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The question

How to see the interior of the Earth via seismic rays?
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Today’s highlights

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)
Suppose the planet is piecewise homogeneous (but anisotropic) with two layers.
Measurements of travel times of qP rays generically determine the whole model:

stiffness tensor in the mantle,

stiffness tensor in the core,

the core–mantle boundary.

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)
Generically an anisotropic stiffness tensor is uniquely determined by any of the following:

slowness polynomial,

slowness surface,

a small part of the qP branch of the slowness surface.

But orthorhombic stiffness tensors are not unique!
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Outline

1 Inverse problems in elasticity
Elastic wave equation
Propagation of singularities
Slowness polynomial and slowness surface
Geometrization of an analytic problem

2 Geometry of slowness surfaces

3 A two-layer model
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Elastic wave equation

Quantities:

Displacement u(t, x) ∈ Rn.

Density ρ(x) ∈ R.

Stiffness tensor cijkl(x) ∈ Rn4
.

Properties:

ρ > 0.

cijkl = cklij = cjikl.∑
i,j,k,l cijklAijAkl > 0 whenever A = AT ̸= 0.

Equation of motion: ρ(x)∂2
t ui(t, x)−

∑
j,k,l

∂j [cijkl(x)∂kul(x)] = 0.
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Propagation of singularities

A wave-type equation can have singular solutions:

(∂2
t − ∂2

x)δ(t− x) = 0.

To understand singularities of solutions to the EWE, freeze ρ and c to be constants.
If u = Aeiω(t−p·x), then the EWE becomes

ρω2[−I + Γ(p)]A = 0,

where
Γil(p) =

∑
j,k

ρ−1cijklpjpk

is the Christoffel matrix.
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Propagation of singularities

If we choose not to keep track of the polarization A, the condition becomes

det[Γ(p)− I] = 0.

In general, singularities of the elastic wave equation (mostly!) satisfy

det[Γ(x, p)− I] = 0,

where c and ρ are allowed to depend on x.

The singularities move according to the geodesic flow of the Finsler geometry given by
F qP = [λ1(Γ)

1/2]∗.
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Slowness polynomial and slowness surface

A reduced stiffness tensor aijkl = ρ−1
ijkl defines

a Christoffel matrix Γa(p) and

a slowness polynomial Pa(p) = det[Γa(p)− I].

The set where singularities are possible is the slowness surface

Σa = {p ∈ Rn;Pa(p) = 0}.

Knowing the slowness polynomial ⇐⇒ knowing the slowness surface.
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Slowness polynomial and slowness surface

A slowness surface in 2D with its two branches, and the corresponding two Finsler norms.
The quasi pressure (qP) polarization behaves well.

Anisotropy ⇐⇒ dependence on direction ⇐⇒ not circles.
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Geometrization of an analytic problem

Original inverse problem
Given information of the solutions to the elastic wave equation on ∂Ω, find the parameters c(x)
and ρ(x) for all x ∈ Ω.

Geometrized inverse problem
Given the travel times of singularities (geodesic distances) between boundary points, find the
qP Finsler manifold (Ω, F ).

Remarks:
Geometric inverse problems like this can be solved for qP geometries.
Riemannian geometry is not enough; it can only handle a tiny subclass of physically valid
and interesting stiffness tensors.
Knowing the metric is the same as knowing the (co)sphere bundle:
(M, g) or (M,F ) ⇐⇒ (M,SM) ⇐⇒ (M,S∗M).
The cospheres of the Finsler geometry are the qP branches of the slowness surface.
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Geometrization of an analytic problem

Rays follow geodesics and tell about the interior structure encoded as a geometry.
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Algebraic variety

Definition
A set V ⊂ Rn is an algebraic variety if it is the vanishing set of a collection of polynomials
Rn → R.

Observation
The slowness surface is the vanishing set of the slowness polynomial and thus a variety.

The study of the geometry of varieties is a part of algebraic geometry.
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Generic irreducibility

Definition
A variety V ⊂ Rn is reducible if it can be written as the union of two varieties in a non-trivial
way.

The vanishing set of a single polynomial is reducible if it can be written as the product of two
polynomials in a non-trivial way.

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset of stiffness tensors a so that the slowness
polynomial Pa is irreducible.

This is not true for all a.
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Generic irreducibility

Corollary (de Hoop, Ilmavirta, Lassas, Várilly-Alvarado)
When the slowness surface Σa is irreducible, any (Euclidean) relatively open subset
determines the whole slowness surface.
If n ∈ {2, 3}, this is generically true.

It suffices to measure the well-behaved qP branch!
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Generic irreducibility

Any small part of the well-behaved quasi pressure branch
determines the whole thing via Zariski closure.
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Generically unique reduced stiffness tensor

Theorem (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. There is an open and dense subset W of stiffness tensors a so that the map
W ∋ a → Pa is injective.

Not always true: orthorhombic materials come in quadruplets that have the same slowness
surface.

Corollary (de Hoop–Ilmavirta–Lassas–Várilly-Alvarado)
Let n ∈ {2, 3}. Generically any small subset of the slowness surface Σa determines a.
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The model

Assumptions:

Two layers: mantle and core.

The interface and the outer surface are strictly convex. (E.g. concentric spheres.)

The material parameters are constant in each layer.

No total reflection of qP waves that trap rays to the core.

Measurement: Travel times and directions of waves between all surface points, for all
polarizations.

Result: The measurement generically determines the model completely!
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The proof

First study short rays near the surface and get a bit of the qP group velocity surface in the
mantle.

Take Legendre transform to get a bit of the qP slowness surface.

Get the stiffness tensor in the mantle — generically.

Take rays deeper and deeper and see when they start behaving oddly.

Get the interface between the layers.

Aim rays at any two points on the interface and get their distance in travel time.

Get a bit of the qP group velocity surface in the core.

Repeat the above to get the stiffness tensor in the core — generically.
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The proof

First find outer stiffness and boundary, then inner stiffness.
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Today’s highlights

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)
Suppose the planet is piecewise homogeneous (but anisotropic) with two layers.
Measurements of travel times of qP rays generically determine the whole model:

stiffness tensor in the mantle,

stiffness tensor in the core,

the core–mantle boundary.

Theorem (de Hoop–I–Lassas–Várilly-Alvarado 2023)
Generically an anisotropic stiffness tensor is uniquely determined by any of the following:

slowness polynomial,

slowness surface,

a small part of the qP slowness surface.

But orthorhombic stiffness tensors are not unique!
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