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The spectrum of eigenfrequencies

An earthquake hits the Earth like a drum and we can listen to the sound it makes.

The amplitudes of the various modes depend on the event, the frequencies do not.

The set of frequencies is the spectrum of free oscillations.

These frequencies are (square roots of) eigenvalues of an elliptic partial differential
operator, “the elastic Laplacian”.
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The trace

Frequencies: ω1 < ω2 ≤ ω3 ≤ . . .
The elastic wave equation can be solved using a Green’s function G(x, y, t), expressible
in terms of the modes (eigenfunctions) and frequencies (eigenvalues).

The trace only depends on the eigenvalues:

tr(∂tG) =

∫
∂tG(x, x, t)dx =

∞∑
i=1

cos(ωit).

The function t 7→ tr(∂tG) is mostly smooth. It has a singularity at t = T if and pretty
much only if T is the length of a periodic ray path (periodic broken geodesic).
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The length spectrum

The length spectrum is the set of the lengths of all periodic orbits.

At interfaces the rays can choose to reflect or refract (and change polarization).

The length spectrum is computable from the eigenfrequencies (singularities of the trace)
but can also be measured directly. (Both appear possible on Mars, in principle.)

Using the length spectral data is like travel time tomography but without endpoints.
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Linearization

The full problem is non-linear and hard, so we linearize.
Linearizing normal travel time tomography between surface points leads to geodesic
X-ray tomography.

This problem is well understood on some manifolds.

Linearizing periodic travel time tomography leads to periodic broken ray tomography.
This problem is beginning to be understood on very few manifolds.
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The result

All of this actually makes full mathematical sense:

A spherically symmetric planet with radial velocity profile(s) with jump discontinuities and mild
geometric conditions is determined by its spectrum or length spectrum.

≈ Earth-like planets are locally uniquely determined by the spectrum of free oscillations.
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Spherical symmetry

For a Riemannian metric (elliptically anisotropic wave speed) on a ball there are two
concepts of spherical symmetry:

Rotation invariance: g = R∗g for all R ∈ SO(3).
Radially conformally Euclidean: g(x) = c−2(|x|)e.

These are equivalent — up to changing coordinates.
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Spherical symmetry

In spherical symmetry one can calculate explicitly rather than just qualitatively.

The geodesic flow is integrable with conserved quantities.

Geometry behaves well under the Herglotz condition: d
dr

(
r
c(r)

)
> 0 for all r > 0.
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Polarization

For simplicity the results are stated for a scalar model with 1 or 2 radial wave speed
profiles.

The results hold for the isotropic elastic system (2 radial Lamé parameters) but are trickier
to state.

Waves split 4 ways at interfaces.

In the scalar case the spectrum of free oscillations is modeled geometrically “simply” by
the Neumann spectrum of a Laplace–Beltrami operator.
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Basic rays

We define a periodic broken ray to be basic if

it stays in a single layer,

it stays in the same polarization, and
it is of one of two types:

It only reflects from the top interface.
It is radial.

The lengths of these constitute the basic length spectrum.
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Conjugate points

Two points are conjugate if there are many almost equal broken rays or geodesics
between them — in the sense of linearization.

Conjugate points cause trouble in geometric proofs!
We make two assumptions:

Countable conjugacy condition:
There are only countably many conjugate points (up to rotations and shifts).
Periodic conjugacy condition:
No point is self-conjugate along a basic ray.
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The theorems

Standing assumptions:

Profiles are radial and piecewise smooth.

Jump discontinuities.

Herglotz condition within each layer.

Periodic and countable conjugacy conditions.

Simple basic length spectrum: multiplicity one.

Countable length spectrum.

A parameter τ ∈ (−ε, ε) describing a family of models.
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The theorems

Theorem (de Hoop–Ilmavirta–Katsnelson)

If cτ (r) is a family of nice radial velocity profiles so that every cτ has the same spectrum, then
cτ = c0 for all τ .

Theorem (de Hoop–Ilmavirta–Katsnelson)
If cτ (r) is a family of nice radial velocity profiles so that every cτ has the same (basic) length
spectrum, then cτ = c0 for all τ .

The spectral or length spectral data determines the interfaces and the radial velocities in a
linearized sense.
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Planetary models

Planets are almost symmetric.

All planetary models we know satisfy our assumptions (incl. PREM).

Is Herglotz a consequence of physics?
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Measurabilty

Spectral data is measurable on the surface.

A ray can be trapped by total internal reflection in the core.

The corresponding mode has a small tail all the way at the surface.

In the high frequency limit the amplitudes and the relative surface amplitudes go down.

Noise is a problem.
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The classical Herglotz condition

ρ(r) :=
r

c(r)

ρ′(r) > 0
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Reduced phase space

Phase space = set of all possible positions and velocities.

The full phase space has dimension 5.

Removing rotations, the reduced phase space has dimension 2.

The set of all rays or geodesics has dimension 1.

Natural coordinates: radius r and angular momentum L.
Properties:

L is conserved — also at interfaces.
L ≤ ρ(r) everywhere.
L = ρ(r) if and only if the radial component of the velocity is zero (ṙ = 0).
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Reduced phase space

The reduced phase space is under the graph of ρ.
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Herglotz as convexity

In the smooth case: Herglotz means convexity of the reduced phase space.

In the presence of discontinuities: Herglotz in the sense of distributions means convexity.

For our theorems we only need Herglotz in every layer. Jumps can be in any direction.
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Herglotz as convexity

All of these are fine for us.
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Thank you!

Key ideas:

Spectrum determines length spectrum through a trace formula.

Jump discontinuities are not a problem.

Should be implementable.

http://users.jyu.fi/~jojapeil

joonas.ilmavirta@tuni.fi

Joonas Ilmavirta (Tampere) Spectral rigidity 16 June 2021 26 / 26

.


	Eigenfrequencies: Spectral rigidity with discontinuities
	The idea
	The spectrum of eigenfrequencies
	The trace
	The length spectrum
	Linearization
	The result

	Mathematics
	Spherical symmetry
	Polarization
	Basic rays
	Conjugate points
	The theorems

	Physics
	Planetary models
	Measurabilty

	The Herglotz condition
	The classical Herglotz condition
	Reduced phase space
	Herglotz as convexity
	Thank you!


