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Topics and goals

Elastic geometry and slowness surfaces.

Algebraic geometry.

These two connect to help solve inverse problems.
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Outline

1 Elastic geometry
Newton’s gravitation
Einstein’s gravitation
Phonons and geometrization
Quasi-pressure Finsler geometry
The slowness surface

2 Algebraic geometry

3 Applications
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Newton’s gravitation

Gravitation is a force and a force causes acceleration.

The gravitational force exerted by the Sun causes the Earth’s trajectory to curve.

The force is described by a simple formula and the equation of motion is an ODE in R3.

The Newtonian approach is straightforward to use and often a good model.
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Einstein’s gravitation

Gravitation is interaction between geometry and matter.

The Sun causes the spacetime to curve and the Earth goes straight in this curved
geometry.

There is a relatively simple equation of motion for the planet: The geodesic equation is a
non-linear ODE.

There is a complicated equation of motion for the geometry itself: Einstein’s field equation
is a non-linear system of coupled PDEs.

This model is harder to use but can reach phenomena inaccessible to Newtonian gravity
and provides a more geometric way to see the essential structures.
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Phonons and geometrization

We can think of seismic or other elastic waves as point particles in different ways:
wave–particle duality,
wave packets, or
microlocal analysis.

The particles of the elastic displacement field are called phonons.
Traditional view: The trajectory of the phonon is curved because wave speed varies.
Newer view: The phonon goes straight in a curved geometry (along a geodesic), and the
geometry is curved by variations in wave speed.
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Quasi-pressure Finsler geometry

We will only look at first arrival times, so that geodesics correspond to the fastest path
between any two points.
Consequences:

1 We only see the qP-polarized waves.
2 The geometry is a Finsler geometry.

(The slowness surface is convex.)

A Riemannian manifold has an inner product at every point.
A Finsler manifold has a norm at every point.
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The slowness surface

Stiffness tensor: aijkl = ρ−1cijkl.

Christoffel matrix: Γjk(p) =
∑

il aijklpipk.

Slowness polynomial: Pa(p) = det(Γ(p)− I).

Slowness surface: Those p ∈ Rn for which Pa(p) = 0.
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The slowness surface

Slowness surface in 2D. Pressure and shear branches.
Only qP is convex.
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A question

If we know a bit of the qP branch of the slowness surface, can we figure out the whole surface?

How about the stiffness tensor?

Theorem (de Hoop–I.–Lassas–Várilly-Alvarado 2022)
Not for all stiffness tensors but yes for most of them.

The set of stiffness tensors for which this works is generic: it contains an open and dense
subset.
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Zariski topology

We can define a topology on Rn by declaring which functions to R are continuous.

If we choose the usual set of continuous functions Rn → R, we get the usual Euclidean
topology.

If we choose the set of polynomial functions Rn → R, we get the Zariski topology.

The Zariski topology is incompatible with differential geometry and analysis, and it is not
Hausdorff, but it is perfect for describing the geometry of zero sets of polynomials.

The slowness surface is a zero set of a polynomial!
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Zariski topology

Denote the slowness surface by Σ, and suppose we know a small subset σ ⊂ Σ.

Cheap: The Euclidean closure σ̄ is also in Σ.

Powerful: The Zariski closure σ̄ is also in Σ.

Definition of Zariski closure: If f |σ = 0 =⇒ f(x) = 0, then x ∈ σ̄.
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Zariski topology

The Zariski closure of a circular arc is the whole circle.
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Zariski topology

The Zariski closure of a small part of the qP branch is the whole qP branch.
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Zariski topology

The Zariski closure of a small part of the qP branch is the whole qP branch.
If Pa is irreducible, the closure is the whole slowness surface!
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Technical result

Theorem (de Hoop–I.–Lassas–Várilly-Alvarado 2022)
Let n = 2 or n = 3. The set of those stiffness tensors a for which the slowness polynomial is
irreducible contains a non-empty Zariski-open subset.

Theorem (de Hoop–I.–Lassas–Várilly-Alvarado 2022)
Let n = 2 or n = 3. The set of those stiffness tensors a for which the stiffness tensor is
uniquely determined by the slowness surface contains a non-empty Zariski-open subset.

The previous theorem follows.
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Remarks

The result is not true for all stiffness tensors.
Anisotropy helps!

Both inversion steps are efficiently and easily implemented but hard to prove.

Most polynomials are irreducible, but slowness polynomials are a very special class of
polynomials with some odd properties.
We don’t fully understand all the special structure slowness surfaces have as varieties.

We use relatively heavy tools in algebraic geometry.
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Anisotropic and homogeneous

Suppose the stiffness tensor inside a domain is anisotropic and homogeneous.

If we measure fastest arrival times in an open subset of the surface, we get a small patch of
the qP slowness surface.

Generically this information determines the stiffness tensor.

The tensor is not determined uniquely by the data if it is isotropic!
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Anisotropic and piecewise homogeneous

Suppose the stiffness tensor inside a domain is anisotropic and piecewise homogeneous with
a convex interface.
(E.g. core and mantle.)

If we measure fastest arrival times on the surface, we generically recover both stiffness
tensors and the interface.
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General stiffness tensor fields

The main tools here work point by point, one slowness surface at a time.

General anisotropic stiffness tensor fields (= elastic Finsler geometries) require more tools
built on top of this algebraic structure.

We are building those tools, and even more surprising features seem to emerge when we
connect algebraic geometry with elastic Finsler geometry.

Stay tuned for the next GMIG workshop!
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