Eigenfrequencies: Spectral rigidity with discontinuities

Geo-Mathematical Imaging Group
Project Review

Joonas Ilmavirta

Tampere University

In collaboration with:
M. V. de Hoop & V. Katsnelson

16 June 2021

Eigenfrequencies: Spectral rigidity with discontinuities

```
spectrum of frequencies

trace

singularities

length spectrum

radial velocity profile
```

Outline

- The idea
 - The spectrum of eigenfrequencies
 - The trace
 - The length spectrum
 - Linearization
 - The result
- Mathematics
- Physics
- The Herglotz condition

• An earthquake hits the Earth like a drum and we can listen to the sound it makes.

- An earthquake hits the Earth like a drum and we can listen to the sound it makes.
- The amplitudes of the various modes depend on the event, the frequencies do not.

- An earthquake hits the Earth like a drum and we can listen to the sound it makes.
- The amplitudes of the various modes depend on the event, the frequencies do not.
- The set of frequencies is the spectrum of free oscillations.

- An earthquake hits the Earth like a drum and we can listen to the sound it makes.
- The amplitudes of the various modes depend on the event, the frequencies do not.
- The set of frequencies is the spectrum of free oscillations.
- These frequencies are (square roots of) eigenvalues of an elliptic partial differential operator, "the elastic Laplacian".

16 June 2021

• Frequencies: $\omega_1 < \omega_2 \leq \omega_3 \leq \dots$

- Frequencies: $\omega_1 < \omega_2 \le \omega_3 \le \dots$
- The elastic wave equation can be solved using a Green's function G(x, y, t), expressible in terms of the modes (eigenfunctions) and frequencies (eigenvalues).

- Frequencies: $\omega_1 < \omega_2 \le \omega_3 \le \dots$
- The elastic wave equation can be solved using a Green's function G(x, y, t), expressible in terms of the modes (eigenfunctions) and frequencies (eigenvalues).
- The trace only depends on the eigenvalues:

$$\operatorname{tr}(\partial_t G) = \int \partial_t G(x, x, t) dx = \sum_{i=1}^{\infty} \cos(\omega_i t).$$

- Frequencies: $\omega_1 < \omega_2 \le \omega_3 \le \dots$
- The elastic wave equation can be solved using a Green's function G(x, y, t), expressible in terms of the modes (eigenfunctions) and frequencies (eigenvalues).
- The trace only depends on the eigenvalues:

$$\operatorname{tr}(\partial_t G) = \int \partial_t G(x, x, t) dx = \sum_{i=1}^{\infty} \cos(\omega_i t).$$

• The function $t\mapsto \operatorname{tr}(\partial_t G)$ is mostly smooth. It has a singularity at t=T if and pretty much only if T is the length of a periodic ray path (periodic broken geodesic).

• The length spectrum is the set of the lengths of all periodic orbits.

- The length spectrum is the set of the lengths of all periodic orbits.
- At interfaces the rays can choose to reflect or refract (and change polarization).

- The length spectrum is the set of the lengths of all periodic orbits.
- At interfaces the rays can choose to reflect or refract (and change polarization).
- The length spectrum is computable from the eigenfrequencies (singularities of the trace) but can also be measured directly. (Both appear possible on Mars, in principle.)

- The length spectrum is the set of the lengths of all periodic orbits.
- At interfaces the rays can choose to reflect or refract (and change polarization).
- The length spectrum is computable from the eigenfrequencies (singularities of the trace) but can also be measured directly. (Both appear possible on Mars, in principle.)
- Using the length spectral data is like travel time tomography but without endpoints.

• The full problem is non-linear and hard, so we linearize.

- The full problem is non-linear and hard, so we linearize.
- Linearizing normal travel time tomography between surface points leads to geodesic X-ray tomography.
 - This problem is well understood on some manifolds.

- The full problem is non-linear and hard, so we linearize.
- Linearizing normal travel time tomography between surface points leads to geodesic X-ray tomography.
 - This problem is well understood on some manifolds.
- Linearizing periodic travel time tomography leads to periodic broken ray tomography.
 - This problem is beginning to be understood on very few manifolds.

The result

All of this actually makes full mathematical sense:

The result

All of this actually makes full mathematical sense:

A spherically symmetric planet with radial velocity profile(s) with jump discontinuities and mild geometric conditions is determined by its spectrum or length spectrum.

The result

All of this actually makes full mathematical sense:

A spherically symmetric planet with radial velocity profile(s) with jump discontinuities and mild geometric conditions is determined by its spectrum or length spectrum.

 \approx Earth-like planets are locally uniquely determined by the spectrum of free oscillations.

Outline

- The idea
- Mathematics
 - Spherical symmetry
 - Polarization
 - Basic rays
 - Conjugate points
 - The theorems
- Physics
- The Herglotz condition

• For a Riemannian metric (elliptically anisotropic wave speed) on a ball there are two concepts of spherical symmetry:

- For a Riemannian metric (elliptically anisotropic wave speed) on a ball there are two concepts of spherical symmetry:
 - Rotation invariance: $g = R^*g$ for all $R \in SO(3)$.
 - Radially conformally Euclidean: $g(x) = c^{-2}(|x|)e$.

- For a Riemannian metric (elliptically anisotropic wave speed) on a ball there are two concepts of spherical symmetry:
 - Rotation invariance: $g = R^*g$ for all $R \in SO(3)$.
 - Radially conformally Euclidean: $g(x) = c^{-2}(|x|)e$.
- These are equivalent up to changing coordinates.

• In spherical symmetry one can calculate explicitly rather than just qualitatively.

- In spherical symmetry one can calculate explicitly rather than just qualitatively.
- The geodesic flow is integrable with conserved quantities.

- In spherical symmetry one can calculate explicitly rather than just qualitatively.
- The geodesic flow is integrable with conserved quantities.
- Geometry behaves well under the Herglotz condition: $\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{r}{c(r)}\right)>0$ for all r>0.

Polarization

Polarization

 For simplicity the results are stated for a scalar model with 1 or 2 radial wave speed profiles.

Polarization

- For simplicity the results are stated for a scalar model with 1 or 2 radial wave speed profiles.
- The results hold for the isotropic elastic system (2 radial Lamé parameters) but are trickier to state.

Polarization

- For simplicity the results are stated for a scalar model with 1 or 2 radial wave speed profiles.
- The results hold for the isotropic elastic system (2 radial Lamé parameters) but are trickier to state.
- Waves split 4 ways at interfaces.

Polarization

- For simplicity the results are stated for a scalar model with 1 or 2 radial wave speed profiles.
- The results hold for the isotropic elastic system (2 radial Lamé parameters) but are trickier to state.
- Waves split 4 ways at interfaces.
- In the scalar case the spectrum of free oscillations is modeled geometrically "simply" by the Neumann spectrum of a Laplace—Beltrami operator.

We define a periodic broken ray to be basic if

We define a periodic broken ray to be basic if

• it stays in a single layer,

We define a periodic broken ray to be basic if

- it stays in a single layer,
- it stays in the same polarization,

We define a periodic broken ray to be basic if

- it stays in a single layer,
- it stays in the same polarization, and
- it is of one of two types:
 - It only reflects from the top interface.
 - It is radial.

The lengths of these constitute the basic length spectrum.

14/26

• Two points are conjugate if there are many almost equal broken rays or geodesics between them — in the sense of linearization.

- Two points are conjugate if there are many almost equal broken rays or geodesics between them in the sense of linearization.
- Conjugate points cause trouble in geometric proofs!

- Two points are conjugate if there are many almost equal broken rays or geodesics between them — in the sense of linearization.
- Conjugate points cause trouble in geometric proofs!
- We make two assumptions:
 - Countable conjugacy condition:
 There are only countably many conjugate points (up to rotations and shifts).
 - Periodic conjugacy condition:
 No point is self-conjugate along a basic ray.

Standing assumptions:

• Profiles are radial and piecewise smooth.

- Profiles are radial and piecewise smooth.
- Jump discontinuities.

- Profiles are radial and piecewise smooth.
- Jump discontinuities.
- Herglotz condition within each layer.

- Profiles are radial and piecewise smooth.
- Jump discontinuities.
- Herglotz condition within each layer.
- Periodic and countable conjugacy conditions.

- Profiles are radial and piecewise smooth.
- Jump discontinuities.
- Herglotz condition within each layer.
- Periodic and countable conjugacy conditions.
- Simple basic length spectrum: multiplicity one.

- Profiles are radial and piecewise smooth.
- Jump discontinuities.
- Herglotz condition within each layer.
- Periodic and countable conjugacy conditions.
- Simple basic length spectrum: multiplicity one.
- Countable length spectrum.

Standing assumptions:

- Profiles are radial and piecewise smooth.
- Jump discontinuities.
- Herglotz condition within each layer.
- Periodic and countable conjugacy conditions.
- Simple basic length spectrum: multiplicity one.
- Countable length spectrum.

A parameter $\tau \in (-\varepsilon,\varepsilon)$ describing a family of models.

Theorem (de Hoop–Ilmavirta–Katsnelson)

16/26

Theorem (de Hoop–Ilmavirta–Katsnelson)

If $c_{\tau}(r)$ is a family of nice radial velocity profiles so that every c_{τ} has the same spectrum, then $c_{\tau}=c_0$ for all τ .

Theorem (de Hoop–Ilmavirta–Katsnelson)

If $c_{\tau}(r)$ is a family of nice radial velocity profiles so that every c_{τ} has the same spectrum, then $c_{\tau}=c_0$ for all τ .

Theorem (de Hoop-Ilmavirta-Katsnelson)

Theorem (de Hoop-Ilmavirta-Katsnelson)

If $c_{\tau}(r)$ is a family of nice radial velocity profiles so that every c_{τ} has the same spectrum, then $c_{\tau}=c_0$ for all τ .

Theorem (de Hoop-Ilmavirta-Katsnelson)

If $c_{\tau}(r)$ is a family of nice radial velocity profiles so that every c_{τ} has the same (basic) length spectrum, then $c_{\tau}=c_0$ for all τ .

Theorem (de Hoop-Ilmavirta-Katsnelson)

If $c_{\tau}(r)$ is a family of nice radial velocity profiles so that every c_{τ} has the same spectrum, then $c_{\tau}=c_0$ for all τ .

Theorem (de Hoop-Ilmavirta-Katsnelson)

If $c_{\tau}(r)$ is a family of nice radial velocity profiles so that every c_{τ} has the same (basic) length spectrum, then $c_{\tau}=c_0$ for all τ .

The spectral or length spectral data determines the interfaces and the radial velocities in a linearized sense.

Outline

- The idea
- 2 Mathematics
- Physics
 - Planetary models
 - Measurabilty
- The Herglotz condition

18/26

Planets are almost symmetric.

- Planets are almost symmetric.
- All planetary models we know satisfy our assumptions (incl. PREM).

- Planets are almost symmetric.
- All planetary models we know satisfy our assumptions (incl. PREM).
- Is Herglotz a consequence of physics?

• Spectral data is measurable on the surface.

- Spectral data is measurable on the surface.
- A ray can be trapped by total internal reflection in the core.

- Spectral data is measurable on the surface.
- A ray can be trapped by total internal reflection in the core.
- The corresponding mode has a small tail all the way at the surface.

- Spectral data is measurable on the surface.
- A ray can be trapped by total internal reflection in the core.
- The corresponding mode has a small tail all the way at the surface.
- In the high frequency limit the amplitudes and the relative surface amplitudes go down.

- Spectral data is measurable on the surface.
- A ray can be trapped by total internal reflection in the core.
- The corresponding mode has a small tail all the way at the surface.
- In the high frequency limit the amplitudes and the relative surface amplitudes go down.
- Noise is a problem.

Outline

- The idea
- Mathematics
- Physics
- The Herglotz condition
 - The classical Herglotz condition
 - Reduced phase space
 - Herglotz as convexity

The classical Herglotz condition

$$\rho(r) := \frac{r}{c(r)}$$
$$\rho'(r) > 0$$

$$\rho'(r) > 0$$

• Phase space = set of all possible positions and velocities.

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.
- The set of all rays or geodesics has dimension 1.

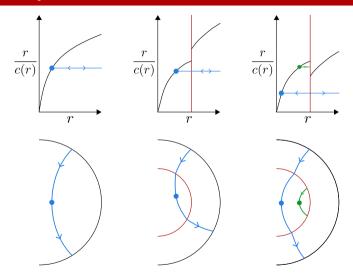
- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.
- The set of all rays or geodesics has dimension 1.
- Natural coordinates: radius r and angular momentum L.

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.
- The set of all rays or geodesics has dimension 1.
- ullet Natural coordinates: radius r and angular momentum L.
- Properties:

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.
- The set of all rays or geodesics has dimension 1.
- Natural coordinates: radius r and angular momentum L.
- Properties:
 - L is conserved also at interfaces.

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.
- The set of all rays or geodesics has dimension 1.
- ullet Natural coordinates: radius r and angular momentum L.
- Properties:
 - L is conserved also at interfaces.
 - $L \le \rho(r)$ everywhere.

- Phase space = set of all possible positions and velocities.
- The full phase space has dimension 5.
- Removing rotations, the reduced phase space has dimension 2.
- The set of all rays or geodesics has dimension 1.
- Natural coordinates: radius r and angular momentum L.
- Properties:
 - L is conserved also at interfaces.
 - $L \leq \rho(r)$ everywhere.
 - $L = \rho(r)$ if and only if the radial component of the velocity is zero $(\dot{r} = 0)$.

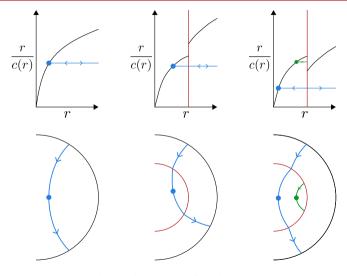


The reduced phase space is under the graph of ρ .

• In the smooth case: Herglotz means convexity of the reduced phase space.

- In the smooth case: Herglotz means convexity of the reduced phase space.
- In the presence of discontinuities: Herglotz in the sense of distributions means convexity.

- In the smooth case: Herglotz means convexity of the reduced phase space.
- In the presence of discontinuities: Herglotz in the sense of distributions means convexity.
- For our theorems we only need Herglotz in every layer. Jumps can be in any direction.



All of these are fine for us.

25/26

Thank you!

Key ideas:

- Spectrum determines length spectrum through a trace formula.
- Jump discontinuities are not a problem.
- Should be implementable.

```
http://users.jyu.fi/~jojapeil
joonas.ilmavirta@tuni.fi
```