Geometric inverse problems arising from geophysics UCL inverse problems seminar

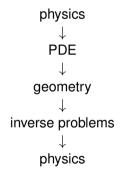
Joonas Ilmavirta

Tampere University

In collaboration with: M. V. de Hoop & E. Iversen & M. Lassas & K. Mönkkönen & T. Saksala & B. Ursin & others

4 December 2020

Geometric inverse problems arising from geophysics



Outline

Geometrization of gravitation

- Newton's theory
- Einstein's theory
- The goal

2 Elastic waves

Elastic geometry

• Gravitation is a force and a force causes acceleration.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.
- The force is described by a simple formula and the equation of motion is an ODE in \mathbb{R}^n .

- Gravitation is a force and a force causes acceleration.
- The gravitational force exerted by the Sun causes the Earth's trajectory to curve.
- The force is described by a simple formula and the equation of motion is an ODE in \mathbb{R}^n .
- The Newtonian approach is straightforward to use and often a good model.

Einstein's theory

• Gravitation is interaction between geometry and matter.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.
- There is a complicated equation of motion for the geometry itself: Einstein's field equation is a non-linear system of coupled PDEs.

- Gravitation is interaction between geometry and matter.
- The Sun causes the spacetime to curve and the Earth goes straight in this curved geometry.
- There is a relatively simple equation of motion for the planet: The geodesic equation is a non-linear ODE.
- There is a complicated equation of motion for the geometry itself: Einstein's field equation is a non-linear system of coupled PDEs.
- This model is harder to use but can reach phenomena inaccessible to Newtonian gravity and provides a more geometric way to see the essential structures.

A geometric theory of elasticity?

Untoy the model: Bring mathematics closer to the application.

Outline

Geometrization of gravitation

Elastic waves

- The stiffness tensor
- The elastic wave equation
- The principal symbol
- Polarization
- Singularities and the slowness surface
- 3 Elastic geometry
- Inverse problems

Joonas Ilmavirta (Tampere)

• When something in an elastic material is displaced from equilibrium, it tends to return back.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- Weak field limit: The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- Weak field limit: The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- Weak field limit: The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.
- The tensor is very symmetric ($c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij}$) and quite positive ($c_{ijkl}A_{jk}A_{il} \gtrsim |A|^2$ for all symmetric A).

- When something in an elastic material is displaced from equilibrium, it tends to return back.
- Weak field limit: The restoring force (stress) depends linearly on the displacement relative to neighboring points (strain).
- The "spring constant" of Hooke's law is the stiffness "tensor" $c_{ijkl}(x)$. It fully describes the springiness of the material.
- The tensor is very symmetric ($c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij}$) and quite positive ($c_{ijkl}A_{jk}A_{il} \gtrsim |A|^2$ for all symmetric A).
- Density normalized: $a_{ijkl}(x) = c_{ijkl}(x)/\rho(x)$.

The elastic wave equation

Joonas Ilmavirta (Tampere)

• Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

• Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

• Einstein summation is used over repeated indices although they are all down.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

- Einstein summation is used over repeated indices although they are all down.
- If the material is anisotropic (*c* is no more symmetric than necessary and wave speed depends on direction), then the vector nature of the equation cannot be ignored.

 Using Newton's second law with a restoring force given by Hooke's law leads to the elastic wave equation (EWE)

$$\partial_j [c_{ijkl}(x)\partial_k u_l(x,t)] - \rho(x)\partial_t^2 u_i(x,t) = 0,$$

where u(x,t) is a small displacement field.

- Einstein summation is used over repeated indices although they are all down.
- If the material is anisotropic (*c* is no more symmetric than necessary and wave speed depends on direction), then the vector nature of the equation cannot be ignored.
- Elastic waves arising from earthquakes (or marsquakes!) satisfy this equation away from the focus of the event to great accuracy. (Weak field limit.)

Joonas Ilmavirta (Tampere)

• Suppose c and ρ are constant.

• Suppose c and ρ are constant. The plane wave

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

solves the EWE if and only if

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

• Suppose c and ρ are constant. The plane wave

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

solves the EWE if and only if

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

• Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).

• Suppose c and ρ are constant. The plane wave

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

solves the EWE if and only if

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- The matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k$$

is the Christoffel matrix. It is symmetric and positive definite.

• Suppose c and ρ are constant. The plane wave

$$u_i(x,t) = A_i e^{i\omega(p \cdot x - t)}$$

solves the EWE if and only if

$$(a_{ijkl}p_jp_k - \delta_{il})A_l = 0.$$

- Here A is the polarization vector, ω is the frequency, and p is the slowness vector (reciprocal of phase velocity).
- The matrix

$$\Gamma_{il}(x,p) = a_{ijkl}(x)p_jp_k$$

is the Christoffel matrix. It is symmetric and positive definite.

• The principal symbol of the EWO is $\Gamma(x,\xi) - \omega^2 I$, where $\xi = \omega p$.

Polarization

• In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector (direction of oscillation) is either parallel or normal to *p* (direction of propagation).

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector (direction of oscillation) is either parallel or normal to *p* (direction of propagation).
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector (direction of oscillation) is either parallel or normal to *p* (direction of propagation).
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector (direction of oscillation) is either parallel or normal to *p* (direction of propagation).
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.
- Polarization vectors are eigenvectors of the Christoffel matrix Γ , so they are orthogonal.

- In isotropic elasticity (maximal symmetry of the stiffness tensor *c*) the polarization vector (direction of oscillation) is either parallel or normal to *p* (direction of propagation).
- The parallel polarized wave (P wave, pressure wave, primary wave) is faster than the normally polarized one (S wave, shear wave, secondary wave).
- In anisotropic elasticity it does not work quite as nicely. The fastest polarization is called quasi-P and the slower ones quasi-S.
- Polarization vectors are eigenvectors of the Christoffel matrix Γ , so they are orthogonal.
- Decomposition to polarizations only works on the level of singularities. The individual polarizations do not satisfy PDEs.

Joonas Ilmavirta (Tampere)

Singularities and the slowness surface

• We are interested in arrivals of wave fronts from a seismic event to a detector.

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities of solutions to the EWE follow the Hamiltonian flow determined by the principal symbol.

- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities of solutions to the EWE follow the Hamiltonian flow determined by the principal symbol.
- The slowness vector p and the polarization A of a singularity at x must satisfy

$$[\Gamma(x,p) - I]A = 0.$$

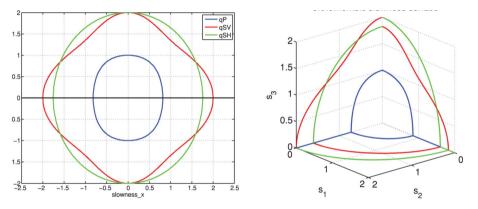
- We are interested in arrivals of wave fronts from a seismic event to a detector.
- Singularities of solutions to the EWE follow the Hamiltonian flow determined by the principal symbol.
- The slowness vector p and the polarization A of a singularity at x must satisfy

$$[\Gamma(x,p) - I]A = 0.$$

• The admissible slowness vectors *p* are on the slowness surface given by the equation

$$\det[\Gamma(x,p) - I] = 0.$$

Singularities and the slowness surface



The slowness surface. Smaller slowness \iff faster wave.

Outline

Geometrization of gravitation

2 Elastic waves

3 Elastic geometry

- Distance
- Ray tracing
- Finsler manifolds

Inverse problems

Distance

• A geometric object like a Riemannian manifold is uniquely determined by distance:

• A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y.

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y. (qP is fastest!)

- A geometric object like a Riemannian manifold is uniquely determined by distance: If you know the distance between any two points, you can compute areas, angles, curvatures, and all else.
- In elastic geometry
 - the object is an elastic body like the Earth and
 - the distance is the travel time.
- That is, we declare the distance between x and y to be the shortest amount of time it takes for a wave to travel from x to y. (qP is fastest!)
- There are two geometries: "spatial" and "temporal".

Ray tracing

 We can think of seismic or other elastic waves as point particles (phonons) in different ways:

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets (or other asymptotic solutions),

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets (or other asymptotic solutions), or
 - microlocal analysis.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets (or other asymptotic solutions), or
 - microlocal analysis.
- We can then study how these particles travel.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets (or other asymptotic solutions), or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the phonon is curved because wave speed varies.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets (or other asymptotic solutions), or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the phonon is curved because wave speed varies.
 - Newer view: The phonon goes straight in a curved geometry (along a geodesic), and the geometry is curved by variations in wave speed.

- We can think of seismic or other elastic waves as point particles (phonons) in different ways:
 - wave-particle duality,
 - wave packets (or other asymptotic solutions), or
 - microlocal analysis.
- We can then study how these particles travel.
 - Traditional view: The trajectory of the phonon is curved because wave speed varies.
 - Newer view: The phonon goes straight in a curved geometry (along a geodesic), and the geometry is curved by variations in wave speed.
- Compare to gravitation!

• A metric induces a connection.

• A metric induces a connection. For every definition of "distance" there is a natural definition of "straightness".

- A metric induces a connection. For every definition of "distance" there is a natural definition of "straightness".
- In elastic geometry we measure distance in travel time, and the waves go straight in this geometry.

- A metric induces a connection. For every definition of "distance" there is a natural definition of "straightness".
- In elastic geometry we measure distance in travel time, and the waves go straight in this geometry.
- Fermat's principle: Phonons the particles corresponding to elastic waves go straight in the geometry given by travel time.

- A metric induces a connection. For every definition of "distance" there is a natural definition of "straightness".
- In elastic geometry we measure distance in travel time, and the waves go straight in this geometry.
- Fermat's principle: Phonons the particles corresponding to elastic waves go straight in the geometry given by travel time.
- Fermat's principle is about going straight in the relevant geometry, not about taking the shortest path. These are not the same thing over long distances or for shear waves.

• A Riemannian manifold is a smooth manifold with an inner product on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - F is continuous everywhere and smooth on $TM \setminus 0$,

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - **(**) F is continuous everywhere and smooth on $TM \setminus 0$,
 - 2 F is positively 1-homogeneous on every fiber,

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - F is continuous everywhere and smooth on $TM \setminus 0$,
 - 2 F is positively 1-homogeneous on every fiber, and
 - \bigcirc F^2 is strictly convex (positive definite Hessian) on every fiber.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - F is continuous everywhere and smooth on $TM \setminus 0$,
 - 2 F is positively 1-homogeneous on every fiber, and
 - \bigcirc F^2 is strictly convex (positive definite Hessian) on every fiber.
- Lengths of curves are defined in the usual way using the (Minkowski) norm on every tangent space.

- A Riemannian manifold is a smooth manifold with an inner product on every tangent space.
- A Finsler manifold is a smooth manifold with a norm on every tangent space.
- More specifically, there is a Finsler function $F \colon TM \to [0,\infty)$ so that:
 - F is continuous everywhere and smooth on $TM \setminus 0$,
 - 2 F is positively 1-homogeneous on every fiber, and
 - \bigcirc F^2 is strictly convex (positive definite Hessian) on every fiber.
- Lengths of curves are defined in the usual way using the (Minkowski) norm on every tangent space.
- The norms on the dual spaces T_x^*M satisfy the same conditions.

Elastic finsler geometry

The cosphere of the elastic geometry is the slowness surface. The "elastic manifold" corresponding to qP waves is a Finsler manifold with special properties. Phonons go straight in this geometry.

Elastic finsler geometry

The cosphere of the elastic geometry is the slowness surface. The "elastic manifold" corresponding to qP waves is a Finsler manifold with special properties. Phonons go straight in this geometry.

Other polarizations are problematic.

Outline

- Geometrization of gravitation
- 2 Elastic waves
- 3 Elastic geometry
- Inverse problems
 - Geometrization of the question
 - Herglotz (Mönkkönen)
 - Dix (de Hoop, Lassas)
 - Distance function (de Hoop, Lassas, Saksala)
 - Scattering data (de Hoop, Lassas, Saksala)
 - Ray tracing (Iversen, Ursin, Saksala, de Hoop)
 - And more...

Joonas Ilmavirta (Tampere)

• Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.
- From the slowness surface one can then find the material parameters the components of the stiffness tensor.

- Typical inverse problem: Given some boundary data, find the reduced stiffness tensor $\rho^{-1}(x)c_{ijkl}(x)$ everywhere.
- A more geometric formulation: Given some boundary data, find the cosphere (slowness surface) at every point.
- From the slowness surface one can then find the material parameters the components of the stiffness tensor.
- Practical goal for a geometer: Given some boundary data, find the Finsler manifold or its cosphere bundle.

Herglotz (Mönkkönen)

• Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)
- This is not true for a spherically symmetric Finsler manifold.

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)
- This is not true for a spherically symmetric Finsler manifold.
- There is still a Herglotz condition but it looks different.

- Herglotz solved an inverse problem for a spherically symmetric planet in 1905: Assuming a natural condition, a radial isotropic wave speed is uniquely determined by boundary distances.
- A spherically symmetric non-trapping Riemannian manifold is always of the Herglotz type. (de Hoop–I–Katsnelson, 2017)
- This is not true for a spherically symmetric Finsler manifold.
- There is still a Herglotz condition but it looks different.
- Linearized travel time data leads to X-ray tomography.

Dix (de Hoop, Lassas)

Joonas Ilmavirta (Tampere)

• Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts.

• Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set $U \subset M$ one can see spheres with any center.

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set U ⊂ M one can see spheres with any center. The data consists of oriented surfaces with radii.

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set U ⊂ M one can see spheres with any center. The data consists of oriented surfaces with radii.
- One can follow the geodesics backwards and find the metric on a neighborhood of the lift.

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set $U \subset M$ one can see spheres with any center. The data consists of oriented surfaces with radii.
- One can follow the geodesics backwards and find the metric on a neighborhood of the lift.
- With fiberwise analyticity this information can be globalized to give the universal cover of (M, F).

- Imagine that we have (virtual) point sources everywhere in the planet and we can measure the arriving wave fronts. Does this determine the reduced stiffness tensor *a* everywhere without any kind of isotropy assumption?
- To geometrize the problem, consider a Finsler manifold (M, F).
- In some measurement set U ⊂ M one can see spheres with any center. The data consists of oriented surfaces with radii.
- One can follow the geodesics backwards and find the metric on a neighborhood of the lift.
- With fiberwise analyticity this information can be globalized to give the universal cover of (M, F).
- The "directionality" of Finsler geometry is a major complication in comparison to the Riemannian version (de Hoop–Holman–Iversen–Lassas–Ursin, 2015).

• Consider a Finsler manifold (M, F) with boundary — an anisotropic elastic body with a surface.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct M and F on the good set $G \subset TM$, but not outside it.

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct *M* and *F* on the good set *G* ⊂ *TM*, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).

Distance function (de Hoop, Lassas, Saksala)

- Consider a Finsler manifold (M, F) with boundary an anisotropic elastic body with a surface.
- Any point $x \in M$ determines a boundary distance function $r_x : \partial M \to \mathbb{R}$.
- Question: Does the set $\{r_x; x \in M\}$ determine (M, F)?
- Part of the bundle is invisible: One can only hope to see the Finsler function at a point $v \in TM$ if the geodesic starting at v is minimizing between its start point in M and endpoint on ∂M .
- One can reconstruct *M* and *F* on the good set *G* ⊂ *TM*, but not outside it. There is no such complication in Riemannian geometry (Kurylev, 1997; Katchalov–Kurylev–Lassas 2001).
- If *F* is fiberwise real analytic (elasticity or Riemann!), then *F* is determined uniquely.

Scattering data (de Hoop, Lassas, Saksala)

 Consider stronger data with access to directions: We know the pairs of points on ∂_{in}SM whose geodesics meet and the total travel time.

- Consider stronger data with access to directions: We know the pairs of points on ∂_{in}SM whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.
- Global uniqueness is can be done with added assumptions: reversibility (point symmetry) and foliation.

- Consider stronger data with access to directions: We know the pairs of points on $\partial_{in}SM$ whose geodesics meet and the total travel time.
- This broken scattering relation can see much more of *TM*, but the trapped set is still invisible.
- Global uniqueness is can be done with added assumptions: reversibility (point symmetry) and foliation.
- Almost no assumptions are needed in the Riemannian case (Kurylev–Lassas–Uhlmann, 2010).

• We follow seismic rays and study their variations.

- We follow seismic rays and study their variations.
- There are different coordinates:

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.
 - Fermi coordinates and covariant derivatives of the corresponding elastic geometry are tricky to set up but the equations are clean.

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.
 - Fermi coordinates and covariant derivatives of the corresponding elastic geometry are tricky to set up but the equations are clean.
- Variations in position (Q) and momentum (P) satisfy an equation

$$\partial_t \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} W^T(t) & V(t) \\ -U(t) & -W(t) \end{pmatrix} \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix}.$$

- We follow seismic rays and study their variations.
- There are different coordinates:
 - Cartesian coordinates where things are trivial to define but equations are messy.
 - Ray-centered coordinates which are more complicated to use but more structure arises.
 - Fermi coordinates and covariant derivatives of the corresponding elastic geometry are tricky to set up but the equations are clean.
- Variations in position (Q) and momentum (P) satisfy an equation

$$\partial_t \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix} = \begin{pmatrix} W^T(t) & V(t) \\ -U(t) & -W(t) \end{pmatrix} \begin{pmatrix} Q(t) \\ P(t) \end{pmatrix}.$$

• Written in terms of a Jacobi field J and its covariant derivative, we have instead

$$D_t \begin{pmatrix} J(t) \\ D_t J(t) \end{pmatrix} = \begin{pmatrix} 0 & I \\ -R(t) & 0 \end{pmatrix} \begin{pmatrix} J(t) \\ D_t J(t) \end{pmatrix}.$$

And more...

Joonas Ilmavirta (Tampere)

• Spectral problems.

- Spectral problems.
- Geomathematics on Mars.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.
- Rough geometry.

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.
- Rough geometry.
- Underlying a variety of inverse problems, both past and future:

- Spectral problems.
- Geomathematics on Mars.
- The slowness surface as an algebraic surface.
- Linearized problems, including ray transforms with partial data.
- Understanding coordinates.
- Rough geometry.
- Underlying a variety of inverse problems, both past and future:

Modelling goal

Building a complete theory of elastic geometry.

Key ideas:

- Pure mathematics for the sake of physics.
- Geometrization.
- Geomathematics.

http://users.jyu.fi/~jojapeil joonas.ilmavirta@tuni.fi