Stable reconstruction of simple Riemannian manifolds from unknown interior sources

Inverse problems and nonlinearity

Joonas Ilmavirta
Tampere University
In collaboration with:
M. V. de Hoop \& M. Lassas \& T. Saksala

27 August 2021

Outline

(9) The problem

- The setup
- The data
- The goal
(2) Related problems
(3) Labeled Gromov-Hausdorff distance
(4) Theorems

The setup

An unknown number of unknown sources go off at unknown times within an unknown manifold (the Earth).

The setup

An unknown number of unknown sources go off at unknown times within an unknown manifold (the Earth).
We measure the set of arrival times at each boundary point (each seismometer).

The setup

An unknown number of unknown sources go off at unknown times within an unknown manifold (the Earth).
We measure the set of arrival times at each boundary point (each seismometer).
Can we tell what the manifold (the planet) has inside?

The setup

An unknown number of unknown sources go off at unknown times within an unknown manifold (the Earth).
We measure the set of arrival times at each boundary point (each seismometer).

Can we tell what the manifold (the planet) has inside?
At least approximately?

The setup

A point $x \in M$ sends waves.

The setup

Arrival times from x are measured at y_{1} and y_{2}.

The setup

The data contains the distances offset by the time the source at x went off.

The setup

x goes off at time t :

Multiple sources measured from multiple stations. Offsets in time depend on x_{i} but not y_{j}.

The setup

observation for (x, t) is light cone interseated with boundary

$$
Q(S) \subset \partial M \times \mathbb{R}
$$

The setup

Scenario:

The setup

Scenario:

- The manifold is Riemannian and simple.

The setup

Scenario:

- The manifold is Riemannian and simple.
- The sources are discrete (e.g. finite) in spacetime.

The setup

Scenario:

- The manifold is Riemannian and simple.
- The sources are discrete (e.g. finite) in spacetime.
- Measurements are made on all of the boundary.

The data

The data

The source set is

$$
S \subset M \times \mathbb{R}
$$

The data

The source set is

$$
S \subset M \times \mathbb{R}
$$

We denote the projections by $\pi: M \times \mathbb{R} \rightarrow M$ and $\tau: M \times \mathbb{R} \rightarrow \mathbb{R}$.

The data

The source set is

$$
S \subset M \times \mathbb{R}
$$

We denote the projections by $\pi: M \times \mathbb{R} \rightarrow M$ and $\tau: M \times \mathbb{R} \rightarrow \mathbb{R}$.
The data is the set of all arrival times without any labels:

$$
Q(S)=\{(y, \tau(s)+d(y, \pi(s))) ; y \in \partial M, s \in S\} \subset \partial M \times \mathbb{R}
$$

The data

The source set is

$$
S \subset M \times \mathbb{R}
$$

We denote the projections by $\pi: M \times \mathbb{R} \rightarrow M$ and $\tau: M \times \mathbb{R} \rightarrow \mathbb{R}$.
The data is the set of all arrival times without any labels:

$$
Q(S)=\{(y, \tau(s)+d(y, \pi(s))) ; y \in \partial M, s \in S\} \subset \partial M \times \mathbb{R}
$$

Question

To what extend does $Q(S)$ determine M ?

The goal

The goal

- If the source set $S \subset M \times \mathbb{R}$ (or the spatial source set $P=\pi(S)$) is finite, unique recovery of M is inconceivable.

The goal

- If the source set $S \subset M \times \mathbb{R}$ (or the spatial source set $P=\pi(S)$) is finite, unique recovery of M is inconceivable.
- If the source set is finite, we can only hope for an approximate reconstruction.

The goal

- If the source set $S \subset M \times \mathbb{R}$ (or the spatial source set $P=\pi(S)$) is finite, unique recovery of M is inconceivable.
- If the source set is finite, we can only hope for an approximate reconstruction.
- Approximate in what sense?

The goal

- If the source set $S \subset M \times \mathbb{R}$ (or the spatial source set $P=\pi(S)$) is finite, unique recovery of M is inconceivable.
- If the source set is finite, we can only hope for an approximate reconstruction.
- Approximate in what sense?
- If we approximate M as a metric space (Gromov-Hausdorff), then how is this reconstruction attached to the known boundary?

Outline

(9) The problem
(2) Related problems

- Sources on the boundary
- Interior sources with additional data
(3) Labeled Gromov-Hausdorff distance
(4) Theorems

Sources on the boundary

Sources on the boundary

- If sources are on the boundary, the origin time is easily determined. We lose interior data but we also lose ignorance of time.

Sources on the boundary

- If sources are on the boundary, the origin time is easily determined. We lose interior data but we also lose ignorance of time.
- Sources everywhere on the boundary: boundary rigidity. (Michel '81, Gromov '83, Croke '91, Pestov-Uhlmann '05, Stefanov-Uhlmann '05, Burago-Ivanov '10)

Interior sources with additional data

Interior sources with additional data

- Typically one assumes that geometric data is collected separately for each (unlabeled) interior point, but to us all the information comes as a single set.

Interior sources with additional data

- Typically one assumes that geometric data is collected separately for each (unlabeled) interior point, but to us all the information comes as a single set.
- Known origin times, neatly separated sources everywhere: boundary distance data. (Kurylev '97, de Hoop-I-Lassas-Saksala '19)

Interior sources with additional data

- Typically one assumes that geometric data is collected separately for each (unlabeled) interior point, but to us all the information comes as a single set.
- Known origin times, neatly separated sources everywhere: boundary distance data. (Kurylev '97, de Hoop-I-Lassas-Saksala '19)
- Unknown origin times, neatly separated sources everywhere: boundary distance difference data. (Lassas-Saksala '19, de Hoop-Saksala '19, Ivanov '20)

Outline

(9) The problem
(2) Related problems
(3) Labeled Gromov-Hausdorff distance

- Hausdorff distance
- Gromov-Hausdorff distance
- Labeled Gromov-Hausdorff distance
- Some basic properties
(4) Theorems

Hausdorff distance

The Hausdorff distance is a distance between two compact subsets of a metric space.

Hausdorff distance

$$
A \subset \mathbb{R}^{2}
$$

(A, ε)

$$
\left.\begin{array}{l}
A \subset B\left(A^{\prime}, \varepsilon\right) \\
A^{\prime} \subset B(A, \varepsilon)
\end{array}\right\} \Rightarrow d_{H}\left(A, A^{\prime} \leq \varepsilon\right.
$$

Hausdorff distance

The Hausdorff distance between $A, A^{\prime} \subset \mathbb{R}^{2}$ is the infimum of those $\varepsilon \mathrm{s}$ so that they are contained in each other's ε-balls.

Gromov-Hausdorff distance

Gromov-Hausdorff distance

The Hausdorff distance was a distance between two compact subsets of a metric space.

Gromov-Hausdorff distance

The Hausdorff distance was a distance between two compact subsets of a metric space.
The Gromov-Hausdorff distance is a distance between two compact metric spaces.

Gromov-Hausdorff distance

The Hausdorff distance was a distance between two compact subsets of a metric space.
The Gromov-Hausdorff distance is a distance between two compact metric spaces. (No fixed ambient geometry.)

Gromov-Hausdorff distance

- Take any two compact metric spaces X and Y.

Gromov-Hausdorff distance

- Take any two compact metric spaces X and Y.
- Take any metric space Z so that there are isometric embeddings $f: X \rightarrow Z$ and $g: Y \rightarrow Z$.

Gromov-Hausdorff distance

- Take any two compact metric spaces X and Y.
- Take any metric space Z so that there are isometric embeddings $f: X \rightarrow Z$ and $g: Y \rightarrow Z$.
(Alternatively: Take any semimetric on $X \sqcup Y$ that extends d_{X} and d_{Y}.)

Gromov-Hausdorff distance

- Take any two compact metric spaces X and Y.
- Take any metric space Z so that there are isometric embeddings $f: X \rightarrow Z$ and $g: Y \rightarrow Z$.
(Alternatively: Take any semimetric on $X \sqcup Y$ that extends d_{X} and d_{Y}.)
- Consider the Hausdorff distance $d_{H, Z}(f(X), g(Y))$ within the space Z.

Gromov-Hausdorff distance

- Take any two compact metric spaces X and Y.
- Take any metric space Z so that there are isometric embeddings $f: X \rightarrow Z$ and $g: Y \rightarrow Z$.
(Alternatively: Take any semimetric on $X \sqcup Y$ that extends d_{X} and d_{Y}.)
- Consider the Hausdorff distance $d_{H, Z}(f(X), g(Y))$ within the space Z.
- The infimum (over all choices of Z) of these Hausdorff distances is the Gromov-Hausdorff distance $d_{G H}(X, Y)$.

Labeled Gromov-Hausdorff distance

Labeled Gromov-Hausdorff distance

- We want to see how a fixed reference set sits within both X and Y.
- We want to see how a fixed reference set sits within both X and Y.
- The two sets are not close if there is an almost isometry but it distorts the reference set too much.

Labeled Gromov-Hausdorff distance

- We want to see how a fixed reference set sits within both X and Y.
- The two sets are not close if there is an almost isometry but it distorts the reference set too much.
- The reference is given by mapping a set L of labels to each space: $\alpha: L \rightarrow X$ and $\beta: L \rightarrow Y$.

Labeled Gromov-Hausdorff distance

- We want to see how a fixed reference set sits within both X and Y.
- The two sets are not close if there is an almost isometry but it distorts the reference set too much.
- The reference is given by mapping a set L of labels to each space: $\alpha: L \rightarrow X$ and $\beta: L \rightarrow Y$.
- The labeled Gromov-Hausdorff distance between (X, α) and (Y, β) is

$$
d_{G H}^{L}(X, \alpha ; Y, \beta)=\inf \left\{d_{H, Z}(f(X), g(Y))+\sup _{\ell \in L} d_{Z}(f(\alpha(\ell)), g(\beta(\ell)))\right.
$$

Z is a compact metric space,
$f: X \rightarrow Z$ and $g: Y \rightarrow Z$ are isometric embeddings $\}$.

- We want to compare the true manifold M to an approximate metric space P — the set of spatial source points.
- We want to compare the true manifold M to an approximate metric space P — the set of spatial source points.
- Our label set is the known boundary ∂M.
- We want to compare the true manifold M to an approximate metric space P — the set of spatial source points.
- Our label set is the known boundary ∂M.
- Labels sit in the correct space naturally by the inclusion $\iota: \partial M \rightarrow M$.

Labeled Gromov-Hausdorff distance

- We want to compare the true manifold M to an approximate metric space P - the set of spatial source points.
- Our label set is the known boundary ∂M.
- Labels sit in the correct space naturally by the inclusion $\iota: \partial M \rightarrow M$.
- Our construction of an approximate manifold P must come with an approximate boundary assignment function $\alpha: \partial M \rightarrow P$ so that

$$
d_{G H}^{\partial M}(P, \alpha ; M, \iota)
$$

is small.

Labeled Gromov-Hausdorff distance

- We want to compare the true manifold M to an approximate metric space P - the set of spatial source points.
- Our label set is the known boundary ∂M.
- Labels sit in the correct space naturally by the inclusion $\iota: \partial M \rightarrow M$.
- Our construction of an approximate manifold P must come with an approximate boundary assignment function $\alpha: \partial M \rightarrow P$ so that

$$
d_{G H}^{\partial M}(P, \alpha ; M, \iota)
$$

is small.

- Then the approximate manifold is constructed in some relation to the known boundary, not floating unattached.

Some basic properties

Some basic properties

- Monotonicity in labels: For any $K \subset L$ we have

$$
d_{G H}^{K}\left(X,\left.\alpha\right|_{K} ; Y,\left.\beta\right|_{K}\right) \leq d_{G H}^{L}(X, \alpha ; Y, \beta) .
$$

Some basic properties

- Monotonicity in labels: For any $K \subset L$ we have

$$
d_{G H}^{K}\left(X,\left.\alpha\right|_{K} ; Y,\left.\beta\right|_{K}\right) \leq d_{G H}^{L}(X, \alpha ; Y, \beta)
$$

- The usual Gromov-Hausdorff distance is $d_{G H}(X, Y)=d_{G H}^{\emptyset}(X, \emptyset ; Y, \emptyset)$, so

$$
d_{G H}(X, Y) \leq d_{G H}^{L}(X, \alpha ; Y, \beta)
$$

Some basic properties

- Monotonicity in labels: For any $K \subset L$ we have

$$
d_{G H}^{K}\left(X,\left.\alpha\right|_{K} ; Y,\left.\beta\right|_{K}\right) \leq d_{G H}^{L}(X, \alpha ; Y, \beta)
$$

- The usual Gromov-Hausdorff distance is $d_{G H}(X, Y)=d_{G H}^{\emptyset}(X, \emptyset ; Y, \emptyset)$, so

$$
d_{G H}(X, Y) \leq d_{G H}^{L}(X, \alpha ; Y, \beta)
$$

- The labeled Gromov-Hausdorff distance is a metric:

Some basic properties

- Monotonicity in labels: For any $K \subset L$ we have

$$
d_{G H}^{K}\left(X,\left.\alpha\right|_{K} ; Y,\left.\beta\right|_{K}\right) \leq d_{G H}^{L}(X, \alpha ; Y, \beta)
$$

- The usual Gromov-Hausdorff distance is $d_{G H}(X, Y)=d_{G H}^{\emptyset}(X, \emptyset ; Y, \emptyset)$, so

$$
d_{G H}(X, Y) \leq d_{G H}^{L}(X, \alpha ; Y, \beta)
$$

- The labeled Gromov-Hausdorff distance is a metric:
(1) Symmetry.
(2) Triangle inequality.
(3) $d_{G H}^{L}(X, \alpha ; Y, \beta)=0$ if and only if there is an isometry $h: X \rightarrow Y$ so that $h \circ \alpha=\beta$.

Outline

(1) The problem
(2) Related problems
(3) Labeled Gromov-Hausdorff distance
(4) Theorems

- Quantitative simplicity
- Perfect reconstruction of source points
- Approximate reconstruction
- Perfect reconstruction with infinite time

Quantitative simplicity

Quantitative simplicity

Simplicity of a manifold can be quantified in terms of geometric constants:

Quantitative simplicity

Simplicity of a manifold can be quantified in terms of geometric constants:
We have 9 constants controlling curvature, boundary, diameter, behaviour of Jacobi fields, inverse of the exponential map, and other properties.

Quantitative simplicity

Simplicity of a manifold can be quantified in terms of geometric constants:
We have 9 constants controlling curvature, boundary, diameter, behaviour of Jacobi fields, inverse of the exponential map, and other properties.

A Riemannian manifold satisfies our estimates if and only if it is simple.

Quantitative simplicity

We make one additional assumption (in some theorems):

Quantitative simplicity

We make one additional assumption (in some theorems):

$$
\text { diameter } \times \sqrt{\max (\text { sectional curvature })}<\pi
$$

Quantitative simplicity

We make one additional assumption (in some theorems):

$$
\text { diameter } \times \sqrt{\max (\text { sectional curvature })}<\pi .
$$

This holds on many but not all simple manifolds.

Perfect reconstruction of source points

Theorem (de Hoop-I-Lassas-Saksala)

Perfect reconstruction of source points

Theorem (de Hoop-I-Lassas-Saksala)
Let M be a simple Riemannian manifold and $S \subset M \times \mathbb{R}$ a discrete source set.

Perfect reconstruction of source points

Theorem (de Hoop-l-Lassas-Saksala)

Let M be a simple Riemannian manifold and $S \subset M \times \mathbb{R}$ a discrete source set. The data set $Q(S)$ determines the set $P=\pi(S)$ as a metric space.

Perfect reconstruction of source points

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a simple Riemannian manifold and $S \subset M \times \mathbb{R}$ a discrete source set. The data set $Q(S)$ determines the set $P=\pi(S)$ as a metric space.

We can also get some information on the distance to boundary points, but nothing perfect.

Approximate reconstruction

Theorem (de Hoop-I-Lassas-Saksala)

Approximate reconstruction

Theorem (de Hoop-I-Lassas-Saksala)
Let M be a pretty simple Riemannian manifold and $S \subset M \times \mathbb{R}$ a discrete source set.

Approximate reconstruction

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times \mathbb{R}$ a discrete source set. The data set $Q(S)$ determines a metric space P and a map $\alpha: \partial M \rightarrow P$ so that

$$
d_{G H}^{\partial M}(P, \alpha ; M, \iota) \leq \varepsilon(Q(S), \text { constants of simplicity })
$$

where the error ε is explicit.

Approximate reconstruction

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times \mathbb{R}$ a discrete source set. The data set $Q(S)$ determines a metric space P and a map $\alpha: \partial M \rightarrow P$ so that

$$
d_{G H}^{\partial M}(P, \alpha ; M, \iota) \leq \varepsilon(Q(S), \text { constants of simplicity })
$$

where the error ε is explicit.
From the data and a priori geometric bounds we get an approximate finite model and an estimate on the reconstruction error!

Perfect reconstruction with infinite time

Perfect reconstruction with infinite time

When M is fixed and the spatial source set $P=\pi(S) \subset M$ gets more dense, the error bound ε goes to zero.

Perfect reconstruction with infinite time

When M is fixed and the spatial source set $P=\pi(S) \subset M$ gets more dense, the error bound ε goes to zero.

Theorem (de Hoop-I-Lassas-Saksala)

Perfect reconstruction with infinite time

When M is fixed and the spatial source set $P=\pi(S) \subset M$ gets more dense, the error bound ε goes to zero.
Theorem (de Hoop-l-Lassas-Saksala)
Let M be a pretty simple Riemannian manifold and $S \subset M \times[0, \infty)$ a discrete source set so that $P=\pi(S) \subset M$ is dense.

Perfect reconstruction with infinite time

When M is fixed and the spatial source set $P=\pi(S) \subset M$ gets more dense, the error bound ε goes to zero.

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times[0, \infty)$ a discrete source set so that $P=\pi(S) \subset M$ is dense. The data set $Q(S, T)$ cut to the time interval $[0, T]$ determines a metric space P_{T} and a map $\alpha_{T}: \partial M \rightarrow P_{T}$ so that

$$
d_{G H}^{\partial M}\left(P_{T}, \alpha_{T} ; M, \iota\right) \rightarrow 0
$$

as $T \rightarrow \infty$.

Perfect reconstruction with infinite time

When M is fixed and the spatial source set $P=\pi(S) \subset M$ gets more dense, the error bound ε goes to zero.

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times[0, \infty)$ a discrete source set so that $P=\pi(S) \subset M$ is dense. The data set $Q(S, T)$ cut to the time interval $[0, T]$ determines a metric space P_{T} and a map $\alpha_{T}: \partial M \rightarrow P_{T}$ so that

$$
d_{G H}^{\partial M}\left(P_{T}, \alpha_{T} ; M, \iota\right) \rightarrow 0
$$

as $T \rightarrow \infty$.
If we measure for an increasing amount of time, we get an increasingly good approximate reconstruction.

Perfect reconstruction with infinite time

Theorem (de Hoop-I-Lassas-Saksala)

Perfect reconstruction with infinite time

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times[0, \infty)$ a discrete source set so that $P=\pi(S) \subset M$ is dense.

Perfect reconstruction with infinite time

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times[0, \infty)$ a discrete source set so that $P=\pi(S) \subset M$ is dense. The data set $Q(S)$ determines M and the inclusion $\partial M \rightarrow M$ uniquely.

Perfect reconstruction with infinite time

Theorem (de Hoop-I-Lassas-Saksala)

Let M be a pretty simple Riemannian manifold and $S \subset M \times[0, \infty)$ a discrete source set so that $P=\pi(S) \subset M$ is dense. The data set $Q(S)$ determines M and the inclusion $\partial M \rightarrow M$ uniquely.

Myers-Steenrod: Metric isometry implies smooth isometry.

Thank you!

Summary:

- Unknown source points, unknown origin times, unlabeled arrival time data.
- Approximate reconstruction in labeled Gromov-Hausdorff distance.
- Perfect reconstruction in infinite or increasing time.
- arXiv:2102.11799

$$
\begin{gathered}
\text { http://users.jyu.fi/~jojapeil } \\
\text { joonas.ilmavirta@tuni.fi } \\
\text { joonas.ilmavirta@jyu.fi } \\
\text { joonas.ilmavirta.research@gmail.com }
\end{gathered}
$$

