

Two-layer tomography assisted by anisotropy

Geo-Mathematical Imaging Group Project Review

Joonas Ilmavirta

May 22, 2023

Based on joint work with Maarten de Hoop, Matti Lassas, Anthony Várilly-Alvarado

JYU. Since 1863.

The question

How to see the interior of the Earth via seismic rays?

Joonas Ilmavirta (University of Jyväskylä)

Two-layer tomography assisted by anisotropy

Joonas Ilmavirta (University of Jyväskylä)

Today's highlights

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)

Suppose the planet is piecewise homogeneous (but anisotropic) with two layers. Measurements of travel times of qP rays generically determine the whole model:

- stiffness tensor in the mantle,
- stiffness tensor in the core,
- the core-mantle boundary.

Today's highlights

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)

Suppose the planet is piecewise homogeneous (but anisotropic) with two layers. Measurements of travel times of qP rays generically determine the whole model:

- stiffness tensor in the mantle,
- stiffness tensor in the core,
- the core-mantle boundary.

Theorem (de Hoop-I-Lassas-Várilly-Alvarado 2023)

Generically an anisotropic stiffness tensor is uniquely determined by any of the following:

- slowness polynomial,
- slowness surface,
- a small part of the qP branch of the slowness surface.

But orthorhombic stiffness tensors are not unique!

Outline

Inverse problems in elasticity

- Elastic wave equation
- Propagation of singularities
- Slowness polynomial and slowness surface
- Geometrization of an analytic problem
- Geometry of slowness surfaces

3 A two-layer model

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^n$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{ijkl}(x) \in \mathbb{R}^{n^4}$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^n$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{ijkl}(x) \in \mathbb{R}^{n^4}$.

Properties:

- $\bullet \ \rho > 0.$
- $c_{ijkl} = c_{klij} = c_{jikl}$.
- $\sum_{i,j,k,l} c_{ijkl} A_{ij} A_{kl} > 0$ whenever $A = A^T \neq 0$.

Elastic wave equation

Quantities:

- Displacement $u(t, x) \in \mathbb{R}^n$.
- Density $\rho(x) \in \mathbb{R}$.
- Stiffness tensor $c_{ijkl}(x) \in \mathbb{R}^{n^4}$.

Properties:

- $\bullet \ \rho > 0.$
- $c_{ijkl} = c_{klij} = c_{jikl}$.
- $\sum_{i,j,k,l} c_{ijkl} A_{ij} A_{kl} > 0$ whenever $A = A^T \neq 0$.

Equation of motion:

$$\rho(x)\partial_t^2 u_i(t,x) - \sum_{j,k,l} \partial_j [c_{ijkl}(x)\partial_k u_l(x)] = 0.$$

.

A wave-type equation can have singular solutions:

$$(\partial_t^2 - \partial_x^2)\delta(t - x) = 0.$$

A wave-type equation can have singular solutions:

$$(\partial_t^2 - \partial_x^2)\delta(t - x) = 0.$$

To understand singularities of solutions to the EWE, freeze ρ and c to be constants.

A wave-type equation can have singular solutions:

$$(\partial_t^2 - \partial_x^2)\delta(t - x) = 0.$$

To understand singularities of solutions to the EWE, freeze ρ and c to be constants. If $u = Ae^{i\omega(t-p\cdot x)}$, then the EWE becomes

 $\rho\omega^2[-I+\Gamma(p)]A=0,$

where

$$\Gamma_{il}(p) = \sum_{j,k} \rho^{-1} c_{ijkl} p_j p_k$$

is the Christoffel matrix.

If we choose not to keep track of the polarization A, the condition becomes

 $\det[\Gamma(p) - I] = 0.$

If we choose not to keep track of the polarization A, the condition becomes

 $\det[\Gamma(p) - I] = 0.$

In general, singularities of the elastic wave equation (mostly!) satisfy

 $\det[\Gamma(x,p) - I] = 0,$

where c and ρ are allowed to depend on x.

If we choose not to keep track of the polarization A, the condition becomes

 $\det[\Gamma(p) - I] = 0.$

In general, singularities of the elastic wave equation (mostly!) satisfy

 $\det[\Gamma(x,p) - I] = 0,$

where c and ρ are allowed to depend on x.

The singularities move according to the geodesic flow of the Finsler geometry given by $F^{qP} = [\lambda_1(\Gamma)^{1/2}]^*$.

Joonas Ilmavirta (University of Jyväskylä)

Slowness polynomial and slowness surface

A reduced stiffness tensor $a_{ijkl} = \rho_{ijkl}^{-1}$ defines

- a Christoffel matrix $\Gamma_a(p)$ and
- a slowness polynomial $P_a(p) = \det[\Gamma_a(p) I]$.

Slowness polynomial and slowness surface

A reduced stiffness tensor $a_{ijkl} = \rho_{ijkl}^{-1}$ defines

- a Christoffel matrix $\Gamma_a(p)$ and
- a slowness polynomial $P_a(p) = \det[\Gamma_a(p) I]$.

The set where singularities are possible is the slowness surface

$$\Sigma_a = \{ p \in \mathbb{R}^n; P_a(p) = 0 \}.$$

Knowing the slowness polynomial \iff knowing the slowness surface.

Slowness polynomial and slowness surface

A slowness surface in 2D with its two branches, and the corresponding two Finsler norms. The quasi pressure (qP) polarization behaves well.

Anisotropy \iff dependence on direction \iff not circles.

Joonas Ilmavirta (University of Jyväskylä)

Two-layer tomography assisted by anisotropy

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial\Omega$, find the parameters c(x) and $\rho(x)$ for all $x \in \Omega$.

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial\Omega$, find the parameters c(x) and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F) .

Original inverse problem

Given information of the solutions to the elastic wave equation on $\partial\Omega$, find the parameters c(x) and $\rho(x)$ for all $x \in \Omega$.

Geometrized inverse problem

Given the travel times of singularities (geodesic distances) between boundary points, find the qP Finsler manifold (Ω, F) .

Remarks:

- Geometric inverse problems like this can be solved for qP geometries.
- Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid and interesting stiffness tensors.
- Knowing the metric is the same as knowing the (co)sphere bundle: $(M,g) \text{ or } (M,F) \iff (M,SM) \iff (M,S^*M).$
- The cospheres of the Finsler geometry are the qP branches of the slowness surface.

Rays follow geodesics and tell about the interior structure encoded as a geometry.

Joonas Ilmavirta (University of Jyväskylä)

Two-layer tomography assisted by anisotropy

Outline

Inverse problems in elasticity

- Geometry of slowness surfaces
 - Algebraic variety
 - Generic irreducibility
 - Generically unique reduced stiffness tensor
- A two-layer model

Definition A set $V \subset \mathbb{R}^n$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^n \to \mathbb{R}$.

A set $V \subset \mathbb{R}^n$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^n \to \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

A set $V \subset \mathbb{R}^n$ is an algebraic variety if it is the vanishing set of a collection of polynomials $\mathbb{R}^n \to \mathbb{R}$.

Observation

The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

The study of the geometry of varieties is a part of algebraic geometry.

A variety $V \subset \mathbb{R}^n$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

A variety $V \subset \mathbb{R}^n$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2, 3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_a is irreducible.

A variety $V \subset \mathbb{R}^n$ is reducible if it can be written as the union of two varieties in a non-trivial way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2, 3\}$. There is an open and dense subset of stiffness tensors a so that the slowness polynomial P_a is irreducible.

This is not true for all a.

Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)

When the slowness surface Σ_a is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.

If $n \in \{2, 3\}$, this is generically true.

Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)

When the slowness surface Σ_a is irreducible, any (Euclidean) relatively open subset determines the whole slowness surface.

If $n \in \{2, 3\}$, this is generically true.

It suffices to measure the well-behaved qP branch!

Generic irreducibility

Any small part of the well-behaved quasi pressure branch determines the whole thing via Zariski closure.

Joonas Ilmavirta (University of Jyväskylä)

Two-layer tomography assisted by anisotropy

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \to P_a$ is injective.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \to P_a$ is injective.

Not always true: orthorhombic materials come in quadruplets that have the same slowness surface.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)

Let $n \in \{2,3\}$. There is an open and dense subset W of stiffness tensors a so that the map $W \ni a \to P_a$ is injective.

Not always true: orthorhombic materials come in quadruplets that have the same slowness surface.

Corollary (de Hoop-Ilmavirta-Lassas-Várilly-Alvarado)

Let $n \in \{2, 3\}$. Generically any small subset of the slowness surface Σ_a determines a.

Inverse problems in elasticity

- Geometry of slowness surfaces
- 3 A two-layer model
 - The model
 - The proof

The model

The model

Assumptions:

• Two layers: mantle and core.

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.
- No total reflection of qP waves that trap rays to the core.

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.
- No total reflection of qP waves that trap rays to the core.

Measurement: Travel times and directions of waves between all surface points, for all polarizations.

- Two layers: mantle and core.
- The interface and the outer surface are strictly convex. (E.g. concentric spheres.)
- The material parameters are constant in each layer.
- No total reflection of qP waves that trap rays to the core.

Measurement: Travel times and directions of waves between all surface points, for all polarizations.

Result: The measurement generically determines the model completely!

 First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.
- Get the stiffness tensor in the mantle generically.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.
- Get the stiffness tensor in the mantle generically.
- Take rays deeper and deeper and see when they start behaving oddly.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.
- Get the stiffness tensor in the mantle generically.
- Take rays deeper and deeper and see when they start behaving oddly.
- Get the interface between the layers.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.
- Get the stiffness tensor in the mantle generically.
- Take rays deeper and deeper and see when they start behaving oddly.
- Get the interface between the layers.
- Aim rays at any two points on the interface and get their distance in travel time.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.
- Get the stiffness tensor in the mantle generically.
- Take rays deeper and deeper and see when they start behaving oddly.
- Get the interface between the layers.
- Aim rays at any two points on the interface and get their distance in travel time.
- Get a bit of the qP group velocity surface in the core.

- First study short rays near the surface and get a bit of the qP group velocity surface in the mantle.
- Take Legendre transform to get a bit of the qP slowness surface.
- Get the stiffness tensor in the mantle generically.
- Take rays deeper and deeper and see when they start behaving oddly.
- Get the interface between the layers.
- Aim rays at any two points on the interface and get their distance in travel time.
- Get a bit of the qP group velocity surface in the core.
- Repeat the above to get the stiffness tensor in the core generically.

The proof

First find outer stiffness and boundary, then inner stiffness.

÷

Today's highlights

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)

Suppose the planet is piecewise homogeneous (but anisotropic) with two layers. Measurements of travel times of qP rays generically determine the whole model:

- stiffness tensor in the mantle,
- stiffness tensor in the core,
- the core-mantle boundary.

Theorem (de Hoop-I-Lassas-Várilly-Alvarado 2023)

Generically an anisotropic stiffness tensor is uniquely determined by any of the following:

- slowness polynomial,
- slowness surface,
- a small part of the qP slowness surface.

But orthorhombic stiffness tensors are not unique!

DISCOVERING MATH at JYU. Since 1863.

Slides and papers available: http://users.jyu.fi/~jojapeil

> Ask for details: joonas.ilmavirta@jyu.fi