The light ray transform

NCSU geometry and topology seminar

Joonas Ilmavirta
Tampere University
In collaboration with:
A. Feizmohammadi \& Y. Kian \& L. Oksanen
25 March 2021

Outline
(1) Light rays

- Flat spacetimes
- Lorentz manifolds
- Light cones and rays
- The light ray transform
- The X-ray transform
(2) Relation to other problems

(3) Light ray tomography of scalar fields

4 Light ray tomography of tensor fields
(5) Proofs

Flat spacetimes

- Flat spacetime $=$ Minkowski space $=\mathbb{R}^{n}$ with a certain "metric" structure.

Flat spacetimes

- Flat spacetime $=$ Minkowski space $=\mathbb{R}^{n}$ with a certain "metric" structure.
- In the normal Euclidean space all geometry comes from the quadratic form

$$
\mathbb{R}^{n} \ni x \mapsto x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=|X|^{2}
$$

Flat spacetimes

- Flat spacetime $=$ Minkowski space $=\mathbb{R}^{n}$ with a certain "metric" structure.
- In the normal Euclidean space all geometry comes from the quadratic form

$$
\mathbb{R}^{n} \ni x \mapsto x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

- In Minkowski spaces all geometry comes from the quadratic form

$$
\mathbb{R}^{n} \ni x \mapsto x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}=:|x|^{2} . \text { square }
$$

Flat spacetimes

- Flat spacetime $=$ Minkowski space $=\mathbb{R}^{n}$ with a certain "metric" structure.
- In the normal Euclidean space all geometry comes from the quadratic form

$$
\mathbb{R}^{n} \ni x \mapsto x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

- In Minkowski spaces all geometry comes from the quadratic form

$$
\mathbb{R}^{n} \ni x \mapsto x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}=:|x|^{2} .
$$

- The coordinates $\left(x_{2}, \ldots, x_{n}\right)$ are for space, x_{1} for time.

Lorentz manifolds

- Riemannian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a Euclidean structure (positive definite quadratic form).
- Riemannian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a Euclidean structure (positive definite quadratic form).
- Lorentzian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a quadratic form with eigenvalues $(+,-, \ldots,-)$. or $(-,+, \ldots, f)$

- Riemannian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a Euclidean structure (positive definite quadratic form).
- Lorentzian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a quadratic form with eigenvalues $(+,-, \ldots,-)$.
- In both cases there is an invertible metric tensor which gives rise to connections, geodesics, and many others.

- Riemannian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a Euclidean structure (positive definite quadratic form).
- Lorentzian manifold: Smooth manifold M where every tangent space $T_{x} M$ has a quadratic form with eigenvalues $(+,-, \ldots,-)$.
- In both cases there is an invertible metric tensor which gives rise to connections, geodesics, and many others.
- Geodesics are straight curves, not (locally) shortest.

light cone $\left.\left\{v \in \mathbb{R}^{1}\right\rangle+2,|v|^{2}=0\right\}$ No unit vectors!

Light cones and rays
A curve $\gamma: \mathbb{R} \rightarrow M$ is lightlike if $\gamma(t)$ is lightlike $\left(|\dot{\gamma}(t)|^{2}=0\right)$ for all $t \in \mathbb{R}$.
A light ray is a lightlike geodesic.
There are "constant speed" parametrization but not unit speed

The light ray transform

Question

The light ray transform

Question

Is a function $f: M \rightarrow \mathbb{R}$ uniquely determined by its integrals over all light rays?

Definition

The light ray transform is the operator
given by
$L:\{$ functions on $M\} \rightarrow\{$ functions on the set of light rays $\}$

$$
L f(\gamma)=\int_{\gamma} f
$$

The light ray transform

The light ray transform

Question

Is the light ray transform an injective linear operator?

The light ray transform

Question

Is the light ray transform an injective linear operator?

Question

What if f is a one-form?

The light ray transform

Question

Is the light ray transform an injective linear operator?

Question

What if f is a one-form? Or another tensor field?

The X-ray transform

On a Riemannian manifold N :
Not Lorentzian

The X-ray transform

On a Riemannian manifold N :
Definition
The X-ray transform is the operator
$I:\{$ functions on $N\} \rightarrow\{$ functions on the set of geodesics $\}$
given by

$$
I f(\gamma)=\int_{\gamma} f
$$

not light rays

The X-ray transform

On a Riemannian manifold N :

Definition

The X-ray transform is the operator

$$
I:\{\text { functions on } N\} \rightarrow\{\text { functions on the set of geodesics }\}
$$

given by

$$
I f(\gamma)=\int_{\gamma} f
$$

Question

Is the X-ray transform an injective linear operator?

Outline

(1) Light rays
(2) Relation to other problems

- Ray transforms in general
- Wave equations
(3) Light ray tomography of scalar fields

4. Light ray tomography of tensor fields
(5) Proofs

Ray transforms in general

Ray transforms in general

- Ray transforms arise directly in imaging applications, e.g. CT.
- Linearized geometric problems often lead to ray transforms.

Ray transforms in general

- Ray transforms arise directly in imaging applications, e.g. CT.
- Linearized geometric problems often lead to ray transforms.
- Inverse problems for PDEs can be turned to ray transform problems if one can focus solutions on a ray.

Wave equations

- The usual wave equation in \mathbb{R}^{1+n} is

$$
\underbrace{\left[\partial_{0}^{2}-\partial_{1}^{2}-\cdots-\partial_{n}^{2}\right] u(t, x)=0 .}_{=: \square \text { usually }}
$$

Wave equations

- The usual wave equation in \mathbb{R}^{1+n} is

$$
\left[\partial_{0}^{2}-\partial_{1}^{2}-\cdots-\partial_{n}^{2}\right] u(t, x)=0
$$

- The wave operator on \mathbb{R}^{1+n} is the Laplace-Beltrami operator of the Minkowski space.

Wave equations

- The usual wave equation in \mathbb{R}^{1+n} is

$$
\left[\partial_{0}^{2}-\partial_{1}^{2}-\cdots-\partial_{n}^{2}\right] u(t, x)=0
$$

- The wave operator on \mathbb{R}^{1+n} is the Laplace-Beltrami operator of the Minkowski space.
- Solutions to the wave equation can be non-smooth.

1+10: $u(t, x)=\delta(t-x)$

Wave equations

- The usual wave equation in \mathbb{R}^{1+n} is

$$
\left[\partial_{0}^{2}-\partial_{1}^{2}-\cdots-\partial_{n}^{2}\right] u(t, x)=0
$$

- The wave operator on \mathbb{R}^{1+n} is the Laplace-Beltrami operator of the Mirdkonski space.
- Solutions to the wave equation can be non-smooth.
- Singularities of solutions follow light rays.

$$
u(t, x)=\delta(t-x)
$$

Wave equations

- The usual wave equation in \mathbb{R}^{1+n} is
- The wave operator on \mathbb{R}^{1+n} is the Laplace-Beltrami operator of the Minkowski space.
- Solutions to the wave equation can be non-smooth.
- Singularities of solutions follow light rays.
- Wave packets or other asymptotic solutions can be built around light rays.

Wave equations

- On a Lorentzian manifold (M, g) the wave equation is

$$
\Delta_{g} u(x)=0 .
$$

Now x is an event (in spacetime), not a point (in space).

Wave equations

- On a Lorentzian manifold (M, g) the wave equation is

$$
\Delta_{g} u(x)=0
$$

Now x is an event (in spacetime), not a point (in space).

- To this equation you can add a scalar potential (a function $q: M \rightarrow \mathbb{R}$ is a potential):

$$
\left[\Delta_{g}+q(x)\right] u(x)=0
$$

Wave equations

- On a Lorentzian manifold (M, g) the wave equation is

$$
\begin{aligned}
& \text { wave equation is } \\
& 2 \text { or der operator } \\
& \Delta_{g} u(x)=0 \text {. }
\end{aligned}
$$

Now x is an event (in spacetime), not a point (in space).

- To this equation you can add a scalar potential (a function $q: M \rightarrow \mathbb{R}$ is a potential):

$$
\begin{aligned}
& {\left[\Delta_{g}+q(x)\right] u(x)=0 \text {. }}
\end{aligned}
$$

- Or a vector potential (a vector field A on M): $1^{\text {st }}$ order term

$$
\left[-\left(-i \nabla_{g}+\stackrel{\rightharpoonup}{A}\right)^{2}+q\right] u=0 .
$$

Wave equations

Consider the Lorentzian manifold $M=\mathbb{R} \times \Omega$, where Ω is compact (e.g. $\subset \mathbb{R}^{n}$).

Wave equations

Consider the Lorentzian manifold $M=\mathbb{R} \times \Omega$, where Ω is compact (e.g. $\subset \mathbb{R}^{n}$).
Definition
The Cauchy data of q and A is

$$
C(q, A)=\left\{\left(\left.u\right|_{\partial M},\left.\partial_{\nu} u\right|_{\partial M}\right) ;\left[\left(-i \nabla_{g}+A\right)^{2}+q\right] u=0\right\} .
$$

(This is the graph of the Dirichlet-to-Neumann operator.)

Wave equations

Consider the Lorentzian manifold $M=\mathbb{R} \times \Omega$, where Ω is compact (e.g. $\subset \mathbb{R}^{n}$).

Definition

The Cauchy data of q and A is

$$
C(q, A)=\left\{\left(\left.u\right|_{\partial M},\left.\partial_{\nu} u\right|_{\partial M}\right) ;\left[\left(-i \nabla_{g}+A\right)^{2}+q\right] u=0\right\} .
$$

(This is the graph of the Dirichlet-to-Neumann operator.)

Question

Suppose q_{i} and A_{i} are compactly supported in M. If $C\left(q_{1}, A_{1}\right)=C\left(q_{2}, A_{2}\right)$, is $q_{1}=q_{2}$ and $A_{1}=A_{2}$?

Wave equations

Consider the Lorentzian manifold $M=\mathbb{R} \times \Omega$, where Ω is compact (e.g. $\subset \mathbb{R}^{n}$).

Definition

The Cauchy data of q and A is

$$
C(q, A)=\left\{\left(\left.u\right|_{\partial M},\left.\partial_{\nu} u\right|_{\partial M}\right) ;\left[\left(-i \nabla_{g}+A\right)^{2}+q\right] u=0\right\} .
$$

(This is the graph of the Dirichlet-to-Neumann operator.)

Question

Suppose q_{i} and A_{i} are compactly supported in M. If $C\left(q_{1}, A_{1}\right)=C\left(q_{2}, A_{2}\right)$, is $q_{1}=q_{2}$ and $A_{1}=A_{2}$?

No, because $C(q, A)=C(q, A+\nabla \phi)$ for any scalar function ϕ with zero boundary values.
But is this dll?

Wave equations

Lemma

Suppose $C\left(q_{1}, A_{1}\right)=C\left(q_{2}, A_{2}\right)$. Then for any light ray \uparrow through M

$$
\begin{aligned}
& \int_{\gamma}\left(q_{1}-q_{2}\right) \mathrm{d} t=L\left(q_{1}-q_{2}\right)(\gamma)=0 \\
& \\
& \text { vector field } \\
& \int_{\gamma}\left(A_{1}-A_{2}\right)=L\left(A_{1}-A_{2}\right)(\gamma)=0
\end{aligned}
$$

Wave equations

Lemma

Suppose $C\left(q_{1}, A_{1}\right)=C\left(q_{2}, A_{2}\right)$. Then for any light ray γ through M

$$
\int_{\gamma}\left(q_{1}-q_{2}\right) \mathrm{d} t=L\left(q_{1}-q_{2}\right)(\gamma)=0
$$

and

$$
\int_{\gamma}\left(A_{1}-A_{2}\right)=L\left(A_{1}-A_{2}\right)(\gamma)=0
$$

If L is injective on scalar and vector fields, then the Cauchy data determines the two potentials!
modulo some obstructions

Outline

(1) Light rays
(2) Relation to other problems
(3) Light ray tomography of scalar fields

- Flat spacetimes
- Static spacetimes
(4) Light ray tomography of tensor fields
(5) Proofs

Flat spacetimes

Take any $n \geq 2$ and let \mathbb{R}^{1+n} be the Minkowski space of dimension $1+n$.

Flat spacetimes

Take any $n \geq 2$ and let \mathbb{R}^{1+n} be the Minkowski space of dimension $1+n$.

Theorem

Let $f: \mathbb{R}^{1+n} \rightarrow \mathbb{C}$ be a compactly supported smooth function. If $L f(\gamma)=0$ for all γ, then $f=0$.

Flat spacetimes

Take any $n \geq 2$ and let \mathbb{R}^{1+n} be the Minkowski space of dimension $1+n$.

Theorem

Let $f: \mathbb{R}^{1+n} \rightarrow \mathbb{C}$ be a compactly supported smooth function. If $L f(\gamma)=0$ for all γ, then $f=0$.

That is, the light ray transform is injective on $C_{c}^{\infty}\left(\mathbb{R}^{1+n}\right)$.

Flat spacetimes

Take any $n \geq 2$ and let \mathbb{R}^{1+n} be the Minkowski space of dimension $1+n$.

Theorem

Let $f: \mathbb{R}^{1+n} \rightarrow \mathbb{C}$ be a compactly supported smooth function. If $L f(\gamma)=0$ for all γ, then $f=0$.

That is, the light ray transform is injective on $C_{c}^{\infty}\left(\mathbb{R}^{1+n}\right)$.
But there is a Schwartz function $f \neq 0$ for which $L f=0$

Static spacetimes

Static spacetimes

A stationary spacetime admits a product structure $M=\mathbb{R} \times N$ and the metric tensor is conformal to

$$
g=\mathrm{d} t^{2}+\mathrm{d} t \otimes \eta(x)+\eta(x) \otimes \mathrm{d} t-h(x)
$$

where h is a Riemannian metric on N and η is a one-form on N.

Static spacetimes

A stationary spacetime admits a product structure $M=\mathbb{R} \times N$ and the metric tensor is conformal to
where h is a Riemannian metric on N and η is a one-form on N.
The spacetime is called static if $\eta=0$. This is full product geometry:

$$
\begin{aligned}
& \text { spacetime }=\text { time } \times \text { space } \\
& \text { R'iemonnian product: } g=g_{1}+g_{2} \\
& \text { Lorentzion product: } g=g_{1}-g_{2}
\end{aligned}
$$

Static spacetimes

A stationary spacetime admits a product structure $M=\mathbb{R} \times N$ and the metric tensor is conformal to

$$
g=\mathrm{d} t^{2}+\mathrm{d} t \otimes \eta(x)+\eta(x) \otimes \mathrm{d} t-h(x)
$$

where h is a Riemannian metric on N and η is a one-form on N.
The spacetime is called static if $\eta=0$. This is full product geometry:

$$
\text { spacetime }=\text { time } \times \text { space }
$$

The Minkowski space is static (and thus stationary).
Feel tree to keep thirking
minkowski!

Static spacetimes

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)

Static spacetimes

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)
Consider a static spacetime $M=\mathbb{R} \times N$, where N is a compact Riemannian manifold with boundary.

Static spacetime

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)
Consider a static spacetime $M=\mathbb{R} \times N$, where N is a compact Riemannian manifold with boundary.

If the Riemannian X-ray transform is injective on N, then the light ray transform is injective on (compactly supported functions on) M.

$$
\begin{aligned}
& \text { Injectivity is inherited } \\
& \text { R'iemann~~) Lorentz }
\end{aligned}
$$

Static spacetime

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)
Consider a static spacetime $M=\mathbb{R} \times N$, where N is a compact Riemannian manifold with boundary.

If the Riemannian X-ray transform is infective on N, then the light ray transform is infective on (compactly supported functions on) M.

Works also in stationary geometry!

Meat.

Outline

(9) Light rays
(2) Relation to other problems
(3) Light ray tomography of scalar fields
4. Light ray tomography of tensor fields

- How to integrate a tensor field
- Potential kernel
- Vector field tomography
- Conformal and antisymmetric kernel
- Light ray tensor tomography
- Conformal symmetry
(5) Proofs

How to integrate a tensor field

A (covariant) tensor field f of rank m gives rise to a multilinear map

$$
f_{x}: T_{x} M \times \cdots \times T_{x} M \rightarrow \mathbb{R}
$$

at each $x \in M$.

How to integrate a tensor field

A (covariant) tensor field f of rank m gives rise to a multilinear map

$$
f_{x}: T_{x} M \times \cdots \times T_{x} M \rightarrow \mathbb{R}
$$

at each $x \in M$.

The metric tensor is a rank 2 covariant tensor field.

How to integrate a tensor field

A (covariant) tensor field f of rank m gives rise to a multilinear map

$$
f_{x}: T_{x} M \times \cdots \times T_{x} M \rightarrow \mathbb{R}
$$

at each $x \in M$.

The metric tensor is a rank 2 covariant tensor field.

The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

How to integrate a tensor field

A (covariant) tensor field f of rank m gives rise to a multilinear map

$$
f_{x}: T_{x} M \times \cdots \times T_{x} M \rightarrow \mathbb{R}
$$

at each $x \in M$.

The metric tensor is a rank 2 covariant tensor field.
The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\begin{aligned}
& \int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t . \\
& \text { If } m=0, \quad f_{\gamma(t)}=f(\gamma(t)) \\
& \text { as when } m=0,1 \text {. }
\end{aligned}
$$

This gives the familiar formulas when $m=0,1$.

Potential kernel

Question

If a tensor field f integrates to zero over all light rays, is $f=0$?

Potential kernel

Question

If a tensor field f integrates to zero over all light rays, is $f=0$?

$$
\text { No! Unless } m=0
$$

Potential kernel

Question

If a tensor field f integrates to zero over all light rays, is $f=0$?
No!

Case $m=1$: If $f=\mathrm{d} h$ where h is a scalar function vanishing on the boundary, then

$$
\int_{\gamma} f=h\left(\gamma\left(t_{\text {end }}\right)\right)-h\left(\gamma\left(t_{\text {start }}\right)\right)=0
$$

for any light ray γ.

Potential kernel

Question

If a tensor field f integrates to zero over all light rays, is $f=0$?
No!

Case $m=1$: If $f=\mathrm{d} h$ where h is a scalar function vanishing on the boundary, then

$$
\int_{\gamma} f=h\left(\gamma\left(t_{\text {end }}\right)\right)-h\left(\gamma\left(t_{\text {start }}\right)\right)=0
$$

for any light ray γ.

Case $m \geq 1$: If h is a tensor field of rank $m-1$ vanishing on the boundary and $f=\sigma \nabla h$, then $L f=0$.

Vector field tomography

Theorem (Riemannian geometry)

Vector field tomography

Theorem (Riemannian geometry)
Let N be a simple Riemannian manifold.

- Convex boundary
- unique geodesics
$\ell . g$
$\bar{B}(0,1) \subset \mathbb{R}^{n}$

Vector field tomography

Theorem (Riemannian geometry)
Let N be a simple Riemannian manifold. The following are equivalent for a covector field (= one-form = covariant tensor field of rank 1) f on N :
(1) fintegrates to zero over all geodesics.
(2) $f=\mathrm{d} h$ for some function $h: N \rightarrow \mathbb{R}$ with $\left.h\right|_{\partial N}=0$.

Vector field tomography

Theorem (Riemannian geometry)
Let N be a simple Riemannian manifold. The following are equivalent for a covector field (= one-form = covariant tensor field of rank 1) f on N :
(1) f integrates to zero over all geodesics.
(2) $f=\mathrm{d} h$ for some function $h: N \rightarrow \mathbb{R}$ with $\left.h\right|_{\partial N}=0$.

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)

Vector field tomography

Theorem (Riemannian geometry)
Let N be a simple Riemannian manifold. The following are equivalent for a covector field (= one-form = covariant tensor field of rank 1) f on N :
(1) fintegrates to zero over all geodesics.
(2) $f=\mathrm{d} h$ for some function $h: N \rightarrow \mathbb{R}$ with $\left.h\right|_{\partial N}=0$.

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)
Consider a static spacetime $M=\mathbb{R} \times N$, where N is a simple Riemannian manifold.

Vector field tomography

Theorem (Riemannian geometry)

Let N be a simple Riemannian manifold. The following are equivalent for a covector field (= one-form = covariant tensor field of rank 1) f on N :
(1) f integrates to zero over all geodesics.
(2) $f=\mathrm{d} h$ for some function $h: N \rightarrow \mathbb{R}$ with $\left.h\right|_{\partial N}=0$.

Theorem (Feizmohammadi-J.I.-Kian-Oksanen \& Feizmohammadi-J.I.-Oksanen)

Consider a static spacetime $M=\mathbb{R} \times N$, where N is a simple Riemannian manifold.
The following are equivalent for a compactly supported covector field f on M :
(1) f integrates to zero over all light rays.
(2) $f=\mathrm{d} h$ for some function $h: M \rightarrow \mathbb{R}$ with $\left.h\right|_{\partial M}=0$.

Conformal and antisymmetric kernel

Conformal and antisymmetric kernel

The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

Conformal and antisymmetric kernel

The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

These integrals only see the symmetric part of f !

Conformal and antisymmetric kernel

The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

These integrals only see the symmetric part of f !
For $m=2$ we can write $f=f_{\text {symmetric }}+f_{\text {antisymmetric }}$ and $L f_{\text {antisymmetric }}=0$.

$$
A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right)
$$

Conformal and antisymmetric kernel

The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

These integrals only see the symmetric part of f !
For $m=2$ we can write $f=f_{\text {symmetric }}+f_{\text {antisymmetric }}$ and $L f_{\text {antisymmetric }}=0$.
Ray transforms are often only defined for symmetric tensor fields.

Conformal and antisymmetric kernel

The integral of a tensor field f along a curve $\gamma:[a, b] \rightarrow M$ is

$$
\int_{\gamma} f=\int_{a}^{b} f_{\gamma(t)}(\dot{\gamma}(t), \ldots, \dot{\gamma}(t)) \mathrm{d} t
$$

These integrals only see the symmetric part of f !
For $m=2$ we can write $f=f_{\text {symmetric }}+f_{\text {antisymmetric }}$ and $L f_{\text {antisymmetric }}=0$.
Ray transforms are often only defined for symmetric tensor fields.
The potential kernel and this antisymmetric kernel exist for any kinds of rays.
geodesics, light rays,

Conformal and antisymmetric kernel

Light rays are geodesics for which $|\dot{\gamma}(t)|^{2}=0$ (or $\left.g(\dot{\gamma}(t), \dot{\gamma}(t))=0\right)$ for all t.

Conformal and antisymmetric kernel

Light rays are geodesics for which $|\dot{\gamma}(t)|^{2}=0($ or $g(\dot{\gamma}(t), \dot{\gamma}(t))=0)$ for all t.
The light ray transform of the metric tensor is zero:

$$
L g(\gamma)=\int_{a}^{b} \underbrace{g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t))}_{\equiv 0!} \mathrm{d} t=0 .
$$

Conformal and antisymmetric kernel

Light rays are geodesics for which $|\dot{\gamma}(t)|^{2}=0($ or $g(\dot{\gamma}(t), \dot{\gamma}(t))=0)$ for all t.
The light ray transform of the metric tensor is zero:

$$
L g(\gamma)=\int_{a}^{b} g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) \mathrm{d} t=0
$$

If $f=c g$ for any scalar function c, then $L f=0$.

Conformal and antisymmetric kernel

Light rays are geodesics for which $|\dot{\gamma}(t)|^{2}=0($ or $g(\dot{\gamma}(t), \dot{\gamma}(t))=0)$ for all t.
The light ray transform of the metric tensor is zero:

$$
L g(\gamma)=\int_{a}^{b} g_{\gamma(t)}(\dot{\gamma}(t), \dot{\gamma}(t)) \mathrm{d} t=0
$$

If $f=c g$ for any scalar function c, then $L f=0$.

lo
Case $m \geq 2$: If c is a tensor field of rank $m-2$, then $L(c \otimes g)=0$.

Conformal and antisymmetric kernel

A tensor field f of rank $m \geq 2$ is in the kernel of the light ray transform if:

- $f=\nabla h$ for h of rank $m-1$, potential fie (as
- $f=c \otimes g$ for c of rank $m-2$, or i conformal fields
- f is "antisymmetric".

OG to fully symmetric \neq fully antisymmetric if $m \geq 3$

Conformal and antisymmetric kernel

A tensor field f of rank $m \geq 2$ is in the kernel of the light ray transform if:

- $f=\nabla h$ for h of rank $m-1$,
- $f=c \otimes g$ for c of rank $m-2$, or
- f is "antisymmetric".

Conjecture

$L f=0$ if and only if the symmetric part of f is of the form

$$
\begin{aligned}
& \hat{\imath}(\nabla h+c \otimes g) \text {. } \\
& \text { force symmetry }
\end{aligned}
$$

Light ray tensor tomography

A Riemannian manifold N is nice if a symmetric tensor field f integrates to zero (if and) only if $f=\sigma \nabla h$ and $\left.h\right|_{\partial N}=0$.

Light ray tensor tomography

A Riemannian manifold N is nice if a symmetric tensor field f integrates to zero (if and) only if $f=\sigma \nabla h$ and $\left.h\right|_{\partial N}=0$. There are nice manifolds, e.g. Euclidean domains.

Light ray tensor tomography

A Riemannian manifold N is nice if a symmetric tensor field f integrates to zero (if and) only if $f=\sigma \nabla h$ and $\left.h\right|_{\partial N}=0$. There are nice manifolds, e.g. Euclidean domains.

Theorem (Feizmohammadi-J.I.-Oksanen)

Suppose N is nice and let $M=\mathbb{R} \times N$.

Light ray tensor tomography

A Riemannian manifold N is nice if a symmetric tensor field f integrates to zero (if and) only if $f=\sigma \nabla h$ and $\left.h\right|_{\partial N}=0$. There are nice manifolds, e.g. Euclidean domains.

Theorem (Feizmohammadi-J.I.-Oksanen)

Suppose N is nice and let $M=\mathbb{R} \times N$. The following are equivalent for a tensor field f of rank m on M :
(1) $L f=0$, meaning that f integrates to zero over all light rays.
(2) $f_{\text {sym }}=\sigma(\nabla h+c \otimes g)$ for some tensor fields h of rank $m-1$ and c of rank $m-2$ with $\left.h\right|_{\partial M}=0$.

Conformal symmetry

Conformal symmetry

A conformal transformation is $g \mapsto c g$, where c is a scalar function.

$$
r(x)>0 \quad \forall x \in M
$$

Conformal symmetry

A conformal transformation is $g \mapsto c g$, where c is a scalar function.
Theorem
Light rays as sets are invariant under conformal transformations.
But parametrization charge

Conformal symmetry

A conformal transformation is $g \mapsto c g$, where c is a scalar function.

Theorem

Light rays as sets are invariant under conformal transformations.

Theorem (Feizmohammadi-J.I.-Oksanen)

Injectivity of the light ray transform up to natural obstructions is invariant under conformal transformations.

Conformal symmetry

A conformal transformation is $g \mapsto c g$, where c is a scalar function.

Theorem

Light rays as sets are invariant under conformal transformations.

Theorem (Feizmohammadi-J.I.-Oksanen)

Injectivity of the light ray transform up to natural obstructions is invariant under conformal transformations.

Both the question and the answer are conformally invariant in some sense.

Outline

(1) Light rays
(2) Relation to other problems
(3) Light ray tomography of scalar fields
(4) Light ray tomography of tensor fields
(5) Proofs

- Minkowski geometry
- Product geometry

Minkowski geometry

Minkowski geometry

Minkourki sure

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \frac{1}{~} v$.
$\mu . S$

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \perp v$.
- The function $x \cdot \xi$ is invariant when x is translated in the direction of y, so

$$
\int_{\mathbb{R}^{1+n}} e^{-i x \cdot \xi} f(x)
$$

can be written in terms of of the light ray transform.

$$
\begin{aligned}
& \text { different exp. } \\
& \text { coefficient on } \\
& \text { each ray }
\end{aligned}
$$

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \perp v$.
- The function $x \cdot \xi$ is invariant when x is translated in the direction of v, so

$$
\int_{\mathbb{R}^{1+n}} e^{-i x \cdot \xi} f(x)
$$

can be written in terms of of the light ray transform.

- If $L f=0$, then $\hat{f}(\xi)=0$, provided that ξ has an orthogonal lightlike vector v.

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \perp v$.
- The function $x \cdot \xi$ is invariant when x is translated in the direction of v, so

$$
\int_{\mathbb{R}^{1+n}} e^{-i x \cdot \xi} f(x)
$$

can be written in terms of of the light ray transform.

- If $L f=0$, then $\hat{f}(\xi)=0$, provided that ξ has an orthogonal lightlike vector v. Thus $\hat{f}(\xi)=0$ whenever $\mid \xi^{2} X \leq 0$.

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \perp v$.
- The function $x \cdot \xi$ is invariant when x is translated in the direction of v, so

$$
\int_{\mathbb{R}^{1+n}} e^{-i x \cdot \xi} f(x)
$$

can be written in terms of of the light ray transform.

- If $L f=0$, then $\hat{f}(\xi)=0$, provided that ξ has an orthogonal lightlike vector v. Thus $\hat{f}(\xi)=0$ whenever $\left|\xi^{2}\right| \leq 0$.
- If f is compactly supported, \hat{f} is real analytic.
Paley-Wicner

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \perp v$.
- The function $x \cdot \xi$ is invariant when x is translated in the direction of v, so

$$
\int_{\mathbb{R}^{1+n}} e^{-i x \cdot \xi} f(x)
$$

can be written in terms of of the light ray transform.

- If $L f=0$, then $\hat{f}(\xi)=0$, provided that ξ has an orthogonal lightlike vector v. Thus $\hat{f}(\xi)=0$ whenever $\left|\xi^{2}\right| \leq 0$.
- If f is compactly supported, \hat{f} is real analytic. Now $\hat{f}=0$ in an open set, so $\hat{f}=0$ everywhere.

Minkowski geometry

- Take any $v \in \mathbb{R}^{1+n}$ with $|v|^{2}=0$.
- Take any $\xi \in \mathbb{R}^{1+n}$ with $\xi \perp v$.
- The function $x \cdot \xi$ is invariant when x is translated in the direction of v, so

$$
\int_{\mathbb{R}^{1+n}} e^{-i x \cdot \xi} f(x)
$$

can be written in terms of of the light ray transform.

- If $L f=0$, then $\hat{f}(\xi)=0$, provided that ξ has an orthogonal lightlike vector v. Thus $\hat{f}(\xi)=0$ whenever $\left|\xi^{2}\right| \leq 0$.
- If f is compactly supported, \hat{f} is real analytic. Now $\hat{f}=0$ in an open set, so $\hat{f}=0$ everywhere. Thus $f=0$.

Product geometry

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic.

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.
- We start from $L f\left(\beta_{s}\right)=0$.

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.
- We start from $L f\left(\beta_{s}\right)=0$.
- Fourier transform in s :

$$
0=\int_{\mathbb{R}} e^{-i \tau s} L f\left(\beta_{s}\right) \mathrm{d} s=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i \tau s} f(s+t, \gamma(t)) \mathrm{d} t \mathrm{~d} s=\int_{\mathbb{R}} e^{i \tau t} \hat{f}(\tau, \gamma(t)) \mathrm{d} t
$$

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.
- We start from $L f\left(\beta_{s}\right)=0$.
- Fourier transform in s :

$$
0=\int_{\mathbb{R}} e^{-i \tau s} L f\left(\beta_{s}\right) \mathrm{d} s=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i \tau s} f(s+t, \gamma(t)) \mathrm{d} t \mathrm{~d} s=\int_{\mathbb{R}} e^{i \tau t} \hat{\tilde{f}}(\tau, \gamma(t)) \mathrm{d} t
$$

- At $\tau=0$: The Riemannian X-ray transform of $\hat{f}(0, \cdot)$ vanishes, so $\hat{f}(0, \cdot)=0$.

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=$: $\beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.
- We start from $L f\left(\beta_{s}\right)=0$.

- Fourier transform in s :

$$
0=\int_{\mathbb{R}} e^{-i \tau s} L f\left(\beta_{s}\right) \mathrm{d} s=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i \tau s} f(s+t, \gamma(t)) \mathrm{d} t \mathrm{~d} s=\int_{\mathbb{R}} \overbrace{}^{i \tau t} \hat{f}(\tau, \gamma(t)) \mathrm{d} t
$$

- At $\tau=0$: The Riemannian X-ray transform of $\hat{f}(0, \cdot)$ vanishes, so $\hat{f}(0, \cdot)=0$.
- Derivative at $\tau=0$: The Riemannian X-ray transform of $\left.\partial_{\tau} \hat{f}(\tau, \cdot)\right|_{\tau=0}$ vanishes, so it is zero.

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.
- We start from $L f\left(\beta_{s}\right)=0$.
- Fourier transform in s :

$$
0=\int_{\mathbb{R}} e^{-i \tau s} L f\left(\beta_{s}\right) \mathrm{d} s=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i \tau s} f(s+t, \gamma(t)) \mathrm{d} t \mathrm{~d} s=\int_{\mathbb{R}} \overbrace{}^{i \tau t} \hat{f}(\tau, \gamma(t)) \mathrm{d} t
$$

- At $\tau=0$: The Riemannian X-ray transform of $\hat{f}(0, \cdot)$ vanishes, so $\hat{f}(0, \cdot)=0$.
- Derivative at $\tau=0$: The Riemannian X-ray transform of $\left.\partial_{\tau} \hat{f}(\tau, \cdot)\right|_{\tau=0}$ vanishes, so it is zero.
- Iterate for all orders and the Taylor series in τ is zero.

Product geometry

- Light rays look like $t \mapsto(s+t, \gamma(t))=: \beta_{s}(t)$, where γ is a Riemannian geodesic. Fix any γ.
- We start from $L f\left(\beta_{s}\right)=0$.
- Fourier transform in s :

$$
0=\int_{\mathbb{R}} e^{-i \tau s} L f\left(\beta_{s}\right) \mathrm{d} s=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i \tau s} f(s+t, \gamma(t)) \mathrm{d} t \mathrm{~d} s=\int_{\mathbb{R}} e^{i \tau t} \hat{f}(\tau, \gamma(t)) \mathrm{d} t
$$

- At $\tau=0$: The Riemannian X-ray transform of $\hat{f}(0, \cdot)$ vanishes, so $\hat{f}(0, \cdot)=0$.
- Derivative at $\tau=0$: The Riemannian X-ray transform of $\left.\partial_{\tau} \hat{f}(\tau, \cdot)\right|_{\tau=0}$ vanishes, so it is zero.
- Iterate for all orders and the Taylor series in τ is zero. By analyticity $\hat{f}=0$ and so $f=0$.

Thank you!

Key ideas:

- Light rays.
- Inverse problems for wave-like equations.
- Injectivity of the light ray transform.
- Kernel characterization for tensor fields.

$$
\begin{gathered}
\text { http://users.jyu.fi/~jojapeil } \\
\text { joonas.ilmavirta@tuni.fi }
\end{gathered}
$$

