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The setup

An unknown number of unknown sources go off at unknown times within an unknown manifold
(the Earth).

We measure the set of arrival times at each boundary point (each seismometer).

Can we tell what the manifold (the planet) has inside?
At least approximately?
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The setup

A point x ∈M sends waves.
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The setup

Arrival times from x are measured at y1 and y2.
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The setup

The data contains the distances offset by the time the source at x went off.
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The setup

Multiple sources measured from multiple stations. Offsets in time depend on xi but not yj .
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The setup

Sources and measurements in the spacetime.
Joonas Ilmavirta (Tampere) Reconstruction from point sources 27 August 2021 8 / 33

.



The setup

Scenario:

The manifold is Riemannian and simple.

The sources are discrete (e.g. finite) in spacetime.

Measurements are made on all of the boundary.
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The data

The source set is
S ⊂M × R.

We denote the projections by π : M × R→M and τ : M × R→ R.

The data is the set of all arrival times without any labels:

Q(S) = {(y, τ(s) + d(y, π(s))); y ∈ ∂M, s ∈ S} ⊂ ∂M × R.

Question
To what extend does Q(S) determine M?
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The goal

If the source set S ⊂M × R (or the spatial source set P = π(S)) is finite, unique
recovery of M is inconceivable.

If the source set is finite, we can only hope for an approximate reconstruction.

Approximate in what sense?

If we approximate M as a metric space (Gromov–Hausdorff), then how is this
reconstruction attached to the known boundary?
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Sources on the boundary

If sources are on the boundary, the origin time is easily determined. We lose interior data
but we also lose ignorance of time.

Sources everywhere on the boundary: boundary rigidity. (Michel ’81, Gromov ’83, Croke
’91, Pestov–Uhlmann ’05, Stefanov–Uhlmann ’05, Burago–Ivanov ’10)
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Interior sources with additional data

Typically one assumes that geometric data is collected separately for each (unlabeled)
interior point, but to us all the information comes as a single set.

Known origin times, neatly separated sources everywhere: boundary distance data.
(Kurylev ’97, de Hoop-I–Lassas–Saksala ’19)

Unknown origin times, neatly separated sources everywhere: boundary distance
difference data. (Lassas–Saksala ’19, de Hoop–Saksala ’19, Ivanov ’20)
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Hausdorff distance

The Hausdorff distance is a distance between two compact subsets of a metric space.
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Hausdorff distance

A compact set in the plane.
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Hausdorff distance

A ball of radius ε around the set.
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Hausdorff distance

Two sets within each other’s balls.
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Hausdorff distance

The Hausdorff distance between A,A′ ⊂ R2 is the infimum of those εs so that they are
contained in each other’s ε-balls.
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Gromov–Hausdorff distance

The Hausdorff distance was a distance between two compact subsets of a metric space.

The Gromov–Hausdorff distance is a distance between two compact metric spaces.
(No fixed ambient geometry.)
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Gromov–Hausdorff distance

Take any two compact metric spaces X and Y .

Take any metric space Z so that there are isometric embeddings f : X → Z and
g : Y → Z.
(Alternatively: Take any semimetric on X t Y that extends dX and dY .)

Consider the Hausdorff distance dH,Z(f(X), g(Y )) within the space Z.

The infimum (over all choices of Z) of these Hausdorff distances is the
Gromov–Hausdorff distance dGH(X,Y ).
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Labeled Gromov–Hausdorff distance

We want to see how a fixed reference set sits within both X and Y .

The two sets are not close if there is an almost isometry but it distorts the reference set
too much.

The reference is given by mapping a set L of labels to each space:
α : L→ X and β : L→ Y .

The labeled Gromov–Hausdorff distance between (X,α) and (Y, β) is

dLGH(X,α;Y, β) = inf{dH,Z(f(X), g(Y )) + sup
`∈L

dZ(f(α(`)), g(β(`)));

Z is a compact metric space,

f : X → Z and g : Y → Z are isometric embeddings}.
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Labeled Gromov–Hausdorff distance

We want to compare the true manifold M to an approximate metric space P — the set of
spatial source points.

Our label set is the known boundary ∂M .

Labels sit in the correct space naturally by the inclusion ι : ∂M →M .

Our construction of an approximate manifold P must come with an approximate boundary
assignment function α : ∂M → P so that

d∂MGH(P, α;M, ι)

is small.

Then the approximate manifold is constructed in some relation to the known boundary,
not floating unattached.
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Some basic properties

Monotonicity in labels: For any K ⊂ L we have

dKGH(X,α|K ;Y, β|K) ≤ dLGH(X,α;Y, β).

The usual Gromov–Hausdorff distance is dGH(X,Y ) = d∅GH(X, ∅;Y, ∅), so

dGH(X,Y ) ≤ dLGH(X,α;Y, β).

The labeled Gromov–Hausdorff distance is a metric:
1 Symmetry.
2 Triangle inequality.
3 dLGH(X,α;Y, β) = 0 if and only if there is an isometry h : X → Y so that h ◦ α = β.
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Quantitative simplicity

Simplicity of a manifold can be quantified in terms of geometric constants:
We have 9 constants controlling curvature, boundary, diameter, behaviour of Jacobi fields,
inverse of the exponential map, and other properties.

A Riemannian manifold satisfies our estimates if and only if it is simple.
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Quantitative simplicity

We make one additional assumption (in some theorems):

diameter×
√
max(sectional curvature) < π.

This holds on many but not all simple manifolds.
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Perfect reconstruction of source points

Theorem (de Hoop–I–Lassas–Saksala)

Let M be a simple Riemannian manifold and S ⊂M × R a discrete source set. The data set
Q(S) determines the set P = π(S) as a metric space.

We can also get some information on the distance to boundary points, but nothing perfect.
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Approximate reconstruction

Theorem (de Hoop–I–Lassas–Saksala)

Let M be a pretty simple Riemannian manifold and S ⊂M × R a discrete source set. The
data set Q(S) determines a metric space P and a map α : ∂M → P so that

d∂MGH(P, α;M, ι) ≤ ε(Q(S), constants of simplicity),

where the error ε is explicit.

From the data and a priori geometric bounds we get an approximate finite model and an
estimate on the reconstruction error!
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Perfect reconstruction with infinite time

When M is fixed and the spatial source set P = π(S) ⊂M gets more dense, the error bound
ε goes to zero.

Theorem (de Hoop–I–Lassas–Saksala)
Let M be a pretty simple Riemannian manifold and S ⊂M × [0,∞) a discrete source set so
that P = π(S) ⊂M is dense. The data set Q(S, T ) cut to the time interval [0, T ] determines a
metric space PT and a map αT : ∂M → PT so that

d∂MGH(PT , αT ;M, ι)→ 0

as T →∞.

If we measure for an increasing amount of time, we get an increasingly good approximate
reconstruction.
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Perfect reconstruction with infinite time

Theorem (de Hoop–I–Lassas–Saksala)

Let M be a pretty simple Riemannian manifold and S ⊂M × [0,∞) a discrete source set so
that P = π(S) ⊂M is dense. The data set Q(S) determines M and the inclusion ∂M →M
uniquely.

Myers–Steenrod: Metric isometry implies smooth isometry.
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Thank you!

Summary:

Unknown source points, unknown origin times, unlabeled arrival time data.

Approximate reconstruction in labeled Gromov–Hausdorff distance.

Perfect reconstruction in infinite or increasing time.
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