operatorname{cl}_{F}(A)=\left\{x \in \mathbb{R}^{n} ; \forall f \in F:\left.f\right|_{A}=0 \Longrightarrow f(x)=0\right\} .
$$

(This satisfies the Kuratowski axioms if F is a unital ring.)
Examples:

- $F=C\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=C^{\infty}\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=\{$ polynomial functions $\} \rightsquigarrow$ Zariski topology.

Algebraic variety

Given any set F of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can define a closure for all $A \subset \mathbb{R}^{n}$:

$$
\operatorname{cl}_{F}(A)=\left\{x \in \mathbb{R}^{n} ; \forall f \in F:\left.f\right|_{A}=0 \Longrightarrow f(x)=0\right\}
$$

(This satisfies the Kuratowski axioms if F is a unital ring.)
Examples:

- $F=C\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=C^{\infty}\left(\mathbb{R}^{n}\right) \rightsquigarrow$ standard Euclidean topology.
- $F=\{$ polynomial functions $\} \rightsquigarrow$ Zariski topology.

A variety is the same as a Zariski-closed set.

Generic irreducibility

Definition

A variety $V \subset \mathbb{R}^{n}$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if the polynomial can be written as the product of two polynomials in a non-trivial way.

Generic irreducibility

Definition

A variety $V \subset \mathbb{R}^{n}$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if the polynomial can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop-llmavirta-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_{a} is irreducible.

Generic irreducibility

Definition

A variety $V \subset \mathbb{R}^{n}$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if the polynomial can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop-llmavirta-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_{a} is irreducible.

This is not true for all a but only generically.

Generic irreducibility

Corollary (de Hoop, llmavirta, Lassas, Várilly-Alvarado)
When the slowness surface Σ_{a} is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.
If $n \in\{2,3\}$, this is generically true.

Generic irreducibility

Corollary (de Hoop, llmavirta, Lassas, Várilly-Alvarado)
When the slowness surface Σ_{a} is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.
If $n \in\{2,3\}$, this is generically true.
It suffices to measure the well-behaved qP branch!

Generic irreducibility

Any small part of the well-behaved quasi pressure branch determines the whole thing via Zariski closure.

Generic irreducibility

Comments:

Generic irreducibility

Comments:

- If the stiffness tensor is isotropic, the slowness polynomial is reducible:

$$
P_{a}(p)=\left(c_{P}^{2}|p|^{2}-1\right)\left(c_{S}^{2}|p|^{2}-1\right)^{n-1} .
$$

Generic irreducibility

Comments:

- If the stiffness tensor is isotropic, the slowness polynomial is reducible:

$$
P_{a}(p)=\left(c_{P}^{2}|p|^{2}-1\right)\left(c_{S}^{2}|p|^{2}-1\right)^{n-1} .
$$

- It is a general rule of thumb that in a family of polynomials almost every one is irreducible. But it could well happen that that our special subset of polynomials is within the reducible locus.

Generic irreducibility

Comments:

- If the stiffness tensor is isotropic, the slowness polynomial is reducible:

$$
P_{a}(p)=\left(c_{P}^{2}|p|^{2}-1\right)\left(c_{S}^{2}|p|^{2}-1\right)^{n-1} .
$$

- It is a general rule of thumb that in a family of polynomials almost every one is irreducible. But it could well happen that that our special subset of polynomials is within the reducible locus.
- It takes the full power of scheme theory to prove that the set of stiffness tensors a for which the slowness polynomial P_{a} is irreducible is open in the Zariski topology.

Generic irreducibility

Comments:

- If the stiffness tensor is isotropic, the slowness polynomial is reducible:

$$
P_{a}(p)=\left(c_{P}^{2}|p|^{2}-1\right)\left(c_{S}^{2}|p|^{2}-1\right)^{n-1} .
$$

- It is a general rule of thumb that in a family of polynomials almost every one is irreducible. But it could well happen that that our special subset of polynomials is within the reducible locus.
- It takes the full power of scheme theory to prove that the set of stiffness tensors a for which the slowness polynomial P_{a} is irreducible is open in the Zariski topology.
- It takes a single concrete example to show that that set is not empty.

Generically unique reduced stiffness tensor

Theorem (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)
Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Generically unique reduced stiffness tensor

Theorem (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Proof idea: The size of the preimage (in dimension and number) of a polynomial is upper semicontinuous in the Zariski topology, so a single unique example shows uniqueness is generic.

Generically unique reduced stiffness tensor

Theorem (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Proof idea: The size of the preimage (in dimension and number) of a polynomial is upper semicontinuous in the Zariski topology, so a single unique example shows uniqueness is generic.

Note: Uniqueness is not always true. Orthorhombic materials come in quadruplets of anomalous companions.

Generically unique reduced stiffness tensor

Theorem (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \rightarrow P_{a}$ is injective.

Proof idea: The size of the preimage (in dimension and number) of a polynomial is upper semicontinuous in the Zariski topology, so a single unique example shows uniqueness is generic.

Note: Uniqueness is not always true. Orthorhombic materials come in quadruplets of anomalous companions.

Corollary (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)

Let $n \in\{2,3\}$. There is an open and dense subset W of stiffness tensors a so that for all $a \in W$ any small subset of the slowness surface Σ_{a} determines a.

Singularity

Definition

A point x on a variety $\left\{x \in \mathbb{R}^{n} ; P(x)=0\right\}$ is a singular point if $\nabla P(x)=0$.
A variety is called smooth or singular depending on whether there are singular points.

Singularity

Definition

A point x on a variety $\left\{x \in \mathbb{R}^{n} ; P(x)=0\right\}$ is a singular point if $\nabla P(x)=0$.
A variety is called smooth or singular depending on whether there are singular points.
Intuition: Cusps and intersections.

Singularity

Definition

A point x on a variety $\left\{x \in \mathbb{R}^{n} ; P(x)=0\right\}$ is a singular point if $\nabla P(x)=0$.
A variety is called smooth or singular depending on whether there are singular points.
Intuition: Cusps and intersections.

Observation

Singular points of the slowness surface correspond exactly to degenerate non-zero eigenvalues of the Christoffel matrix.

Singularity

Definition

A point x on a variety $\left\{x \in \mathbb{R}^{n} ; P(x)=0\right\}$ is a singular point if $\nabla P(x)=0$.
A variety is called smooth or singular depending on whether there are singular points.
Intuition: Cusps and intersections.

Observation

Singular points of the slowness surface correspond exactly to degenerate non-zero eigenvalues of the Christoffel matrix.

We may think of the real or complex slowness surface, a subset in \mathbb{R}^{n} or \mathbb{C}^{n}. The slowness polynomial stays the same.

Singularity

Theorem (Ilmavirta)

Let $n \notin\{1,2,4,8\}$. Then for all stiffness tensors $a>0$ the complex slowness surface is singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is singular.

Singularity

Theorem (IImavirta)

Let $n \notin\{1,2,4,8\}$. Then for all stiffness tensors $a>0$ the complex slowness surface is singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is singular.

Theorem (IImavirta)

Let $n=2$. Then the real and complex slowness surface is generically smooth. There is a simple test for singularity.

Singularity

Theorem (Ilmavirta)

Let $n \notin\{1,2,4,8\}$. Then for all stiffness tensors $a>0$ the complex slowness surface is singular.

There is an open neighborhood isotropic stiffness tensors so that the real slowness surface is singular.

Theorem (Ilmavirta)

Let $n=2$. Then the real and complex slowness surface is generically smooth. There is a simple test for singularity.

The case $n=1$ is uninteresting and the cases $n \in\{4,8\}$ are open.
The qP branch can still be smooth - and it often is.
This is not typical behaviour of a family of varieties: slowness surfaces are special.

Characterization of slowness polynomials

The slowness polynomial was defined by

$$
P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right] .
$$

It is an even polynomial of degree $2 n$ in n variables.

Characterization of slowness polynomials

The slowness polynomial was defined by

$$
P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right] .
$$

It is an even polynomial of degree $2 n$ in n variables.
Not all even polynomials of degree $2 n$ in n variables are slowness polynomials.

Characterization of slowness polynomials

The slowness polynomial was defined by

$$
P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right] .
$$

It is an even polynomial of degree $2 n$ in n variables.
Not all even polynomials of degree $2 n$ in n variables are slowness polynomials.
In 2D there is an explicit test for whether such a polynomial arises from a stiffness tensor.

Characterization of slowness polynomials

The slowness polynomial was defined by

$$
P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right] .
$$

It is an even polynomial of degree $2 n$ in n variables.
Not all even polynomials of degree $2 n$ in n variables are slowness polynomials.
In 2D there is an explicit test for whether such a polynomial arises from a stiffness tensor.
The closure of the range of $a \mapsto P_{a}$ (the set of valid slowness polynomials) is a variety with explicit polynomial conditions.

Characterization of slowness polynomials

The slowness polynomial was defined by

$$
P_{a}(p)=\operatorname{det}\left[\Gamma_{a}(p)-I\right] .
$$

It is an even polynomial of degree $2 n$ in n variables.
Not all even polynomials of degree $2 n$ in n variables are slowness polynomials.
In 2D there is an explicit test for whether such a polynomial arises from a stiffness tensor.
The closure of the range of $a \mapsto P_{a}$ (the set of valid slowness polynomials) is a variety with explicit polynomial conditions.

We know this to be true in all dimensions, but we do not know the polynomials.

Outline

(1) Inverse problems in elasticity

2 Geometry of slowness surfaces
(3) Coordinate gauge

- Coordinate gauge in geometric inverse problems
- Degeometrization

Coordinate gauge in geometric inverse problems

Coordinates never matter in differential geometry.

Coordinate gauge in geometric inverse problems

Coordinates never matter in differential geometry.
If a manifold (M, F) gives the correct data on ∂M and $\phi: M \rightarrow M$ is a diffeomorphism with $\phi(x)=x$ for all $x \in \partial M$, then $\left(M, \phi^{*} F\right)$ gives the same correct data.

Coordinate gauge in geometric inverse problems

Coordinates never matter in differential geometry.
If a manifold (M, F) gives the correct data on ∂M and $\phi: M \rightarrow M$ is a diffeomorphism with $\phi(x)=x$ for all $x \in \partial M$, then $\left(M, \phi^{*} F\right)$ gives the same correct data.

Only the isometry class of the manifold matters, so in a coordinate representation there is a gauge freedom of diffeomorphisms.

Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^{n}$ and $\phi: \Omega \rightarrow \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_{a}^{q P}=\phi^{*} F_{b}^{q P}$ - i.e., that ($\Omega, F_{a}^{q P}$) and $\left(\Omega, F_{b}^{q P}\right)$ are isometric?

Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^{n}$ and $\phi: \Omega \rightarrow \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_{a}^{q P}=\phi^{*} F_{b}^{q P}$ - i.e., that $\left(\Omega, F_{a}^{q P}\right)$ and $\left(\Omega, F_{b}^{q P}\right)$ are isometric?

It turns out that the answer depends heavily on the symmetry type of the stiffness tensor!

Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^{n}$ and $\phi: \Omega \rightarrow \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_{a}^{q P}=\phi^{*} F_{b}^{q P}$ - i.e., that $\left(\Omega, F_{a}^{q P}\right)$ and $\left(\Omega, F_{b}^{q P}\right)$ are isometric?

It turns out that the answer depends heavily on the symmetry type of the stiffness tensor!

Observation

The usual pullback of a tensor field does not work: typically $\phi^{*} F_{a}^{q P} \neq F_{\phi^{*} a}^{q P}$.

Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^{n}$ and $\phi: \Omega \rightarrow \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_{a}^{q P}=\phi^{*} F_{b}^{q P}$ - i.e., that $\left(\Omega, F_{a}^{q P}\right)$ and $\left(\Omega, F_{b}^{q P}\right)$ are isometric?

It turns out that the answer depends heavily on the symmetry type of the stiffness tensor!

Observation

The usual pullback of a tensor field does not work: typically $\phi^{*} F_{a}^{q P} \neq F_{\phi^{*} a}^{q P}$. The pullback $\phi^{*} a$ may also lose symmetries.

Degeometrization

The solution to the geometrized problem on a Finsler manifold has the coordinate gauge freedom. But how about the original problem?

Question

Let a and b be two different stiffness tensor fields on a domain $\Omega \subset \mathbb{R}^{n}$ and $\phi: \Omega \rightarrow \Omega$ a diffeomorphism fixing the boundary. Is it possible that $F_{a}^{q P}=\phi^{*} F_{b}^{q P}$ - i.e., that $\left(\Omega, F_{a}^{q P}\right)$ and $\left(\Omega, F_{b}^{q P}\right)$ are isometric?

It turns out that the answer depends heavily on the symmetry type of the stiffness tensor!

Observation

The usual pullback of a tensor field does not work: typically $\phi^{*} F_{a}^{q P} \neq F_{\phi^{*} a}^{q P}$. The pullback $\phi^{*} a$ may also lose symmetries.

Changing the physical model (symmetry type) fundamentally changes the result.

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available: http://users.jyu.fi/~jojapeil

Ask for details:
joonas.ilmavirta@jyu.fi

