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Flat spacetimes

Flat spacetime = Minkowski space = Rn with a certain “metric” structure.

In the normal Euclidean space all geometry comes from the quadratic form

Rn 3 x 7→ x21 + x22 + · · ·+ x2n.

In Minkowski spaces all geometry comes from the quadratic form

Rn 3 x 7→ x21 − x22 − · · · − x2n =: |x|2 .

The coordinates (x2, . . . , xn) are for space, x1 for time.
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Lorentz manifolds

Riemannian manifold: Smooth manifold M where every tangent space TxM has a
Euclidean structure (positive definite quadratic form).

Lorentzian manifold: Smooth manifold M where every tangent space TxM has a
quadratic form with eigenvalues (+,−, . . . ,−).

In both cases there is an invertible metric tensor which gives rise to connections,
geodesics, and many others.

Geodesics are straight curves, not (locally) shortest.

Joonas Ilmavirta (Tampere) The light ray transform 25 March 2021 5 / 33



Lorentz manifolds

Riemannian manifold: Smooth manifold M where every tangent space TxM has a
Euclidean structure (positive definite quadratic form).

Lorentzian manifold: Smooth manifold M where every tangent space TxM has a
quadratic form with eigenvalues (+,−, . . . ,−).

In both cases there is an invertible metric tensor which gives rise to connections,
geodesics, and many others.

Geodesics are straight curves, not (locally) shortest.

Joonas Ilmavirta (Tampere) The light ray transform 25 March 2021 5 / 33







Lorentz manifolds

Riemannian manifold: Smooth manifold M where every tangent space TxM has a
Euclidean structure (positive definite quadratic form).

Lorentzian manifold: Smooth manifold M where every tangent space TxM has a
quadratic form with eigenvalues (+,−, . . . ,−).

In both cases there is an invertible metric tensor which gives rise to connections,
geodesics, and many others.

Geodesics are straight curves, not (locally) shortest.

Joonas Ilmavirta (Tampere) The light ray transform 25 March 2021 5 / 33





Lorentz manifolds

Riemannian manifold: Smooth manifold M where every tangent space TxM has a
Euclidean structure (positive definite quadratic form).

Lorentzian manifold: Smooth manifold M where every tangent space TxM has a
quadratic form with eigenvalues (+,−, . . . ,−).

In both cases there is an invertible metric tensor which gives rise to connections,
geodesics, and many others.

Geodesics are straight curves, not (locally) shortest.

Joonas Ilmavirta (Tampere) The light ray transform 25 March 2021 5 / 33

.



Light cones and rays
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The light ray transform

Question
Is a function f : M → R uniquely determined by its integrals over all light rays?

Definition
The light ray transform is the operator

L : {functions on M} → {functions on the set of light rays}

given by

Lf(γ) =

∫
γ
f.
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The light ray transform

Question
Is the light ray transform an injective linear operator?

Question
What if f is a one-form? Or another tensor field?
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The X-ray transform

On a Riemannian manifold N :

Definition
The X-ray transform is the operator

I : {functions on N} → {functions on the set of geodesics}

given by

If(γ) =

∫
γ
f.

Question
Is the X-ray transform an injective linear operator?
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Ray transforms in general

Ray transforms arise directly in imaging applications, e.g. CT.

Linearized geometric problems often lead to ray transforms.

Inverse problems for PDEs can be turned to ray transform problems if one can focus
solutions on a ray.
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Wave equations

The usual wave equation in R1+n is

[∂20 − ∂21 − · · · − ∂2n]u(t, x) = 0.

The wave operator on R1+n is the Laplace–Beltrami operator of the Minkowski space.

Solutions to the wave equation can be non-smooth.

Singularities of solutions follow light rays.

Wave packets or other asymptotic solutions can be built around light rays.
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Wave equations

On a Lorentzian manifold (M, g) the wave equation is

∆gu(x) = 0.

Now x is an event (in spacetime), not a point (in space).

To this equation you can add a scalar potential (a function q : M → R is a potential):

[∆g + q(x)]u(x) = 0.

Or a vector potential (a vector field A on M ):

[−(−i∇g +A)2 + q]u = 0.
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Wave equations

Consider the Lorentzian manifold M = R× Ω, where Ω is compact (e.g. ⊂ Rn).

Definition
The Cauchy data of q and A is

C(q, A) = {(u|∂M , ∂νu|∂M ); [(−i∇g +A)2 + q]u = 0}.

(This is the graph of the Dirichlet-to-Neumann operator.)

Question
Suppose qi and Ai are compactly supported in M . If C(q1, A1) = C(q2, A2), is q1 = q2 and
A1 = A2?

No, because C(q, A) = C(q, A+∇φ) for any scalar function φ with zero boundary values.
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Wave equations

Lemma
Suppose C(q1, A1) = C(q2, A2). Then for any light ray γ through M∫

γ
(q1 − q2)dt = L(q1 − q2)(γ) = 0

and ∫
γ
(A1 −A2) = L(A1 −A2)(γ) = 0.

If L is injective on scalar and vector fields, then the Cauchy data determines the two potentials!
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Flat spacetimes

Take any n ≥ 2 and let R1+n be the Minkowski space of dimension 1 + n.

Theorem
Let f : R1+n → C be a compactly supported smooth function. If Lf(γ) = 0 for all γ, then
f = 0.

That is, the light ray transform is injective on C∞c (R1+n).

But there is a Schwartz function f 6= 0 for which Lf = 0!
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Static spacetimes

A stationary spacetime admits a product structure M = R×N and the metric tensor is
conformal to

g = dt2 + dt⊗ η(x) + η(x)⊗ dt− h(x),

where h is a Riemannian metric on N and η is a one-form on N .

The spacetime is called static if η = 0. This is full product geometry:

spacetime = time× space.

The Minkowski space is static (and thus stationary).
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Static spacetimes

Theorem (Feizmohammadi–J.I.–Kian–Oksanen & Feizmohammadi–J.I.–Oksanen)

Consider a static spacetime M = R×N , where N is a compact Riemannian manifold with
boundary.

If the Riemannian X-ray transform is injective on N , then the light ray transform is injective on
(compactly supported functions on) M .

Works also in stationary geometry!
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How to integrate a tensor field

A (covariant) tensor field f of rank m gives rise to a multilinear map

fx : TxM × · · · × TxM → R

at each x ∈M .

The metric tensor is a rank 2 covariant tensor field.

The integral of a tensor field f along a curve γ : [a, b]→M is∫
γ
f =

∫ b

a
fγ(t)(γ̇(t), . . . , γ̇(t))dt.

This gives the familiar formulas when m = 0, 1.
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Potential kernel

Question
If a tensor field f integrates to zero over all light rays, is f = 0?

No!

Case m = 1: If f = dh where h is a scalar function vanishing on the boundary, then∫
γ
f = h(γ(tend))− h(γ(tstart)) = 0

for any light ray γ.

Case m ≥ 1: If h is a tensor field of rank m− 1 vanishing on the boundary and f = σ∇h, then
Lf = 0.
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Vector field tomography

Theorem (Riemannian geometry)

Let N be a simple Riemannian manifold. The following are equivalent for a covector field (=
one-form = covariant tensor field of rank 1) f on N :

1 f integrates to zero over all geodesics.
2 f = dh for some function h : N → R with h|∂N = 0.

Theorem (Feizmohammadi–J.I.–Kian–Oksanen & Feizmohammadi–J.I.–Oksanen)
Consider a static spacetime M = R×N , where N is a simple Riemannian manifold.
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Conformal and antisymmetric kernel

The integral of a tensor field f along a curve γ : [a, b]→M is∫
γ
f =

∫ b

a
fγ(t)(γ̇(t), . . . , γ̇(t))dt.

These integrals only see the symmetric part of f !

For m = 2 we can write f = fsymmetric + fantisymmetric and Lfantisymmetric = 0.

Ray transforms are often only defined for symmetric tensor fields.

The potential kernel and this antisymmetric kernel exist for any kinds of rays.
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Conformal and antisymmetric kernel

Light rays are geodesics for which |γ̇(t)|2 = 0 (or g(γ̇(t), γ̇(t)) = 0) for all t.

The light ray transform of the metric tensor is zero:

Lg(γ) =

∫ b

a
gγ(t)(γ̇(t), γ̇(t))dt = 0.

If f = cg for any scalar function c, then Lf = 0.

Case m ≥ 2: If c is a tensor field of rank m− 2, then L(c⊗ g) = 0.
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Conformal and antisymmetric kernel

A tensor field f of rank m ≥ 2 is in the kernel of the light ray transform if:

f = ∇h for h of rank m− 1,

f = c⊗ g for c of rank m− 2, or

f is “antisymmetric”.

Conjecture
Lf = 0 if and only if the symmetric part of f is of the form

σ(∇h+ c⊗ g).
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Light ray tensor tomography

A Riemannian manifold N is nice if a symmetric tensor field f integrates to zero (if and) only if
f = σ∇h and h|∂N = 0.

There are nice manifolds, e.g. Euclidean domains.

Theorem (Feizmohammadi–J.I.–Oksanen)
Suppose N is nice and let M = R×N . The following are equivalent for a tensor field f of
rank m on M :

1 Lf = 0, meaning that f integrates to zero over all light rays.
2 fsym = σ(∇h+ c⊗ g) for some tensor fields h of rank m− 1 and c of rank m− 2 with
h|∂M = 0.
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Conformal symmetry

A conformal transformation is g 7→ cg, where c is a scalar function.

Theorem
Light rays as sets are invariant under conformal transformations.

Theorem (Feizmohammadi–J.I.–Oksanen)
Injectivity of the light ray transform up to natural obstructions is invariant under conformal
transformations.

Both the question and the answer are conformally invariant in some sense.
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Outline

1 Light rays

2 Relation to other problems

3 Light ray tomography of scalar fields

4 Light ray tomography of tensor fields

5 Proofs
Minkowski geometry
Product geometry
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Minkowski geometry

Take any v ∈ R1+n with |v|2 = 0.

Take any ξ ∈ R1+n with ξ ⊥ v.

The function x · ξ is invariant when x is translated in the direction of v, so∫
R1+n

e−ix·ξf(x)

can be written in terms of of the light ray transform.

If Lf = 0, then f̂(ξ) = 0, provided that ξ has an orthogonal lightlike vector v. Thus
f̂(ξ) = 0 whenever

∣∣ξ2∣∣ ≤ 0.

If f is compactly supported, f̂ is real analytic. Now f̂ = 0 in an open set, so f̂ = 0
everywhere. Thus f = 0.
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Product geometry

Light rays look like t 7→ (s+ t, γ(t)) =: βs(t), where γ is a Riemannian geodesic. Fix any
γ.

We start from Lf(βs) = 0.

Fourier transform in s:

0 =

∫
R
e−iτsLf(βs)ds =

∫
R

∫
R
e−iτsf(s+ t, γ(t))dtds =

∫
R
eiτtf̂(τ, γ(t))dt.

At τ = 0: The Riemannian X-ray transform of f̂(0, · ) vanishes, so f̂(0, · ) = 0.

Derivative at τ = 0: The Riemannian X-ray transform of ∂τ f̂(τ, · )|τ=0 vanishes, so it is
zero.

Iterate for all orders and the Taylor series in τ is zero. By analyticity f̂ = 0 and so f = 0.
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Thank you!

Key ideas:

Light rays.

Inverse problems for wave-like equations.

Injectivity of the light ray transform.

Kernel characterization for tensor fields.

http://users.jyu.fi/~jojapeil

joonas.ilmavirta@tuni.fi
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